/* * (C) 2008 by Daniel Willmann * (C) 2009 by Holger Hans Peter Freyther * (C) 2009-2010 by Harald Welte * * All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * */ //#include #include #include #include #include #include #include #include #include #include "../config.h" /* GSM 03.38 6.2.1 Charachter packing */ int gsm_7bit_decode(char *text, const uint8_t *user_data, uint8_t length) { int i = 0; int l = 0; /* FIXME: We need to account for user data headers here */ i += l; for (; i < length; i ++) *(text ++) = ((user_data[(i * 7 + 7) >> 3] << (7 - ((i * 7 + 7) & 7))) | (user_data[(i * 7) >> 3] >> ((i * 7) & 7))) & 0x7f; *text = '\0'; return i - l; } /* GSM 03.38 6.2.1 Charachter packing */ int gsm_7bit_encode(uint8_t *result, const char *data) { int i,j = 0; unsigned char ch1, ch2; int shift = 0; for ( i=0; i> shift; ch2 = data[(i+1)] & 0x7F; ch2 = ch2 << (7-shift); ch1 = ch1 | ch2; result[j++] = ch1; shift++; if ((shift == 7) && (i+1= 39) return 0; else if (dbm < 5) return 19; else { /* we are guaranteed to have (5 <= dbm < 39) */ return 2 + ((39 - dbm) / 2); } break; case GSM_BAND_1800: if (dbm >= 36) return 29; else if (dbm >= 34) return 30; else if (dbm >= 32) return 31; else if (dbm == 31) return 0; else { /* we are guaranteed to have (0 <= dbm < 31) */ return (30 - dbm) / 2; } break; case GSM_BAND_1900: if (dbm >= 33) return 30; else if (dbm >= 32) return 31; else if (dbm == 31) return 0; else { /* we are guaranteed to have (0 <= dbm < 31) */ return (30 - dbm) / 2; } break; } return -EINVAL; } int ms_pwr_dbm(enum gsm_band band, uint8_t lvl) { lvl &= 0x1f; switch (band) { case GSM_BAND_450: case GSM_BAND_480: case GSM_BAND_750: case GSM_BAND_900: case GSM_BAND_810: case GSM_BAND_850: if (lvl < 2) return 39; else if (lvl < 20) return 39 - ((lvl - 2) * 2) ; else return 5; break; case GSM_BAND_1800: if (lvl < 16) return 30 - (lvl * 2); else if (lvl < 29) return 0; else return 36 - ((lvl - 29) * 2); break; case GSM_BAND_1900: if (lvl < 16) return 30 - (lvl * 2); else if (lvl < 30) return -EINVAL; else return 33 - (lvl - 30); break; } return -EINVAL; } /* According to TS 08.05 Chapter 8.1.4 */ int rxlev2dbm(uint8_t rxlev) { if (rxlev > 63) rxlev = 63; return -110 + rxlev; } /* According to TS 08.05 Chapter 8.1.4 */ uint8_t dbm2rxlev(int dbm) { int rxlev = dbm + 110; if (rxlev > 63) rxlev = 63; else if (rxlev < 0) rxlev = 0; return rxlev; } const char *gsm_band_name(enum gsm_band band) { switch (band) { case GSM_BAND_450: return "GSM450"; case GSM_BAND_480: return "GSM450"; case GSM_BAND_750: return "GSM750"; case GSM_BAND_810: return "GSM810"; case GSM_BAND_850: return "GSM850"; case GSM_BAND_900: return "GSM900"; case GSM_BAND_1800: return "DCS1800"; case GSM_BAND_1900: return "PCS1900"; } return "invalid"; } enum gsm_band gsm_band_parse(const char* mhz) { while (*mhz && !isdigit(*mhz)) mhz++; if (*mhz == '\0') return -EINVAL; switch (strtol(mhz, NULL, 10)) { case 450: return