/* ip.access nanoBTS specific code */ /* (C) 2009-2010 by Harald Welte * * All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern struct gsm_network *bsc_gsmnet; static int bts_model_nanobts_start(struct gsm_network *net); static void bts_model_nanobts_e1line_bind_ops(struct e1inp_line *line); struct gsm_bts_model bts_model_nanobts = { .type = GSM_BTS_TYPE_NANOBTS, .name = "nanobts", .start = bts_model_nanobts_start, .oml_rcvmsg = &abis_nm_rcvmsg, .e1line_bind_ops = bts_model_nanobts_e1line_bind_ops, .nm_att_tlvdef = { .def = { /* ip.access specifics */ [NM_ATT_IPACC_DST_IP] = { TLV_TYPE_FIXED, 4 }, [NM_ATT_IPACC_DST_IP_PORT] = { TLV_TYPE_FIXED, 2 }, [NM_ATT_IPACC_STREAM_ID] = { TLV_TYPE_TV, }, [NM_ATT_IPACC_SEC_OML_CFG] = { TLV_TYPE_FIXED, 6 }, [NM_ATT_IPACC_IP_IF_CFG] = { TLV_TYPE_FIXED, 8 }, [NM_ATT_IPACC_IP_GW_CFG] = { TLV_TYPE_FIXED, 12 }, [NM_ATT_IPACC_IN_SERV_TIME] = { TLV_TYPE_FIXED, 4 }, [NM_ATT_IPACC_LOCATION] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_PAGING_CFG] = { TLV_TYPE_FIXED, 2 }, [NM_ATT_IPACC_UNIT_ID] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_UNIT_NAME] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_SNMP_CFG] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_PRIM_OML_CFG_LIST] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_NV_FLAGS] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_FREQ_CTRL] = { TLV_TYPE_FIXED, 2 }, [NM_ATT_IPACC_PRIM_OML_FB_TOUT] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_CUR_SW_CFG] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_TIMING_BUS] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_CGI] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_RAC] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_OBJ_VERSION] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_GPRS_PAGING_CFG]= { TLV_TYPE_TL16V }, [NM_ATT_IPACC_NSEI] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_BVCI] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_NSVCI] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_NS_CFG] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_BSSGP_CFG] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_NS_LINK_CFG] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_RLC_CFG] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_ALM_THRESH_LIST]= { TLV_TYPE_TL16V }, [NM_ATT_IPACC_MONIT_VAL_LIST] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_TIB_CONTROL] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_SUPP_FEATURES] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_CODING_SCHEMES] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_RLC_CFG_2] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_HEARTB_TOUT] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_UPTIME] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_RLC_CFG_3] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_SSL_CFG] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_SEC_POSSIBLE] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_IML_SSL_STATE] = { TLV_TYPE_TL16V }, [NM_ATT_IPACC_REVOC_DATE] = { TLV_TYPE_TL16V }, }, }, }; static unsigned char nanobts_attr_bts[] = { NM_ATT_INTERF_BOUND, 0x55, 0x5b, 0x61, 0x67, 0x6d, 0x73, /* interference avg. period in numbers of SACCH multifr */ NM_ATT_INTAVE_PARAM, 0x06, /* conn fail based on SACCH error rate */ NM_ATT_CONN_FAIL_CRIT, 