aboutsummaryrefslogtreecommitdiffstats
path: root/Transceiver52M/Resampler.cpp
diff options
context:
space:
mode:
authorThomas Tsou <tom@tsou.cc>2013-08-20 20:54:54 -0400
committerThomas Tsou <tom@tsou.cc>2013-10-18 13:10:17 -0400
commit03e6ecf9771ea029e69fd4cdc2f2e289e93d3978 (patch)
tree9bd4abdc74ba979a051386b1d730378ae254bdab /Transceiver52M/Resampler.cpp
parent3eaae80c90752abe3173c43a5dae5cdf17493764 (diff)
Transceiver52M: Replace resampler with SSE enabled implementation
Replace the polyphase filter and resampler with a separate implementation using SSE enabled convolution. The USRP2 (including derived devices N200, N210) are the only supported devices that require sample rate conversion, so set the default resampling parameters for the 100 MHz FPGA clock. This changes the previous resampling ratios. 270.833 kHz -> 400 kHz (65 / 96) 270.833 kHz -> 390.625 kHz (52 / 75) The new resampling factor uses a USRP resampling factor of 256 instead of 250. On the device, this allows two halfband filters to be used rather than one. The end result is reduced distortial and aliasing effecits from CIC filter rolloff. B100 and USRP1 will no be supported at 400 ksps with these changes. Signed-off-by: Thomas Tsou <tom@tsou.cc>
Diffstat (limited to 'Transceiver52M/Resampler.cpp')
-rw-r--r--Transceiver52M/Resampler.cpp239
1 files changed, 239 insertions, 0 deletions
diff --git a/Transceiver52M/Resampler.cpp b/Transceiver52M/Resampler.cpp
new file mode 100644
index 0000000..624b666
--- /dev/null
+++ b/Transceiver52M/Resampler.cpp
@@ -0,0 +1,239 @@
+/*
+ * Rational Sample Rate Conversion
+ * Copyright (C) 2012, 2013 Thomas Tsou <tom@tsou.cc>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include <stdlib.h>
+#include <math.h>
+#include <string.h>
+#include <malloc.h>
+#include <iostream>
+
+#include "Resampler.h"
+
+extern "C" {
+#include "convolve.h"
+}
+
+#ifndef M_PI
+#define M_PI 3.14159265358979323846264338327f
+#endif
+
+#define MAX_OUTPUT_LEN 4096
+
+static float sinc(float x)
+{
+ if (x == 0.0)
+ return 0.9999999999;
+
+ return sin(M_PI * x) / (M_PI * x);
+}
+
+bool Resampler::initFilters(float bw)
+{
+ size_t proto_len = p * filt_len;
+ float *proto, val, cutoff;
+ float sum = 0.0f, scale = 0.0f;
+ float midpt = (float) (proto_len - 1.0) / 2.0;
+
+ /*
+ * Allocate partition filters and the temporary prototype filter
+ * according to numerator of the rational rate. Coefficients are
+ * real only and must be 16-byte memory aligned for SSE usage.
+ */
+ proto = new float[proto_len];
+ if (!proto)
+ return false;
+
+ partitions = (float **) malloc(sizeof(float *) * p);
+ if (!partitions) {
+ free(proto);
+ return false;
+ }
+
+ for (size_t i = 0; i < p; i++) {
+ partitions[i] = (float *)
+ memalign(16, filt_len * 2 * sizeof(float));
+ }
+
+ /*
+ * Generate the prototype filter with a Blackman-harris window.
+ * Scale coefficients with DC filter gain set to unity divided
+ * by the number of filter partitions.
