aboutsummaryrefslogtreecommitdiffstats
path: root/Transceiver52M/convolve.c
diff options
context:
space:
mode:
authorThomas Tsou <tom@tsou.cc>2013-08-20 19:31:14 -0400
committerThomas Tsou <tom@tsou.cc>2013-10-18 13:10:17 -0400
commit3eaae80c90752abe3173c43a5dae5cdf17493764 (patch)
tree3603f332c066f9d6c1c438c5cc09d3a7f7f7bec0 /Transceiver52M/convolve.c
parente57004d0c3cae8ca5db3ca3eb2bcc7b9bc1d2534 (diff)
Transceiver52M: Replace convolve and related calls with SSE implementation
This large patch replaced the convolve() call with an SSE vector enabled version. The lower C and SSE intrinsic based code operates on fixed and aligned vectors for the filter taps. The storage format of interleaved I/Q for both complex and real vectors is maintained. SSE filter tap values must: 1. Start 16-byte aligned 2. Number with a multiple of 4 between 4 and 20 for real taps 3. Number with a multiple of 4 for complex taps Non-compliant values will fall back to non-SSE usage. Fixed length iterators mean that head and tail cases may require reallocation of the input vector, which is automatically handled by the upper C++ interface. Other calls are affected by these changes and adjusted or rewritten accordingly. The underlying algorithms, however, are unchanged. generateGSMPulse() analyzeTrafficBurst() detectRACHBurst() Intel SSE configuration is automatically detected and configured at build time with Autoconf macros. Signed-off-by: Thomas Tsou <tom@tsou.cc>
Diffstat (limited to 'Transceiver52M/convolve.c')
-rw-r--r--Transceiver52M/convolve.c714
1 files changed, 714 insertions, 0 deletions
diff --git a/Transceiver52M/convolve.c b/Transceiver52M/convolve.c
new file mode 100644
index 0000000..6f48ea0
--- /dev/null
+++ b/Transceiver52M/convolve.c
@@ -0,0 +1,714 @@
+/*
+ * SSE Convolution
+ * Copyright (C) 2012, 2013 Thomas Tsou <tom@tsou.cc>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include <malloc.h>
+#include <string.h>
+#include <stdio.h>
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#ifdef HAVE_SSE3
+#include <xmmintrin.h>
+#include <pmmintrin.h>
+
+/* 4-tap SSE complex-real convolution */
+static void sse_conv_real4(float *restrict x,
+ float *restrict h,
+ float *restrict y,
+ int len)
+{
+ __m128 m0, m1, m2, m3, m4, m5, m6, m7;
+
+ /* Load (aligned) filter taps */
+ m0 = _mm_load_ps(&h[0]);
+ m1 = _mm_load_ps(&h[4]);
+ m7 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+
+ for (int i = 0; i < len; i++) {
+ /* Load (unaligned) input data */
+ m0 = _mm_loadu_ps(&x[2 * i + 0]);
+ m1 = _mm_loadu_ps(&x[2 * i + 4]);
+ m2 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m3 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Quad multiply */
+ m4 = _mm_mul_ps(m2, m7);
+ m5 = _mm_mul_ps(m3, m7);
+
+ /* Sum and store */
+ m6 = _mm_hadd_ps(m4, m5);
+ m0 = _mm_hadd_ps(m6, m6);
+
