/* (C) 2018 by sysmocom s.f.m.c. GmbH * * Author: Stefan Sperling * * All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . * */ #include #include #include #include #include #include #include #include #include /* * Check if an ACC has been permanently barred for a BTS, * e.g. with the 'rach access-control-class' VTY command. */ static bool acc_is_permanently_barred(struct gsm_bts *bts, unsigned int acc) { OSMO_ASSERT(acc <= 9); if (acc == 8 || acc == 9) return (bts->si_common.rach_control.t2 & (1 << (acc - 8))); return (bts->si_common.rach_control.t3 & (1 << (acc))); } static void allow_one_acc(struct acc_ramp *acc_ramp, unsigned int acc) { OSMO_ASSERT(acc <= 9); if (acc_ramp->barred_accs & (1 << acc)) LOG_BTS(acc_ramp->bts, DRSL, LOGL_NOTICE, "ACC RAMP: allowing Access Control Class %u\n", acc); acc_ramp->barred_accs &= ~(1 << acc); } static void barr_one_acc(struct acc_ramp *acc_ramp, unsigned int acc) { OSMO_ASSERT(acc <= 9); if ((acc_ramp->barred_accs & (1 << acc)) == 0) LOG_BTS(acc_ramp->bts, DRSL, LOGL_NOTICE, "ACC RAMP: barring Access Control Class %u\n", acc); acc_ramp->barred_accs |= (1 << acc); } static void barr_all_accs(struct acc_ramp *acc_ramp) { unsigned int acc; for (acc = 0; acc < 10; acc++) { if (!acc_is_permanently_barred(acc_ramp->bts, acc)) barr_one_acc(acc_ramp, acc); } } static void allow_all_accs(struct acc_ramp *acc_ramp) { unsigned int acc; for (acc = 0; acc < 10; acc++) { if (!acc_is_permanently_barred(acc_ramp->bts, acc)) allow_one_acc(acc_ramp, acc); } } static unsigned int get_next_step_interval(struct acc_ramp *acc_ramp) { struct gsm_bts *bts = acc_ramp->bts; uint64_t load; if (acc_ramp->step_interval_is_fixed) return acc_ramp->step_interval_sec; /* Scale the step interval to current channel load average. */ load = (bts->chan_load_avg << 8); /* convert to fixed-point */ acc_ramp->step_interval_sec = ((load * ACC_RAMP_STEP_INTERVAL_MAX) / 100) >> 8; if (acc_ramp->step_interval_sec < ACC_RAMP_STEP_SIZE_MIN) acc_ramp->step_interval_sec = ACC_RAMP_STEP_INTERVAL_MIN; else if (acc_ramp->step_interval_sec > ACC_RAMP_STEP_INTERVAL_MAX) acc_ramp->step_interval_sec = ACC_RAMP_STEP_INTERVAL_MAX; LOG_BTS(bts, DRSL, LOGL_DEBUG, "ACC RAMP: step interval set to %u seconds based on %u%% channel load average\n", acc_ramp->step_interval_sec, bts->chan_load_avg); return acc_ramp->step_interval_sec; } static void do_acc_ramping_step(void *data) { struct acc_ramp *acc_ramp = data; int i; /* Shortcut in case we only do one ramping step. */ if (acc_ramp->step_size == ACC_RAMP_STEP_SIZE_MAX) { allow_all_accs(acc_ramp); gsm_bts_set_system_infos(acc_ramp->bts); return; } /* Allow 'step_size' ACCs, starting from ACC0. ACC9 will be allowed last. */ for (i = 0; i < acc_ramp->step_size; i++) { int idx = ffs(acc_ramp_get_barred_t3(acc_ramp)); if (idx > 0) { /* One of ACC0-ACC7 is still bared. */ unsigned int acc = idx - 1; if (!acc_is_permanently_barred(acc_ramp->bts, acc)) allow_one_acc(acc_ramp, acc); } else { idx = ffs(acc_ramp_get_barred_t2(acc_ramp)); if (idx == 1 || idx == 2) { /* ACC8 or ACC9 is still barred. */ unsigned int acc = idx - 1 + 8; if (!acc_is_permanently_barred(acc_ramp->bts, acc)) allow_one_acc(acc_ramp, acc); } else { /* All ACCs are now allowed. */ break; } } } gsm_bts_set_system_infos(acc_ramp->bts); /* If we have not allowed all ACCs yet, schedule another ramping step. */ if (acc_ramp_get_barred_t2(acc_ramp) != 0x00 || acc_ramp_get_barred_t3(acc_ramp) != 0x00) osmo_timer_schedule(&acc_ramp->step_timer, get_next_step_interval(acc_ramp), 0); } /* Implements osmo_signal_cbfn() -- trigger or abort ACC ramping upon changes RF lock