/* Interface handler for Sysmocom L1 */ /* (C) 2011-2016 by Harald Welte * (C) 2014 by Holger Hans Peter Freyther * * All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "femtobts.h" #include "l1_if.h" #include "l1_transp.h" #include "hw_misc.h" #include "misc/sysmobts_par.h" #include "eeprom.h" #include "utils.h" struct wait_l1_conf { struct llist_head list; /* internal linked list */ struct osmo_timer_list timer; /* timer for L1 timeout */ unsigned int conf_prim_id; /* primitive we expect in response */ HANDLE conf_hLayer3; /* layer 3 handle we expect in response */ unsigned int is_sys_prim; /* is this a system (1) or L1 (0) primitive */ l1if_compl_cb *cb; void *cb_data; }; static void release_wlc(struct wait_l1_conf *wlc) { osmo_timer_del(&wlc->timer); talloc_free(wlc); } static void l1if_req_timeout(void *data) { struct wait_l1_conf *wlc = data; if (wlc->is_sys_prim) LOGP(DL1C, LOGL_FATAL, "Timeout waiting for SYS primitive %s\n", get_value_string(femtobts_sysprim_names, wlc->conf_prim_id)); else LOGP(DL1C, LOGL_FATAL, "Timeout waiting for L1 primitive %s\n", get_value_string(femtobts_l1prim_names, wlc->conf_prim_id)); exit(23); } static HANDLE l1p_get_hLayer3(GsmL1_Prim_t *prim) { switch (prim->id) { case GsmL1_PrimId_MphInitReq: return prim->u.mphInitReq.hLayer3; case GsmL1_PrimId_MphCloseReq: return prim->u.mphCloseReq.hLayer3; case GsmL1_PrimId_MphConnectReq: return prim->u.mphConnectReq.hLayer3; case GsmL1_PrimId_MphDisconnectReq: return prim->u.mphDisconnectReq.hLayer3; case GsmL1_PrimId_MphActivateReq: return prim->u.mphActivateReq.hLayer3; case GsmL1_PrimId_MphDeactivateReq: return prim->u.mphDeactivateReq.hLayer3; case GsmL1_PrimId_MphConfigReq: return prim->u.mphConfigReq.hLayer3; case GsmL1_PrimId_MphMeasureReq: return prim->u.mphMeasureReq.hLayer3; case GsmL1_PrimId_MphInitCnf: return prim->u.mphInitCnf.hLayer3; case GsmL1_PrimId_MphCloseCnf: return prim->u.mphCloseCnf.hLayer3; case GsmL1_PrimId_MphConnectCnf: return prim->u.mphConnectCnf.hLayer3; case GsmL1_PrimId_MphDisconnectCnf: return prim->u.mphDisconnectCnf.hLayer3; case GsmL1_PrimId_MphActivateCnf: return prim->u.mphActivateCnf.hLayer3; case GsmL1_PrimId_MphDeactivateCnf: return prim->u.mphDeactivateCnf.hLayer3; case GsmL1_PrimId_MphConfigCnf: return prim->u.mphConfigCnf.hLayer3; case GsmL1_PrimId_MphMeasureCnf: return prim->u.mphMeasureCnf.hLayer3; case GsmL1_PrimId_MphTimeInd: case GsmL1_PrimId_MphSyncInd: case GsmL1_PrimId_PhEmptyFrameReq: case GsmL1_PrimId_PhDataReq: case GsmL1_PrimId_PhConnectInd: case GsmL1_PrimId_PhReadyToSendInd: case GsmL1_PrimId_PhDataInd: case GsmL1_PrimId_PhRaInd: break; default: LOGP(DL1C, LOGL_ERROR, "unknown L1 primitive %u\n", prim->id); break; } return 0; } static int _l1if_req_compl(struct femtol1_hdl *fl1h, struct msgb *msg, int is_system_prim, l1if_compl_cb *cb, void *data) { struct wait_l1_conf *wlc; struct osmo_wqueue *wqueue; unsigned int timeout_secs; /* allocate new wsc and store reference to mutex and conf_id */ wlc = talloc_zero(fl1h, struct wait_l1_conf); wlc->cb = cb; wlc->cb_data = data; /* Make sure we actually have received a REQUEST type primitive */ if (is_system_prim == 0) { GsmL1_Prim_t *l1p = msgb_l1prim(msg); LOGP(DL1P, LOGL_INFO, "Tx L1 prim %s\n", get_value_string(femtobts_l1prim_names, l1p->id)); if (femtobts_l1prim_type[l1p->id] != L1P_T_REQ) { LOGP(DL1C, LOGL_ERROR, "L1 Prim %s is not a Request!\n", get_value_string(femtobts_l1prim_names, l1p->id)); talloc_free(wlc); return -EINVAL; } wlc->is_sys_prim = 0; wlc->conf_prim_id = femtobts_l1prim_req2conf[l1p->id]; wlc->conf_hLayer3 = l1p_get_hLayer3(l1p); wqueue = &fl1h->write_q[MQ_L1_WRITE]; timeout_secs = 30; } else { SuperFemto_Prim_t *sysp = msgb_sysprim(msg); LOGP(DL1C, LOGL_INFO, "Tx SYS prim %s\n", get_value_string(femtobts_sysprim_names, sysp->id)); if (femtobts_sysprim_type[sysp->id] != L1P_T_REQ) { LOGP(DL1C, LOGL_ERROR, "SYS Prim %s is not a Request!\n", get_value_string(femtobts_sysprim_names, sysp->id)); talloc_free(wlc); return -EINVAL; } wlc->is_sys_prim = 1; wlc->conf_prim_id = femtobts_sysprim_req2conf[sysp->id]; wqueue = &fl1h->write_q[MQ_SYS_WRITE]; timeout_secs = 30; } /* enqueue the message in the queue and add wsc to list */ if (osmo_wqueue_enqueue(wqueue, msg) != 0) { /* So we will get a timeout but the log message might help */ LOGP(DL1C, LOGL_ERROR, "Write queue for %s full. dropping msg.\n", is_system_prim ? "system primitive" : "gsm"); msgb_free(msg); } llist_add(&wlc->list, &fl1h->wlc_list); /* schedule a timer for timeout_secs seconds. If DSP fails to respond, we terminate */ wlc->timer.data = wlc; wlc->timer.cb = l1if_req_timeout; osmo_timer_schedule(&wlc->timer, timeout_secs, 0); return 0; } /* send a request primitive to the L1 and schedule completion call-back */ int l1if_req_compl(struct femtol1_hdl *fl1h, struct msgb *msg, l1if_compl_cb *cb, void *data) { return _l1if_req_compl(fl1h, msg, 1, cb, data); } int l1if_gsm_req_compl(struct femtol1_hdl *fl1h, struct msgb *msg, l1if_compl_cb *cb, void *data) { return _l1if_req_compl(fl1h, msg, 0, cb, data); } /* allocate a msgb containing a GsmL1_Prim_t */ struct msgb *l1p_msgb_alloc(void) { struct msgb *msg = msgb_alloc(sizeof(GsmL1_Prim_t), "l1_prim"); if (msg) msg->l1h = msgb_put(msg, sizeof(GsmL1_Prim_t)); return msg; } /* allocate a msgb containing a SuperFemto_Prim_t */ struct msgb *sysp_msgb_alloc(void) { struct msgb *msg = msgb_alloc(sizeof(SuperFemto_Prim_t), "sys_prim"); if (msg) msg->l1h = msgb_put(msg, sizeof(SuperFemto_Prim_t)); return msg; } static GsmL1_PhDataReq_t * data_req_from_rts_ind(GsmL1_Prim_t *l1p, const GsmL1_PhReadyToSendInd_t *rts_ind) { GsmL1_PhDataReq_t *data_req = &l1p->u.phDataReq; l1p->id = GsmL1_PrimId_PhDataReq; /* copy fields from PH-RSS.ind */ data_req->hLayer1 = rts_ind->hLayer1; data_req->u8Tn = rts_ind->u8Tn; data_req->u32Fn = rts_ind->u32Fn; data_req->sapi = rts_ind->sapi; data_req->subCh = rts_ind->subCh; data_req->u8BlockNbr = rts_ind->u8BlockNbr; return data_req; } static GsmL1_PhEmptyFrameReq_t * empty_req_from_rts_ind(GsmL1_Prim_t *l1p, const GsmL1_PhReadyToSendInd_t *rts_ind) { GsmL1_PhEmptyFrameReq_t *empty_req = &l1p->u.phEmptyFrameReq; l1p->id = GsmL1_PrimId_PhEmptyFrameReq; empty_req->hLayer1 = rts_ind->hLayer1; empty_req->u8Tn = rts_ind->u8Tn; empty_req->u32Fn = rts_ind->u32Fn; empty_req->sapi = rts_ind->sapi; empty_req->subCh = rts_ind->subCh; empty_req->u8BlockNbr = rts_ind->u8BlockNbr; return empty_req; } /* fill PH-DATA.req from l1sap primitive */ static GsmL1_PhDataReq_t * data_req_from_l1sap(GsmL1_Prim_t *l1p, struct femtol1_hdl *fl1, uint8_t tn, uint32_t fn, uint8_t sapi, uint8_t sub_ch, uint8_t block_nr, uint8_t len) { GsmL1_PhDataReq_t *data_req = &l1p->u.phDataReq; l1p->id = GsmL1_PrimId_PhDataReq; /* copy fields from PH-RSS.ind */ data_req->hLayer1 = fl1->hLayer1; data_req->u8Tn = tn; data_req->u32Fn = fn; data_req->sapi = sapi; data_req->subCh = sub_ch; data_req->u8BlockNbr = block_nr; data_req->msgUnitParam.u8Size = len; return data_req; } /* fill PH-EMPTY_FRAME.req from l1sap primitive */ static GsmL1_PhEmptyFrameReq_t * empty_req_from_l1sap(GsmL1_Prim_t *l1p, struct femtol1_hdl *fl1, uint8_t tn, uint32_t fn, uint8_t sapi, uint8_t subch, uint8_t block_nr) { GsmL1_PhEmptyFrameReq_t *empty_req = &l1p->u.phEmptyFrameReq; l1p->id = GsmL1_PrimId_PhEmptyFrameReq; empty_req->hLayer1 = fl1->hLayer1; empty_req->u8Tn = tn; empty_req->u32Fn = fn; empty_req->sapi = sapi; empty_req->subCh = subch; empty_req->u8BlockNbr = block_nr; return empty_req; } static int ph_data_req(struct gsm_bts_trx *trx, struct msgb *msg, struct osmo_phsap_prim *l1sap, bool use_cache) { struct femtol1_hdl *fl1 = trx_femtol1_hdl(trx); struct msgb *l1msg = l1p_msgb_alloc(); struct gsm_lchan *lchan; uint32_t u32Fn; uint8_t u8Tn, subCh, u8BlockNbr = 0, sapi = 0; uint8_t chan_nr, link_id; int len; if (!msg) { LOGP(DL1C, LOGL_FATAL, "PH-DATA.req without msg. " "Please fix!\n"); abort(); } len = msgb_l2len(msg); chan_nr = l1sap->u.data.chan_nr; link_id = l1sap->u.data.link_id; u32Fn = l1sap->u.data.fn; u8Tn = L1SAP_CHAN2TS(chan_nr); subCh = 0x1f; lchan = get_lchan_by_chan_nr(trx, chan_nr); if (L1SAP_IS_LINK_SACCH(link_id)) { sapi = GsmL1_Sapi_Sacch; if (!L1SAP_IS_CHAN_TCHF(chan_nr)) subCh = l1sap_chan2ss(chan_nr); } else if (L1SAP_IS_CHAN_TCHF(chan_nr)) { if (ts_is_pdch(&trx->ts[u8Tn])) { if (L1SAP_IS_PTCCH(u32Fn)) { sapi = GsmL1_Sapi_Ptcch; u8BlockNbr = L1SAP_FN2PTCCHBLOCK(u32Fn); } else { sapi = GsmL1_Sapi_Pdtch; u8BlockNbr = L1SAP_FN2MACBLOCK(u32Fn); } } else { sapi = GsmL1_Sapi_FacchF; u8BlockNbr = (u32Fn % 13) >> 2; } } else if (L1SAP_IS_CHAN_TCHH(chan_nr)) { subCh = L1SAP_CHAN2SS_TCHH(chan_nr); sapi = GsmL1_Sapi_FacchH; u8BlockNbr = (u32Fn % 26) >> 3; } else if (L1SAP_IS_CHAN_SDCCH4(chan_nr)) { subCh = L1SAP_CHAN2SS_SDCCH4(chan_nr); sapi = GsmL1_Sapi_Sdcch; } else if (L1SAP_IS_CHAN_SDCCH8(chan_nr)) { subCh = L1SAP_CHAN2SS_SDCCH8(chan_nr); sapi = GsmL1_Sapi_Sdcch; } else if (L1SAP_IS_CHAN_BCCH(chan_nr)) { sapi = GsmL1_Sapi_Bcch; } else if (L1SAP_IS_CHAN_AGCH_PCH(chan_nr)) { /* The sapi depends on DSP configuration, not * on the actual SYSTEM INFORMATION 3. */ u8BlockNbr = L1SAP_FN2CCCHBLOCK(u32Fn); if (u8BlockNbr >= 1) sapi = GsmL1_Sapi_Pch; else sapi = GsmL1_Sapi_Agch; } else { LOGP(DL1C, LOGL_NOTICE, "unknown prim %d op %d " "chan_nr %d link_id %d\n", l1sap->oph.primitive, l1sap->oph.operation, chan_nr, link_id); msgb_free(l1msg); return -EINVAL; } /* convert l1sap message to GsmL1 primitive, keep payload */ if (len) { /* data request */ GsmL1_Prim_t *l1p = msgb_l1prim(l1msg); data_req_from_l1sap(l1p, fl1, u8Tn, u32Fn, sapi, subCh, u8BlockNbr, len); if (use_cache) memcpy(l1p->u.phDataReq.msgUnitParam.u8Buffer, lchan->tch.dtx.facch, msgb_l2len(msg)); else if (dtx_dl_amr_enabled(lchan) && ((lchan->tch.dtx.dl_amr_fsm->state == ST_ONSET_F) || (lchan->tch.dtx.dl_amr_fsm->state == ST_U_INH_F) || (lchan->tch.dtx.dl_amr_fsm->state == ST_F1_INH_F))) { if (sapi == GsmL1_Sapi_FacchF) { sapi = GsmL1_Sapi_TchF; } if (sapi == GsmL1_Sapi_FacchH) { sapi = GsmL1_Sapi_TchH; subCh = L1SAP_CHAN2SS_TCHH(chan_nr); u8BlockNbr = (u32Fn % 13) >> 2; } if (sapi == GsmL1_Sapi_TchH || sapi == GsmL1_Sapi_TchF) { /* FACCH interruption of DTX silence */ /* cache FACCH data */ memcpy(lchan->tch.dtx.facch, msg->l2h, msgb_l2len(msg)); /* prepare ONSET or INH message */ if(lchan->tch.dtx.dl_amr_fsm->state == ST_ONSET_F) l1p->u.phDataReq.msgUnitParam.u8Buffer[0] = GsmL1_TchPlType_Amr_Onset; else if(lchan->tch.dtx.dl_amr_fsm->state == ST_U_INH_F) l1p->u.phDataReq.msgUnitParam.u8Buffer[0] = GsmL1_TchPlType_Amr_SidUpdateInH; else if(lchan->tch.dtx.dl_amr_fsm->state == ST_F1_INH_F) l1p->u.phDataReq.msgUnitParam.u8Buffer[0] = GsmL1_TchPlType_Amr_SidFirstInH; /* ignored CMR/CMI pair */ l1p->u.phDataReq.msgUnitParam.u8Buffer[1] = 0; l1p->u.phDataReq.msgUnitParam.u8Buffer[2] = 0; /* update length */ data_req_from_l1sap(l1p, fl1, u8Tn, u32Fn, sapi, subCh, u8BlockNbr, 3); /* update FN so it can be checked by TCH silence resume handler */ lchan->tch.dtx.fn = LCHAN_FN_DUMMY; } } else if (dtx_dl_amr_enabled(lchan) && lchan->tch.dtx.dl_amr_fsm->state == ST_FACCH) { /* update FN so it can be checked by TCH silence resume handler */ lchan->tch.dtx.fn = LCHAN_FN_DUMMY; } else { OSMO_ASSERT(msgb_l2len(msg) <= sizeof(l1p->u.phDataReq.msgUnitParam.u8Buffer)); memcpy(l1p->u.phDataReq.msgUnitParam.u8Buffer, msg->l2h, msgb_l2len(msg)); } LOGP(DL1P, LOGL_DEBUG, "PH-DATA.req(%s)\n", osmo_hexdump(l1p->u.phDataReq.msgUnitParam.u8Buffer, l1p->u.phDataReq.msgUnitParam.u8Size)); } else { /* empty frame */ GsmL1_Prim_t *l1p = msgb_l1prim(l1msg); empty_req_from_l1sap(l1p, fl1, u8Tn, u32Fn, sapi, subCh, u8BlockNbr); } /* send message to DSP's queue */ if (osmo_wqueue_enqueue(&fl1->write_q[MQ_L1_WRITE], l1msg) != 0) { LOGP(DL1P, LOGL_ERROR, "MQ_L1_WRITE queue full. Dropping msg.