aboutsummaryrefslogtreecommitdiffstats
path: root/src/libbsc/arfcn_range_encode.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/libbsc/arfcn_range_encode.c')
-rw-r--r--src/libbsc/arfcn_range_encode.c330
1 files changed, 330 insertions, 0 deletions
diff --git a/src/libbsc/arfcn_range_encode.c b/src/libbsc/arfcn_range_encode.c
new file mode 100644
index 000000000..9ca48407e
--- /dev/null
+++ b/src/libbsc/arfcn_range_encode.c
@@ -0,0 +1,330 @@
+/* gsm 04.08 system information (si) encoding and decoding
+ * 3gpp ts 04.08 version 7.21.0 release 1998 / etsi ts 100 940 v7.21.0 */
+
+/*
+ * (C) 2012 Holger Hans Peter Freyther
+ * (C) 2012 by On-Waves
+ * All Rights Reserved
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Affero General Public License as published by
+ * the Free Software Foundation; either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Affero General Public License for more details.
+ *
+ * You should have received a copy of the GNU Affero General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <openbsc/arfcn_range_encode.h>
+#include <openbsc/debug.h>
+
+#include <osmocom/gsm/protocol/gsm_04_08.h>
+
+#include <osmocom/core/utils.h>
+
+#include <errno.h>
+
+static inline int greatest_power_of_2_lesser_or_equal_to(int index)
+{
+ int power_of_2 = 1;
+
+ do {
+ power_of_2 *= 2;
+ } while (power_of_2 <= index);
+
+ /* now go back one step */
+ return power_of_2 / 2;
+}
+
+static inline int mod(int data, int range)
+{
+ int res = data % range;
+ while (res < 0)
+ res += range;
+ return res;
+}
+
+/**
+ * Determine at which index to split the ARFCNs to create an
+ * equally size partition for the given range. Return -1 if
+ * no such partition exists.
+ */
+int range_enc_find_index(enum gsm48_range range, const int *freqs, const int size)
+{
+ int i, j, n;
+
+ const int RANGE_DELTA = (range - 1) / 2;
+
+ for (i = 0; i < size; ++i) {
+ n = 0;
+ for (j = 0; j < size; ++j) {
+ if (mod(freqs[j] - freqs[i], range) <= RANGE_DELTA)
+ n += 1;
+ }
+
+ if (n - 1 == (size - 1) / 2)
+ return i;
+ }
+
+ return -1;
+}
+
+/**
+ * Range encode the ARFCN list.
+ * \param range The range to use.
+ * \param arfcns The list of ARFCNs
+ * \param size The size of the list of ARFCNs
+ * \param out Place to store the W(i) output.
+ */
+int range_enc_arfcns(enum gsm48_range range,
+ const int *arfcns, int size, int *out,
+ const int index)
+{
+ int split_at;
+ int i;
+
+ /*
+ * The below is a GNU extension and we can remove it when
+ * we move to a quicksort like in-situ swap with the pivot.
+ */
+ int arfcns_left[size / 2];
+ int arfcns_right[size / 2];
+ int l_size;
+ int r_size;
+ int l_origin;
+ int r_origin;
+
+
+ /* Test the two recursion anchors and stop processing */
+ if (size == 0)
+ return 0;
+
+ if (size == 1) {
+ out[index] = 1 + arfcns[0];
+ return 0;
+ }
+
+ /* Now do the processing */
+ split_at = range_enc_find_index(range, arfcns, size);
+ if (split_at < 0)
+ return -EINVAL;
+
+ /* we now know where to split */
+ out[index] = 1 + arfcns[split_at];
+
+ /* calculate the work that needs to be done for the leafs */
+ l_origin = mod(arfcns[split_at] + ((range - 1) / 2) + 1, range);
+ r_origin = mod(arfcns[split_at] + 1, range);
+ for (i = 0, l_size = 0, r_size = 0; i < size; ++i) {
+ if (mod(arfcns[i] - l_origin, range) < range / 2)
+ arfcns_left[l_size++] = mod(arfcns[i] - l_origin, range);
+ if (mod(arfcns[i] - r_origin, range) < range / 2)
+ arfcns_right[r_size++] = mod(arfcns[i] - r_origin, range);
+ }
+
+ /*
+ * Now recurse and we need to make this iterative... but as the
+ * tree is balanced the stack will not be too deep.
+ */
+ if (l_size)
+ range_enc_arfcns(range / 2, arfcns_left, l_size,
+ out, index + greatest_power_of_2_lesser_or_equal_to(index + 1));
+ if (r_size)
+ range_enc_arfcns((range - 1) / 2, arfcns_right, r_size,
+ out, index + (2 * greatest_power_of_2_lesser_or_equal_to(index + 1)));
+ return 0;
+}
+
+/*
+ * The easiest is to use f0 == arfcns[0]. This means that under certain
+ * circumstances we can encode less ARFCNs than possible with an optimal f0.
+ *
+ * TODO: Solve the optimisation problem and pick f0 so that the max distance
+ * is the smallest. Taking into account the modulo operation. I think picking
+ * size/2 will be the optimal arfcn.
+ */
+/**
+ * This implements the range determination as described in GSM 04.08 J4. The
+ * result will be a base frequency f0 and the range to use. Note that for range
+ * 1024 encoding f0 always refers to ARFCN 0 even if it is not an element of
+ * the arfcns list.
+ *
+ * \param[in] arfcns The input frequencies, they must be sorted, lowest number first
+ * \param[in] size The length of the array
+ * \param[out] f0 The selected F0 base frequency. It might not be inside the list
+ */
+int range_enc_determine_range(const int *arfcns, const int size, int *f0)
+{
+ int max = 0;
+
+ /*
+ * Go for the easiest. And pick arfcns[0] == f0.