state. */ static int acc_ramp_nm_sig_cb(unsigned int subsys, unsigned int signal, void *handler_data, void *signal_data) { struct nm_statechg_signal_data *nsd = signal_data; struct acc_ramp *acc_ramp = handler_data; struct gsm_bts_trx *trx = NULL; bool trigger_ramping = false, abort_ramping = false; /* Handled signals map to an Administrative State Change ACK, or a State Changed Event Report. */ if (signal != S_NM_STATECHG_ADM && signal != S_NM_STATECHG_OPER) return 0; if (nsd->obj_class != NM_OC_RADIO_CARRIER) return 0; trx = nsd->obj; LOG_TRX(trx, DRSL, LOGL_DEBUG, "ACC RAMP: administrative state %s -> %s\n", get_value_string(abis_nm_adm_state_names, nsd->old_state->administrative), get_value_string(abis_nm_adm_state_names, nsd->new_state->administrative)); LOG_TRX(trx, DRSL, LOGL_DEBUG, "ACC RAMP: operational state %s -> %s\n", abis_nm_opstate_name(nsd->old_state->operational), abis_nm_opstate_name(nsd->new_state->operational)); /* We only care about state changes of the first TRX. */ if (trx->nr != 0) return 0; /* RSL must already be up. We cannot send RACH system information to the BTS otherwise. */ if (trx->rsl_link == NULL) { LOG_TRX(trx, DRSL, LOGL_DEBUG, "ACC RAMP: ignoring state change because RSL link is down\n"); return 0; } /* Trigger or abort ACC ramping based on the new state of this TRX. */ if (nsd->old_state->administrative != nsd->new_state->administrative) { switch (nsd->new_state->administrative) { case NM_STATE_UNLOCKED: if (nsd->old_state->operational != nsd->new_state->operational) { /* * Administrative and operational state have both changed. * Trigger ramping only if TRX 0 will be both enabled and unlocked. */ if (nsd->new_state->operational == NM_OPSTATE_ENABLED) trigger_ramping = true; else LOG_TRX(trx, DRSL, LOGL_DEBUG, "ACC RAMP: ignoring state change because TRX is " "transitioning into operational state '%s'\n", abis_nm_opstate_name(nsd->new_state->operational)); } else { /* * Operational state has not changed. * Trigger ramping only if TRX 0 is already usable. */ if (trx_is_usable(trx)) trigger_ramping = true; else LOG_TRX(trx, DRSL, LOGL_DEBUG, "ACC RAMP: ignoring state change " "because TRX is not usable\n"); } break; case NM_STATE_LOCKED: case NM_STATE_SHUTDOWN: abort_ramping = true; break; case NM_STATE_NULL: default: LOG_TRX(trx, DRSL, LOGL_ERROR, "ACC RAMP: unrecognized administrative state '0x%x' " "reported for TRX 0\n", nsd->new_state->administrative); break; } } if (nsd->old_state->operational != nsd->new_state->operational) { switch (nsd->new_state->operational) { case NM_OPSTATE_ENABLED: if (nsd->old_state->administrative != nsd->new_state->administrative) { /* * Administrative and operational state have both changed. * Trigger ramping only if TRX 0 will be both enabled and unlocked. */ if (nsd->new_state->administrative == NM_STATE_UNLOCKED) trigger_ramping = true; else LOG_TRX(trx, DRSL, LOGL_DEBUG, "ACC RAMP: ignoring state change " "because TRX is transitioning into administrative state '%s'\n", get_value_string(abis_nm_adm_state_names, nsd->new_state->administrative)); } else { /* * Administrative state has not changed. * Trigger ramping only if TRX 0 is already unlocked. */ if (trx->mo.nm_state.administrative == NM_STATE_UNLOCKED) trigger_ramping = true; else LOG_TRX(trx, DRSL, LOGL_DEBUG, "ACC RAMP: ignoring state change " "because TRX is in administrative state '%s'\n", get_value_string(abis_nm_adm_state_names, trx->mo.nm_state.administrative)); } break; case NM_OPSTATE_DISABLED: abort_ramping = true; break; case NM_OPSTATE_NULL: default: LOG_TRX(trx, DRSL, LOGL_ERROR, "ACC RAMP: unrecognized operational