\n"); msgb_free(l1msg); } else dtx_int_signal(lchan); if (dtx_recursion(lchan)) ph_data_req(trx, msg, l1sap, true); return 0; } static int ph_tch_req(struct gsm_bts_trx *trx, struct msgb *msg, struct osmo_phsap_prim *l1sap, bool use_cache, bool marker) { struct femtol1_hdl *fl1 = trx_femtol1_hdl(trx); struct gsm_lchan *lchan; uint32_t u32Fn; uint8_t u8Tn, subCh, u8BlockNbr = 0, sapi; uint8_t chan_nr; GsmL1_Prim_t *l1p; struct msgb *nmsg = NULL; int rc = -1; chan_nr = l1sap->u.tch.chan_nr; u32Fn = l1sap->u.tch.fn; u8Tn = L1SAP_CHAN2TS(chan_nr); u8BlockNbr = (u32Fn % 13) >> 2; if (L1SAP_IS_CHAN_TCHH(chan_nr)) { subCh = L1SAP_CHAN2SS_TCHH(chan_nr); sapi = GsmL1_Sapi_TchH; } else { subCh = 0x1f; sapi = GsmL1_Sapi_TchF; } lchan = get_lchan_by_chan_nr(trx, chan_nr); /* create new message and fill data */ if (msg) { msgb_pull(msg, sizeof(*l1sap)); /* create new message */ nmsg = l1p_msgb_alloc(); if (!nmsg) return -ENOMEM; l1p = msgb_l1prim(nmsg); rc = l1if_tch_encode(lchan, l1p->u.phDataReq.msgUnitParam.u8Buffer, &l1p->u.phDataReq.msgUnitParam.u8Size, msg->data, msg->len, u32Fn, use_cache, l1sap->u.tch.marker); if (rc < 0) { /* no data encoded for L1: smth will be generated below */ msgb_free(nmsg); nmsg = NULL; } } /* no message/data, we might generate an empty traffic msg or re-send cached SID in case of DTX */ if (!nmsg) nmsg = gen_empty_tch_msg(lchan, u32Fn); /* no traffic message, we generate an empty msg */ if (!nmsg) { nmsg = l1p_msgb_alloc(); if (!nmsg) return -ENOMEM; } l1p = msgb_l1prim(nmsg); /* if we provide data, or if data is already in nmsg */ if (l1p->u.phDataReq.msgUnitParam.u8Size) { /* data request */ data_req_from_l1sap(l1p, fl1, u8Tn, u32Fn, sapi, subCh, u8BlockNbr, l1p->u.phDataReq.msgUnitParam.u8Size); } else { /* empty frame */ if (trx->bts->dtxd && trx != trx->bts->c0) lchan->tch.dtx.dl_active = true; empty_req_from_l1sap(l1p, fl1, u8Tn, u32Fn, sapi, subCh, u8BlockNbr); } /* send message to DSP's queue */ osmo_wqueue_enqueue(&fl1->write_q[MQ_L1_WRITE], nmsg); if (dtx_is_first_p1(lchan)) dtx_dispatch(lchan, E_FIRST); else dtx_int_signal(lchan); if (dtx_recursion(lchan)) /* DTX: send voice after ONSET was sent */ return ph_tch_req(trx, l1sap->oph.msg, l1sap, true, false); return 0; } static int mph_info_req(struct gsm_bts_trx *trx, struct msgb *msg, struct osmo_phsap_prim *l1sap) { struct femtol1_hdl *fl1 = trx_femtol1_hdl(trx); uint8_t chan_nr; struct gsm_lchan *lchan; int rc = 0; switch (l1sap->u.info.type) { case PRIM_INFO_ACT_CIPH: chan_nr = l1sap->u.info.u.ciph_req.chan_nr; lchan = get_lchan_by_chan_nr(trx, chan_nr); if (l1sap->u.info.u.ciph_req.uplink) { l1if_set_ciphering(fl1, lchan, 0); lchan->ciph_state = LCHAN_CIPH_RX_REQ; } if (l1sap->u.info.u.ciph_req.downlink) { l1if_set_ciphering(fl1, lchan, 1); lchan->ciph_state = LCHAN_CIPH_RX_CONF_TX_REQ; } if (l1sap->u.info.u.ciph_req.downlink && l1sap->u.info.u.ciph_req.uplink) lchan->ciph_state = LCHAN_CIPH_RXTX_REQ; break; case PRIM_INFO_ACTIVATE: case PRIM_INFO_DEACTIVATE: case PRIM_INFO_MODIFY: chan_nr = l1sap->u.info.u.act_req.chan_nr; lchan = get_lchan_by_chan_nr(trx, chan_nr); if (l1sap->u.info.type == PRIM_INFO_ACTIVATE) l1if_rsl_chan_act(lchan); else if (l1sap->u.info.type == PRIM_INFO_MODIFY) { if (lchan->ho.active == HANDOVER_WAIT_FRAME) l1if_rsl_chan_mod(lchan); else l1if_rsl_mode_modify(lchan); } else if (l1sap->u.info.u.act_req.sacch_only) l1if_rsl_deact_sacch(lchan); else l1if_rsl_chan_rel(lchan); break; default: LOGP(DL1C, LOGL_NOTICE, "unknown MPH-INFO.req %d\n", l1sap->u.info.type); rc = -EINVAL; } return rc; } /* primitive from common part */ int bts_model_l1sap_down(struct gsm_bts_trx *trx, struct osmo_phsap_prim *l1sap) { struct msgb *msg = l1sap->oph.msg; int rc = 0; /* called functions MUST NOT take ownership of msgb, as it is * free()d below */ switch (OSMO_PRIM_HDR(&l1sap->oph)) { case OSMO_PRIM(PRIM_PH_DATA, PRIM_OP_REQUEST): rc = ph_data_req(trx, msg, l1sap, false); break; case OSMO_PRIM(PRIM_TCH, PRIM_OP_REQUEST): rc = ph_tch_req(trx, msg, l1sap, false, l1sap->u.tch.marker); break; case OSMO_PRIM(PRIM_MPH_INFO, PRIM_OP_REQUEST): rc = mph_info_req(trx, msg, l1sap); break; default: LOGP(DL1C, LOGL_NOTICE, "unknown prim %d op %d\n", l1sap->oph.primitive, l1sap->oph.operation); rc = -EINVAL; } msgb_free(msg); return rc; } static int handle_mph_time_ind(struct femtol1_hdl *fl1, GsmL1_MphTimeInd_t *time_ind, struct msgb *msg) { struct gsm_bts_trx *trx = femtol1_hdl_trx(fl1); struct gsm_bts *bts = trx->bts; struct osmo_phsap_prim l1sap; uint32_t fn; /* increment the primitive count for the alive timer */ fl1->alive_prim_cnt++; /* ignore every time indication, except for c0 */ if (trx != bts->c0) { msgb_free(msg); return 0; } fn = time_ind->u32Fn; memset(&l1sap, 0, sizeof(l1sap)); osmo_prim_init(&l1sap.oph, SAP_GSM_PH, PRIM_MPH_INFO, PRIM_OP_INDICATION, NULL); l1sap.u.info.type = PRIM_INFO_TIME; l1sap.u.info.u.time_ind.fn = fn; msgb_free(msg); return l1sap_up(trx, &l1sap); } static enum gsm_phys_chan_config pick_pchan(struct gsm_bts_trx_ts *ts) { switch (ts->pchan) { case GSM_PCHAN_TCH_F_PDCH: if (ts->flags & TS_F_PDCH_ACTIVE) return GSM_PCHAN_PDCH; return GSM_PCHAN_TCH_F; case GSM_PCHAN_TCH_F_TCH_H_PDCH: return ts->dyn.pchan_is; default: return ts->pchan; } } static uint8_t chan_nr_by_sapi(struct gsm_bts_trx_ts *ts, GsmL1_Sapi_t sapi, GsmL1_SubCh_t subCh, uint8_t u8Tn, uint32_t u32Fn) { uint8_t cbits = 0; enum gsm_phys_chan_config pchan = pick_pchan(ts); OSMO_ASSERT(pchan != GSM_PCHAN_TCH_F_PDCH); OSMO_ASSERT(pchan != GSM_PCHAN_TCH_F_TCH_H_PDCH); switch (sapi) { case GsmL1_Sapi_Bcch: cbits = 0x10; break; case GsmL1_Sapi_Sacch: switch(pchan) { case GSM_PCHAN_TCH_F: cbits = 0x01; break; case GSM_PCHAN_TCH_H: cbits = 0x02 + subCh; break; case GSM_PCHAN_CCCH_SDCCH4: cbits = 0x04 + subCh; break; case GSM_PCHAN_SDCCH8_SACCH8C: cbits = 0x08 + subCh; break; default: LOGP(DL1C, LOGL_ERROR, "SACCH for pchan %d?\n", pchan); return 0; } break; case GsmL1_Sapi_Sdcch: switch(pchan) { case GSM_PCHAN_CCCH_SDCCH4: cbits = 0x04 + subCh; break; case GSM_PCHAN_SDCCH8_SACCH8C: cbits = 0x08 + subCh; break; default: LOGP(DL1C, LOGL_ERROR, "SDCCH for pchan %d?\n", pchan); return 0; } break; case GsmL1_Sapi_Agch: case GsmL1_Sapi_Pch: cbits = 0x12; break; case GsmL1_Sapi_Pdtch: case GsmL1_Sapi_Pacch: switch(pchan) { case GSM_PCHAN_PDCH: cbits = 0x01; break; default: LOGP(DL1C, LOGL_ERROR, "PDTCH for pchan %d?