0x00, 0x02, 0x01, 0x10, NM_ATT_T200, 0x1e, 0x24, 0x24, 0xa8, 0x34, 0x21, 0xa8, NM_ATT_MAX_TA, 0x3f, NM_ATT_OVERL_PERIOD, 0x00, 0x01, 10, /* seconds */ NM_ATT_CCCH_L_T, 10, /* percent */ NM_ATT_CCCH_L_I_P, 1, /* seconds */ NM_ATT_RACH_B_THRESH, 10, /* busy threshold in - dBm */ NM_ATT_LDAVG_SLOTS, 0x03, 0xe8, /* rach load averaging 1000 slots */ NM_ATT_BTS_AIR_TIMER, 128, /* miliseconds */ NM_ATT_NY1, 10, /* 10 retransmissions of physical config */ NM_ATT_BCCH_ARFCN, HARDCODED_ARFCN >> 8, HARDCODED_ARFCN & 0xff, NM_ATT_BSIC, HARDCODED_BSIC, NM_ATT_IPACC_CGI, 0, 7, 0x00, 0xf1, 0x10, 0x00, 0x01, 0x00, 0x00, }; static unsigned char nanobts_attr_radio[] = { NM_ATT_RF_MAXPOWR_R, 0x0c, /* number of -2dB reduction steps / Pn */ NM_ATT_ARFCN_LIST, 0x00, 0x02, HARDCODED_ARFCN >> 8, HARDCODED_ARFCN & 0xff, }; static unsigned char nanobts_attr_nse[] = { NM_ATT_IPACC_NSEI, 0, 2, 0x03, 0x9d, /* NSEI 925 */ /* all timers in seconds */ NM_ATT_IPACC_NS_CFG, 0, 7, 3, /* (un)blocking timer (Tns-block) */ 3, /* (un)blocking retries */ 3, /* reset timer (Tns-reset) */ 3, /* reset retries */ 30, /* test timer (Tns-test) */ 3, /* alive timer (Tns-alive) */ 10, /* alive retrires */ /* all timers in seconds, unless otherwise stated */ NM_ATT_IPACC_BSSGP_CFG, 0, 11, 3, /* blockimg timer (T1) */ 3, /* blocking retries */ 3, /* unblocking retries */ 3, /* reset timer (T2) */ 3, /* reset retries */ 10, /* suspend timer (T3) in 100ms */ 3, /* suspend retries */ 10, /* resume timer (T4) in 100ms */ 3, /* resume retries */ 10, /* capability update timer (T5) */ 3, /* capability update retries */ }; static unsigned char nanobts_attr_cell[] = { NM_ATT_IPACC_RAC, 0, 1, 1, /* routing area code */ NM_ATT_IPACC_GPRS_PAGING_CFG, 0, 2, 5, /* repeat time (50ms) */ 3, /* repeat count */ NM_ATT_IPACC_BVCI, 0, 2, 0x03, 0x9d, /* BVCI 925 */ /* all timers in seconds, unless otherwise stated */ NM_ATT_IPACC_RLC_CFG, 0, 9, 20, /* T3142 */ 5, /* T3169 */ 5, /* T3191 */ 160, /* T3193 (units of 10ms) */ 5, /* T3195 */ 10, /* N3101 */ 4, /* N3103 */ 8, /* N3105 */ 15, /* RLC CV countdown */ NM_ATT_IPACC_CODING_SCHEMES, 0, 2, 0x0f, 0x00, /* CS1..CS4 */ NM_ATT_IPACC_RLC_CFG_2, 0, 5, 0x00, 250, /* T downlink TBF extension (0..500) */ 0x00, 250, /* T uplink TBF extension (0..500) */ 2, /* CS2 */ #if 0 /* EDGE model only, breaks older models. * Should inquire the BTS capabilities */ NM_ATT_IPACC_RLC_CFG_3, 0, 1, 2, /* MCS2 */ #endif }; static unsigned char nanobts_attr_nsvc0[] = { NM_ATT_IPACC_NSVCI, 0, 2, 0x03, 0x9d, /* 925 */ NM_ATT_IPACC_NS_LINK_CFG, 0, 8, 0x59, 0xd8, /* remote udp port (23000) */ 192, 168, 100, 11, /* remote ip address */ 0x59, 0xd8, /* local udp port (23000) */ }; static void patch_16(uint8_t *data, const uint16_t val) { memcpy(data, &val, sizeof(val)); } static void patch_32(uint8_t *data, const uint32_t val) { memcpy(data, &val, sizeof(val)); } /* * Patch the various SYSTEM INFORMATION tables to update * the LAI */ static void patch_nm_tables(struct gsm_bts *bts) { uint8_t arfcn_low = bts->c0->arfcn & 0xff; uint8_t arfcn_high = (bts->c0->arfcn >> 8) & 0x0f; /* patch ARFCN into BTS Attributes */ nanobts_attr_bts[42] &= 0xf0; nanobts_attr_bts[42] |= arfcn_high; nanobts_attr_bts[43] = arfcn_low; /* patch the RACH attributes */ if (bts->rach_b_thresh != -1) { nanobts_attr_bts[33] = bts->rach_b_thresh & 0xff; } if (bts->rach_ldavg_slots != -1) { uint8_t avg_high = bts->rach_ldavg_slots & 0xff; uint8_t avg_low = (bts->rach_ldavg_slots >> 8) & 0x0f; nanobts_attr_bts[35] = avg_high; nanobts_attr_bts[36] = avg_low; } /* patch BSIC */ nanobts_attr_bts[sizeof(nanobts_attr_bts)-11] = bts->bsic; /* patch CGI */ abis_nm_ipaccess_cgi(nanobts_attr_bts+sizeof(nanobts_attr_bts)-7, bts); /* patch the power reduction */ nanobts_attr_radio[1] = bts->c0->max_power_red / 2; /* patch NSEI */ nanobts_attr_nse[3] = bts->gprs.nse.nsei >> 8; nanobts_attr_nse[4] = bts->gprs.nse.nsei & 0xff; memcpy(nanobts_attr_nse+8, bts->gprs.nse.timer, ARRAY_SIZE(bts->gprs.nse.timer)); memcpy(nanobts_attr_nse+18, bts->gprs.cell.timer, ARRAY_SIZE(bts->gprs.cell.timer)); /* patch NSVCI */ nanobts_attr_nsvc0[3] = bts->gprs.nsvc[0].nsvci >> 8; nanobts_attr_nsvc0[4] = bts->gprs.nsvc[0].nsvci & 0xff; /* patch IP address as SGSN IP */ patch_16(nanobts_attr_nsvc0 + 8, htons(bts->gprs.nsvc[0].remote_port)); patch_32(nanobts_attr_nsvc0 + 10, htonl(bts->gprs.nsvc[0].remote_ip)); patch_16(nanobts_attr_nsvc0 + 14, htons(bts->gprs.nsvc[0].local_port)); /* patch BVCI */ nanobts_attr_cell[12] = bts->gprs.cell.bvci >> 8; nanobts_attr_cell[13] = bts->gprs.cell.bvci & 0xff; /* patch RAC */ nanobts_attr_cell[3] = bts->gprs.rac; if (bts->gprs.mode == BTS_GPRS_EGPRS) { /* patch EGPRS coding schemes MCS 1..9 */ nanobts_attr_cell[29] = 0x8f; nanobts_attr_cell[30] = 0xff; } } static uint8_t *nanobts_attr_bts_get(struct gsm_bts *bts, size_t *data_len) { patch_nm_tables(bts); *data_len = sizeof(nanobts_attr_bts); return nanobts_attr_bts; } static uint8_t *nanobts_attr_nse_get(struct gsm_bts *bts, size_t *data_len) { patch_nm_tables(bts); *data_len = sizeof(nanobts_attr_nse); return nanobts_attr_nse; } static uint8_t *nanobts_attr_cell_get(struct gsm_bts *bts, size_t *data_len) { patch_nm_tables(bts); *data_len = sizeof(nanobts_attr_cell); return nanobts_attr_cell; } static uint8_t *nanobts_attr_nscv_get(struct gsm_bts *bts, size_t *data_len) { patch_nm_tables(bts); *data_len = sizeof(nanobts_attr_nsvc0); return nanobts_attr_nsvc0; } static uint8_t *nanobts_attr_radio_get(struct gsm_bts *bts, size_t *data_len) { patch_nm_tables(bts); *data_len = sizeof(nanobts_attr_radio); return nanobts_attr_radio; } /* Callback function to be called whenever we get a GSM 12.21 state change event */ static int nm_statechg_event(int evt, struct nm_statechg_signal_data *nsd) { uint8_t obj_class = nsd->obj_class; void *obj = nsd->obj; struct gsm_nm_state *new_state = nsd->new_state; struct gsm_bts *bts; struct gsm_bts_trx *trx; struct gsm_bts_trx_ts *ts; struct gsm_bts_gprs_nsvc *nsvc; uint8_t *data; size_t data_len; if (!is_ipaccess_bts(nsd->bts)) return 0; /* This event-driven BTS setup is currently only required on nanoBTS */ /* S_NM_STATECHG_ADM is called after we call chg_adm_state() and would create * endless loop */ if (evt != S_NM_STATECHG_OPER) return 0; switch (obj_class) { case NM_OC_SITE_MANAGER: bts = container_of(obj, struct gsm_bts, site_mgr); if ((new_state->operational == NM_OPSTATE_ENABLED && new_state->availability == NM_AVSTATE_OK) || (new_state->operational == NM_OPSTATE_DISABLED && new_state->availability == NM_AVSTATE_OFF_LINE)) abis_nm_opstart(bts, obj_class, 0xff, 0xff, 0xff); break; case NM_OC_BTS: bts = obj; if (new_state->availability == NM_AVSTATE_DEPENDENCY) { data = nanobts_attr_bts_get(bts, &data_len); abis_nm_set_bts_attr(bts, data, data_len); abis_nm_chg_adm_state(bts, obj_class, bts->bts_nr, 0xff, 0xff, NM_STATE_UNLOCKED); abis_nm_opstart(bts, obj_class, bts->bts_nr, 0xff, 0xff); } break; case NM_OC_CHANNEL: ts = obj; trx = ts->trx; if (new_state->operational == NM_OPSTATE_DISABLED && new_state->availability == NM_AVSTATE_DEPENDENCY) { enum abis_nm_chan_comb ccomb = abis_nm_chcomb4pchan(ts->pchan); if (abis_nm_set_channel_attr(ts, ccomb) == -EINVAL) { ipaccess_drop_oml(trx->bts); return -1; } abis_nm_chg_adm_state(trx->bts, obj_class, trx->bts->bts_nr, trx->nr, ts->nr, NM_STATE_UNLOCKED); abis_nm_opstart(trx->bts, obj_class, trx->bts->bts_nr, trx->nr, ts->nr); } break; case NM_OC_RADIO_CARRIER: trx = obj; if (new_state->operational == NM_OPSTATE_DISABLED && new_state->availability == NM_AVSTATE_OK) abis_nm_opstart(trx->bts, obj_class, trx->bts->bts_nr, trx->nr, 0xff); break; case NM_OC_GPRS_NSE: bts = container_of(obj, struct gsm_bts, gprs.nse); if (bts->gprs.mode == BTS_GPRS_NONE) break; if (new_state->availability == NM_AVSTATE_DEPENDENCY) bts_model_nanobts_start_nse(bts); break; case NM_OC_GPRS_CELL: bts = container_of(obj, struct gsm_bts, gprs.cell); if (bts->gprs.mode == BTS_GPRS_NONE) break; if (new_state->availability == NM_AVSTATE_DEPENDENCY) bts_model_nanobts_start_cell(bts); break; case NM_OC_GPRS_NSVC: nsvc = obj; bts = nsvc->bts; if (bts->gprs.mode == BTS_GPRS_NONE) break; /* We skip NSVC1 since we only use NSVC0 */ if (nsvc->id == 1) break; if ((new_state->availability == NM_AVSTATE_OFF_LINE) || (new_state->availability == NM_AVSTATE_DEPENDENCY)) bts_model_nanobts_start_nsvc(bts); default: break; } return 0; } /* Callback function to be called every time we receive a 12.21 SW activated report */ static int sw_activ_rep(struct msgb *mb) { struct abis_om_fom_hdr *foh = msgb_l3(mb); struct e1inp_sign_link *sign_link = mb->dst; struct gsm_bts *bts = sign_link->trx->bts; struct gsm_bts_trx *trx = gsm_bts_trx_num(bts, foh->obj_inst.trx_nr); if (!trx) return -EINVAL; if (!is_ipaccess_bts(trx->bts)) return 0; switch (foh->obj_class) { case NM_OC_BASEB_TRANSC: abis_nm_chg_adm_state(trx->bts, foh->obj_class, trx->bts->bts_nr, trx->nr, 0xff, NM_STATE_UNLOCKED); abis_nm_opstart(trx->bts, foh->obj_class, trx->bts->bts_nr, trx->nr, 0xff); /* TRX software is active, tell it to initiate RSL Link */ abis_nm_ipaccess_rsl_connect(trx, trx->bts->ip_access.rsl_ip, 3003, trx->rsl_tei); break; case NM_OC_RADIO_CARRIER: { /* * Locking the radio carrier will make it go * offline again and we would come here. The * framework should determine that there was * no change and avoid recursion. * * This code is here to make sure that on start * a TRX remains locked. */ int rc_state = trx->mo.nm_state.administrative; /* Patch ARFCN into radio attribute */ size_t data_len; uint8_t *data = nanobts_attr_radio_get(trx->bts, &data_len); data[5] &= 0xf0; data[5] |= trx->arfcn >> 8; data[6] = trx->arfcn & 0xff; abis_nm_set_radio_attr(trx, data, data_len); abis_nm_chg_adm_state(trx->bts, foh->obj_class, trx->bts->bts_nr, trx->nr, 0xff, rc_state); abis_nm_opstart(trx->bts, foh->obj_class, trx->bts->bts_nr, trx->nr, 0xff); break; } } return 0; } /* Callback function to be called every time we receive a signal from NM */ static int