+ _mm_store_ss(&y[2 * i + 0], m0);
+ m0 = _mm_shuffle_ps(m0, m0, _MM_SHUFFLE(0, 3, 2, 1));
+ _mm_store_ss(&y[2 * i + 1], m0);
+ }
+}
+
+/* 8-tap SSE complex-real convolution */
+static void sse_conv_real8(float *restrict x,
+ float *restrict h,
+ float *restrict y,
+ int len)
+{
+ __m128 m0, m1, m2, m3, m4, m5, m6, m7, m8, m9;
+
+ /* Load (aligned) filter taps */
+ m0 = _mm_load_ps(&h[0]);
+ m1 = _mm_load_ps(&h[4]);
+ m2 = _mm_load_ps(&h[8]);
+ m3 = _mm_load_ps(&h[12]);
+
+ m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m5 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+
+ for (int i = 0; i < len; i++) {
+ /* Load (unaligned) input data */
+ m0 = _mm_loadu_ps(&x[2 * i + 0]);
+ m1 = _mm_loadu_ps(&x[2 * i + 4]);
+ m2 = _mm_loadu_ps(&x[2 * i + 8]);
+ m3 = _mm_loadu_ps(&x[2 * i + 12]);
+
+ m6 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m7 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+ m8 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m9 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Quad multiply */
+ m6 = _mm_mul_ps(m6, m4);
+ m7 = _mm_mul_ps(m7, m4);
+ m8 = _mm_mul_ps(m8, m5);
+ m9 = _mm_mul_ps(m9, m5);
+
+ /* Sum and store */
+ m6 = _mm_add_ps(m6, m8);
+ m7 = _mm_add_ps(m7, m9);
+ m6 = _mm_hadd_ps(m6, m7);
+ m6 = _mm_hadd_ps(m6, m6);
+
+ _mm_store_ss(&y[2 * i + 0], m6);
+ m6 = _mm_shuffle_ps(m6, m6, _MM_SHUFFLE(0, 3, 2, 1));
+ _mm_store_ss(&y[2 * i + 1], m6);
+ }
+}
+
+/* 12-tap SSE complex-real convolution */
+static void sse_conv_real12(float *restrict x,
+ float *restrict h,
+ float *restrict y,
+ int len)
+{
+ __m128 m0, m1, m2, m3, m4, m5, m6, m7;
+ __m128 m8, m9, m10, m11, m12, m13, m14;
+
+ /* Load (aligned) filter taps */
+ m0 = _mm_load_ps(&h[0]);
+ m1 = _mm_load_ps(&h[4]);
+ m2 = _mm_load_ps(&h[8]);
+ m3 = _mm_load_ps(&h[12]);
+ m4 = _mm_load_ps(&h[16]);
+ m5 = _mm_load_ps(&h[20]);
+
+ m12 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m13 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m14 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(0, 2, 0, 2));
+
+ for (int i = 0; i < len; i++) {
+ /* Load (unaligned) input data */
+ m0 = _mm_loadu_ps(&x[2 * i + 0]);
+ m1 = _mm_loadu_ps(&x[2 * i + 4]);
+ m2 = _mm_loadu_ps(&x[2 * i + 8]);
+ m3 = _mm_loadu_ps(&x[2 * i + 12]);
+
+ m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+ m6 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m7 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3));
+
+ m0 = _mm_loadu_ps(&x[2 * i + 16]);
+ m1 = _mm_loadu_ps(&x[2 * i + 20]);
+
+ m8 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m9 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Quad multiply */
+ m0 = _mm_mul_ps(m4, m12);
+ m1 = _mm_mul_ps(m5, m12);
+ m2 = _mm_mul_ps(m6, m13);
+ m3 = _mm_mul_ps(m7, m13);
+ m4 = _mm_mul_ps(m8, m14);
+ m5 = _mm_mul_ps(m9, m14);
+
+ /* Sum and store */
