aboutsummaryrefslogtreecommitdiffstats
path: root/Transceiver52M/arch/x86/convolve_sse_3.c
diff options
context:
space:
mode:
Diffstat (limited to 'Transceiver52M/arch/x86/convolve_sse_3.c')
-rw-r--r--Transceiver52M/arch/x86/convolve_sse_3.c542
1 files changed, 542 insertions, 0 deletions
diff --git a/Transceiver52M/arch/x86/convolve_sse_3.c b/Transceiver52M/arch/x86/convolve_sse_3.c
new file mode 100644
index 0000000..dbee3cc
--- /dev/null
+++ b/Transceiver52M/arch/x86/convolve_sse_3.c
@@ -0,0 +1,542 @@
+/*
+ * SSE Convolution
+ * Copyright (C) 2012, 2013 Thomas Tsou <tom@tsou.cc>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include <malloc.h>
+#include <string.h>
+#include <stdio.h>
+#include "convolve_sse_3.h"
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#ifdef HAVE_SSE3
+#include <xmmintrin.h>
+#include <pmmintrin.h>
+
+/* 4-tap SSE complex-real convolution */
+void sse_conv_real4(const float *x, int x_len,
+ const float *h, int h_len,
+ float *y, int y_len,
+ int start, int len, int step, int offset)
+{
+ /* NOTE: The parameter list of this function has to match the parameter
+ * list of _base_convolve_real() in convolve_base.c. This specific
+ * implementation, ignores some of the parameters of
+ * _base_convolve_complex(), which are: x_len, y_len, offset, step */
+
+ __m128 m0, m1, m2, m3, m4, m5, m6, m7;
+
+ const float *_x = &x[2 * (-(h_len - 1) + start)];
+
+ /* Load (aligned) filter taps */
+ m0 = _mm_load_ps(&h[0]);
+ m1 = _mm_load_ps(&h[4]);
+ m7 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+
+ for (int i = 0; i < len; i++) {
+ /* Load (unaligned) input data */
+ m0 = _mm_loadu_ps(&_x[2 * i + 0]);
+ m1 = _mm_loadu_ps(&_x[2 * i + 4]);
+ m2 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m3 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Quad multiply */
+ m4 = _mm_mul_ps(m2, m7);
+ m5 = _mm_mul_ps(m3, m7);
+
+ /* Sum and store */
+ m6 = _mm_hadd_ps(m4, m5);
+ m0 = _mm_hadd_ps(m6, m6);
+
+ _mm_store_ss(&y[2 * i + 0], m0);
+ m0 = _mm_shuffle_ps(m0, m0, _MM_SHUFFLE(0, 3, 2, 1));
+ _mm_store_ss(&y[2 * i + 1], m0);
+ }
+}
+
+/* 8-tap SSE complex-real convolution */
+void sse_conv_real8(const float *x, int x_len,
+ const float *h, int h_len,
+ float *y, int y_len,
+ int start, int len, int step, int offset)
+{
+ /* See NOTE in sse_conv_real4() */
+
+ __m128 m0, m1, m2, m3, m4, m5, m6, m7, m8, m9;
+
+ const float *_x = &x[2 * (-(h_len - 1) + start)];
+
+ /* Load (aligned) filter taps */
+ m0 = _mm_load_ps(&h[0]);
+ m1 = _mm_load_ps(&h[4]);
+ m2 = _mm_load_ps(&h[8]);
+ m3 = _mm_load_ps(&h[12]);
+
+ m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m5 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+
+ for (int i = 0; i < len; i++) {
+ /* Load (unaligned) input data */
+ m0 = _mm_loadu_ps(&_x[2 * i + 0]);
+ m1 = _mm_loadu_ps(&_x[2 * i + 4]);
+ m2 = _mm_loadu_ps(&_x[2 * i + 8]);
+ m3 = _mm_loadu_ps(&_x[2 * i + 12]);
+
+ m6 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m7 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+ m8 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m9 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Quad multiply */
