aboutsummaryrefslogtreecommitdiffstats
path: root/src/isdn/v110.c
blob: 47f4aabd7a9ce9ddd682c9f66abdc3120ada845f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
/* V.110 frames according to ITU-T V.110
 *
 * This code implements the following functionality:
 * - parsing/encoding of osmo_v110_decoded_frame from/to actual 80-bit V.110 frame
 * - synchronous rate adapting of user bit rate to V.110 D-bits as per Table 6
 *
 * It is (at least initially) a very "naive" implementation, as it first and foremost
 * aims to be functional and correct, rather than efficient in any way.  Hence it
 * operates on unpacked bits (ubit_t, 1 bit per byte), and has various intermediate
 * representations and indirect function calls.  If needed, a more optimized variant
 * can always be developed later on.
 */

/* (C) 2022 by Harald Welte <laforge@osmocom.org>
 *
 * SPDX-License-Identifier: GPL-2.0+
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 */

#include <stdint.h>
#include <errno.h>

#include <osmocom/core/bits.h>
#include <osmocom/core/utils.h>
#include <osmocom/core/fsm.h>

#include <osmocom/isdn/v110.h>

/*************************************************************************
 * V.110 frame decoding/encoding (ubits <-> struct with D/S/X/E bits)
 *************************************************************************/

/*! Decode a 80-bit V.110 frame present as 80 ubits into a struct osmo_v110_decoded_frame.
 *  \param[out] fr caller-allocated output data structure, filled by this function
 *  \param[in] ra_bits One V.110 frame as 80 unpacked bits.
 *  \param[in] n_bits number of unpacked bits provided in ra_bits
 *  \returns 0 in case of success; negative on error. */
int osmo_v110_decode_frame(struct osmo_v110_decoded_frame *fr, const ubit_t *ra_bits, size_t n_bits)
{
	if (n_bits < 80)
		return -EINVAL;

	/* X1 .. X2 */
	fr->x_bits[0] = ra_bits[2 * 8 + 7];
	fr->x_bits[1] = ra_bits[7 * 8 + 7];

	/* S1, S3, S4, S6, S8, S9 */
	fr->s_bits[0] = ra_bits[1 * 8 + 7];
	fr->s_bits[2] = ra_bits[3 * 8 + 7];
	fr->s_bits[3] = ra_bits[4 * 8 + 7];
	fr->s_bits[5] = ra_bits[6 * 8 + 7];
	fr->s_bits[7] = ra_bits[8 * 8 + 7];
	fr->s_bits[8] = ra_bits[9 * 8 + 7];

	/* E1 .. E7 */
	memcpy(fr->e_bits, ra_bits + 5 * 8 + 1, 7);

	/* D-bits */
	memcpy(fr->d_bits + 0 * 6, ra_bits + 1 * 8 + 1, 6);
	memcpy(fr->d_bits + 1 * 6, ra_bits + 2 * 8 + 1, 6);
	memcpy(fr->d_bits + 2 * 6, ra_bits + 3 * 8 + 1, 6);
	memcpy(fr->d_bits + 3 * 6, ra_bits + 4 * 8 + 1, 6);

	memcpy(fr->d_bits + 4 * 6, ra_bits + 6 * 8 + 1, 6);
	memcpy(fr->d_bits + 5 * 6, ra_bits + 7 * 8 + 1, 6);
	memcpy(fr->d_bits + 6 * 6, ra_bits + 8 * 8 + 1, 6);
	memcpy(fr->d_bits + 7 * 6, ra_bits + 9 * 8 + 1, 6);

	return 0;
}

/*! Encode a struct osmo_v110_decoded_frame into an 80-bit V.110 frame as ubits.
 *  \param[out] ra_bits caller-provided output buffer at leat 80 ubits large
 *  \param[in] n_bits length of ra_bits. Must be at least 80.
 *  \param[in] input data structure
 *  \returns number of bits written to ra_bits */
int osmo_v110_encode_frame(ubit_t *ra_bits, size_t n_bits, const struct osmo_v110_decoded_frame *fr)
{
	if (n_bits < 80)
		return -ENOSPC;

	/* alignment pattern */
	memset(ra_bits+0, 0, 8);
	for (int i = 1; i < 10; i++)
		ra_bits[i*8] = 1;

	/* X1 .. X2 */
	ra_bits[2 * 8 + 7] = fr->x_bits[0];
	ra_bits[7 * 8 + 7] = fr->x_bits[1];

	/* S1, S3, S4, S6, S8, S9 */
	ra_bits[1 * 8 + 7] = fr->s_bits[0];
	ra_bits[3 * 8 + 7] = fr->s_bits[2];
	ra_bits[4 * 8 + 7] = fr->s_bits[3];
	ra_bits[6 * 8 + 7] = fr->s_bits[5];
	ra_bits[8 * 8 + 7] = fr->s_bits[7];
	ra_bits[9 * 8 + 7] = fr->s_bits[8];

	/* E1 .. E7 */
	memcpy(ra_bits + 5 * 8 + 1, fr->e_bits, 7);