+ m8 = _mm_add_ps(m0, m2);
+ m9 = _mm_add_ps(m1, m3);
+ m10 = _mm_add_ps(m8, m4);
+ m11 = _mm_add_ps(m9, m5);
+
+ m2 = _mm_hadd_ps(m10, m11);
+ m3 = _mm_hadd_ps(m2, m2);
+
+ _mm_store_ss(&y[2 * i + 0], m3);
+ m3 = _mm_shuffle_ps(m3, m3, _MM_SHUFFLE(0, 3, 2, 1));
+ _mm_store_ss(&y[2 * i + 1], m3);
+ }
+}
+
+/* 16-tap SSE complex-real convolution */
+static void sse_conv_real16(float *restrict x,
+ float *restrict h,
+ float *restrict y,
+ int len)
+{
+ __m128 m0, m1, m2, m3, m4, m5, m6, m7;
+ __m128 m8, m9, m10, m11, m12, m13, m14, m15;
+
+ /* Load (aligned) filter taps */
+ m0 = _mm_load_ps(&h[0]);
+ m1 = _mm_load_ps(&h[4]);
+ m2 = _mm_load_ps(&h[8]);
+ m3 = _mm_load_ps(&h[12]);
+
+ m4 = _mm_load_ps(&h[16]);
+ m5 = _mm_load_ps(&h[20]);
+ m6 = _mm_load_ps(&h[24]);
+ m7 = _mm_load_ps(&h[28]);
+
+ m12 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m13 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m14 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(0, 2, 0, 2));
+ m15 = _mm_shuffle_ps(m6, m7, _MM_SHUFFLE(0, 2, 0, 2));
+
+ for (int i = 0; i < len; i++) {
+ /* Load (unaligned) input data */
+ m0 = _mm_loadu_ps(&x[2 * i + 0]);
+ m1 = _mm_loadu_ps(&x[2 * i + 4]);
+ m2 = _mm_loadu_ps(&x[2 * i + 8]);
+ m3 = _mm_loadu_ps(&x[2 * i + 12]);
+
+ m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+ m6 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m7 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3));
+
+ m0 = _mm_loadu_ps(&x[2 * i + 16]);
+ m1 = _mm_loadu_ps(&x[2 * i + 20]);
+ m2 = _mm_loadu_ps(&x[2 * i + 24]);
+ m3 = _mm_loadu_ps(&x[2 * i + 28]);
+
+ m8 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m9 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+ m10 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m11 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Quad multiply */
+ m0 = _mm_mul_ps(m4, m12);
+ m1 = _mm_mul_ps(m5, m12);
+ m2 = _mm_mul_ps(m6, m13);
+ m3 = _mm_mul_ps(m7, m13);
+
+ m4 = _mm_mul_ps(m8, m14);
+ m5 = _mm_mul_ps(m9, m14);
+ m6 = _mm_mul_ps(m10, m15);
+ m7 = _mm_mul_ps(m11, m15);
+
+ /* Sum and store */
+ m8 = _mm_add_ps(m0, m2);
+ m9 = _mm_add_ps(m1, m3);
+ m10 = _mm_add_ps(m4, m6);
+ m11 = _mm_add_ps(m5, m7);
+
+ m0 = _mm_add_ps(m8, m10);
+ m1 = _mm_add_ps(m9, m11);
+ m2 = _mm_hadd_ps(m0, m1);
+ m3 = _mm_hadd_ps(m2, m2);
+
+ _mm_store_ss(&y[2 * i + 0], m3);
+ m3 = _mm_shuffle_ps(m3, m3, _MM_SHUFFLE(0, 3, 2, 1));
+ _mm_store_ss(&y[2 * i + 1], m3);
+ }
+}
+
+/* 20-tap SSE complex-real convolution */
+static void sse_conv_real20(float *restrict x,
+ float *restrict h,
+ float *restrict y,
+ int len)
+{
+ __m128 m0, m1, m2, m3, m4, m5, m6, m7;
+ __m128 m8, m9, m11, m12, m13, m14, m15;
+
+ /* Load (aligned) filter taps */
+ m0 = _mm_load_ps(&h[0]);
+ m1 = _mm_load_ps(&h[4]);
+ m2 = _mm_load_ps(&h[8]);
+ m3 = _mm_load_ps(&h[12]);