bts_ipa_nm_sig_cb(unsigned int subsys, unsigned int signal, void *handler_data, void *signal_data) { if (subsys != SS_NM) return 0; switch (signal) { case S_NM_SW_ACTIV_REP: return sw_activ_rep(signal_data); case S_NM_STATECHG_OPER: case S_NM_STATECHG_ADM: return nm_statechg_event(signal, signal_data); default: break; } return 0; } static int bts_model_nanobts_start(struct gsm_network *net) { osmo_signal_unregister_handler(SS_NM, bts_ipa_nm_sig_cb, NULL); osmo_signal_register_handler(SS_NM, bts_ipa_nm_sig_cb, NULL); return 0; } int bts_model_nanobts_init(void) { bts_model_nanobts.features.data = &bts_model_nanobts._features_data[0]; bts_model_nanobts.features.data_len = sizeof(bts_model_nanobts._features_data); gsm_btsmodel_set_feature(&bts_model_nanobts, BTS_FEAT_GPRS); gsm_btsmodel_set_feature(&bts_model_nanobts, BTS_FEAT_EGPRS); gsm_btsmodel_set_feature(&bts_model_nanobts, BTS_FEAT_MULTI_TSC); return gsm_bts_model_register(&bts_model_nanobts); } #define OML_UP 0x0001 #define RSL_UP 0x0002 static struct gsm_bts * find_bts_by_unitid(struct gsm_network *net, uint16_t site_id, uint16_t bts_id) { struct gsm_bts *bts; llist_for_each_entry(bts, &net->bts_list, list) { if (!is_ipaccess_bts(bts)) continue; if (bts->ip_access.site_id == site_id && bts->ip_access.bts_id == bts_id) return bts; } return NULL; } /* These are exported because they are used by the VTY interface. */ void ipaccess_drop_rsl(struct gsm_bts_trx *trx) { if (!trx->rsl_link) return; e1inp_sign_link_destroy(trx->rsl_link); trx->rsl_link = NULL; } void ipaccess_drop_oml(struct gsm_bts *bts) { struct gsm_bts *rdep_bts; struct gsm_bts_trx *trx; if (!bts->oml_link) return; e1inp_sign_link_destroy(bts->oml_link); bts->oml_link = NULL; /* we have issues reconnecting RSL, drop everything. */ llist_for_each_entry(trx, &bts->trx_list, list) ipaccess_drop_rsl(trx); bts->ip_access.flags = 0; /* * Go through the list and see if we are the depndency of a BTS * and then drop the BTS. This can lead to some recursion but it * should be fine in userspace. * The oml_link is serving as recursion anchor for us and * it is set to NULL some lines above. */ llist_for_each_entry(rdep_bts, &bts->network->bts_list, list) { if (!bts_depend_is_depedency(rdep_bts, bts)) continue; LOGP(DLINP, LOGL_NOTICE, "Dropping BTS(%u) due BTS(%u).\n", rdep_bts->nr, bts->nr); ipaccess_drop_oml(rdep_bts); } } /* This function is called once the OML/RSL link becomes up. */ static struct e1inp_sign_link * ipaccess_sign_link_up(void *unit_data, struct e1inp_line *line, enum e1inp_sign_type type) { struct gsm_bts *bts; struct ipaccess_unit *dev = unit_data; struct e1inp_sign_link *sign_link = NULL; bts = find_bts_by_unitid(bsc_gsmnet, dev->site_id, dev->bts_id); if (!bts) { LOGP(DLINP, LOGL_ERROR, "Unable to find BTS configuration for " " %u/%u/%u, disconnecting\n", dev->site_id, dev->bts_id, dev->trx_id); return NULL; } DEBUGP(DLINP, "Identified BTS %u/%u/%u\n", dev->site_id, dev->bts_id, dev->trx_id); switch(type) { case E1INP_SIGN_OML: /* remove old OML signal link for this BTS. */ ipaccess_drop_oml(bts); if (!bts_depend_check(bts)) { LOGP(DLINP, LOGL_NOTICE, "Dependency not full-filled for %u/%u/%u\n", dev->site_id, dev->bts_id, dev->trx_id); return NULL; } /* create new OML link. */ sign_link = bts->oml_link = e1inp_sign_link_create(&line->ts[E1INP_SIGN_OML - 