	/* D-bits */
	memcpy(ra_bits + 1 * 8 + 1, fr->d_bits + 0 * 6, 6);
	memcpy(ra_bits + 2 * 8 + 1, fr->d_bits + 1 * 6, 6);
	memcpy(ra_bits + 3 * 8 + 1, fr->d_bits + 2 * 6, 6);
	memcpy(ra_bits + 4 * 8 + 1, fr->d_bits + 3 * 6, 6);

	memcpy(ra_bits + 6 * 8 + 1, fr->d_bits + 4 * 6, 6);
	memcpy(ra_bits + 7 * 8 + 1, fr->d_bits + 5 * 6, 6);
	memcpy(ra_bits + 8 * 8 + 1, fr->d_bits + 6 * 6, 6);
	memcpy(ra_bits + 9 * 8 + 1, fr->d_bits + 7 * 6, 6);

	return 10 * 8;
}

/*! Print a encoded V.110 frame in the same table-like structure as the spec.
 *  \param outf output FILE stream to which to dump
 *  \param[in] fr unpacked bits to dump
 *  \param[in] in_len length of unpacked bits available at fr. */
void osmo_v110_ubit_dump(FILE *outf, const ubit_t *fr, size_t in_len)
{
	if (in_len < 80)
		fprintf(outf, "short input data\n");

	for (unsigned int octet = 0; octet < 10; octet++) {
		fprintf(outf, "%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n",
			fr[octet * 8 + 0], fr[octet * 8 + 1], fr[octet * 8 + 2], fr[octet * 8 + 3],
			fr[octet * 8 + 4], fr[octet * 8 + 5], fr[octet * 8 + 6], fr[octet * 8 + 7]);
	}
}

/*************************************************************************
 * RA1 synchronous rate adaptation
 *************************************************************************/

/* I actually couldn't find any reference as to the value of F(ill) bits */
#define F 1

/*! Adapt from 6 synchronous 600bit/s input bits to a decoded V.110 frame.
 *  \param[out] fr caller-allocated output frame to which E+D bits are stored
 *  \param[in] d_in input user bits
 *  \param[in] in_len number of bits in d_in. Must be 6.
 *  \returns 0 on success; negative in case of error. */
static int v110_adapt_600_to_IR8000(struct osmo_v110_decoded_frame *fr, const ubit_t *d_in, size_t in_len)
{
	if (in_len != 6)
		return -EINVAL;

	/* Table 6a / V.110 */
	fr->e_bits[0] = 1;
	fr->e_bits[1] = 0;
	fr->e_bits[2] = 0;
	for (int i = 0; i < 6; i++)
		memset(fr->d_bits + i*8, d_in[i], 8);

	return 0;
}

static int v110_adapt_IR8000_to_600(ubit_t *d_out, size_t out_len, const struct osmo_v110_decoded_frame *fr)
{
	if (out_len < 6)
		return -ENOSPC;

	if (fr->e_bits[0] != 1 || fr->e_bits[1] != 0 || fr->e_bits[2] != 0)
		return -EINVAL;

	for (int i = 0; i < 6; i++) {
		/* we only use one of the bits, not some kind of consistency check or majority vote */
		d_out[i] = fr->d_bits[i*8];
	}

	return 6;
}

/*! Adapt from 12 synchronous 1200bit/s input bits to a decoded V.110 frame.
 *  \param[out] fr caller-allocated output frame to which E+D bits are stored
 *  \param[in] d_in input user bits
 *  \param[in] in_len number of bits in d_in. Must be 12.
 *  \returns 0 on success; negative in case of error. */
static int v110_adapt_1200_to_IR8000(struct osmo_v110_decoded_frame *fr, const ubit_t *d_in, size_t in_len)
{
	if (in_len != 12)
		return -EINVAL;

	/* Table 6b / V.110 */
	fr->e_bits[0] = 0;
	fr->e_bits[1] = 1;
	fr->e_bits[2] = 0;
	for (int i = 0; i < 12; i++)
		memset(fr->d_bits + i*4, d_in[i], 4);

	return 0;
}

static int v110_adapt_IR8000_to_1200(ubit_t *d_out, size_t out_len, const struct osmo_v110_decoded_frame *fr)
{
	if (out_len < 12)
		return -ENOSPC;

	if (fr->e_bits[0] != 0 || fr->e_bits[1] != 1 || fr->e_bits[2] != 0)
		return -EINVAL;

	for (int i = 0; i < 12; i++) {
		/* we only use one of the bits, not some kind of consistency check or majority vote */
		d_out[i] = fr->d_bits[i*4];
	}

	return 12;
}

/*! Adapt from 24 synchronous 2400bit/s input bits to a decoded V.110 frame.
 *  \param[out] fr caller-allocated output frame to which E+D bits are stored
 *  \param[in] d_in input user bits
 *  \param[in] in_len number of bits in d_in. Must be 24.
 *  \returns 0 on success; negative in case of error. */
static int v110_adapt_2400_to_IR8000(struct osmo_v110_decoded_frame *fr, const ubit_t *d_in, size_t in_len)
{
	if (in_len != 24)
		return -EINVAL;

	/* Table 6c / V.110 */
	fr->e_bits[0] = 1;
	fr->e_bits[1] = 1;
	fr->e_bits[2] = 0;
	for (int i = 0; i < 24; i++) {
		fr->d_bits[i*2 + 0] = d_in[i];
		fr->d_bits[i*2 + 1] = d_in[i];
	}

	return 0;
}

static int v110_adapt_IR8000_to_2400(ubit_t *d_out, size_t out_len, const struct osmo_v110_decoded_frame *fr)
{
	if (out_len < 24)
		return -ENOSPC;

