aboutsummaryrefslogtreecommitdiffstats
path: root/lib/receiver/receiver_impl.cc
blob: 09a3703a1a48644dab49aaaefe5004ee0dc60565 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
/* -*- c++ -*- */
/*
 * @file
 * @author Piotr Krysik <ptrkrysik@gmail.com>
 * @section LICENSE
 *
 * Gr-gsm is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * Gr-gsm is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with gr-gsm; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <gnuradio/io_signature.h>
#include <gnuradio/math.h>
#include <math.h>
#include <boost/circular_buffer.hpp>
#include <algorithm>
#include <numeric>
#include <vector>
#include <viterbi_detector.h>
#include <string.h>
#include <iostream>
#include <iomanip>
#include <boost/scoped_ptr.hpp>

#include <sch.h>
#include "receiver_impl.h"
#include <grgsm/endian.h>

//files included for debuging
//#include "plotting/plotting.hpp"
//#include <pthread.h>

#define SYNC_SEARCH_RANGE 30

namespace gr
{
namespace gsm
{
receiver::sptr
receiver::make(int osr, const std::vector<int> &cell_allocation, const std::vector<int> &tseq_nums, bool process_uplink)
{
    return gnuradio::get_initial_sptr
           (new receiver_impl(osr, cell_allocation, tseq_nums, process_uplink));
}

/*
 * The private constructor
 */
receiver_impl::receiver_impl(int osr, const std::vector<int> &cell_allocation, const std::vector<int> &tseq_nums, bool process_uplink)
    : gr::sync_block("receiver",
                gr::io_signature::make(1, -1, sizeof(gr_complex)),
                gr::io_signature::make(0, 0, 0)),
    d_OSR(osr),
    d_process_uplink(process_uplink),
    d_chan_imp_length(CHAN_IMP_RESP_LENGTH),
    d_counter(0),
    d_fcch_start_pos(0),
    d_freq_offset_setting(0),
    d_state(fcch_search),
    d_burst_nr(osr),
    d_failed_sch(0),
    d_signal_dbm(-120),
    d_tseq_nums(tseq_nums),
    d_cell_allocation(cell_allocation),
    d_last_time(0.0)
{
    int i;
                                                                      //don't send samples to the receiver until there are at least samples for one
    set_output_multiple(floor((TS_BITS + 2 * GUARD_PERIOD) * d_OSR)); // burst and two gurad periods (one gurard period is an arbitrary overlap)
    gmsk_mapper(SYNC_BITS, N_SYNC_BITS, d_sch_training_seq, gr_complex(0.0, -1.0));
    for (i = 0; i < TRAIN_SEQ_NUM; i++)
    {
        gr_complex startpoint = (train_seq[i][0]==0) ? gr_complex(1.0, 0.0) : gr_complex(-1.0, 0.0); //if first bit of the seqeunce ==0  first symbol ==1
                                                                                                     //if first bit of the seqeunce ==1  first symbol ==-1
        gmsk_mapper(train_seq[i], N_TRAIN_BITS, d_norm_training_seq[i], startpoint);
    }
    message_port_register_out(pmt::mp("C0"));
    message_port_register_out(pmt::mp("CX"));
    message_port_register_out(pmt::mp("measurements"));
    configure_receiver();  //configure the receiver - tell it where to find which burst type
}

/*
 * Our virtual destructor.
 */
receiver_impl::~receiver_impl()
{
}

int
receiver_impl::work(int noutput_items,
	               gr_vector_const_void_star &input_items,
	               gr_vector_void_star &output_items)
{
//    std::vector<const gr_complex *> iii = (std::vector<const gr_complex *>) input_items; // jak zrobić to rzutowanie poprawnie
    gr_complex * input = (gr_complex *) input_items[0];
    std::vector<tag_t> freq_offset_tags;
    uint64_t start = nitems_read(0);
    uint64_t stop = start + noutput_items;