+ m6 = _mm_mul_ps(m6, m4);
+ m7 = _mm_mul_ps(m7, m4);
+ m8 = _mm_mul_ps(m8, m5);
+ m9 = _mm_mul_ps(m9, m5);
+
+ /* Sum and store */
+ m6 = _mm_add_ps(m6, m8);
+ m7 = _mm_add_ps(m7, m9);
+ m6 = _mm_hadd_ps(m6, m7);
+ m6 = _mm_hadd_ps(m6, m6);
+
+ _mm_store_ss(&y[2 * i + 0], m6);
+ m6 = _mm_shuffle_ps(m6, m6, _MM_SHUFFLE(0, 3, 2, 1));
+ _mm_store_ss(&y[2 * i + 1], m6);
+ }
+}
+
+/* 12-tap SSE complex-real convolution */
+void sse_conv_real12(const float *x, int x_len,
+ const float *h, int h_len,
+ float *y, int y_len,
+ int start, int len, int step, int offset)
+{
+ /* See NOTE in sse_conv_real4() */
+
+ __m128 m0, m1, m2, m3, m4, m5, m6, m7;
+ __m128 m8, m9, m10, m11, m12, m13, m14;
+
+ const float *_x = &x[2 * (-(h_len - 1) + start)];
+
+ /* Load (aligned) filter taps */
+ m0 = _mm_load_ps(&h[0]);
+ m1 = _mm_load_ps(&h[4]);
+ m2 = _mm_load_ps(&h[8]);
+ m3 = _mm_load_ps(&h[12]);
+ m4 = _mm_load_ps(&h[16]);
+ m5 = _mm_load_ps(&h[20]);
+
+ m12 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m13 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m14 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(0, 2, 0, 2));
+
+ for (int i = 0; i < len; i++) {
+ /* Load (unaligned) input data */
+ m0 = _mm_loadu_ps(&_x[2 * i + 0]);
+ m1 = _mm_loadu_ps(&_x[2 * i + 4]);
+ m2 = _mm_loadu_ps(&_x[2 * i + 8]);
+ m3 = _mm_loadu_ps(&_x[2 * i + 12]);
+
+ m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+ m6 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m7 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3));
+
+ m0 = _mm_loadu_ps(&_x[2 * i + 16]);
+ m1 = _mm_loadu_ps(&_x[2 * i + 20]);
+
+ m8 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m9 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Quad multiply */
+ m0 = _mm_mul_ps(m4, m12);
+ m1 = _mm_mul_ps(m5, m12);
+ m2 = _mm_mul_ps(m6, m13);
+ m3 = _mm_mul_ps(m7, m13);
+ m4 = _mm_mul_ps(m8, m14);
+ m5 = _mm_mul_ps(m9, m14);
+
+ /* Sum and store */
+ m8 = _mm_add_ps(m0, m2);
+ m9 = _mm_add_ps(m1, m3);
+ m10 = _mm_add_ps(m8, m4);
+ m11 = _mm_add_ps(m9, m5);
+
+ m2 = _mm_hadd_ps(m10, m11);
+ m3 = _mm_hadd_ps(m2, m2);
+
+ _mm_store_ss(&y[2 * i + 0], m3);
+ m3 = _mm_shuffle_ps(m3, m3, _MM_SHUFFLE(0, 3, 2, 1));
+ _mm_store_ss(&y[2 * i + 1], m3);
+ }
+}
+
+/* 16-tap SSE complex-real convolution */
+void sse_conv_real16(const float *x, int x_len,
+ const float *h, int h_len,
+ float *y, int y_len,
+ int start, int len, int step, int offset)
+{
+ /* See NOTE in sse_conv_real4() */
+
+ __m128 m0, m1, m2, m3, m4, m5, m6, m7;
+ __m128 m8, m9, m10, m11, m12, m13, m14, m15;
+
+ const float *_x = &x[2 * (-(h_len - 1) + start)];
+
+ /* Load (aligned) filter taps */
+ m0 = _mm_load_ps(&h[0]);
+ m1 = _mm_load_ps(&h[4]);
+ m2 = _mm_load_ps(&h[8]);
+ m3 = _mm_load_ps(&h[12]);
+
+ m4 = _mm_load_ps(&h[16]);
+ m5 = _mm_load_ps(&h[20]);
+ m6 = _mm_load_ps(&h[24]);
+ m7 = _mm_load_ps(&h[28]);
+
+ m12 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m13 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m14 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(0, 2, 0, 2));