	/* Table 6c / V.110 */
	if (fr->e_bits[0] != 1 || fr->e_bits[1] != 1 || fr->e_bits[2] != 0)
		return -EINVAL;

	for (int i = 0; i < 24; i++) {
		/* we only use one of the bits, not some kind of consistency check or majority vote */
		d_out[i] = fr->d_bits[i*2];
	}

	return 24;
}

/*! Adapt from 36 synchronous N x 3600bit/s input bits to a decoded V.110 frame.
 *  \param[out] fr caller-allocated output frame to which E+D bits are stored
 *  \param[in] d_in input user bits
 *  \param[in] in_len number of bits in d_in. Must be 36.
 *  \returns 0 on success; negative in case of error. */
static int v110_adapt_Nx3600_to_IR(struct osmo_v110_decoded_frame *fr, const ubit_t *d_in, size_t in_len)
{
	int d_idx = 0;

	if (in_len != 36)
		return -EINVAL;

	/* Table 6d / V.110 */
	fr->e_bits[0] = 1;
	fr->e_bits[1] = 0;
	fr->e_bits[2] = 1;

	memcpy(fr->d_bits + d_idx, d_in + 0, 10); d_idx += 10;	/* D1..D10 */
	memset(fr->d_bits + d_idx, F, 2); d_idx += 2;
	memcpy(fr->d_bits + d_idx, d_in + 10, 2); d_idx += 2;	/* D11..D12 */
	memset(fr->d_bits + d_idx, F, 2); d_idx += 2;
	memcpy(fr->d_bits + d_idx, d_in + 12, 2); d_idx += 2;	/* D13..D14 */
	memset(fr->d_bits + d_idx, F, 2); d_idx += 2;
	memcpy(fr->d_bits + d_idx, d_in + 14, 14); d_idx += 14;	/* D15..D28 */
	memset(fr->d_bits + d_idx, F, 2); d_idx += 2;
	memcpy(fr->d_bits + d_idx, d_in + 28, 2); d_idx += 2;	/* D29..D30 */
	memset(fr->d_bits + d_idx, F, 2); d_idx += 2;
	memcpy(fr->d_bits + d_idx, d_in + 30, 2); d_idx += 2;	/* D31..D32 */
	memset(fr->d_bits + d_idx, F, 2); d_idx += 2;
	memcpy(fr->d_bits + d_idx, d_in + 32, 4); d_idx += 4;	/* D33..D36 */

	OSMO_ASSERT(d_idx == 48);

	return 0;
}

static int v110_adapt_IR_to_Nx3600(ubit_t *d_out, size_t out_len, const struct osmo_v110_decoded_frame *fr)
{
	int d_idx = 0;

	if (out_len < 36)
		return -ENOSPC;

	if (fr->e_bits[0] != 1 || fr->e_bits[1] != 0 || fr->e_bits[2] != 1)
		return -EINVAL;

	memcpy(d_out + 0, fr->d_bits + d_idx, 10); d_idx += 10;	/* D1..D10 */
	d_idx += 2;
	memcpy(d_out + 10, fr->d_bits + d_idx, 2); d_idx += 2;	/* D11..D12 */
	d_idx += 2;
	memcpy(d_out + 12, fr->d_bits + d_idx, 2); d_idx += 2;	/* D13..D14 */
	d_idx += 2;
	memcpy(d_out + 14, fr->d_bits + d_idx, 14); d_idx += 14;/* D15..D28 */
	d_idx += 2;
	memcpy(d_out + 28, fr->d_bits + d_idx, 2); d_idx += 2;	/* D29..D30 */
	d_idx += 2;
	memcpy(d_out + 30, fr->d_bits + d_idx, 2); d_idx += 2;	/* D31..D32 */
	d_idx += 2;
	memcpy(d_out + 32, fr->d_bits + d_idx, 4); d_idx += 4;	/* D33..D36 */

	OSMO_ASSERT(d_idx == 48);

	return 36;
}


/*! Adapt from 48 synchronous N x 4800bit/s input bits to a decoded V.110 frame.
 *  \param[out] fr caller-allocated output frame to which E+D bits are stored
 *  \param[in] d_in input user bits
 *  \param[in] in_len number of bits in d_in. Must be 48.
 *  \returns 0 on success; negative in case of error. */
static int v110_adapt_Nx4800_to_IR(struct osmo_v110_decoded_frame *fr, const ubit_t *d_in, size_t in_len)
{
	if (in_len != 48)
		return -EINVAL;

	/* Table 6e / V.110 */
	fr->e_bits[0] = 0;
	fr->e_bits[1] = 1;
	fr->e_bits[2] = 1;

	memcpy(fr->d_bits, d_in, 48);

	return 0;
}

static int v110_adapt_IR_to_Nx4800(ubit_t *d_out, size_t out_len, const struct osmo_v110_decoded_frame *fr)
{
	if (out_len < 48)
		return -ENOSPC;

	if (fr->e_bits[0] != 0 || fr->e_bits[1] != 1 || fr->e_bits[2] != 1)
		return -EINVAL;

	memcpy(d_out, fr->d_bits, 48);

	return 48;
}

/*! Adapt from 30 synchronous N x 12000bit/s input bits to a decoded V.110 frame.
 *  \param[out] fr caller-allocated output frame to which E+D bits are stored
 *  \param[in] d_in input user bits
 *  \param[in] in_len number of bits in d_in. Must be 30.
 *  \returns 0 on success; negative in case of error. */
static int v110_adapt_Nx12000_to_IR(struct osmo_v110_decoded_frame *fr, const ubit_t *d_in, size_t in_len)
{
	int d_idx = 0;

	if (in_len != 30)
		return -EINVAL;