    float current_time = static_cast<float>(start)/(GSM_SYMBOL_RATE*d_OSR);
    if((current_time - d_last_time) > 0.1)
    {
        pmt::pmt_t msg = pmt::make_tuple(pmt::mp("current_time"),pmt::from_double(current_time));
        message_port_pub(pmt::mp("measurements"), msg);
        d_last_time = current_time;
    }

    pmt::pmt_t key = pmt::string_to_symbol("setting_freq_offset");
    get_tags_in_range(freq_offset_tags, 0, start, stop, key);
    bool freq_offset_tag_in_fcch = false;
    uint64_t tag_offset=-1; //-1 - just some clearly invalid value
    
    if(!freq_offset_tags.empty()){
        tag_t freq_offset_tag = freq_offset_tags[0];
        tag_offset = freq_offset_tag.offset - start;
        
        burst_type b_type = d_channel_conf.get_burst_type(d_burst_nr);
        if(d_state == synchronized && b_type == fcch_burst){
            uint64_t last_sample_nr = ceil((GUARD_PERIOD + 2.0 * TAIL_BITS + 156.25) * d_OSR) + 1;
            if(tag_offset < last_sample_nr){
                freq_offset_tag_in_fcch = true;
            }
            d_freq_offset_setting = pmt::to_double(freq_offset_tag.value);
        } else {
            d_freq_offset_setting = pmt::to_double(freq_offset_tag.value);
        }
    }
    
    switch (d_state)
    {
        //bootstrapping
    case fcch_search:
    {
        double freq_offset_tmp;
        if (find_fcch_burst(input, noutput_items,freq_offset_tmp))
        {
            pmt::pmt_t msg = pmt::make_tuple(pmt::mp("freq_offset"),pmt::from_double(freq_offset_tmp-d_freq_offset_setting),pmt::mp("fcch_search"));
            message_port_pub(pmt::mp("measurements"), msg);

            d_state = sch_search;
        }
        else
        {
            d_state = fcch_search;
        }
        break;
    }

    case sch_search:
    {
        std::vector<gr_complex> channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
        int t1, t2, t3;
        int burst_start = 0;
        unsigned char output_binary[BURST_SIZE];

        if (reach_sch_burst(noutput_items))                                //wait for a SCH burst
        {
            burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); //get channel impulse response from it
            detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //detect bits using MLSE detection
            if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0)   //decode SCH burst
            {
                d_burst_nr.set(t1, t2, t3, 0);                                  //set counter of bursts value
                d_burst_nr++;

                consume_each(burst_start + BURST_SIZE * d_OSR + 4*d_OSR);   //consume samples up to next guard period
                d_state = synchronized;
            }
            else
            {
                d_state = fcch_search;                       //if there is error in the sch burst go back to fcch search phase
            }
        }
        else
        {
            d_state = sch_search;
        }
        break;
    }
    //in this state receiver is synchronized and it processes bursts according to burst type for given burst number
    case synchronized:
    {
        std::vector<gr_complex> channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
        int offset = 0;
        int to_consume = 0;
        unsigned char output_binary[BURST_SIZE];
        burst_type b_type;
        unsigned int inputs_to_process=d_cell_allocation.size();
        
        if(d_process_uplink)
        {
            inputs_to_process = 2*inputs_to_process;
        }
        
        for(int input_nr=0; input_nr<inputs_to_process; input_nr++)
        {
            double signal_pwr = 0;
            input = (gr_complex *)input_items[input_nr];
            
            for(int ii=GUARD_PERIOD;ii<TS_BITS;ii++)
            {
                signal_pwr += abs(input[ii])*abs(input[ii]);
            }
            signal_pwr = signal_pwr/(TS_BITS);
            d_signal_dbm = round(10*log10(signal_pwr/50));
            if(input_nr==0){
                d_c0_signal_dbm = d_signal_dbm;
            }
            