+ */
+ max = arfcns[size - 1] - arfcns[0];
+ *f0 = arfcns[0];
+
+ if (max < 128 && size <= 29)
+ return ARFCN_RANGE_128;
+ if (max < 256 && size <= 22)
+ return ARFCN_RANGE_256;
+ if (max < 512 && size <= 18)
+ return ARFCN_RANGE_512;
+ if (max < 1024 && size <= 17) {
+ *f0 = 0;
+ return ARFCN_RANGE_1024;
+ }
+
+ return ARFCN_RANGE_INVALID;
+}
+
+static void write_orig_arfcn(uint8_t *chan_list, int f0)
+{
+ chan_list[0] |= (f0 >> 9) & 1;
+ chan_list[1] = (f0 >> 1);
+ chan_list[2] = (f0 & 1) << 7;
+}
+
+static void write_all_wn(uint8_t *chan_list, int bit_offs,
+ int *w, int w_size, int w1_len)
+{
+ int octet_offs = 0; /* offset into chan_list */
+ int wk_len = w1_len; /* encoding size in bits of w[k] */
+ int k; /* 1 based */
+ int level = 0; /* tree level, top level = 0 */
+ int lvl_left = 1; /* nodes per tree level */
+
+ /* W(2^i) to W(2^(i+1)-1) are on w1_len-i bits when present */
+
+ for (k = 1; k <= w_size; k++) {
+ int wk_left = wk_len;
+ DEBUGP(DRR,
+ "k=%d, wk_len=%d, offs=%d:%d, level=%d, "
+ "lvl_left=%d\n",
+ k, wk_len, octet_offs, bit_offs, level, lvl_left);
+
+ while (wk_left > 0) {
+ int cur_bits = 8 - bit_offs;
+ int cur_mask;
+ int wk_slice;
+
+ if (cur_bits > wk_left)
+ cur_bits = wk_left;
+
+ cur_mask = ((1 << cur_bits) - 1);
+
+ DEBUGP(DRR,
+ " wk_left=%d, cur_bits=%d, offs=%d:%d\n",
+ wk_left, cur_bits, octet_offs, bit_offs);
+
+ /* advance */
+ wk_left -= cur_bits;
+ bit_offs += cur_bits;
+
+ /* right aligned wk data for current out octet */
+ wk_slice = (w[k-1] >> wk_left) & cur_mask;
+
+ /* cur_bits now contains the number of bits
+ * that are to be copied from wk to the chan_list.
+ * wk_left is set to the number of bits that must
+ * not yet be copied.
+ * bit_offs points after the bit area that is going to
+ * be overwritten:
+ *
+ * wk_left
+ * |
+ * v
+ * wk: WWWWWWWWWWW
+ * |||||<-- wk_slice, cur_bits=5
+ * --WWWWW-
+ * ^
+ * |
+ * bit_offs
+ */
+
+ DEBUGP(DRR,
+ " wk=%02x, slice=%02x/%02x, cl=%02x\n",
+ w[k-1], wk_slice, cur_mask, wk_slice << (8 - bit_offs));
+
+ chan_list[octet_offs] &= ~(cur_mask << (8 - bit_offs));
+ chan_list[octet_offs] |= wk_slice << (8 - bit_offs);
+
+ /* adjust output */
+ if (bit_offs == 8) {
+ bit_offs = 0;
+ octet_offs += 1;
+ }
+ }
+
+ /* adjust bit sizes */
+ lvl_left -= 1;
+ if (!lvl_left) {
+ /* completed tree level, advance to next */
+ level += 1;
+ lvl_left = 1 << level;
+ wk_len -= 1;
+ }
+ }
+}
+
+int range_enc_range128(uint8_t *chan_list, int f0, int *w)
+{
+ chan_list[0] = 0x8C;
+ write_orig_arfcn(chan_list, f0);
+
+ write_all_wn(&chan_list[2], 1, w, 28, 7);
+ return 0;
+}
+
+int range_enc_range256(uint8_t *chan_list, int f0, int *w)
+{
+ chan_list[0] = 0x8A;
+ write_orig_arfcn(chan_list, f0);
+
+ write_all_wn(&chan_list[2], 1, w, 21, 8);
+ return 0;
+}
+
+int range_enc_range512(uint8_t *chan_list, int f0, int *w)
+{
+ chan_list[0] = 0x88;
+ write_orig_arfcn(chan_list, f0);
+
+ write_all_wn(&chan_list[2], 1, w, 17, 9);
+ return 0;
+}
+
+int range_enc_range1024(uint8_t *chan_list, int f0, int f0_included, int *w)
+{
+ chan_list[0] = 0x80 | (f0_included << 2);
+
+ write_all_wn(&chan_list[0], 6, w, 16, 10);
+ return 0;
+}
+
+int range_enc_filter_arfcns(int *arfcns,
+ const int size, const int f0, int *f0_included)
+{
+ int i, j = 0;
+ *f0_included = 0;
+
+ for (i = 0; i < size; ++i) {
+ /*
+ * Appendix J.4 says the following:
+ * All frequencies except F(0), minus F(0) + 1.
+ * I assume we need to exclude it here.
+ */
+ if (arfcns[i] == f0) {
+ *f0_included = 1;
+ continue;
+ }
+
+ arfcns[j++] = mod(arfcns[i] - (f0 + 1), 1024);
+ }
+
+ return j;
+}