+ m4 = _mm_load_ps(&h[16]);
+ m5 = _mm_load_ps(&h[20]);
+ m6 = _mm_load_ps(&h[24]);
+ m7 = _mm_load_ps(&h[28]);
+ m8 = _mm_load_ps(&h[32]);
+ m9 = _mm_load_ps(&h[36]);
+
+ m11 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m12 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m13 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(0, 2, 0, 2));
+ m14 = _mm_shuffle_ps(m6, m7, _MM_SHUFFLE(0, 2, 0, 2));
+ m15 = _mm_shuffle_ps(m8, m9, _MM_SHUFFLE(0, 2, 0, 2));
+
+ for (int i = 0; i < len; i++) {
+ /* Multiply-accumulate first 12 taps */
+ m0 = _mm_loadu_ps(&x[2 * i + 0]);
+ m1 = _mm_loadu_ps(&x[2 * i + 4]);
+ m2 = _mm_loadu_ps(&x[2 * i + 8]);
+ m3 = _mm_loadu_ps(&x[2 * i + 12]);
+ m4 = _mm_loadu_ps(&x[2 * i + 16]);
+ m5 = _mm_loadu_ps(&x[2 * i + 20]);
+
+ m6 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m7 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+ m8 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m9 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3));
+ m0 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(0, 2, 0, 2));
+ m1 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(1, 3, 1, 3));
+
+ m2 = _mm_mul_ps(m6, m11);
+ m3 = _mm_mul_ps(m7, m11);
+ m4 = _mm_mul_ps(m8, m12);
+ m5 = _mm_mul_ps(m9, m12);
+ m6 = _mm_mul_ps(m0, m13);
+ m7 = _mm_mul_ps(m1, m13);
+
+ m0 = _mm_add_ps(m2, m4);
+ m1 = _mm_add_ps(m3, m5);
+ m8 = _mm_add_ps(m0, m6);
+ m9 = _mm_add_ps(m1, m7);
+
+ /* Multiply-accumulate last 8 taps */
+ m0 = _mm_loadu_ps(&x[2 * i + 24]);
+ m1 = _mm_loadu_ps(&x[2 * i + 28]);
+ m2 = _mm_loadu_ps(&x[2 * i + 32]);
+ m3 = _mm_loadu_ps(&x[2 * i + 36]);
+
+ m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+ m6 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m7 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3));
+
+ m0 = _mm_mul_ps(m4, m14);
+ m1 = _mm_mul_ps(m5, m14);
+ m2 = _mm_mul_ps(m6, m15);
+ m3 = _mm_mul_ps(m7, m15);
+
+ m4 = _mm_add_ps(m0, m2);
+ m5 = _mm_add_ps(m1, m3);
+
+ /* Final sum and store */
+ m0 = _mm_add_ps(m8, m4);
+ m1 = _mm_add_ps(m9, m5);
+ m2 = _mm_hadd_ps(m0, m1);
+ m3 = _mm_hadd_ps(m2, m2);
+
+ _mm_store_ss(&y[2 * i + 0], m3);
+ m3 = _mm_shuffle_ps(m3, m3, _MM_SHUFFLE(0, 3, 2, 1));
+ _mm_store_ss(&y[2 * i + 1], m3);
+ }
+}
+
+/* 4*N-tap SSE complex-real convolution */
+static void sse_conv_real4n(float *x, float *h, float *y, int h_len, int len)
+{
+ __m128 m0, m1, m2, m4, m5, m6, m7;
+
+ for (int i = 0; i < len; i++) {
+ /* Zero */
+ m6 = _mm_setzero_ps();
+ m7 = _mm_setzero_ps();
+
+ for (int n = 0; n < h_len / 4; n++) {
+ /* Load (aligned) filter taps */
+ m0 = _mm_load_ps(&h[8 * n + 0]);
+ m1 = _mm_load_ps(&h[8 * n + 4]);
+ m2 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+
+ /* Load (unaligned) input data */
+ m0 = _mm_loadu_ps(&x[2 * i + 8 * n + 0]);
+ m1 = _mm_loadu_ps(&x[2 * i + 8 * n + 4]);
