aboutsummaryrefslogtreecommitdiffstats
path: root/CommonLibs/BitVector.h
blob: 16a1587081b0581de59c50344f49d92304dc6dc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*
* Copyright 2008, 2009 Free Software Foundation, Inc.
*
* SPDX-License-Identifier: AGPL-3.0+
*
* This software is distributed under the terms of the GNU Affero Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.

	This program is free software: you can redistribute it and/or modify
	it under the terms of the GNU Affero General Public License as published by
	the Free Software Foundation, either version 3 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU Affero General Public License for more details.

	You should have received a copy of the GNU Affero General Public License
	along with this program.  If not, see <http://www.gnu.org/licenses/>.

*/


#ifndef FECVECTORS_H
#define FECVECTORS_H

#include "Vector.h"
#include <stdint.h>


class BitVector : public Vector<char> {


	public:

	/**@name Constructors. */
	//@{

	/**@name Casts of Vector constructors. */
	//@{
	BitVector(char* wData, char* wStart, char* wEnd)
		:Vector<char>(wData,wStart,wEnd)
	{ }
	BitVector(size_t len=0):Vector<char>(len) {}
	BitVector(const Vector<char>& source):Vector<char>(source) {}
	BitVector(Vector<char>& source):Vector<char>(source) {}
	BitVector(const Vector<char>& source1, const Vector<char> source2):Vector<char>(source1,source2) {}
	//@}

	/** Construct from a string of "0" and "1". */
	BitVector(const char* valString);
	//@}

	/** Index a single bit. */
	bool bit(size_t index) const
	{
		// We put this code in .h for fast inlining.
		const char *dp = mStart+index;
		assert(dp<mEnd);
		return (*dp) & 0x01;
	}

	/**@name Casts and overrides of Vector operators. */
	//@{
	BitVector segment(size_t start, size_t span)
	{
		char* wStart = mStart + start;
		char* wEnd = wStart + span;
		assert(wEnd<=mEnd);
		return BitVector(NULL,wStart,wEnd);
	}

	BitVector alias()
		{ return segment(0,size()); }

	const BitVector segment(size_t start, size_t span) const
		{ return (BitVector)(Vector<char>::segment(start,span)); }

	BitVector head(size_t span) { return segment(0,span); }
	const BitVector head(size_t span) const { return segment(0,span); }
	BitVector tail(size_t start) { return segment(start,size()-start); }
	const BitVector tail(size_t start) const { return segment(start,size()-start); }
	//@}


	void zero() { fill(0); }


	/** Invert 0<->1. */
	void invert();

	/**@name Byte-wise operations. */
	//@{
	/** Reverse an 8-bit vector. */
	void reverse8();
	/** Reverse groups of 8 within the vector (byte reversal). */
	void LSB8MSB();
	//@}

	/**@name Serialization and deserialization. */
	//@{
	uint64_t peekField(size_t readIndex, unsigned length) const;
	uint64_t peekFieldReversed(size_t readIndex, unsigned length) const;
	uint64_t readField(size_t& readIndex, unsigned length) const;
	uint64_t readFieldReversed(size_t& readIndex, unsigned length) const;
	void fillField(size_t writeIndex, uint64_t value, unsigned length);
	void fillFieldReversed(size_t writeIndex, uint64_t value, unsigned length);
	void writeField(size_t& writeIndex, uint64_t value, unsigned length);
	void writeFieldReversed(size_t& writeIndex, uint64_t value, unsigned length);
	void write0(size_t& writeIndex) { writeField(writeIndex,0,1); }
	void write1(size_t& writeIndex) { writeField(writeIndex,1,1); }

	//@}

	/** Sum of bits. */
	unsigned sum() const;

	/** Reorder bits, dest[i] = this[map[i]]. */
	void map(const unsigned *map, size_t mapSize, BitVector& dest) const;

	/** Reorder bits, dest[map[i]] = this[i]. */
	void unmap(const unsigned *map, size_t mapSize, BitVector& dest) const;

	/** Pack into a char array. */
	void pack(unsigned char*) const;

	/** Unpack from a char array. */
	void unpack(const unsigned char*);

	/** Make a hexdump string. */
	void hex(std::ostream&) const;
	std::string hexstr() const;

	/** Unpack from a hexdump string.
	*  @returns true on success, false on error. */
	bool unhex(const char*);

	void set(BitVector other)	// That's right.  No ampersand.
	{
		clear();
		mData=other.mData;
		mStart=other.mStart;
		mEnd=other.mEnd;
		other.mData=NULL;
	}

	void settfb(int i, int j) const
	{
		mStart[i] = j;
	}

};



std::ostream& operator<<(std::ostream&, const BitVector&);






/**
  The SoftVector class is used to represent a soft-decision signal.
  Values 0..1 represent probabilities that a bit is "true".
 */
class SoftVector: public Vector<float> {

	public:

	/** Build a SoftVector of a given length. */
	SoftVector(size_t wSize=0):Vector<float>(wSize) {}

	/** Construct a SoftVector from a C string of "0", "1", and "X". */
	SoftVector(const char* valString);

	/** Construct a SoftVector from a BitVector. */
	SoftVector(const BitVector& source);

	/**
		Wrap a SoftVector around a block of floats.
		The block will be delete[]ed upon desctuction.
	*/
	SoftVector(float *wData, unsigned length)
		:Vector<float>(wData,length)
	{}

	SoftVector(float* wData, float* wStart, float* wEnd)
		:Vector<float>(wData,wStart,wEnd)
	{ }

	/**
		Casting from a Vector<float>.
		Note that this is NOT pass-by-reference.
	*/
	SoftVector(Vector<float> source)
		:Vector<float>(source)
	{}


	/**@name Casts and overrides of Vector operators. */
	//@{
	SoftVector segment(size_t start, size_t span)
	{
		float* wStart = mStart + start;
		float* wEnd = wStart + span;
		assert(wEnd<=mEnd);
		return SoftVector(NULL,wStart,wEnd);
	}

	SoftVector alias()
		{ return segment(0,size()); }

	const SoftVector segment(size_t start, size_t span) const
		{ return (SoftVector)(Vector<float>::segment(start,span)); }

	SoftVector head(size_t span) { return segment(0,span); }
	const SoftVector head(size_t span) const { return segment(0,span); }
	SoftVector tail(size_t start) { return segment(start,size()-start); }
	const SoftVector tail(size_t start) const { return segment(start,size()-start); }
	//@}

	// How good is the SoftVector in the sense of the bits being solid?
	// Result of 1 is perfect and 0 means all the bits were 0.0
	// If plow is non-NULL, also return the lowest energy bit.
	float getEnergy(float *low=0) const;

	/** Fill with "unknown" values. */
	void unknown() { fill(0.0F); }

	/** Return a hard bit value from a given index by slicing. */
	bool bit(size_t index) const
	{
		const float *dp = mStart+index;
		assert(dp<mEnd);
		return (*dp)>0.0F;
	}

	/** Slice the whole signal into bits. */
	BitVector sliced() const;

};



std::ostream& operator<<(std::ostream&, const SoftVector&);






#endif
// vim: ts=4 sw=4