+ m15 = _mm_shuffle_ps(m6, m7, _MM_SHUFFLE(0, 2, 0, 2));
+
+ for (int i = 0; i < len; i++) {
+ /* Load (unaligned) input data */
+ m0 = _mm_loadu_ps(&_x[2 * i + 0]);
+ m1 = _mm_loadu_ps(&_x[2 * i + 4]);
+ m2 = _mm_loadu_ps(&_x[2 * i + 8]);
+ m3 = _mm_loadu_ps(&_x[2 * i + 12]);
+
+ m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+ m6 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m7 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3));
+
+ m0 = _mm_loadu_ps(&_x[2 * i + 16]);
+ m1 = _mm_loadu_ps(&_x[2 * i + 20]);
+ m2 = _mm_loadu_ps(&_x[2 * i + 24]);
+ m3 = _mm_loadu_ps(&_x[2 * i + 28]);
+
+ m8 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m9 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+ m10 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m11 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Quad multiply */
+ m0 = _mm_mul_ps(m4, m12);
+ m1 = _mm_mul_ps(m5, m12);
+ m2 = _mm_mul_ps(m6, m13);
+ m3 = _mm_mul_ps(m7, m13);
+
+ m4 = _mm_mul_ps(m8, m14);
+ m5 = _mm_mul_ps(m9, m14);
+ m6 = _mm_mul_ps(m10, m15);
+ m7 = _mm_mul_ps(m11, m15);
+
+ /* Sum and store */
+ m8 = _mm_add_ps(m0, m2);
+ m9 = _mm_add_ps(m1, m3);
+ m10 = _mm_add_ps(m4, m6);
+ m11 = _mm_add_ps(m5, m7);
+
+ m0 = _mm_add_ps(m8, m10);
+ m1 = _mm_add_ps(m9, m11);
+ m2 = _mm_hadd_ps(m0, m1);
+ m3 = _mm_hadd_ps(m2, m2);
+
+ _mm_store_ss(&y[2 * i + 0], m3);
+ m3 = _mm_shuffle_ps(m3, m3, _MM_SHUFFLE(0, 3, 2, 1));
+ _mm_store_ss(&y[2 * i + 1], m3);
+ }
+}
+
+/* 20-tap SSE complex-real convolution */
+void sse_conv_real20(const float *x, int x_len,
+ const float *h, int h_len,
+ float *y, int y_len,
+ int start, int len, int step, int offset)
+{
+ /* See NOTE in sse_conv_real4() */
+
+ __m128 m0, m1, m2, m3, m4, m5, m6, m7;
+ __m128 m8, m9, m11, m12, m13, m14, m15;
+
+ const float *_x = &x[2 * (-(h_len - 1) + start)];
+
+ /* Load (aligned) filter taps */
+ m0 = _mm_load_ps(&h[0]);
+ m1 = _mm_load_ps(&h[4]);
+ m2 = _mm_load_ps(&h[8]);
+ m3 = _mm_load_ps(&h[12]);
+ m4 = _mm_load_ps(&h[16]);
+ m5 = _mm_load_ps(&h[20]);
+ m6 = _mm_load_ps(&h[24]);
+ m7 = _mm_load_ps(&h[28]);
+ m8 = _mm_load_ps(&h[32]);
+ m9 = _mm_load_ps(&h[36]);
+
+ m11 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m12 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m13 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(0, 2, 0, 2));
+ m14 = _mm_shuffle_ps(m6, m7, _MM_SHUFFLE(0, 2, 0, 2));
+ m15 = _mm_shuffle_ps(m8, m9, _MM_SHUFFLE(0, 2, 0, 2));
+
+ for (int i = 0; i < len; i++) {
+ /* Multiply-accumulate first 12 taps */
+ m0 = _mm_loadu_ps(&_x[2 * i + 0]);
+ m1 = _mm_loadu_ps(&_x[2 * i + 4]);
+ m2 = _mm_loadu_ps(&_x[2 * i + 8]);
+ m3 = _mm_loadu_ps(&_x[2 * i + 12]);
+ m4 = _mm_loadu_ps(&_x[2 * i + 16]);
+ m5 = _mm_loadu_ps(&_x[2 * i + 20]);
+
+ m6 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m7 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+ m8 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m9 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3));