\n", pchan); return 0; } break; case GsmL1_Sapi_TchF: cbits = 0x01; break; case GsmL1_Sapi_TchH: cbits = 0x02 + subCh; break; case GsmL1_Sapi_FacchF: cbits = 0x01; break; case GsmL1_Sapi_FacchH: cbits = 0x02 + subCh; break; case GsmL1_Sapi_Ptcch: if (!L1SAP_IS_PTCCH(u32Fn)) { LOGP(DL1C, LOGL_FATAL, "Not expecting PTCCH at frame " "number other than 12, got it at %u (%u). " "Please fix!\n", u32Fn % 52, u32Fn); abort(); } switch(pchan) { case GSM_PCHAN_PDCH: cbits = 0x01; break; default: LOGP(DL1C, LOGL_ERROR, "PTCCH for pchan %d?\n", pchan); return 0; } break; default: return 0; } /* not reached due to default case above */ return (cbits << 3) | u8Tn; } static int handle_ph_readytosend_ind(struct femtol1_hdl *fl1, GsmL1_PhReadyToSendInd_t *rts_ind, struct msgb *l1p_msg) { struct gsm_bts_trx *trx = femtol1_hdl_trx(fl1); struct gsm_bts *bts = trx->bts; struct msgb *resp_msg; GsmL1_PhDataReq_t *data_req; GsmL1_MsgUnitParam_t *msu_param; struct gsm_time g_time; uint32_t t3p; int rc; struct osmo_phsap_prim *l1sap; uint8_t chan_nr, link_id; uint32_t fn; /* check if primitive should be handled by common part */ chan_nr = chan_nr_by_sapi(&trx->ts[rts_ind->u8Tn], rts_ind->sapi, rts_ind->subCh, rts_ind->u8Tn, rts_ind->u32Fn); if (chan_nr) { fn = rts_ind->u32Fn; if (rts_ind->sapi == GsmL1_Sapi_Sacch) link_id = LID_SACCH; else link_id = LID_DEDIC; /* recycle the msgb and use it for the L1 primitive, * which means that we (or our caller) must not free it */ rc = msgb_trim(l1p_msg, sizeof(*l1sap)); if (rc < 0) MSGB_ABORT(l1p_msg, "No room for primitive\n"); l1sap = msgb_l1sap_prim(l1p_msg); if (rts_ind->sapi == GsmL1_Sapi_TchF || rts_ind->sapi == GsmL1_Sapi_TchH) { osmo_prim_init(&l1sap->oph, SAP_GSM_PH, PRIM_TCH_RTS, PRIM_OP_INDICATION, l1p_msg); l1sap->u.tch.chan_nr = chan_nr; l1sap->u.tch.fn = fn; } else { osmo_prim_init(&l1sap->oph, SAP_GSM_PH, PRIM_PH_RTS, PRIM_OP_INDICATION, l1p_msg); l1sap->u.data.link_id = link_id; l1sap->u.data.chan_nr = chan_nr; l1sap->u.data.fn = fn; } return l1sap_up(trx, l1sap); } gsm_fn2gsmtime(&g_time, rts_ind->u32Fn); DEBUGP(DL1P, "Rx PH-RTS.ind %02u/%02u/%02u SAPI=%s\n", g_time.t1, g_time.t2, g_time.t3, get_value_string(femtobts_l1sapi_names, rts_ind->sapi)); /* in all other cases, we need to allocate a new PH-DATA.ind * primitive msgb and start to fill it */ resp_msg = l1p_msgb_alloc(); data_req = data_req_from_rts_ind(msgb_l1prim(resp_msg), rts_ind); msu_param = &data_req->msgUnitParam; /* set default size */ msu_param->u8Size = GSM_MACBLOCK_LEN; switch (rts_ind->sapi) { case GsmL1_Sapi_Sch: /* compute T3prime */ t3p = (g_time.t3 - 1) / 10; /* fill SCH burst with data */ msu_param->u8Size = 4; msu_param->u8Buffer[0] = (bts->bsic << 2) | (g_time.t1 >> 9); msu_param->u8Buffer[1] = (g_time.t1 >> 1); msu_param->u8Buffer[2] = (g_time.t1 << 7) | (g_time.t2 << 2) | (t3p >> 1); msu_param->u8Buffer[3] = (t3p & 1); break; case GsmL1_Sapi_Prach: goto empty_frame; break; case GsmL1_Sapi_Cbch: /* get them from bts->si_buf[] */ bts_cbch_get(bts, msu_param->u8Buffer, &g_time); break; default: memcpy(msu_param->u8Buffer, fill_frame, GSM_MACBLOCK_LEN); break; } tx: /* transmit */ if (osmo_wqueue_enqueue(&fl1->write_q[MQ_L1_WRITE], resp_msg) != 0) { LOGP(DL1C, LOGL_ERROR, "MQ_L1_WRITE queue full. Dropping msg.\n"); msgb_free(resp_msg); } /* free the msgb, as we have not handed it to l1sap and thus * need to release its memory */ msgb_free(l1p_msg); return 0; empty_frame: /* in case we decide to send an empty frame... */ empty_req_from_rts_ind(msgb_l1prim(resp_msg), rts_ind); goto tx; } static void dump_meas_res(int ll, GsmL1_MeasParam_t *m) { LOGPC(DL1C, ll, ", Meas: RSSI %-3.2f dBm, Qual %-3.2f dB, " "BER %-3.2f, Timing %d\n", m->fRssi, m->fLinkQuality, m->fBer, m->i16BurstTiming); } static int process_meas_res(struct gsm_bts_trx *trx, uint8_t chan_nr, GsmL1_MeasParam_t *m) { struct osmo_phsap_prim l1sap; memset(&l1sap, 0, sizeof(l1sap)); osmo_prim_init(&l1sap.oph, SAP_GSM_PH, PRIM_MPH_INFO, PRIM_OP_INDICATION, NULL); l1sap.u.info.type = PRIM_INFO_MEAS; l1sap.u.info.u.meas_ind.chan_nr = chan_nr; l1sap.u.info.u.meas_ind.ta_offs_qbits = m->i16BurstTiming; l1sap.u.info.u.meas_ind.ber10k = (unsigned int) (m->fBer * 100); l1sap.u.info.u.meas_ind.inv_rssi = (uint8_t) (m->fRssi * -1); /* l1sap wants to take msgb ownership. However, as there is no * msg, it will msgb_free(l1sap.oph.msg == NULL) */ return l1sap_up(trx, &l1sap); } static int handle_ph_data_ind(struct femtol1_hdl *fl1, GsmL1_PhDataInd_t *data_ind, struct msgb *l1p_msg) { struct gsm_bts_trx *trx = femtol1_hdl_trx(fl1); struct gsm_bts_role_bts *btsb = bts_role_bts(trx->bts); uint8_t chan_nr, link_id; struct msgb *sap_msg; struct osmo_phsap_prim *l1sap; uint32_t fn; int rc = 0; chan_nr = chan_nr_by_sapi(&trx->ts[data_ind->u8Tn], data_ind->sapi, data_ind->subCh, data_ind->u8Tn, data_ind->u32Fn); if (!chan_nr) { LOGP(DL1C, LOGL_ERROR, "PH-DATA-INDICATION for unknown sapi " "%d\n", data_ind->sapi); msgb_free(l1p_msg); return ENOTSUP; } fn = data_ind->u32Fn; link_id = (data_ind->sapi == GsmL1_Sapi_Sacch) ? LID_SACCH : LID_DEDIC; process_meas_res(trx, chan_nr, &data_ind->measParam); if (data_ind->measParam.fLinkQuality < btsb->min_qual_norm && data_ind->msgUnitParam.u8Size != 0) { msgb_free(l1p_msg); return 0; } DEBUGP(DL1P, "Rx PH-DATA.ind %s (hL2 %08x): %s", get_value_string(femtobts_l1sapi_names, data_ind->sapi), data_ind->hLayer2, osmo_hexdump(data_ind->msgUnitParam.u8Buffer, data_ind->msgUnitParam.u8Size)); dump_meas_res(LOGL_DEBUG, &data_ind->measParam); /* check for TCH */ if (data_ind->sapi == GsmL1_Sapi_TchF || data_ind->sapi == GsmL1_Sapi_TchH) { /* TCH speech frame handling */ rc = l1if_tch_rx(trx, chan_nr, l1p_msg); msgb_free(l1p_msg); return rc; } /* fill L1SAP header */ sap_msg = l1sap_msgb_alloc(data_ind->msgUnitParam.u8Size); l1sap = msgb_l1sap_prim(sap_msg); osmo_prim_init(&l1sap->oph, SAP_GSM_PH, PRIM_PH_DATA, PRIM_OP_INDICATION, sap_msg); l1sap->u.data.link_id = link_id; l1sap->u.data.chan_nr = chan_nr; l1sap->u.data.fn = fn; l1sap->u.data.rssi = (int8_t) (data_ind->measParam.fRssi); if (!pcu_direct) { l1sap->u.data.ber10k = data_ind->measParam.fBer * 10000; l1sap->u.data.ta_offs_qbits = data_ind->measParam.i16BurstTiming; l1sap->u.data.lqual_cb = data_ind->measParam.fLinkQuality * 10; } /* copy data from L1 primitive to L1SAP primitive */ sap_msg->l2h = msgb_put(sap_msg, data_ind->msgUnitParam.u8Size); memcpy(sap_msg->l2h, data_ind->msgUnitParam.u8Buffer, data_ind->msgUnitParam.u8Size); msgb_free(l1p_msg); return l1sap_up(trx, l1sap); } static int handle_ph_ra_ind(struct femtol1_hdl *fl1, GsmL1_PhRaInd_t *ra_ind, struct msgb *l1p_msg) { struct gsm_bts_trx *trx = femtol1_hdl_trx(fl1); struct gsm_bts *bts = trx->bts; struct gsm_bts_role_bts *btsb = bts->role; struct gsm_lchan *lchan; struct osmo_phsap_prim *l1sap; uint32_t fn; uint8_t acc_delay = 0; uint16_t ra = 0, is_11bit = 0, burst_type = 0, temp = 0; int rc; /* increment number of busy RACH slots, if required */ if (trx == bts->c0 && ra_ind->measParam.fRssi >= btsb->load.rach.busy_thresh) btsb->load.rach.busy++; if (ra_ind->measParam.fLinkQuality < btsb->min_qual_rach) { msgb_free(l1p_msg); return 0; } if (ra_ind->measParam.i16BurstTiming > 0) acc_delay = ra_ind->measParam.i16BurstTiming >> 2; /* increment number of RACH slots with valid non-handover RACH burst */ lchan = l1if_hLayer_to_lchan(trx, ra_ind->hLayer2); if (trx == bts->c0 && !(lchan && lchan->ho.active == HANDOVER_ENABLED)) btsb->load.rach.access++; dump_meas_res(LOGL_DEBUG, &ra_ind->measParam); burst_type = ra_ind->burstType; if ((ra_ind->msgUnitParam.u8Size != 1) && (ra_ind->msgUnitParam.u8Size != 2)) { LOGP(DL1C, LOGL_ERROR, "PH-RACH-INDICATION has %d bits\n", ra_ind->sapi); msgb_free(l1p_msg); return 0; } if (ra_ind->msgUnitParam.u8Size == 2) { is_11bit = 1; ra = ra_ind->msgUnitParam.u8Buffer[0]; ra = ra << 3; temp = (ra_ind->msgUnitParam.u8Buffer[1] & 0x7); ra = ra | temp; } else { is_11bit = 0; ra = ra_ind->msgUnitParam.u8Buffer[0]; } fn = ra_ind->u32Fn; rc = msgb_trim(l1p_msg, sizeof(*l1sap)); if (rc < 0) MSGB_ABORT(l1p_msg, "No room for primitive data\n"); l1sap = msgb_l1sap_prim(l1p_msg); osmo_prim_init(&l1sap->oph, SAP_GSM_PH, PRIM_PH_RACH, PRIM_OP_INDICATION, l1p_msg); l1sap->u.rach_ind.ra = ra; l1sap->u.rach_ind.acc_delay = acc_delay; l1sap->u.rach_ind.fn = fn; l1sap->u.rach_ind.is_11bit = is_11bit; /* no of bits in 11 bit RACH */ /*mapping of the burst type, the values are specific to osmo-bts-sysmo*/ switch (burst_type) { case GsmL1_BurstType_Access_0: l1sap->u.rach_ind.burst_type = GSM_L1_BURST_TYPE_ACCESS_0; break; case GsmL1_BurstType_Access_1: l1sap->u.rach_ind.burst_type = GSM_L1_BURST_TYPE_ACCESS_1; break; case GsmL1_BurstType_Access_2: l1sap->u.rach_ind.burst_type = GSM_L1_BURST_TYPE_ACCESS_2; break; default: l1sap->u.rach_ind.burst_type = GSM_L1_BURST_TYPE_NONE; break; } if (!lchan || lchan->ts->pchan == GSM_PCHAN_CCCH || lchan->ts->pchan == GSM_PCHAN_CCCH_SDCCH4) l1sap->u.rach_ind.chan_nr = 0x88; else l1sap->u.rach_ind.chan_nr = gsm_lchan2chan_nr(lchan); return l1sap_up(trx, l1sap); } /* handle any random indication from the L1 */ static int l1if_handle_ind(struct femtol1_hdl *fl1, struct msgb *msg) { GsmL1_Prim_t *l1p = msgb_l1prim(msg); int rc = 0; /* all the below called functions must take ownership of the msgb */ switch (l1p->id) { case GsmL1_PrimId_MphTimeInd: rc = handle_mph_time_ind(fl1, &l1p->u.mphTimeInd, msg); break; case GsmL1_PrimId_MphSyncInd: msgb_free(msg); break; case GsmL1_PrimId_PhConnectInd: msgb_free(msg); break; case GsmL1_PrimId_PhReadyToSendInd: rc = handle_ph_readytosend_ind(fl1, &l1p->u.phReadyToSendInd, msg); break; case GsmL1_PrimId_PhDataInd: rc = handle_ph_data_ind(fl1, &l1p->u.phDataInd, msg); break; case GsmL1_PrimId_PhRaInd: rc = handle_ph_ra_ind(fl1, &l1p->u.phRaInd, msg); break; default: msgb_free(msg); } return rc; } static inline int is_prim_compat(GsmL1_Prim_t *l1p, struct wait_l1_conf *wlc) { if (wlc->is_sys_prim != 0) return 0; if (l1p->id != wlc->conf_prim_id) return 0; if (l1p_get_hLayer3(l1p) != wlc->conf_hLayer3) return 0; return 1; } int l1if_handle_l1prim(int wq, struct femtol1_hdl *fl1h, struct msgb *msg) { GsmL1_Prim_t *l1p = msgb_l1prim(msg); struct wait_l1_conf *wlc; int rc; switch (l1p->id) { case GsmL1_PrimId_MphTimeInd: /* silent, don't clog the log file */ break; default: LOGP(DL1P, LOGL_DEBUG, "Rx L1 prim %s on queue %d\n", get_value_string(femtobts_l1prim_names, l1p->id), wq); } /* check if this is a resposne to a sync-waiting request */ llist_for_each_entry(wlc, &fl1h->wlc_list, list) { if (is_prim_compat(l1p, wlc)) { llist_del(&wlc->list); if (wlc->cb) { /* call-back function must take * ownership of msgb */ rc = wlc->cb(femtol1_hdl_trx(fl1h), msg, wlc->cb_data); } else { rc = 0; msgb_free(msg); } release_wlc(wlc); return rc; } } /* if we reach here, it is not a Conf for a pending Req */ return l1if_handle_ind(fl1h, msg); } int l1if_handle_sysprim(struct femtol1_hdl *fl1h, struct msgb *msg) { SuperFemto_Prim_t *sysp = msgb_sysprim(msg); struct wait_l1_conf *wlc; int rc; LOGP(DL1P, LOGL_DEBUG, "Rx SYS prim %s\n", get_value_string(femtobts_sysprim_names, sysp->id)); /* check if this is a resposne to a sync-waiting request */ llist_for_each_entry(wlc, &fl1h->wlc_list, list) { /* the limitation here is that we cannot have multiple callers * sending the same primitive */ if (wlc->is_sys_prim && sysp->id == wlc->conf_prim_id) { llist_del(&wlc->list); if (wlc->cb) { /* call-back function must take * ownership of msgb */ rc = wlc->cb(femtol1_hdl_trx(fl1h), msg, wlc->cb_data); } else { rc = 0; msgb_free(msg); } release_wlc(wlc); return rc; } } /* if we reach here, it is not a Conf for a pending Req */ return l1if_handle_ind(fl1h, msg); } static int activate_rf_compl_cb(struct gsm_bts_trx *trx, struct msgb *resp, void *data) { SuperFemto_Prim_t *sysp = msgb_sysprim(resp); GsmL1_Status_t status; int on = 0; unsigned int i; if (sysp->id == SuperFemto_PrimId_ActivateRfCnf) on = 1; if (on) status = sysp->u.activateRfCnf.status; else status = sysp->u.deactivateRfCnf.status; LOGP(DL1C, LOGL_INFO, "Rx RF-%sACT.conf (status=%s)\n", on ? "" : "DE", get_value_string(femtobts_l1status_names, status)); if (on) { if (status != GsmL1_Status_Success) { LOGP(DL1C, LOGL_FATAL, "RF-ACT.conf with status %s\n", get_value_string(femtobts_l1status_names, status)); bts_shutdown(trx->bts, "RF-ACT failure"); } else bts_update_status(BTS_STATUS_RF_ACTIVE, 1); /* signal availability */ oml_mo_state_chg(&trx->mo, NM_OPSTATE_DISABLED, NM_AVSTATE_OK); oml_mo_tx_sw_act_rep(&trx->mo); oml_mo_state_chg(&trx->bb_transc.mo, -1, NM_AVSTATE_OK); oml_mo_tx_sw_act_rep(&trx->bb_transc.mo); for (i = 0; i < ARRAY_SIZE(trx->ts); i++) oml_mo_state_chg(&trx->ts[i].mo, NM_OPSTATE_DISABLED, NM_AVSTATE_DEPENDENCY); } else { bts_update_status(BTS_STATUS_RF_ACTIVE, 0); oml_mo_state_chg(&trx->mo, NM_OPSTATE_DISABLED, NM_AVSTATE_OFF_LINE); oml_mo_state_chg(&trx->bb_transc.mo, NM_OPSTATE_DISABLED, NM_AVSTATE_OFF_LINE); } msgb_free(resp); return 0; } static int get_clk_cal(struct femtol1_hdl *hdl) { #ifdef FEMTOBTS_API_VERSION return hdl->clk_cal; #else switch (hdl->clk_src) { case SuperFemto_ClkSrcId_Ocxo: case SuperFemto_ClkSrcId_Tcxo: /* only for those on-board clocks it makes sense to use * the calibration value */ return hdl->clk_cal; default: /* external clocks like GPS are taken 1:1 without any * modification by a local calibration value */ LOGP(DL1C, LOGL_INFO, "Ignoring Clock Calibration for " "selected %s clock\n", get_value_string(femtobts_clksrc_names, hdl->clk_src)); return 0; } #endif } /* * RevC was the last HW revision without an external * attenuator. Check for that. */ static int has_external_atten(struct femtol1_hdl *hdl) { /* older version doesn't have an attenuator */ return hdl->hw_info.ver_major > 2; } /* activate or de-activate the entire RF-Frontend */ int l1if_activate_rf(struct femtol1_hdl *hdl, int on) { struct msgb *msg = sysp_msgb_alloc(); SuperFemto_Prim_t *sysp = msgb_sysprim(msg); struct gsm_bts_trx *trx = hdl->phy_inst->trx; if (on) { sysp->id = SuperFemto_PrimId_ActivateRfReq; #ifdef HW_SYSMOBTS_V1 sysp->u.activateRfReq.u12ClkVc = get_clk_cal(hdl); #else #if SUPERFEMTO_API_VERSION >= SUPERFEMTO_API(0,2,0) sysp->u.activateRfReq.timing.u8TimSrc = 1; /* Master */ #endif /* 0.2.0 */ sysp->u.activateRfReq.msgq.u8UseTchMsgq = 0; sysp->u.activateRfReq.msgq.u8UsePdtchMsgq = pcu_direct; /* Use clock from OCXO or whatever source is configured */ #if SUPERFEMTO_API_VERSION < SUPERFEMTO_API(2,1,0) sysp->u.activateRfReq.rfTrx.u8ClkSrc = hdl->clk_src; #else sysp->u.activateRfReq.rfTrx.clkSrc = hdl->clk_src; #endif /* 2.1.0 */ sysp->u.activateRfReq.rfTrx.iClkCor = get_clk_cal(hdl); #if SUPERFEMTO_API_VERSION < SUPERFEMTO_API(2,4,0) #if SUPERFEMTO_API_VERSION < SUPERFEMTO_API(2,1,0) sysp->u.activateRfReq.rfRx.u8ClkSrc = hdl->clk_src; #else sysp->u.activateRfReq.rfRx.clkSrc = hdl->clk_src; #endif /* 2.1.0 */ sysp->u.activateRfReq.rfRx.iClkCor = get_clk_cal(hdl); #endif /* API 2.4.0 */ #if SUPERFEMTO_API_VERSION >= SUPERFEMTO_API(2,2,0) if (has_external_atten(hdl)) { LOGP(DL1C, LOGL_INFO, "Using external attenuator.\n"); sysp->u.activateRfReq.rfTrx.u8UseExtAtten = 1; sysp->u.activateRfReq.rfTrx.fMaxTxPower = (float) get_p_trxout_target_mdBm(trx, 0) / 1000; } #endif /* 2.2.0 */ #if SUPERFEMTO_API_VERSION >= SUPERFEMTO_API(3,8,1) /* maximum cell size in quarter-bits, 90 == 12.456 km */ sysp->u.activateRfReq.u8MaxCellSize = 90; #endif #endif /* !HW_SYSMOBTS_V1 */ } else { sysp->id = SuperFemto_PrimId_DeactivateRfReq; } return l1if_req_compl(hdl, msg, activate_rf_compl_cb, NULL); } #if SUPERFEMTO_API_VERSION >= SUPERFEMTO_API(3,6,0) static void mute_handle_ts(struct gsm_bts_trx_ts *ts, int is_muted) { int i; for (i = 0; i < ARRAY_SIZE(ts->lchan); i++) { struct gsm_lchan *lchan = &ts->lchan[i]; if (!is_muted) continue; if (lchan->state != LCHAN_S_ACTIVE) continue; /* skip channels that might be active for another reason */ if (lchan->type == GSM_LCHAN_CCCH) continue; if (lchan->type == GSM_LCHAN_PDTCH) continue; if (lchan->s <= 0) continue; lchan->s = 0; rsl_tx_conn_fail(lchan, RSL_ERR_RADIO_LINK_FAIL); } } static int mute_rf_compl_cb(struct gsm_bts_trx *trx, struct msgb *resp, void *data) { struct femtol1_hdl *fl1h = trx_femtol1_hdl(trx); SuperFemto_Prim_t *sysp = msgb_sysprim(resp); GsmL1_Status_t status; status = sysp->u.muteRfCnf.status; if (status != GsmL1_Status_Success) { LOGP(DL1C, LOGL_ERROR, "Rx RF-MUTE.conf with status %s\n", get_value_string(femtobts_l1status_names, status)); oml_mo_rf_lock_chg(&trx->mo, fl1h->last_rf_mute, 0); } else { int i; LOGP(DL1C, LOGL_INFO, "Rx RF-MUTE.conf with status=%s\n", get_value_string(femtobts_l1status_names, status)); bts_update_status(BTS_STATUS_RF_MUTE, fl1h->last_rf_mute[0]); oml_mo_rf_lock_chg(&trx->mo, fl1h->last_rf_mute, 1); osmo_static_assert( ARRAY_SIZE(trx->ts) >= ARRAY_SIZE(fl1h->last_rf_mute), ts_array_size); for (i = 0; i < ARRAY_SIZE(fl1h->last_rf_mute); ++i) mute_handle_ts(&trx->ts[i], fl1h->last_rf_mute[i]); } msgb_free(resp); return 0; } #endif /* mute/unmute RF time slots */ int l1if_mute_rf(struct femtol1_hdl *hdl, uint8_t mute[8], l1if_compl_cb *cb) { struct msgb *msg = sysp_msgb_alloc(); SuperFemto_Prim_t *sysp = msgb_sysprim(msg); LOGP(DL1C, LOGL_INFO, "Tx RF-MUTE.req (%d, %d, %d, %d, %d, %d, %d, %d)\n", mute[0], mute[1], mute[2], mute[3], mute[4], mute[5], mute[6], mute[7] ); #if SUPERFEMTO_API_VERSION < SUPERFEMTO_API(3,6,0) LOGP(DL1C, LOGL_ERROR, "RF-MUTE.req not supported by SuperFemto\n"); msgb_free(msg); return -ENOTSUP; #else sysp->id = SuperFemto_PrimId_MuteRfReq; memcpy(sysp->u.muteRfReq.u8Mute, mute, sizeof(sysp->u.muteRfReq.u8Mute)); /* save for later use */ memcpy(hdl->last_rf_mute, mute, sizeof(hdl->last_rf_mute)); return l1if_req_compl(hdl, msg, cb ? cb : mute_rf_compl_cb, NULL); #endif /* < 3.6.0 */ } /* call-back on arrival of DSP+FPGA version + band capability */ static int info_compl_cb(struct gsm_bts_trx *trx, struct msgb *resp, void *data) { SuperFemto_Prim_t *sysp = msgb_sysprim(resp); SuperFemto_SystemInfoCnf_t *sic = &sysp->u.systemInfoCnf; struct femtol1_hdl *fl1h = trx_femtol1_hdl(trx); int rc; fl1h->hw_info.dsp_version[0] = sic->dspVersion.major; fl1h->hw_info.dsp_version[1] = sic->dspVersion.minor; fl1h->hw_info.dsp_version[2] = sic->dspVersion.build; fl1h->hw_info.fpga_version[0] = sic->fpgaVersion.major; fl1h->hw_info.fpga_version[1] = sic->fpgaVersion.minor; fl1h->hw_info.fpga_version[2] = sic->fpgaVersion.build; #ifndef HW_SYSMOBTS_V1 fl1h->hw_info.ver_major = sic->boardVersion.rev; fl1h->hw_info.ver_minor = sic->boardVersion.option; #endif LOGP(DL1C, LOGL_INFO, "DSP v%u.