+ m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Quad multiply */
+ m0 = _mm_mul_ps(m2, m4);
+ m1 = _mm_mul_ps(m2, m5);
+
+ /* Accumulate */
+ m6 = _mm_add_ps(m6, m0);
+ m7 = _mm_add_ps(m7, m1);
+ }
+
+ m0 = _mm_hadd_ps(m6, m7);
+ m0 = _mm_hadd_ps(m0, m0);
+
+ _mm_store_ss(&y[2 * i + 0], m0);
+ m0 = _mm_shuffle_ps(m0, m0, _MM_SHUFFLE(0, 3, 2, 1));
+ _mm_store_ss(&y[2 * i + 1], m0);
+ }
+}
+
+/* 4*N-tap SSE complex-complex convolution */
+static void sse_conv_cmplx_4n(float *x, float *h, float *y, int h_len, int len)
+{
+ __m128 m0, m1, m2, m3, m4, m5, m6, m7;
+
+ for (int i = 0; i < len; i++) {
+ /* Zero */
+ m6 = _mm_setzero_ps();
+ m7 = _mm_setzero_ps();
+
+ for (int n = 0; n < h_len / 4; n++) {
+ /* Load (aligned) filter taps */
+ m0 = _mm_load_ps(&h[8 * n + 0]);
+ m1 = _mm_load_ps(&h[8 * n + 4]);
+ m2 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m3 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Load (unaligned) input data */
+ m0 = _mm_loadu_ps(&x[2 * i + 8 * n + 0]);
+ m1 = _mm_loadu_ps(&x[2 * i + 8 * n + 4]);
+ m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Quad multiply */
+ m0 = _mm_mul_ps(m2, m4);
+ m1 = _mm_mul_ps(m3, m5);
+
+ m2 = _mm_mul_ps(m2, m5);
+ m3 = _mm_mul_ps(m3, m4);
+
+ /* Sum */
+ m0 = _mm_sub_ps(m0, m1);
+ m2 = _mm_add_ps(m2, m3);
+
+ /* Accumulate */
+ m6 = _mm_add_ps(m6, m0);
+ m7 = _mm_add_ps(m7, m2);
+ }
+
+ m0 = _mm_hadd_ps(m6, m7);
+ m0 = _mm_hadd_ps(m0, m0);
+
+ _mm_store_ss(&y[2 * i + 0], m0);
+ m0 = _mm_shuffle_ps(m0, m0, _MM_SHUFFLE(0, 3, 2, 1));
+ _mm_store_ss(&y[2 * i + 1], m0);
+ }
+}
+
+/* 8*N-tap SSE complex-complex convolution */
+static void sse_conv_cmplx_8n(float *x, float *h, float *y, int h_len, int len)
+{
+ __m128 m0, m1, m2, m3, m4, m5, m6, m7;
+ __m128 m8, m9, m10, m11, m12, m13, m14, m15;
+
+ for (int i = 0; i < len; i++) {
+ /* Zero */
+ m12 = _mm_setzero_ps();
+ m13 = _mm_setzero_ps();
+ m14 = _mm_setzero_ps();
+ m15 = _mm_setzero_ps();
+
+ for (int n = 0; n < h_len / 8; n++) {
+ /* Load (aligned) filter taps */
+ m0 = _mm_load_ps(&h[16 * n + 0]);
+ m1 = _mm_load_ps(&h[16 * n + 4]);
+ m2 = _mm_load_ps(&h[16 * n + 8]);
+ m3 = _mm_load_ps(&h[16 * n + 12]);
+
+ m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+ m6 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(0, 2, 0, 2));
+ m7 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Load (unaligned) input data */
+ m0 = _mm_loadu_ps(&x[2 * i + 16 * n + 0]);
+ m1 = _mm_loadu_ps(&x[2 * i + 16 * n + 4]);
+ m2 = _mm_loadu_ps(&x[2 * i + 16 * n + 8]);
+ m3 = _mm_loadu_ps(&x[2 * i + 16 * n + 12]);
+
+ m8 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2));
+ m9 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3));
+ m10 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2));
+ m11 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3));