+ */
+ float a0 = 0.35875;
+ float a1 = 0.48829;
+ float a2 = 0.14128;
+ float a3 = 0.01168;
+
+ if (p > q)
+ cutoff = (float) p;
+ else
+ cutoff = (float) q;
+
+ for (size_t i = 0; i < proto_len; i++) {
+ proto[i] = sinc(((float) i - midpt) / cutoff * bw);
+ proto[i] *= a0 -
+ a1 * cos(2 * M_PI * i / (proto_len - 1)) +
+ a2 * cos(4 * M_PI * i / (proto_len - 1)) -
+ a3 * cos(6 * M_PI * i / (proto_len - 1));
+ sum += proto[i];
+ }
+ scale = p / sum;
+
+ /* Populate filter partitions from the prototype filter */
+ for (size_t i = 0; i < filt_len; i++) {
+ for (size_t n = 0; n < p; n++) {
+ partitions[n][2 * i + 0] = proto[i * p + n] * scale;
+ partitions[n][2 * i + 1] = 0.0f;
+ }
+ }
+
+ /* For convolution, we store the filter taps in reverse */
+ for (size_t n = 0; n < p; n++) {
+ for (size_t i = 0; i < filt_len / 2; i++) {
+ val = partitions[n][2 * i];
+ partitions[n][2 * i] = partitions[n][2 * (filt_len - 1 - i)];
+ partitions[n][2 * (filt_len - 1 - i)] = val;
+ }
+ }
+
+ delete proto;
+
+ return true;
+}
+
+void Resampler::releaseFilters()
+{
+ if (partitions) {
+ for (size_t i = 0; i < p; i++)
+ free(partitions[i]);
+ }
+
+ free(partitions);
+ partitions = NULL;
+}
+
+static bool check_vec_len(int in_len, int out_len, int p, int q)
+{
+ if (in_len % q) {
+ std::cerr << "Invalid input length " << in_len
+ << " is not multiple of " << q << std::endl;
+ return false;
+ }
+
+ if (out_len % p) {
+ std::cerr << "Invalid output length " << out_len
+ << " is not multiple of " << p << std::endl;
+ return false;
+ }
+
+ if ((in_len / q) != (out_len / p)) {
+ std::cerr << "Input/output block length mismatch" << std::endl;
+ std::cerr << "P = " << p << ", Q = " << q << std::endl;
+ std::cerr << "Input len: " << in_len << std::endl;
+ std::cerr << "Output len: " << out_len << std::endl;
+ return false;
+ }
+
+ if (out_len > MAX_OUTPUT_LEN) {
+ std::cerr << "Block length of " << out_len
+ << " exceeds max of " << MAX_OUTPUT_LEN << std::endl;
+ return false;
+ }
+
+ return true;
+}
+
+void Resampler::computePath()
+{
+ for (int i = 0; i < MAX_OUTPUT_LEN; i++) {
+ in_index[i] = (q * i) / p;
+ out_path[i] = (q * i) % p;
+ }
+}
+
+int Resampler::rotate(float *in, size_t in_len, float *out, size_t out_len)
+{
+ int n, path;
+ int hist_len = filt_len - 1;
+
+ if (!check_vec_len(in_len, out_len, p, q))
+ return -1;
+
+ /* Insert history */
+ memcpy(&in[-2 * hist_len], history, hist_len * 2 * sizeof(float));
+
+ /* Generate output from precomputed input/output paths */
+ for (size_t i = 0; i < out_len; i++) {
+ n = in_index[i];
+ path = out_path[i];
+
+ convolve_real(in, in_len,
+ partitions[path], filt_len,
+ &out[2 * i], out_len - i,
+ n, 1, 1, 0);
+ }
+
+ /* Save history */
+ memcpy(history, &in[2 * (in_len - hist_len)],
+ hist_len * 2 * sizeof(float));
+
+ return out_len;
+}
+
+bool Resampler::init(float bw)
+{
+ size_t hist_len = filt_len - 1;
+
+ /* Filterbank filter internals */
+ if (initFilters(bw) < 0)
+ return false;
+
+ /* History buffer */
+ history = new float[2 * hist_len];
+ memset(history, 0, 2 * hist_len * sizeof(float));
+
+ /* Precompute filterbank paths */
+ in_index = new size_t[MAX_OUTPUT_LEN];
+ out_path = new size_t[MAX_OUTPUT_LEN];
+ computePath();
+
+ return true;
+}
+
+size_t Resampler::len()
+{
+ return filt_len;
+}
+
+Resampler::Resampler(size_t p, size_t q, size_t filt_len)
+ : in_index(NULL), out_path(NULL), partitions(NULL), history(NULL)
+{
+ this->p = p;
+ this->q = q;
+ this->filt_len = filt_len;
+}
+
+Resampler::~Resampler()
+{
+ releaseFilters();
+
+ delete history;
+ delete in_index;
+ delete out_path;
+}