            if(input_nr==0) //for c0 channel burst type is controlled by channel configuration
            {
                b_type = d_channel_conf.get_burst_type(d_burst_nr); //get burst type for given burst number
            }
            else 
            {
                b_type = normal_or_noise; //for the rest it can be only normal burst or noise (at least at this moment of development)
            }
            
            switch (b_type)
            {
            case fcch_burst:                                                                      //if it's FCCH  burst
            {
                const unsigned first_sample = ceil((GUARD_PERIOD + 2 * TAIL_BITS) * d_OSR) + 1;
                const unsigned last_sample = first_sample + USEFUL_BITS * d_OSR - TAIL_BITS * d_OSR;
                double freq_offset_tmp = compute_freq_offset(input, first_sample, last_sample);       //extract frequency offset from it

                send_burst(d_burst_nr, fc_fb, GSMTAP_BURST_FCCH, input_nr);

                pmt::pmt_t msg = pmt::make_tuple(pmt::mp("freq_offset"),pmt::from_double(freq_offset_tmp-d_freq_offset_setting),pmt::mp("synchronized"));
                message_port_pub(pmt::mp("measurements"), msg);
                break;
            }
            case sch_burst:                                                                      //if it's SCH burst
            {
                int t1, t2, t3, d_ncc, d_bcc;
                d_c0_burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]);                //get channel impulse response
                
                detect_burst(input, &channel_imp_resp[0], d_c0_burst_start, output_binary);           //MLSE detection of bits
                send_burst(d_burst_nr, output_binary, GSMTAP_BURST_SCH, input_nr);
                if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0)           //and decode SCH data
                {
                    // d_burst_nr.set(t1, t2, t3, 0);                                              //but only to check if burst_start value is correct
                    d_failed_sch = 0;
                    offset =  d_c0_burst_start - floor((GUARD_PERIOD) * d_OSR);                         //compute offset from burst_start - burst should start after a guard period
                    to_consume += offset;                                                          //adjust with offset number of samples to be consumed
                }
                else
                {
                    d_failed_sch++;
                    if (d_failed_sch >= MAX_SCH_ERRORS)
                    {
                        d_state = fcch_search; 
                        pmt::pmt_t msg = pmt::make_tuple(pmt::mp("freq_offset"),pmt::from_double(0.0),pmt::mp("sync_loss"));
                        message_port_pub(pmt::mp("measurements"), msg);
                        //DCOUT("Re-Synchronization!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!");
                    }
                }
                break;
            }
            case normal_burst:
            {
                float normal_corr_max;                                                    //if it's normal burst
                d_c0_burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], &normal_corr_max, d_bcc); //get channel impulse response for given training sequence number - d_bcc
                detect_burst(input, &channel_imp_resp[0], d_c0_burst_start, output_binary);            //MLSE detection of bits
                send_burst(d_burst_nr, output_binary, GSMTAP_BURST_NORMAL, input_nr);
                break;
            }
            case dummy_or_normal:
            {
                unsigned int normal_burst_start, dummy_burst_start;
                float dummy_corr_max, normal_corr_max;

                dummy_burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], &dummy_corr_max, TS_DUMMY);
                normal_burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], &normal_corr_max, d_bcc);
                            