+
+ /* Quad multiply */
+ m0 = _mm_mul_ps(m4, m8);
+ m1 = _mm_mul_ps(m5, m9);
+ m2 = _mm_mul_ps(m6, m10);
+ m3 = _mm_mul_ps(m7, m11);
+
+ m4 = _mm_mul_ps(m4, m9);
+ m5 = _mm_mul_ps(m5, m8);
+ m6 = _mm_mul_ps(m6, m11);
+ m7 = _mm_mul_ps(m7, m10);
+
+ /* Sum */
+ m0 = _mm_sub_ps(m0, m1);
+ m2 = _mm_sub_ps(m2, m3);
+ m4 = _mm_add_ps(m4, m5);
+ m6 = _mm_add_ps(m6, m7);
+
+ /* Accumulate */
+ m12 = _mm_add_ps(m12, m0);
+ m13 = _mm_add_ps(m13, m2);
+ m14 = _mm_add_ps(m14, m4);
+ m15 = _mm_add_ps(m15, m6);
+ }
+
+ m0 = _mm_add_ps(m12, m13);
+ m1 = _mm_add_ps(m14, m15);
+ m2 = _mm_hadd_ps(m0, m1);
+ m2 = _mm_hadd_ps(m2, m2);
+
+ _mm_store_ss(&y[2 * i + 0], m2);
+ m2 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(0, 3, 2, 1));
+ _mm_store_ss(&y[2 * i + 1], m2);
+ }
+}
+#endif
+
+/* Base multiply and accumulate complex-real */
+static void mac_real(float *x, float *h, float *y)
+{
+ y[0] += x[0] * h[0];
+ y[1] += x[1] * h[0];
+}
+
+/* Base multiply and accumulate complex-complex */
+static void mac_cmplx(float *x, float *h, float *y)
+{
+ y[0] += x[0] * h[0] - x[1] * h[1];
+ y[1] += x[0] * h[1] + x[1] * h[0];
+}
+
+/* Base vector complex-complex multiply and accumulate */
+static void mac_real_vec_n(float *x, float *h, float *y,
+ int len, int step, int offset)
+{
+ for (int i = offset; i < len; i += step)
+ mac_real(&x[2 * i], &h[2 * i], y);
+}
+
+/* Base vector complex-complex multiply and accumulate */
+static void mac_cmplx_vec_n(float *x, float *h, float *y,
+ int len, int step, int offset)
+{
+ for (int i = offset; i < len; i += step)
+ mac_cmplx(&x[2 * i], &h[2 * i], y);
+}
+
+/* Base complex-real convolution */
+static int _base_convolve_real(float *x, int x_len,
+ float *h, int h_len,
+ float *y, int y_len,
+ int start, int len,
+ int step, int offset)
+{
+ for (int i = 0; i < len; i++) {
+ mac_real_vec_n(&x[2 * (i - (h_len - 1) + start)],
+ h,
+ &y[2 * i], h_len,
+ step, offset);
+ }
+
+ return len;
+}
+
+/* Base complex-complex convolution */
+static int _base_convolve_complex(float *x, int x_len,
+ float *h, int h_len,
+ float *y, int y_len,
+ int start, int len,
+ int step, int offset)
+{
+ for (int i = 0; i < len; i++) {
+ mac_cmplx_vec_n(&x[2 * (i - (h_len - 1) + start)],
+ h,
+ &y[2 * i],
+ h_len, step, offset);
+ }
+
+ return len;
+}
+
+/* Buffer validity checks */
+static int bounds_check(int x_len, int h_len, int y_len,
+ int start, int len, int step)
+{
+ if ((x_len < 1) || (h_len < 1) ||
+ (y_len < 1) || (len < 1) || (step < 1)) {
+ fprintf(stderr, "Convolve: Invalid input\n");
+ return -1;
+ }
+
+ if ((start + len > x_len) || (len > y_len) || (x_len < h_len)) {
+ fprintf(stderr, "Convolve: Boundary exception\n");
+ fprintf(stderr, "start: %i, len: %i, x: %i, h: %i, y: %i\n",
+ start, len, x_len, h_len, y_len);
+ return -1;
+ }
+
+ return 0;
+}
+
