/* -*- c++ -*- */ /* * Copyright 2013 Nuand LLC * Copyright 2013 Dimitri Stolnikov * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ /* * config.h is generated by configure. It contains the results * of probing for features, options etc. It should be the first * file included in your .cc file. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include "arg_helpers.h" #include "bladerf_sink_c.h" using namespace boost::assign; /* * Create a new instance of bladerf_sink_c and return * a boost shared_ptr. This is effectively the public constructor. */ bladerf_sink_c_sptr make_bladerf_sink_c (const std::string &args) { return gnuradio::get_initial_sptr(new bladerf_sink_c (args)); } /* * Specify constraints on number of input and output streams. * This info is used to construct the input and output signatures * (2nd & 3rd args to gr_block's constructor). The input and * output signatures are used by the runtime system to * check that a valid number and type of inputs and outputs * are connected to this block. In this case, we accept * only 0 input and 1 output. */ static const int MIN_IN = 1; // mininum number of input streams static const int MAX_IN = 1; // maximum number of input streams static const int MIN_OUT = 0; // minimum number of output streams static const int MAX_OUT = 0; // maximum number of output streams /* * The private constructor */ bladerf_sink_c::bladerf_sink_c (const std::string &args) : gr::sync_block ("bladerf_sink_c", gr::io_signature::make (MIN_IN, MAX_IN, sizeof (gr_complex)), gr::io_signature::make (MIN_OUT, MAX_OUT, sizeof (gr_complex))) { dict_t dict = params_to_dict(args); /* Perform src/sink agnostic initializations */ init(dict, BLADERF_MODULE_TX); /* Set the range of VGA1, VGA1GAINT[7:0] */ _vga1_range = osmosdr::gain_range_t( -35, -4, 1 ); /* Set the range of VGA2, VGA2GAIN[4:0] */ _vga2_range = osmosdr::gain_range_t( 0, 25, 1 ); } bool bladerf_sink_c::start() { return bladerf_common::start(BLADERF_MODULE_TX); } bool bladerf_sink_c::stop() { return bladerf_common::stop(BLADERF_MODULE_TX); } int bladerf_sink_c::work( int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items ) { const gr_complex *in = (const gr_complex *) input_items[0]; struct bladerf_metadata meta; const float scaling = 2000.0f; int ret; if (noutput_items > _conv_buf_size) { void *tmp; _conv_buf_size = noutput_items; tmp = realloc(_conv_buf, _conv_buf_size * 2 * sizeof(int16_t)); if (tmp == NULL) { throw std::runtime_error( std::string(__FUNCTION__) + "Failed to realloc _conv_buf" ); } _conv_buf = static_cast(tmp); } /* Convert floating point samples into fixed point */ for (int i = 0; i < 2 * noutput_items;) { _conv_buf[i++] = (int16_t)(scaling * real(*in)); _conv_buf[i++] = (int16_t)(scaling * imag(*in++)); } /* Submit them to the device */ ret = bladerf_sync_tx(_dev.get(), static_cast(_conv_buf), noutput_items, &meta, _stream_timeout_ms); if ( ret != 0 ) { std::cerr << _pfx << "bladerf_sync_tx error: " << bladerf_strerror(ret) << std::endl; return WORK_DONE; } return noutput_items; } std::vector bladerf_sink_c::get_devices() { return bladerf_common::devices(); } size_t bladerf_sink_c::get_num_channels() { /* We only support a single channel for each bladeRF */ return 1; } osmosdr::meta_range_t bladerf_sink_c::get_sample_rates() { return sample_rates(); } double bladerf_sink_c::set_sample_rate(double rate) { return bladerf_common::set_sample_rate(BLADERF_MODULE_TX, rate); } double bladerf_sink_c::get_sample_rate() { return bladerf_common::get_sample_rate(BLADERF_MODULE_TX); } osmosdr::freq_range_t bladerf_sink_c::get_freq_range( size_t chan ) { return freq_range(); } double bladerf_sink_c::set_center_freq( double freq, size_t chan ) { int ret; /* Check frequency range */ if( freq < get_freq_range( chan ).start() || freq > get_freq_range( chan ).stop() ) { std::cerr << "Failed to set out of bound frequency: " << freq << std::endl; } else { ret = bladerf_set_frequency( _dev.get(), BLADERF_MODULE_TX, (uint32_t)freq ); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "Failed to set center frequency " + boost::lexical_cast(freq) + ":" + std::string(bladerf_strerror(ret))); } } return get_center_freq( chan ); } double bladerf_sink_c::get_center_freq( size_t chan ) { uint32_t freq; int ret; ret = bladerf_get_frequency( _dev.get(), BLADERF_MODULE_TX, &freq ); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "Failed to get center frequency:" + std::string(bladerf_strerror(ret))); } return (double)freq; } double bladerf_sink_c::set_freq_corr( double ppm, size_t chan ) { /* TODO: Write the VCTCXO with a correction value (also changes RX ppm value!) */ return