GSM_BAND_450; case 480: return GSM_BAND_480; case 750: return GSM_BAND_750; case 810: return GSM_BAND_810; case 850: return GSM_BAND_850; case 900: return GSM_BAND_900; case 1800: return GSM_BAND_1800; case 1900: return GSM_BAND_1900; default: return -EINVAL; } } #ifdef HAVE_EXECINFO_H #include void generate_backtrace() { int i, nptrs; void *buffer[100]; char **strings; nptrs = backtrace(buffer, ARRAY_SIZE(buffer)); printf("backtrace() returned %d addresses\n", nptrs); strings = backtrace_symbols(buffer, nptrs); if (!strings) return; for (i = 1; i < nptrs; i++) printf("%s\n", strings[i]); free(strings); } #endif enum gsm_band gsm_arfcn2band(uint16_t arfcn) { if (arfcn & ARFCN_PCS) return GSM_BAND_1900; else if (arfcn <= 124) return GSM_BAND_900; else if (arfcn >= 955 && arfcn <= 1023) return GSM_BAND_900; else if (arfcn >= 128 && arfcn <= 251) return GSM_BAND_850; else if (arfcn >= 512 && arfcn <= 885) return GSM_BAND_1800; else if (arfcn >= 259 && arfcn <= 293) return GSM_BAND_450; else if (arfcn >= 306 && arfcn <= 340) return GSM_BAND_480; else if (arfcn >= 350 && arfcn <= 425) return GSM_BAND_810; else if (arfcn >= 438 && arfcn <= 511) return GSM_BAND_750; else return GSM_BAND_1800; } /* Convert an ARFCN to the frequency in MHz * 10 */ uint16_t gsm_arfcn2freq10(uint16_t arfcn, int uplink) { uint16_t freq10_ul; uint16_t freq10_dl; if (arfcn & ARFCN_PCS) { /* DCS 1900 */ arfcn &= ~ARFCN_PCS; freq10_ul = 18502 + 2 * (arfcn-512); freq10_dl = freq10_ul + 800; } else if (arfcn <= 124) { /* Primary GSM + ARFCN 0 of E-GSM */ freq10_ul = 8900 + 2 * arfcn; freq10_dl = freq10_ul + 450; } else if (arfcn >= 955 && arfcn <= 1023) { /* E-GSM and R-GSM */ freq10_ul = 8900 + 2 * (arfcn - 1024); freq10_dl = freq10_ul + 450; } else if (arfcn >= 128 && arfcn <= 251) { /* GSM 850 */ freq10_ul = 8242 + 2 * (arfcn - 128); freq10_dl = freq10_ul + 450; } else if (arfcn >= 512 && arfcn <= 885) { /* DCS 1800 */ freq10_ul = 17102 + 2 * (arfcn - 512); freq10_dl = freq10_ul + 950; } else if (arfcn >= 259 && arfcn <= 293) { /* GSM 450 */ freq10_ul = 4506 + 2 * (arfcn - 259); freq10_dl = freq10_ul + 100; } else if (arfcn >= 306 && arfcn <= 340) { /* GSM 480 */ freq10_ul = 4790 + 2 * (arfcn - 306); freq10_dl = freq10_ul + 100; } else if (arfcn >= 350 && arfcn <= 425) { /* GSM 810 */ freq10_ul = 8060 + 2 * (arfcn - 350); freq10_dl = freq10_ul + 450; } else if (arfcn >= 438 && arfcn <= 511) { /* GSM 750 */ freq10_ul = 7472 + 2 * (arfcn - 438); freq10_dl = freq10_ul + 300; } else return 0xffff; if (uplink) return freq10_ul; else return freq10_dl; } void gsm_fn2gsmtime(struct gsm_time *time, uint32_t fn) { time->fn = fn; time->t1 = time->fn / (26*51); time->t2 = time->fn % 26; time->t3 = time->fn % 51; time->tc = (time->fn / 51) % 8; } uint32_t gsm_gsmtime2fn(struct gsm_time *time) { /* TS 05.02 Chapter 4.3.3 TDMA frame number */ return (51 * ((time->t3 - time->t2 + 26) % 26) + time->t3 + (26 * 51 * time->t1)); }