%u.%u, FPGA v%u.%u.%u\nn", sic->dspVersion.major, sic->dspVersion.minor, sic->dspVersion.build, sic->fpgaVersion.major, sic->fpgaVersion.minor, sic->fpgaVersion.build); #ifdef HW_SYSMOBTS_V1 if (sic->rfBand.gsm850) fl1h->hw_info.band_support |= GSM_BAND_850; if (sic->rfBand.gsm900) fl1h->hw_info.band_support |= GSM_BAND_900; if (sic->rfBand.dcs1800) fl1h->hw_info.band_support |= GSM_BAND_1800; if (sic->rfBand.pcs1900) fl1h->hw_info.band_support |= GSM_BAND_1900; #endif if (!(fl1h->hw_info.band_support & trx->bts->band)) LOGP(DL1C, LOGL_FATAL, "BTS band %s not supported by hw\n", gsm_band_name(trx->bts->band)); if (l1if_dsp_ver(fl1h) < L1_VER_SHIFT(5,3,3)) fl1h->rtp_hr_jumble_needed = true; /* Request the activation */ l1if_activate_rf(fl1h, 1); #if SUPERFEMTO_API_VERSION >= SUPERFEMTO_API(2,4,0) /* load calibration tables (if we know their path) */ rc = calib_load(fl1h); if (rc < 0) LOGP(DL1C, LOGL_ERROR, "Operating without calibration; " "unable to load tables!\n"); #else LOGP(DL1C, LOGL_NOTICE, "Operating without calibration " "as software was compiled against old header files\n"); #endif msgb_free(resp); /* FIXME: clock related */ return 0; } /* request DSP+FPGA code versions + band capability */ static int l1if_get_info(struct femtol1_hdl *hdl) { struct msgb *msg = sysp_msgb_alloc(); SuperFemto_Prim_t *sysp = msgb_sysprim(msg); sysp->id = SuperFemto_PrimId_SystemInfoReq; return l1if_req_compl(hdl, msg, info_compl_cb, NULL); } static int reset_compl_cb(struct gsm_bts_trx *trx, struct msgb *resp, void *data) { struct femtol1_hdl *fl1h = trx_femtol1_hdl(trx); SuperFemto_Prim_t *sysp = msgb_sysprim(resp); GsmL1_Status_t status = sysp->u.layer1ResetCnf.status; LOGP(DL1C, LOGL_NOTICE, "Rx L1-RESET.conf (status=%s)\n", get_value_string(femtobts_l1status_names, status)); msgb_free(resp); /* If we're coming out of reset .. */ if (status != GsmL1_Status_Success) { LOGP(DL1C, LOGL_FATAL, "L1-RESET.conf with status %s\n", get_value_string(femtobts_l1status_names, status)); bts_shutdown(trx->bts, "L1-RESET failure"); } /* as we cannot get the current DSP trace flags, we simply * set them to zero (or whatever dsp_trace_f has been initialized to */ l1if_set_trace_flags(fl1h, fl1h->dsp_trace_f); /* obtain version information on DSP/FPGA and band capabilities */ l1if_get_info(fl1h); return 0; } int l1if_reset(struct femtol1_hdl *hdl) { struct msgb *msg = sysp_msgb_alloc(); SuperFemto_Prim_t *sysp = msgb_sysprim(msg); sysp->id = SuperFemto_PrimId_Layer1ResetReq; return l1if_req_compl(hdl, msg, reset_compl_cb, NULL); } /* set the trace flags within the DSP */ int l1if_set_trace_flags(struct femtol1_hdl *hdl, uint32_t flags) { struct msgb *msg = sysp_msgb_alloc(); SuperFemto_Prim_t *sysp = msgb_sysprim(msg); LOGP(DL1C, LOGL_INFO, "Tx SET-TRACE-FLAGS.req (0x%08x)\n", flags); sysp->id = SuperFemto_PrimId_SetTraceFlagsReq; sysp->u.setTraceFlagsReq.u32Tf = flags; hdl->dsp_trace_f = flags; /* There is no confirmation we could wait for */ if (osmo_wqueue_enqueue(&hdl->write_q[MQ_SYS_WRITE], msg) != 0) { LOGP(DL1C, LOGL_ERROR, "MQ_SYS_WRITE queue full. Dropping msg\n"); msgb_free(msg); return -EAGAIN; } return 0; } /* get those femtol1_hdl.hw_info elements that sre in EEPROM */ static int get_hwinfo_eeprom(struct femtol1_hdl *fl1h) { eeprom_SysInfo_t sysinfo; int val, rc; rc = sysmobts_get_type(&val); if (rc < 0) return rc; fl1h->hw_info.model_nr = val; rc = sysmobts_par_get_int(SYSMOBTS_PAR_MODEL_FLAGS, &val); if (rc < 0) return rc; fl1h->hw_info.model_flags = val; rc = sysmobts_get_trx(&val); if (rc < 0) return rc; fl1h->hw_info.trx_nr = val; rc = eeprom_ReadSysInfo(&sysinfo); if (rc != EEPROM_SUCCESS) { /* some early units don't yet have the EEPROM * information structure */ LOGP(DL1C, LOGL_ERROR, "Unable to read band support " "from EEPROM, assuming all bands\n"); fl1h->hw_info.band_support = GSM_BAND_850 | GSM_BAND_900 | GSM_BAND_1800 | GSM_BAND_1900; return 0; } if (sysinfo.u8GSM850) fl1h->hw_info.band_support |= GSM_BAND_850; if (sysinfo.u8GSM900) fl1h->hw_info.band_support |= GSM_BAND_900; if (sysinfo.u8DCS1800) fl1h->hw_info.band_support |= GSM_BAND_1800; if (sysinfo.u8PCS1900) fl1h->hw_info.band_support |= GSM_BAND_1900; return 0; } /* Set the clock calibration to the value read from the eeprom. */ static void clk_cal_use_eeprom(struct femtol1_hdl *hdl) { struct phy_instance *pinst = hdl->phy_inst; eeprom_RfClockCal_t rf_clk; int rc; if (!pinst->u.sysmobts.clk_use_eeprom) return; rc = eeprom_ReadRfClockCal(&rf_clk); if (rc != EEPROM_SUCCESS) { LOGP(DL1C, LOGL_ERROR, "Failed to read from EEPROM.\n"); return; } hdl->clk_cal = rf_clk.iClkCor; LOGP(DL1C, LOGL_NOTICE, "Read clock calibration(%d) from EEPROM.\n", hdl->clk_cal); } struct femtol1_hdl *l1if_open(struct phy_instance *pinst) { struct femtol1_hdl *fl1h; int rc; #ifndef HW_SYSMOBTS_V1 LOGP(DL1C, LOGL_INFO, "sysmoBTSv2 L1IF compiled against API headers " "v%u.%u.%u\n", SUPERFEMTO_API_VERSION >> 16, (SUPERFEMTO_API_VERSION >> 8) & 0xff, SUPERFEMTO_API_VERSION & 0xff); #else LOGP(DL1C, LOGL_INFO, "sysmoBTSv1 L1IF compiled against API headers " "v%u.%u.