+/* API: Aligned complex-real */
+int convolve_real(float *x, int x_len,
+ float *h, int h_len,
+ float *y, int y_len,
+ int start, int len,
+ int step, int offset)
+{
+ void (*conv_func)(float *, float *, float *, int) = NULL;
+ void (*conv_func_n)(float *, float *, float *, int, int) = NULL;
+
+ if (bounds_check(x_len, h_len, y_len, start, len, step) < 0)
+ return -1;
+
+ memset(y, 0, len * 2 * sizeof(float));
+
+#ifdef HAVE_SSE3
+ if (step <= 4) {
+ switch (h_len) {
+ case 4:
+ conv_func = sse_conv_real4;
+ break;
+ case 8:
+ conv_func = sse_conv_real8;
+ break;
+ case 12:
+ conv_func = sse_conv_real12;
+ break;
+ case 16:
+ conv_func = sse_conv_real16;
+ break;
+ case 20:
+ conv_func = sse_conv_real20;
+ break;
+ default:
+ if (!(h_len % 4))
+ conv_func_n = sse_conv_real4n;
+ }
+ }
+#endif
+ if (conv_func) {
+ conv_func(&x[2 * (-(h_len - 1) + start)],
+ h, y, len);
+ } else if (conv_func_n) {
+ conv_func_n(&x[2 * (-(h_len - 1) + start)],
+ h, y, h_len, len);
+ } else {
+ _base_convolve_real(x, x_len,
+ h, h_len,
+ y, y_len,
+ start, len, step, offset);
+ }
+
+ return len;
+}
+
+/* API: Aligned complex-complex */
+int convolve_complex(float *x, int x_len,
+ float *h, int h_len,
+ float *y, int y_len,
+ int start, int len,
+ int step, int offset)
+{
+ void (*conv_func)(float *, float *, float *, int, int) = NULL;
+
+ if (bounds_check(x_len, h_len, y_len, start, len, step) < 0)
+ return -1;
+
+ memset(y, 0, len * 2 * sizeof(float));
+
+#ifdef HAVE_SSE3
+ if (step <= 4) {
+ if (!(h_len % 8))
+ conv_func = sse_conv_cmplx_8n;
+ else if (!(h_len % 4))
+ conv_func = sse_conv_cmplx_4n;
+ }
+#endif
+ if (conv_func) {
+ conv_func(&x[2 * (-(h_len - 1) + start)],
+ h, y, h_len, len);
+ } else {
+ _base_convolve_complex(x, x_len,
+ h, h_len,
+ y, y_len,
+ start, len, step, offset);
+ }
+
+ return len;
+}
+
+/* API: Non-aligned (no SSE) complex-real */
+int base_convolve_real(float *x, int x_len,
+ float *h, int h_len,
+ float *y, int y_len,
+ int start, int len,
+ int step, int offset)
+{
+ if (bounds_check(x_len, h_len, y_len, start, len, step) < 0)
+ return -1;
+
+ memset(y, 0, len * 2 * sizeof(float));
+
+ return _base_convolve_real(x, x_len,
+ h, h_len,
+ y, y_len,
+ start, len, step, offset);
+}
+
+/* API: Non-aligned (no SSE) complex-complex */
+int base_convolve_complex(float *x, int x_len,
+ float *h, int h_len,
+ float *y, int y_len,
+ int start, int len,
+ int step, int offset)
+{
+ if (bounds_check(x_len, h_len, y_len, start, len, step) < 0)
+ return -1;
+
+ memset(y, 0, len * 2 * sizeof(float));
+
+ return _base_convolve_complex(x, x_len,
+ h, h_len,
+ y, y_len,
+ start, len, step, offset);
+}
+
+/* Aligned filter tap allocation */
+void *convolve_h_alloc(int len)
+{
+#ifdef HAVE_SSE3
+ return memalign(16, len * 2 * sizeof(float));
+#else
+ return malloc(len * 2 * sizeof(float));
+#endif
+}