	/* Table 6f / V.110 */
	fr->e_bits[0] = 0;
	fr->e_bits[1] = 0;
	fr->e_bits[2] = 1;

	memcpy(fr->d_bits + d_idx, d_in + 0, 10); d_idx += 10;	/* D1..D10 */
	memset(fr->d_bits + d_idx, F, 2); d_idx += 2;
	memcpy(fr->d_bits + d_idx, d_in + 10, 2); d_idx += 2;	/* D11..D12 */
	memset(fr->d_bits + d_idx, F, 2); d_idx += 2;
	memcpy(fr->d_bits + d_idx, d_in + 12, 2); d_idx += 2;	/* D13..D14 */
	memset(fr->d_bits + d_idx, F, 2); d_idx += 2;
	fr->d_bits[d_idx++] = d_in[14];				/* D15 */
	memset(fr->d_bits + d_idx, F, 3); d_idx += 3;
	memcpy(fr->d_bits + d_idx, d_in + 15, 10); d_idx += 10;	/* D16..D25 */
	memset(fr->d_bits + d_idx, F, 2); d_idx += 2;
	memcpy(fr->d_bits + d_idx, d_in + 25, 2); d_idx += 2;	/* D26..D27 */
	memset(fr->d_bits + d_idx, F, 2); d_idx += 2;
	memcpy(fr->d_bits + d_idx, d_in + 27, 2); d_idx += 2;	/* D28..D29 */
	memset(fr->d_bits + d_idx, F, 2); d_idx += 2;
	fr->d_bits[d_idx++] = d_in[29];				/* D30 */
	memset(fr->d_bits + d_idx, F, 3); d_idx += 3;

	OSMO_ASSERT(d_idx == 48);

	return 0;
}

static int v110_adapt_IR_to_Nx12000(ubit_t *d_out, size_t out_len, const struct osmo_v110_decoded_frame *fr)
{
	int d_idx = 0;

	if (out_len < 30)
		return -ENOSPC;

	if (fr->e_bits[0] != 0 || fr->e_bits[1] != 0 || fr->e_bits[2] != 1)
		return -EINVAL;

	memcpy(d_out + 0, fr->d_bits + d_idx, 10); d_idx += 10;	/* D1..D10 */
	d_idx += 2;
	memcpy(d_out + 10, fr->d_bits + d_idx, 2); d_idx += 2;	/* D11..D12 */
	d_idx += 2;
	memcpy(d_out + 12, fr->d_bits + d_idx, 2); d_idx += 2;	/* D13..D14 */
	d_idx += 2;
	d_out[14] = fr->d_bits[d_idx++];			/* D15 */
	d_idx += 3;
	memcpy(d_out + 15, fr->d_bits + d_idx, 10); d_idx += 10;/* D16..D25 */
	d_idx += 2;
	memcpy(d_out + 25, fr->d_bits + d_idx, 2); d_idx += 2;	/* D26..D27 */
	d_idx += 2;
	memcpy(d_out + 27, fr->d_bits + d_idx, 2); d_idx += 2;	/* D28..D29 */
	d_idx += 2;
	d_out[29] = fr->d_bits[d_idx++];			/* D30 */
	d_idx += 3;

	OSMO_ASSERT(d_idx == 48);

	return 30;
}

/* definition of a synchronous V.110 RA1 rate adaptation. There is one for each supported tuple
 * of user data rate and intermediate rate (IR). */
struct osmo_v110_sync_ra1 {
	unsigned int data_rate;
	unsigned int intermediate_rate;
	unsigned int user_data_chunk_bits;
	/*! RA1 function in user bitrate -> intermediate rate direction */
	int (*adapt_user_to_ir)(struct osmo_v110_decoded_frame *fr, const ubit_t *d_in, size_t in_len);
	/*! RA1 function in intermediate rate -> user bitrate direction */
	int (*adapt_ir_to_user)(ubit_t *d_out, size_t out_len, const struct osmo_v110_decoded_frame *fr);
};