get_freq_corr( chan ); } double bladerf_sink_c::get_freq_corr( size_t chan ) { /* TODO: Return back the frequency correction in ppm */ return 0; } std::vector bladerf_sink_c::get_gain_names( size_t chan ) { std::vector< std::string > names; names += "VGA1", "VGA2"; return names; } osmosdr::gain_range_t bladerf_sink_c::get_gain_range( size_t chan ) { /* TODO: This is an overall system gain range. Given the VGA1 and VGA2 how much total gain can we have in the system */ return get_gain_range( "VGA2", chan ); /* we use only VGA2 here for now */ } osmosdr::gain_range_t bladerf_sink_c::get_gain_range( const std::string & name, size_t chan ) { osmosdr::gain_range_t range; if( name == "VGA1" ) { range = _vga1_range; } else if( name == "VGA2" ) { range = _vga2_range; } else { throw std::runtime_error( std::string(__FUNCTION__) + " " + "Requested an invalid gain element " + name ); } return range; } bool bladerf_sink_c::set_gain_mode( bool automatic, size_t chan ) { return false; } bool bladerf_sink_c::get_gain_mode( size_t chan ) { return false; } double bladerf_sink_c::set_gain( double gain, size_t chan ) { return set_gain( gain, "VGA2", chan ); /* we use only VGA2 here for now */ } double bladerf_sink_c::set_gain( double gain, const std::string & name, size_t chan) { int ret = 0; if( name == "VGA1" ) { ret = bladerf_set_txvga1( _dev.get(), (int)gain ); } else if( name == "VGA2" ) { ret = bladerf_set_txvga2( _dev.get(), (int)gain ); } else { throw std::runtime_error( std::string(__FUNCTION__) + " " + "Requested to set the gain " + "of an unknown gain element " + name ); } /* Check for errors */ if( ret ) { throw std::runtime_error(std::string(__FUNCTION__) + " " + "Could not set " + name + " gain, error " + std::string(bladerf_strerror(ret))); } return get_gain( name, chan ); } double bladerf_sink_c::get_gain( size_t chan ) { return get_gain( "VGA2", chan ); /* we use only VGA2 here for now */ } double bladerf_sink_c::get_gain( const std::string & name, size_t chan ) { int g; int ret = 0; if( name == "VGA1" ) { ret = bladerf_get_txvga1( _dev.get(), &g ); } else if( name == "VGA2" ) { ret = bladerf_get_txvga2( _dev.get(), &g ); } else { throw std::runtime_error( std::string(__FUNCTION__) + " " + "Requested to get the gain " + "of an unknown gain element " + name ); } /* Check for errors */ if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "Could not get " + name + " gain, error " + std::string(bladerf_strerror(ret))); } return (double)g; } double bladerf_sink_c::set_bb_gain( double gain, size_t chan ) { /* for TX, only VGA1 is in the BB path */ osmosdr::gain_range_t bb_gains = get_gain_range( "VGA1", chan ); double clip_gain = bb_gains.clip( gain, true ); gain = set_gain( clip_gain, "VGA1", chan ); return gain; } std::vector< std::string > bladerf_sink_c::get_antennas( size_t chan ) { std::vector< std::string > antennas; antennas += get_antenna( chan ); return antennas; } std::string bladerf_sink_c::set_antenna( const std::string & antenna, size_t chan ) { return get_antenna( chan ); } std::string bladerf_sink_c::get_antenna( size_t chan ) { /* We only have a single transmit antenna here */ return "TX"; } void bladerf_sink_c::set_dc_offset( const std::complex &offset, size_t chan ) { int ret = 0; ret = bladerf_common::set_dc_offset(BLADERF_MODULE_TX, offset, chan); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "could not set dc offset: " + std::string(bladerf_strerror(ret)) ); } } void bladerf_sink_c::set_iq_balance( const std::complex &balance, size_t chan ) { int ret = 0; ret = bladerf_common::set_iq_balance(BLADERF_MODULE_TX, balance, chan); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "could not set iq balance: " + std::string(bladerf_strerror(ret)) ); } } double bladerf_sink_c::set_bandwidth( double bandwidth, size_t chan ) { int ret; uint32_t actual; if ( bandwidth == 0.0 ) /* bandwidth of 0 means automatic filter selection */ bandwidth = get_sample_rate() * 0.75; /* select narrower filters to prevent aliasing */ ret = bladerf_set_bandwidth( _dev.get(), BLADERF_MODULE_TX, (uint32_t)bandwidth, &actual ); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "could not set bandwidth:" + std::string(bladerf_strerror(ret)) ); } return get_bandwidth(); } double bladerf_sink_c::get_bandwidth( size_t chan ) { uint32_t bandwidth; int ret; ret = bladerf_get_bandwidth( _dev.get(), BLADERF_MODULE_TX, &bandwidth ); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "could not get bandwidth: " + std::string(bladerf_strerror(ret)) ); } return (double)bandwidth; } osmosdr::freq_range_t bladerf_sink_c::get_bandwidth_range( size_t chan ) { return filter_bandwidths(); }