+ m0 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(0, 2, 0, 2));
+ m1 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(1, 3, 1, 3));
+
+ m2 = _mm_mul_ps(m6, m11);
+ m3 = _mm_mul_ps(m7, m11);
+ m4 = _mm_mul_ps(m8, m12);
+ m5 = _mm_mul_ps(m9, m12);
+ m6 = _mm_mul_ps(m0, m13);
+ m7 = _mm_mul_ps(m1, m13);
+
+ m0 = _mm_add_ps(m2, m4);
+ m1 = _mm_add_ps(m3, m5);
+ m8 = _mm_add_ps(m0, m6);
+ m9 = _mm_add_ps(m1, m7);
+
+ /* Multiply-accumulate last 8 taps */
+ m0 = _mm_loadu_ps(&_x[2 * i + 24]);
+ m1 = _mm_loadu_ps(&_x[2 * i + 28]);
+ m2 = _mm_loadu_ps(&_x[2 * i + 32]);
+ m3 = _mm_loadu_ps(&_x[2 * i + 36]);
+
+ m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+ m6 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m7 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3));
+
+ m0 = _mm_mul_ps(m4, m14);
+ m1 = _mm_mul_ps(m5, m14);
+ m2 = _mm_mul_ps(m6, m15);
+ m3 = _mm_mul_ps(m7, m15);
+
+ m4 = _mm_add_ps(m0, m2);
+ m5 = _mm_add_ps(m1, m3);
+
+ /* Final sum and store */
+ m0 = _mm_add_ps(m8, m4);
+ m1 = _mm_add_ps(m9, m5);
+ m2 = _mm_hadd_ps(m0, m1);
+ m3 = _mm_hadd_ps(m2, m2);
+
+ _mm_store_ss(&y[2 * i + 0], m3);
+ m3 = _mm_shuffle_ps(m3, m3, _MM_SHUFFLE(0, 3, 2, 1));
+ _mm_store_ss(&y[2 * i + 1], m3);
+ }
+}
+
+/* 4*N-tap SSE complex-real convolution */
+void sse_conv_real4n(const float *x, int x_len,
+ const float *h, int h_len,
+ float *y, int y_len,
+ int start, int len, int step, int offset)
+{
+ /* See NOTE in sse_conv_real4() */
+
+ __m128 m0, m1, m2, m4, m5, m6, m7;
+
+ const float *_x = &x[2 * (-(h_len - 1) + start)];
+
+ for (int i = 0; i < len; i++) {
+ /* Zero */
+ m6 = _mm_setzero_ps();
+ m7 = _mm_setzero_ps();
+
+ for (int n = 0; n < h_len / 4; n++) {
+ /* Load (aligned) filter taps */
+ m0 = _mm_load_ps(&h[8 * n + 0]);
+ m1 = _mm_load_ps(&h[8 * n + 4]);
+ m2 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+
+ /* Load (unaligned) input data */
+ m0 = _mm_loadu_ps(&_x[2 * i + 8 * n + 0]);
+ m1 = _mm_loadu_ps(&_x[2 * i + 8 * n + 4]);
+ m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Quad multiply */
+ m0 = _mm_mul_ps(m2, m4);
+ m1 = _mm_mul_ps(m2, m5);
+
+ /* Accumulate */
+ m6 = _mm_add_ps(m6, m0);
+ m7 = _mm_add_ps(m7, m1);
+ }
+
+ m0 = _mm_hadd_ps(m6, m7);
+ m0 = _mm_hadd_ps(m0, m0);
+
+ _mm_store_ss(&y[2 * i + 0], m0);
+ m0 = _mm_shuffle_ps(m0, m0, _MM_SHUFFLE(0, 3, 2, 1));
+ _mm_store_ss(&y[2 * i + 1], m0);
+ }
+}
+
+/* 4*N-tap SSE complex-complex convolution */
+void sse_conv_cmplx_4n(const float *x, int x_len,
+ const float *h, int h_len,
+ float *y, int y_len,
+ int start, int len, int step, int offset)
+{
+ /* NOTE: The parameter list of this function has to match the parameter
+ * list of _base_convolve_complex() in convolve_base.c. This specific
+ * implementation, ignores some of the parameters of
+ * _base_convolve_complex(), which are: x_len, y_len, offset, step. */
+
+ __m128 m0, m1, m2, m3, m4, m5, m6, m7;
+
+ const float *_x = &x[2 * (-(h_len - 1) + start)];
+
+ for (int i = 0; i < len; i++) {
+ /* Zero */
+ m6 = _mm_setzero_ps();
+ m7 = _mm_setzero_ps();