/* all of the synchronous data signalling rates; see Table 1/V.110 */
static const struct osmo_v110_sync_ra1 osmo_v110_sync_ra1_def[_NUM_OSMO_V110_SYNC_RA1] = {
	[OSMO_V110_SYNC_RA1_600] = {
		.data_rate = 600,
		.intermediate_rate = 8000,
		.user_data_chunk_bits = 6,
		.adapt_user_to_ir = v110_adapt_600_to_IR8000,
		.adapt_ir_to_user = v110_adapt_IR8000_to_600,
	},
	[OSMO_V110_SYNC_RA1_1200] = {
		.data_rate = 1200,
		.intermediate_rate = 8000,
		.user_data_chunk_bits = 12,
		.adapt_user_to_ir = v110_adapt_1200_to_IR8000,
		.adapt_ir_to_user = v110_adapt_IR8000_to_1200,
	},
	[OSMO_V110_SYNC_RA1_2400] = {
		.data_rate = 2400,
		.intermediate_rate = 8000,
		.user_data_chunk_bits = 24,
		.adapt_user_to_ir = v110_adapt_2400_to_IR8000,
		.adapt_ir_to_user = v110_adapt_IR8000_to_2400,
	},
	[OSMO_V110_SYNC_RA1_4800] = {
		.data_rate = 4800,
		.intermediate_rate = 8000,
		.user_data_chunk_bits = 48,
		.adapt_user_to_ir = v110_adapt_Nx4800_to_IR,
		.adapt_ir_to_user = v110_adapt_IR_to_Nx4800,
	},
	[OSMO_V110_SYNC_RA1_7200] = {
		.data_rate = 7200,
		.intermediate_rate = 16000,
		.user_data_chunk_bits = 36,
		.adapt_user_to_ir = v110_adapt_Nx3600_to_IR,
		.adapt_ir_to_user = v110_adapt_IR_to_Nx3600,
	},
	[OSMO_V110_SYNC_RA1_9600] = {
		.data_rate = 9600,
		.intermediate_rate = 16000,
		.user_data_chunk_bits = 48,
		.adapt_user_to_ir = v110_adapt_Nx4800_to_IR,
		.adapt_ir_to_user = v110_adapt_IR_to_Nx4800,
	},
	[OSMO_V110_SYNC_RA1_12000] = {
		.data_rate = 12000,
		.intermediate_rate = 32000,
		.user_data_chunk_bits = 30,
		.adapt_user_to_ir = v110_adapt_Nx12000_to_IR,
		.adapt_ir_to_user = v110_adapt_IR_to_Nx12000,
	},
	[OSMO_V110_SYNC_RA1_14400] = {
		.data_rate = 14400,
		.intermediate_rate = 32000,
		.user_data_chunk_bits = 36,
		.adapt_user_to_ir = v110_adapt_Nx3600_to_IR,
		.adapt_ir_to_user = v110_adapt_IR_to_Nx3600,
	},
	[OSMO_V110_SYNC_RA1_19200] = {
		.data_rate = 19200,
		.intermediate_rate = 32000,
		.user_data_chunk_bits = 48,
		.adapt_user_to_ir = v110_adapt_Nx4800_to_IR,
		.adapt_ir_to_user = v110_adapt_IR_to_Nx4800,
	},
	[OSMO_V110_SYNC_RA1_24000] = {
		.data_rate = 24000,
		.intermediate_rate = 64000,
		.user_data_chunk_bits = 30,
		.adapt_user_to_ir = v110_adapt_Nx12000_to_IR,
		.adapt_ir_to_user = v110_adapt_IR_to_Nx12000,
	},
	[OSMO_V110_SYNC_RA1_28800] = {
		.data_rate = 28800,
		.intermediate_rate = 64000,
		.user_data_chunk_bits = 36,
		.adapt_user_to_ir = v110_adapt_Nx3600_to_IR,
		.adapt_ir_to_user = v110_adapt_IR_to_Nx3600,
	},
	[OSMO_V110_SYNC_RA1_38400] = {
		.data_rate = 38400,
		.intermediate_rate = 64000,
		.user_data_chunk_bits = 48,
		.adapt_user_to_ir = v110_adapt_Nx4800_to_IR,
		.adapt_ir_to_user = v110_adapt_IR_to_Nx4800,
	},
};

/*! obtain the size (in number of bits) of the user data bits in one V.110
 *  frame for specified RA1 rate */
int osmo_v110_sync_ra1_get_user_data_chunk_bitlen(enum osmo_v100_sync_ra1_rate rate)
{
	if (rate < 0 || rate >= _NUM_OSMO_V110_SYNC_RA1)
		return -EINVAL;

	return osmo_v110_sync_ra1_def[rate].user_data_chunk_bits;
}

/*! obtain the user data rate (in bits/s) for specified RA1 rate */
int osmo_v110_sync_ra1_get_user_data_rate(enum osmo_v100_sync_ra1_rate rate)
{
	if (rate < 0 || rate >= _NUM_OSMO_V110_SYNC_RA1)
		return -EINVAL;

	return osmo_v110_sync_ra1_def[rate].data_rate;
}

/*! obtain the intermediate rate (in bits/s) for specified RA1 rate */
int osmo_v110_sync_ra1_get_intermediate_rate(enum osmo_v100_sync_ra1_rate rate)
{
	if (rate < 0 || rate >= _NUM_OSMO_V110_SYNC_RA1)
		return -EINVAL;

	return osmo_v110_sync_ra1_def[rate].intermediate_rate;
}

/*! perform V.110 RA1 function in user rate -> intermediate rate direction.
 *  \param[in] rate specification of the user bitrate
 *  \param[out] fr caller-allocated output buffer for the [decoded] V.110 frame generated
 *  \param[in] d_in input user data (unpacked bits)
 *  \param[in] in_len length of user input data (in number of bits)
 *  \returns 0 on success; negative in case of error */
int osmo_v110_sync_ra1_user_to_ir(enum osmo_v100_sync_ra1_rate rate, struct osmo_v110_decoded_frame *fr,
				  const ubit_t *d_in, size_t in_len)
{
	if (rate < 0 || rate >= _NUM_OSMO_V110_SYNC_RA1)
		return -EINVAL;