state '0x%x' " "reported for TRX 0\n", nsd->new_state->administrative); break; } } if (trigger_ramping) acc_ramp_trigger(acc_ramp); else if (abort_ramping) acc_ramp_abort(acc_ramp); return 0; } /*! * Initialize an acc_ramp data structure. * Storage for this structure must be provided by the caller. * * By default, ACC ramping is disabled and all ACCs are allowed. * * \param[in] acc_ramp Pointer to acc_ramp structure to be initialized. * \param[in] bts BTS which uses this ACC ramp data structure. */ void acc_ramp_init(struct acc_ramp *acc_ramp, struct gsm_bts *bts) { acc_ramp->bts = bts; acc_ramp_set_enabled(acc_ramp, false); acc_ramp->step_size = ACC_RAMP_STEP_SIZE_DEFAULT; acc_ramp->step_interval_sec = ACC_RAMP_STEP_INTERVAL_MIN; acc_ramp->step_interval_is_fixed = false; allow_all_accs(acc_ramp); osmo_timer_setup(&acc_ramp->step_timer, do_acc_ramping_step, acc_ramp); osmo_signal_register_handler(SS_NM, acc_ramp_nm_sig_cb, acc_ramp); } /*! * Change the ramping step size which controls how many ACCs will be allowed per ramping step. * Returns negative on error (step_size out of range), else zero. * \param[in] acc_ramp Pointer to acc_ramp structure. * \param[in] step_size The new step size value. */ int acc_ramp_set_step_size(struct acc_ramp *acc_ramp, unsigned int step_size) { if (step_size < ACC_RAMP_STEP_SIZE_MIN || step_size > ACC_RAMP_STEP_SIZE_MAX) return -ERANGE; acc_ramp->step_size = step_size; LOG_BTS(acc_ramp->bts, DRSL, LOGL_DEBUG, "ACC RAMP: ramping step size set to %u\n", step_size); return 0; } /*! * Change the ramping step interval to a fixed value. Unless this function is called, * the interval is automatically scaled to the BTS channel load average. * \param[in] acc_ramp Pointer to acc_ramp structure. * \param[in] step_interval The new fixed step interval in seconds. */ int acc_ramp_set_step_interval(struct acc_ramp *acc_ramp, unsigned int step_interval) { if (step_interval < ACC_RAMP_STEP_INTERVAL_MIN || step_interval > ACC_RAMP_STEP_INTERVAL_MAX) return -ERANGE; acc_ramp->step_interval_sec = step_interval; acc_ramp->step_interval_is_fixed = true; LOG_BTS(acc_ramp->bts, DRSL, LOGL_DEBUG, "ACC RAMP: ramping step interval set to %u seconds\n", step_interval); return 0; } /*! * Clear a previously set fixed ramping step interval, so that the interval * is again automatically scaled to the BTS channel load average. * \param[in] acc_ramp Pointer to acc_ramp structure. */ void acc_ramp_set_step_interval_dynamic(struct acc_ramp *acc_ramp) { acc_ramp->step_interval_is_fixed = false; LOG_BTS(acc_ramp->bts, DRSL, LOGL_DEBUG, "ACC RAMP: ramping step interval set to 'dynamic'\n"); } /*! * Determine if ACC ramping should be started according to configuration, and * begin the ramping process if the necessary conditions are present. * Perform at least one ramping step to allow 'step_size' ACCs. * If 'step_size' is ACC_RAMP_STEP_SIZE_MAX, or if ACC ramping is disabled, * all ACCs will be allowed immediately. * \param[in] acc_ramp Pointer to acc_ramp structure. */ void acc_ramp_trigger(struct acc_ramp *acc_ramp) { /* Abort any previously running ramping process and allow all available ACCs. */ acc_ramp_abort(acc_ramp); if (acc_ramp_is_enabled(acc_ramp)) { /* Set all available ACCs to barred and start ramping up. */ barr_all_accs(acc_ramp); do_acc_ramping_step(acc_ramp); } } /*! * Abort the ramping process and allow all available ACCs immediately. * \param[in] acc_ramp Pointer to acc_ramp structure. */ void acc_ramp_abort(struct acc_ramp *acc_ramp) { if (osmo_timer_pending(&acc_ramp->step_timer)) osmo_timer_del(&acc_ramp->step_timer); allow_all_accs(acc_ramp); }