+
+ for (int n = 0; n < h_len / 4; n++) {
+ /* Load (aligned) filter taps */
+ m0 = _mm_load_ps(&h[8 * n + 0]);
+ m1 = _mm_load_ps(&h[8 * n + 4]);
+ m2 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m3 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Load (unaligned) input data */
+ m0 = _mm_loadu_ps(&_x[2 * i + 8 * n + 0]);
+ m1 = _mm_loadu_ps(&_x[2 * i + 8 * n + 4]);
+ m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Quad multiply */
+ m0 = _mm_mul_ps(m2, m4);
+ m1 = _mm_mul_ps(m3, m5);
+
+ m2 = _mm_mul_ps(m2, m5);
+ m3 = _mm_mul_ps(m3, m4);
+
+ /* Sum */
+ m0 = _mm_sub_ps(m0, m1);
+ m2 = _mm_add_ps(m2, m3);
+
+ /* Accumulate */
+ m6 = _mm_add_ps(m6, m0);
+ m7 = _mm_add_ps(m7, m2);
+ }
+
+ m0 = _mm_hadd_ps(m6, m7);
+ m0 = _mm_hadd_ps(m0, m0);
+
+ _mm_store_ss(&y[2 * i + 0], m0);
+ m0 = _mm_shuffle_ps(m0, m0, _MM_SHUFFLE(0, 3, 2, 1));
+ _mm_store_ss(&y[2 * i + 1], m0);
+ }
+}
+
+/* 8*N-tap SSE complex-complex convolution */
+void sse_conv_cmplx_8n(const float *x, int x_len,
+ const float *h, int h_len,
+ float *y, int y_len,
+ int start, int len, int step, int offset)
+{
+ /* See NOTE in sse_conv_cmplx_4n() */
+
+ __m128 m0, m1, m2, m3, m4, m5, m6, m7;
+ __m128 m8, m9, m10, m11, m12, m13, m14, m15;
+
+ const float *_x = &x[2 * (-(h_len - 1) + start)];
+
+ for (int i = 0; i < len; i++) {
+ /* Zero */
+ m12 = _mm_setzero_ps();
+ m13 = _mm_setzero_ps();
+ m14 = _mm_setzero_ps();
+ m15 = _mm_setzero_ps();
+
+ for (int n = 0; n < h_len / 8; n++) {
+ /* Load (aligned) filter taps */
+ m0 = _mm_load_ps(&h[16 * n + 0]);
+ m1 = _mm_load_ps(&h[16 * n + 4]);
+ m2 = _mm_load_ps(&h[16 * n + 8]);
+ m3 = _mm_load_ps(&h[16 * n + 12]);
+
+ m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+ m6 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m7 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Load (unaligned) input data */
+ m0 = _mm_loadu_ps(&_x[2 * i + 16 * n + 0]);
+ m1 = _mm_loadu_ps(&_x[2 * i + 16 * n + 4]);
+ m2 = _mm_loadu_ps(&_x[2 * i + 16 * n + 8]);
+ m3 = _mm_loadu_ps(&_x[2 * i + 16 * n + 12]);
+
+ m8 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m9 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+ m10 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m11 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Quad multiply */
+ m0 = _mm_mul_ps(m4, m8);
+ m1 = _mm_mul_ps(m5, m9);
+ m2 = _mm_mul_ps(m6, m10);
+ m3 = _mm_mul_ps(m7, m11);
+
+ m4 = _mm_mul_ps(m4, m9);
+ m5 = _mm_mul_ps(m5, m8);
+ m6 = _mm_mul_ps(m6, m11);
+ m7 = _mm_mul_ps(m7, m10);
+
+ /* Sum */
+ m0 = _mm_sub_ps(m0, m1);
+ m2 = _mm_sub_ps(m2, m3);
+ m4 = _mm_add_ps(m4, m5);
+ m6 = _mm_add_ps(m6, m7);
+
+ /* Accumulate */
+ m12 = _mm_add_ps(m12, m0);
+ m13 = _mm_add_ps(m13, m2);
+ m14 = _mm_add_ps(m14, m4);
+ m15 = _mm_add_ps(m15, m6);
+ }
+
+ m0 = _mm_add_ps(m12, m13);
+ m1 = _mm_add_ps(m14, m15);
+ m2 = _mm_hadd_ps(m0, m1);
+ m2 = _mm_hadd_ps(m2, m2);
+
+ _mm_store_ss(&y[2 * i + 0], m2);
+ m2 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(0, 3, 2, 1));
+ _mm_store_ss(&y[2 * i + 1], m2);
+ }
+}
+#endif