	return osmo_v110_sync_ra1_def[rate].adapt_user_to_ir(fr, d_in, in_len);
}

/*! perform V.110 RA1 function in intermediate rate -> user rate direction.
 *  \param[in] rate specification of the user bitrate
 *  \param[out] d_out caller-allocated output user data (unpacked bits)
 *  \param[out] out_len length of d_out output buffer
 *  \param[in] fr [decoded] V.110 frame used as input
 *  \returns number of unpacked bits written to d_out on success; negative in case of error */
int osmo_v110_sync_ra1_ir_to_user(enum osmo_v100_sync_ra1_rate rate, ubit_t *d_out, size_t out_len,
				  const struct osmo_v110_decoded_frame *fr)
{
	if (rate < 0 || rate >= _NUM_OSMO_V110_SYNC_RA1)
		return -EINVAL;

	return osmo_v110_sync_ra1_def[rate].adapt_ir_to_user(d_out, out_len, fr);
}

/*********************************************************************************
 * V.110 TERMINAL ADAPTER FSMs
 *********************************************************************************/

enum v110_ta_state {
	V110_TA_S_IDLE_READY,		/* Idle (or ready) state */
	V110_TA_S_CON_TA_LINE,		/* Connect TA to line state */
	V110_TA_S_DATA_TRANSFER,	/* Data transfer state */
	V110_TA_S_RESYNCING,		/* Re-synchronizing state */
};

enum v110_ta_event {
	V110_TA_E_RX_FRAME_IND,		/* Received V.110 frame indication */
	V110_TA_E_TX_FRAME_RTS,		/* V.110 frame Ready-to-send indication */
};

static const struct value_string v110_ta_event_names[] = {
	{ V110_TA_E_RX_FRAME_IND,	"RX_FRAME_IND" },
	{ V110_TA_E_TX_FRAME_RTS,	"TX_FRAME_RTS" },
	{ 0, NULL }
};

enum v110_ta_tx_d_bit_mode {
	V110_TA_TX_FRAME_ALL_ONE,
	V110_TA_TX_FRAME_ALL_ZERO,
	V110_TA_TX_FRAME_FROM_DTE,
};

struct v110_ta_state {
	/* V.24 status flags shared between DTE (user) and DCE (TA, us) */
	v24_flagmask	v24_flags;
	struct {
		/* is end-to-end flow-control enabled or not? */
		bool end_to_end_flowctrl;
		/* synchronous user rate */
		enum osmo_v100_sync_ra1_rate rate;
	} cfg;
	struct {
		/* what kind of D-bits to transmit in V.110 frames */
		enum v110_ta_tx_d_bit_mode d_bit_mode;
		/* what to put in S-bits of transmitted V.110 frames (true = ON) */
		bool s_bits;
		/* what to put in X-bits of transmitted V.110 frames (true = OFF) */
		bool x_bits;
		/* what to put in E-bits of transmitted V.110 frames */
		ubit_t e_bits[MAX_E_BITS];
	} tx;
	struct { 
		enum v11o_ta_tx_d_bit_mode bit_mode;
	} rx;
};

/* build one V.110 frame to transmit */
static void v110_ta_build_frame(struct osmo_v110_decoded_frame *out, struct osmo_fsm_inst *fi)
{
	struct v110_ta_state *ts = (struct v110_ta_state *) fi->priv;

	/* D-bits */
	switch (ts->tx.d_bit_mode) {
	case V110_TA_TX_FRAME_ALL_ONE:
		memset(out->d_bits, 1, sizeof(out->d_bits));
		break;
	case V110_TA_TX_FRAME_ALL_ZERO:
		memset(out->d_bits, 0, sizeof(out->d_bits));
		break;
	case V110_TA_TX_FRAME_FROM_DTE:
		//FIXME: retrieve user bits */
		rc = osmo_v110_sync_ra1_user_to_ir(ts->cfg.rate, out, user_bits, num_user_bits);
		OSMO_ASSERT(rc == 0);
		break;
	};

	/* E-bits */
	memcpy(out->e_bits, ts->tx.e_bits, sizeof(out->e_bits));

	/* S-bits */
	if (ts->tx.s_bits == true)
		memset(out->s_bits, 0, sizeof(out->s_bits));
	else
		memset(out->s_bits, 1, sizeof(out->s_bits));

	/* X-bits */
	if (ts->tx.x_bits == true)
		memset(out->x_bits, 0, sizeof(out->x_bits));
	else
		memset(out->x_bits, 1, sizeof(out->x_bits));
}

static void v24_flags_updated(struct osmo_fsm_inst *fi)
{
	/* FIXME: somehow notify the USART about it */
}

/* ITU-T V.110 Section 7.1.1 */
static void v110fsm_ta_idle_ready_onenter(struct osmo_fsm_inst *fi, uint32_t prev_state);
{
	struct v110_ta_state *ts = (struct v110_ta_state *) fi->priv;

	/* E4 .. E7 bits (lower 3 bits are generated by v110 frame encoder) */
	memset(ts->tx.e_bits+3, 1, 4);
	ts->user_data_cunk_bitlen = osmo_v110_sync_ra1_get_user_data_chunk_bitlen(ts->cfg.rate);

	/* 7.1.1.2 During the idle (or ready) state the TA will transmit continuous binary 1s into the B-channel */
	/* 7.1.1.3 During the idle (or ready) state the TA (DCE) will transmit the following toward the DTE: * */
	/* - 104: continuous binary 1*/
	ts->rx.bit_mode = V110_TA_TX_FRAME_ALL_ONE;
	/* - 107, 106, 109 = OFF */
	V24_FLAGMASK_SET_OFF(ts->v24_flags, OSMO_V24_C_106);
	V24_FLAGMASK_SET_OFF(ts->v24_flags, OSMO_V24_C_107);
	V24_FLAGMASK_SET_OFF(ts->v24_flags, OSMO_V24_C_109);
	v24_flags_updated(fi);
}