%u\n", FEMTOBTS_API_VERSION >> 16, (FEMTOBTS_API_VERSION >> 8) & 0xff, FEMTOBTS_API_VERSION & 0xff); #endif fl1h = talloc_zero(pinst, struct femtol1_hdl); if (!fl1h) return NULL; INIT_LLIST_HEAD(&fl1h->wlc_list); fl1h->phy_inst = pinst; fl1h->dsp_trace_f = pinst->u.sysmobts.dsp_trace_f; fl1h->clk_src = pinst->u.sysmobts.clk_src; fl1h->clk_cal = pinst->u.sysmobts.clk_cal; clk_cal_use_eeprom(fl1h); get_hwinfo_eeprom(fl1h); #if SUPERFEMTO_API_VERSION >= SUPERFEMTO_API(2,1,0) if (fl1h->hw_info.model_nr == 2050) { /* On the sysmoBTS 2050, we don't have an OCXO but * start with the TCXO and will sync it with the PPS * of the GPS in case there is a fix. */ fl1h->clk_src = SuperFemto_ClkSrcId_Tcxo; LOGP(DL1C, LOGL_INFO, "Clock source defaulting to GPS 1PPS " "on sysmoBTS 2050\n"); } else { /* default clock source: OCXO */ fl1h->clk_src = SuperFemto_ClkSrcId_Ocxo; } #else fl1h->clk_src = SF_CLKSRC_OCXO; #endif rc = l1if_transport_open(MQ_SYS_WRITE, fl1h); if (rc < 0) { talloc_free(fl1h); return NULL; } rc = l1if_transport_open(MQ_L1_WRITE, fl1h); if (rc < 0) { l1if_transport_close(MQ_SYS_WRITE, fl1h); talloc_free(fl1h); return NULL; } l1if_reset(fl1h); return fl1h; } int l1if_close(struct femtol1_hdl *fl1h) { l1if_transport_close(MQ_L1_WRITE, fl1h); l1if_transport_close(MQ_SYS_WRITE, fl1h); return 0; } #ifdef HW_SYSMOBTS_V1 int l1if_rf_clock_info_reset(struct femtol1_hdl *fl1h) { LOGP(DL1C, LOGL_ERROR, "RfClock calibration not supported on v1 hw.\n"); return -ENOTSUP; } int l1if_rf_clock_info_correct(struct femtol1_hdl *fl1h) { LOGP(DL1C, LOGL_ERROR, "RfClock calibration not supported on v1 hw.\n"); return -ENOTSUP; } #else static int clock_reset_cb(struct gsm_bts_trx *trx, struct msgb *resp, void *data) { msgb_free(resp); return 0; } static int clock_setup_cb(struct gsm_bts_trx *trx, struct msgb *resp, void *data) { SuperFemto_Prim_t *sysp = msgb_sysprim(resp); if (sysp->u.rfClockSetupCnf.status != GsmL1_Status_Success) LOGP(DL1C, LOGL_ERROR, "Rx RfClockSetupConf failed with: %d\n", sysp->u.rfClockSetupCnf.status); msgb_free(resp); return 0; } static int clock_correct_info_cb(struct gsm_bts_trx *trx, struct msgb *resp, void *data) { struct femtol1_hdl *fl1h = trx_femtol1_hdl(trx); SuperFemto_Prim_t *sysp = msgb_sysprim(resp); LOGP(DL1C, LOGL_NOTICE, "RfClockInfo iClkCor=%d/clkSrc=%s Err=%d/ErrRes=%d/clkSrc=%s\n", sysp->u.rfClockInfoCnf.rfTrx.iClkCor, get_value_string(femtobts_clksrc_names, sysp->u.rfClockInfoCnf.rfTrx.clkSrc), sysp->u.rfClockInfoCnf.rfTrxClkCal.iClkErr, sysp->u.rfClockInfoCnf.rfTrxClkCal.iClkErrRes, get_value_string(femtobts_clksrc_names, sysp->u.rfClockInfoCnf.rfTrxClkCal.clkSrc)); if (sysp->u.rfClockInfoCnf.rfTrx.clkSrc == SuperFemto_ClkSrcId_GpsPps) { LOGP(DL1C, LOGL_ERROR, "Calibrating GPS against GPS doesn not make sense.\n"); msgb_free(resp); return -1; } if (sysp->u.rfClockInfoCnf.rfTrxClkCal.clkSrc == SuperFemto_ClkSrcId_None) { LOGP(DL1C, LOGL_ERROR, "No reference clock set. Please reset first.\n"); msgb_free(resp); return -1; } if (sysp->u.rfClockInfoCnf.rfTrxClkCal.iClkErrRes == 0) { LOGP(DL1C, LOGL_ERROR, "Couldn't determine the clock difference.\n"); msgb_free(resp); return -1; } fl1h->clk_cal = sysp->u.rfClockInfoCnf.rfTrxClkCal.iClkErr; fl1h->phy_inst->u.sysmobts.clk_use_eeprom = 0; msgb_free(resp); /* * Let's reset the counter and this will lead to applying the * new calibration. */ l1if_rf_clock_info_reset(fl1h); return 0; } int l1if_rf_clock_info_reset(struct femtol1_hdl *fl1h) { struct msgb *msg = sysp_msgb_alloc(); SuperFemto_Prim_t *sysp = msgb_sysprim(msg); /* Set GPS/PPS as reference */ sysp->id = SuperFemto_PrimId_RfClockSetupReq; sysp->u.rfClockSetupReq.rfTrx.iClkCor = get_clk_cal(fl1h); sysp->u.rfClockSetupReq.rfTrx.clkSrc = fl1h->clk_src; sysp->u.rfClockSetupReq.rfTrxClkCal.clkSrc = SuperFemto_ClkSrcId_GpsPps; l1if_req_compl(fl1h, msg, clock_setup_cb, NULL); /* Reset the error counters */ msg = sysp_msgb_alloc(); sysp = msgb_sysprim(msg); sysp->id = SuperFemto_PrimId_RfClockInfoReq; sysp->u.rfClockInfoReq.u8RstClkCal = 1; return l1if_req_compl(fl1h, msg, clock_reset_cb, NULL); } int l1if_rf_clock_info_correct(struct femtol1_hdl *fl1h) { struct msgb *msg = sysp_msgb_alloc(); SuperFemto_Prim_t *sysp = msgb_sysprim(msg); sysp->id = SuperFemto_PrimId_RfClockInfoReq; sysp->u.rfClockInfoReq.u8RstClkCal = 0; return l1if_req_compl(fl1h, msg, clock_correct_info_cb, NULL); } #endif static void set_power_param(struct trx_power_params *out, int trx_p_max_out_dBm, int int_pa_nominal_gain_dB) { out->trx_p_max_out_mdBm = to_mdB(trx_p_max_out_dBm); out->pa.nominal_gain_mdB = to_mdB(int_pa_nominal_gain_dB); } static void fill_trx_power_params(struct gsm_bts_trx *trx, struct phy_instance *pinst) { struct femtol1_hdl *fl1h = pinst->u.sysmobts.hdl; switch (fl1h->hw_info.model_nr) { case 1020: set_power_param(&trx->power_params, 23, 10); break; case 1100: set_power_param(&trx->power_params, 23, 17); break; case 2050: set_power_param(&trx->power_params, 37, 0); break; default: LOGP(DL1C, LOGL_NOTICE, "Unknown/Unsupported " "sysmoBTS Model Number %u\n", fl1h->hw_info.model_nr); /* fall-through */ case 0xffff: /* sysmoBTS 1002 without any setting in EEPROM */ LOGP(DL1C, LOGL_NOTICE, "Assuming 1002 for sysmoBTS " "Model number %u\n", fl1h->hw_info.model_nr); case 1002: set_power_param(&trx->power_params, 23, 0); } } int bts_model_phy_link_open(struct phy_link *plink) { struct phy_instance *pinst = phy_instance_by_num(plink, 0); struct femtol1_hdl *hdl; struct gsm_bts *bts; OSMO_ASSERT(pinst); phy_link_state_set(plink, PHY_LINK_CONNECTING); pinst->u.sysmobts.hdl = l1if_open(pinst); if (!pinst->u.sysmobts.hdl) { LOGP(DL1C, LOGL_FATAL, "Cannot open L1 interface\n"); return -EIO; } fill_trx_power_params(pinst->trx, pinst); bts = pinst->trx->bts; if (pinst->trx == bts->c0) { int rc; rc = get_p_max_out_mdBm(bts->c0); if (rc < 0) { LOGP(DL1C, LOGL_NOTICE, "Cannot determine nominal " "transmit power. Assuming 23dBm.\n"); } bts->c0->nominal_power = rc; } hdl = pinst->u.sysmobts.hdl; osmo_strlcpy(bts->sub_model, sysmobts_model(hdl->hw_info.model_nr, hdl->hw_info.trx_nr), sizeof(bts->sub_model)); snprintf(pinst->version, sizeof(pinst->version), "%u.%u dsp %u.%u.%u fpga %u.%u.%u", hdl->hw_info.ver_major, hdl->hw_info.ver_minor, hdl->hw_info.dsp_version[0], hdl->hw_info.dsp_version[1], hdl->hw_info.dsp_version[2], hdl->hw_info.fpga_version[0], hdl->hw_info.fpga_version[1], hdl->hw_info.fpga_version[2]); phy_link_state_set(plink, PHY_LINK_CONNECTED); return 0; }