1], E1INP_SIGN_OML, bts->c0, bts->oml_tei, 0); break; case E1INP_SIGN_RSL: { struct e1inp_ts *ts; struct gsm_bts_trx *trx = gsm_bts_trx_num(bts, dev->trx_id); /* no OML link set yet? give up. */ if (!bts->oml_link || !trx) return NULL; /* remove old RSL link for this TRX. */ ipaccess_drop_rsl(trx); /* set new RSL link for this TRX. */ line = bts->oml_link->ts->line; ts = &line->ts[E1INP_SIGN_RSL + dev->trx_id - 1]; e1inp_ts_config_sign(ts, line); sign_link = trx->rsl_link = e1inp_sign_link_create(ts, E1INP_SIGN_RSL, trx, trx->rsl_tei, 0); trx->rsl_link->ts->sign.delay = 0; break; } default: break; } return sign_link; } static void ipaccess_sign_link_down(struct e1inp_line *line) { /* No matter what link went down, we close both signal links. */ struct e1inp_ts *ts = &line->ts[E1INP_SIGN_OML-1]; struct e1inp_sign_link *link; llist_for_each_entry(link, &ts->sign.sign_links, list) { struct gsm_bts *bts = link->trx->bts; ipaccess_drop_oml(bts); /* Yes, we only use the first element of the list. */ break; } } /* This function is called if we receive one OML/RSL message. */ static int ipaccess_sign_link(struct msgb *msg) { int ret = 0; struct e1inp_sign_link *link = msg->dst; struct e1inp_ts *e1i_ts = link->ts; switch (link->type) { case E1INP_SIGN_RSL: if (!(link->trx->bts->ip_access.flags & (RSL_UP << link->trx->nr))) { e1inp_event(e1i_ts, S_L_INP_TEI_UP, link->tei, link->sapi); link->trx->bts->ip_access.flags |= (RSL_UP << link->trx->nr); } ret = abis_rsl_rcvmsg(msg); break; case E1INP_SIGN_OML: if (!(link->trx->bts->ip_access.flags & OML_UP)) { e1inp_event(e1i_ts, S_L_INP_TEI_UP, link->tei, link->sapi); link->trx->bts->ip_access.flags |= OML_UP; } ret = abis_nm_rcvmsg(msg); break; default: LOGP(DLINP, LOGL_ERROR, "Unknown signal link type %d\n", link->type); msgb_free(msg); break; } return ret; } /* not static, ipaccess-config needs it. */ struct e1inp_line_ops ipaccess_e1inp_line_ops = { .cfg = { .ipa = { .addr = "0.0.0.0", .role = E1INP_LINE_R_BSC, }, }, .sign_link_up = ipaccess_sign_link_up, .sign_link_down = ipaccess_sign_link_down, .sign_link = ipaccess_sign_link, }; static void bts_model_nanobts_e1line_bind_ops(struct e1inp_line *line) { e1inp_line_bind_ops(line, &ipaccess_e1inp_line_ops); } void bts_model_nanobts_start_nse(struct gsm_bts *bts) { uint8_t *data; size_t data_len; data = nanobts_attr_nse_get(bts, &data_len); abis_nm_ipaccess_set_attr(bts, NM_OC_GPRS_NSE, bts->bts_nr, 0xff, 0xff, data, data_len); abis_nm_opstart(bts, NM_OC_GPRS_NSE, bts->bts_nr, 0xff, 0xff); } void bts_model_nanobts_start_cell(struct gsm_bts *bts) { uint8_t *data; size_t data_len; data = nanobts_attr_cell_get(bts, &data_len); abis_nm_ipaccess_set_attr(bts, NM_OC_GPRS_CELL, bts->bts_nr, 0, 0xff, data, data_len); abis_nm_opstart(bts, NM_OC_GPRS_CELL, bts->bts_nr, 0, 0xff); abis_nm_chg_adm_state(bts, NM_OC_GPRS_CELL, bts->bts_nr, 0, 0xff, NM_STATE_UNLOCKED); abis_nm_chg_adm_state(bts, NM_OC_GPRS_NSE, bts->bts_nr, 0xff, 0xff, NM_STATE_UNLOCKED); } void bts_model_nanobts_start_nsvc(struct gsm_bts *bts) { uint8_t *data; size_t data_len; data = nanobts_attr_nscv_get(bts, &data_len); abis_nm_ipaccess_set_attr(bts, NM_OC_GPRS_NSVC, bts->bts_nr, 0, 0xff, data, data_len); abis_nm_opstart(bts, NM_OC_GPRS_NSVC, bts->bts_nr, 0, 0xff); abis_nm_chg_adm_state(bts, NM_OC_GPRS_NSVC, bts->bts_nr, 0, 0xff, NM_STATE_UNLOCKED); }