/* ITU-T V.110 Section 7.1.1 */
static void v110fsm_ta_idle_ready(struct osmo_fsm_inst *fi, uint32_t event, void *data)
{
	struct v110_ta_state *ts = (struct v110_ta_state *) fi->priv;
	const struct osmo_v110_decoded_frame *fr = NULL;
	int rc;

	switch (event) {
	case V110_TA_E_RX_FRAME_IND:
		fr = data;
		rc = osmo_v110_sync_ra1_ir_to_user(ts->cfg.rate, d_out, out_len, fr);
		break;
	case V110_TA_E_TX_FRAME_RTS:
		/* transmit continuous binary 1 to B channels */
		break;
	case V110_TA_E_SWITCH_TO_DATA_MODE:
		/* When the TA is to be switched to the data mode, circuit 108 must be ON */
		if (V24_FLAGMASK_IS_ON(ts->v24_flags, OSMO_V24_C_108_2)) {
			/* 7.12.2: Start timer T1 when switching to CON_TA_LINE */
			osmo_fsm_inst_state_chg(fi, V110_TA_S_CON_TA_LINE, 10, 1);
		}
		break;
	default:
		OSMO_ASSERT(0);
	}
}

/* ITU-t V.110 Section 7.1.2 */
static void v110fsm_ta_connect_to_line_onenter(struct osmo_fsm_inst *fi, uint32_t prev_state);
{
	struct v110_ta_state *ts = (struct v110_ta_state *) fi->priv;

	/* frame sync pattern as per 5.1.3.1 / 5.2.1 */
	FIXME
	/* data bits: binary 1 */
	ts->tx.d_bit_mode = V110_TA_TX_FRAME_ALL_ONE;
	/* S = OFF, X = OFF (ON = binary 0; OFF = binary 1) */
	ts->tx.s_bits = false;
	ts->tx.x_bits = false;
	/* onenter: T1 has been started */
	OSMO_ASSERT(fi->T = 1);
}

static bool all_bits_are(const ubit_t *in, ubit_t cmp, size_t in_len)
{
	for (unsigned int i = 0; i < in_len; i++) {
		if (in[i] != cmp)
			return false;
	}
	return true;
}
#define ARRAY_ALL_BITS_ONE(arr)		all_bits_are((arr), 1, sizeof(arr))
#define ARRAY_ALL_BITS_ZERO(arr)	all_bits_are((arr), 0, sizeof(arr))

/* ITU-t V.110 Section 7.1.2 */
static void v110fsm_ta_connect_ta_to_line(struct osmo_fsm_inst *fi, uint32_t event, void *data)
{
	struct v110_ta_state *ts = (struct v110_ta_state *) fi->priv;
	struct osmo_v110_decoded_frame *fr = NULL;

	switch (event) {
	case V110_TA_E_RX_FRAME_IND:
		fr = data;
		if (ARRAY_ALL_BITS_ZERO(fr->s_bits) && ARRAY_ALL_BITS_ZERO(fr->x_bits)) {
			/* 7.1.2.4 When the receiver recognizes that the status of bits S and X are in the ON
			 * condition, it will perform the following functions: */
			/* a) Turn ON circuit 107 toward the DTE and stop timer T1. */
			V24_FLAGMASK_SET_ON(ts->v24_flags, OSMO_V24_C_107);
			/* b) Then, circuit 103 may be connected to the data bits in the frame; however, the
			 * DTE must maintain a binary 1 condition on circuit 103 until circuit 106 is turned
			 * ON in the next portion of the sequence. */
			/* c) Turn ON circuit 109 and connect the data bits to circuit 104. */
			V24_FLAGMASK_SET_ON(ts->v24_flags, OSMO_V24_C_109);
			/* d) After an interval of N bits (see 6.3), it will turn ON circuit 106. */
			V24_FLAGMASK_SET_ON(ts->v24_flags, OSMO_V24_C_106);
			v24_flags_updated(fi);
			/* Circuit 106 transitioning from OFF to ON will cause the transmitted data to
			 * transition from binary 1 to the data mode. */
			osmo_fsm_inst_state_chg(fi, V110_TA_S_DATA_XFER, 0, 0);

			rc = osmo_v110_sync_ra1_ir_to_user(ts->cfg.rate, d_out, out_len, fr);
		}
		break;
	case V110_TA_E_TX_FRAME_RTS:
		fr = data;
		v110_ta_build_frame(fr, fi);
		break;
	case V110_TA_E_RX_SYNC_IND:
		/* 7.1.2.3 When the receiver recognizes the frame synchronization pattern, it causes the S-
		 * and X-bits in the transmitted frames to be turned ON (provided that circuit 108 is ON). */
		if (V24_FLAGMASK_IS_ON(ts->v24_flags, OSMO_V24_C_108_2)) {
			ts->tx.s_bits = true;
			ts->tx.x_bits = true;
		}
		break;
	default:
		OSMO_ASSERT(0);
	}
}

/* ITU-t V.110 Section 7.1.3 */
static void v110fsm_ta_data_transfer_onenter(struct osmo_fsm_inst *fi, uint32_t prev_state)
{
	struct v110_ta_state *ts = (struct v110_ta_state *) fi->priv;

	ts->tx.d_bit_mode = V110_TA_TX_FRAME_FROM_DTE;

	/* 7.1.3.1 a): 105, 107, 108/1, 108/2 and 109 are in the ON condition */
	V24_FLAGMASK_SET_ON(ts->v24_flags, OSMO_V24_C_105);
	V24_FLAGMASK_SET_ON(ts->v24_flags, OSMO_V24_C_107);
	V24_FLAGMASK_SET_ON(ts->v24_flags, OSMO_V24_C_108_1);
	V24_FLAGMASK_SET_ON(ts->v24_flags, OSMO_V24_C_108_2);
	V24_FLAGMASK_SET_ON(ts->v24_flags, OSMO_V24_C_109);
	/* 7.1.3.1 c): 133 (when implemented) and 106 are in the ON condition unless local out-of-band
	   flow control is being used, either or both circuits may be in the ON or the OFF condition. */
	if (!ts->cfg.end_to_end_flowctrl) {
		V24_FLAGMASK_SET_ON(ts->v24_flags, OSMO_V24_C_133);
		V24_FLAGMASK_SET_ON(ts->v24_flags, OSMO_V24_C_106);
	}
	v24_flags_updated(fi);
	/* 7.1.3.2 While in the data transfer state, the following status bit conditions exist: */
	/* a) status bits S in both directions are in the ON condition; */
	ts->tx.s_bits = true;
	/* b) status bits X in both directions are in the ON condition unless end-to-end flow control is
	      being used, in which case status bit X in either or both directions may be in the ON or the OFF
	      condition. */
	if (!ts->cfg.end_to_end_flowctrl) {
		ts->tx.x_bits = true;
	}
}

/* ITU-t V.110 Section 7.1.3 */
static void v110fsm_ta_data_transfer(struct osmo_fsm_inst *fi, uint32_t event, void *data)
{
	struct v110_ta_state *ts = (struct v110_ta_state *) fi->priv;
	struct osmo_v110_decoded_frame *fr = NULL;

	switch (event) {
	case V110_TA_E_RX_V24_STATUS_CHG:
		/* 7.1.4.1 At the completion of the data transfer phase, the local DTE will indicate a
		 * disconnect request by turning OFF circuit 108 */
		if (V24_FLAGMASK_IS_OFF(ts->v24_flags, OSMO_V24_C_108_2)) {
			/* a) the status bits S in the frame toward ISDN will turn OFF, status bits X are kept ON */
			ts->tx.s_bits = false;
			/* b) circuit 106 will be turned OFF */
			V24_FLAGMASK_SET_OFF(ts->v24_flags, OSMO_V24_C_106);
			v24_flags_updated(fi);
			/* c) the data bits in the frame will be set to binary 0. */
			ts->tx.d_bit_mode = V110_TA_TX_FRAME_ALL_ZERO;
			/* to guard against the failure of the remote TA to respond to the disconnect request,
			 * the local TA may start a timer T2 (suggested value 5 s) which is stopped by the
			 * reception or transmission of any D-channel clearing message (DISCONNECT, RELEASE,
			 * RELEASE COMPLETE) */
			osmo_fsm_inst_state_chg(fi, V110_TA_S_WAIT_DISC_CONF, 5, 2);
		}
		break;
	case V110_TA_E_TX_FRAME_RTS:
		fr = data;
		v110_ta_build_frame(fr, fi);
		break;
	case V110_TA_E_RX_FRAME_IND:
		fr = data;
		rc = osmo_v110_sync_ra1_ir_to_user(ts->cfg.rate, d_out, out_len, fr);
		break;
	default:
		OSMO_ASSERT(0);
	}
}

static int v110_ta_timer_cb(struct osmo_fsm_inst *fi)
{
	switch (fi->T) {
	case 1:	/* T1: wait for sync pattern */
		break;
	case 2: /* T2: wait for response to disconnect */
		break;
	}
}

static const struct osmo_fsm_state v110_ta_states[] = {
	[V110_TA_S_IDLE_READY] = {
		.name = "IDLE_READY",
		.in_event_mask = S(V110_TA_E_TX_FRAME_RTS),
		.out_state_mask = S(V110_TA_S_CON_TA_LINE),
		.action = v110fsm_ta_idle_ready,
		.ontenter = v110fsm_ta_idle_ready_onenter,
	},
	[V110_TA_S_CON_TA_LINE] = {
		.name = "CONNECT_TA_TO_LINE",
		.in_event_mask = S(V110_TA_E_TX_FRAME_RTS),
		.out_state_mask = S(V110_TA_S_IDLE_READY) |
				  S(V110_TA_S_DATA_TRANSFER),
		.action = v110fsm_ta_connect_ta_to_line,
		.ontenter = v110fsm_ta_connect_ta_to_line_onenter,
	},
	[V110_TA_S_DATA_TRANSFER] = {
		.name = "DATA_TRANSFER",
		.in_event_mask = ,
		.out_state_mask = ,
		.action = v110fsm_ta_data_transfer,
		.onenter = v110fsm_ta_data_transfer_onenter,
	},
};

static struct osmo_fsm osmo_v110_ta_fsm = {
	.name = "V110-TA",
	.states = v110_ta_states,
	.num_states = ARRAY_SIZE(v110_ta_states),
	.allstate_event_mask = FIXME,
	.allstate_action = FIXME,
	.timer_cb = v110_ta_timer_cb,
	.log_subsys = FIXME,
	.event_names = v110_ta_event_names,
};