                if (normal_corr_max > dummy_corr_max)
                {
                    d_c0_burst_start = normal_burst_start;
                    detect_burst(input, &channel_imp_resp[0], normal_burst_start, output_binary);
                    send_burst(d_burst_nr, output_binary, GSMTAP_BURST_NORMAL, input_nr); 
                }
                else
                {
                    d_c0_burst_start = dummy_burst_start;
                    send_burst(d_burst_nr, dummy_burst, GSMTAP_BURST_DUMMY, input_nr);
                }
                break;
            }
            case rach_burst:
                break;
            case dummy:
                send_burst(d_burst_nr, dummy_burst, GSMTAP_BURST_DUMMY, input_nr);
                break;
            case normal_or_noise:
            {
                unsigned int burst_start;
                float normal_corr_max_tmp;
                float normal_corr_max=-1e6;
                int max_tn;
                std::vector<gr_complex> v(input, input + noutput_items);
                //if(d_signal_dbm>=d_c0_signal_dbm-13)
                {
                    if(d_tseq_nums.size()==0)              //there is no information about training sequence
                    {                                      //however the receiver can detect it
                        get_norm_chan_imp_resp(input, &channel_imp_resp[0], &normal_corr_max, 0);
                        float ts_max=normal_corr_max;     //with use of a very simple algorithm based on finding
                        int ts_max_num=0;                 //maximum correlation
                        for(int ss=1; ss<=7; ss++)
                        {
                            get_norm_chan_imp_resp(input, &channel_imp_resp[0], &normal_corr_max, ss);
                            if(ts_max<normal_corr_max)
                            {
                                ts_max = normal_corr_max;
                                ts_max_num = ss;
                            }
                        }
                        d_tseq_nums.push_back(ts_max_num);
                    }
                    int tseq_num;
                    if(input_nr<=d_tseq_nums.size())
                    {
                        tseq_num = d_tseq_nums[input_nr-1];
                    } else 
                    {
                        tseq_num = d_tseq_nums.back();
                    }
                    burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], &normal_corr_max, tseq_num);
//                  if(abs(d_c0_burst_start-burst_start)<=2){ //unused check/filter based on timing
                   // if((normal_corr_max/sqrt(signal_pwr))>=0.9)
                    {
                        detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);
                        send_burst(d_burst_nr, output_binary, GSMTAP_BURST_NORMAL, input_nr);
                    }
                }
                break;
            }
            case empty:   //if it's empty burst
                break;      //do nothing
            }
            
            if(input_nr==input_items.size()-1)
            {
                d_burst_nr++;   //go to next burst
                to_consume += TS_BITS * d_OSR + d_burst_nr.get_offset();  //consume samples of the burst up to next guard period
                consume_each(to_consume);
            }
            //and add offset which is introduced by
            //0.25 fractional part of a guard period
        }
    }
    break;
    }
    return 0;
}

bool receiver_impl::find_fcch_burst(const gr_complex *input, const int nitems, double & computed_freq_offset)
{
    boost::circular_buffer<float> phase_diff_buffer(FCCH_HITS_NEEDED * d_OSR); //circular buffer used to scan throug signal to find
    //best match for FCCH burst
    float phase_diff = 0;
    gr_complex conjprod;
    int start_pos = -1;
    int hit_count = 0;
    int miss_count = 0;
    float min_phase_diff;
    float max_phase_diff;
    double best_sum = 0;
    float lowest_max_min_diff = 99999;

    int to_consume = 0;
    int sample_number = 0;
    bool end = false;
    bool result = false;
    boost::circular_buffer<float>::iterator buffer_iter;
    
    /**@name Possible states of FCCH search algorithm*/
    //@{
    enum states
    {
        init,               ///< initialize variables
        search,             ///< search for positive samples
        found_something,    ///< search for FCCH and the best position of it
        fcch_found,         ///< when FCCH was found
        search_fail         ///< when there is no FCCH in the input vector
    } fcch_search_state;
    //@}

    fcch_search_state = init;

    while (!end)
    {
        switch (fcch_search_state)
        {

        case init: //initialize variables
            hit_count = 0;
            miss_count = 0;
            start_pos = -1;
            lowest_max_min_diff = 99999;
            phase_diff_buffer.clear();
            fcch_search_state = search;

            break;

        case search:                                                // search for positive samples
            sample_number++;

            if (sample_number > nitems - FCCH_HITS_NEEDED * d_OSR)   //if it isn't possible to find FCCH because
            {
                                                                       //there's too few samples left to look into,
                to_consume = sample_number;                            //don't do anything with those samples which are left
                                                                       //and consume only those which were checked
                fcch_search_state = search_fail;
            }
            else
            {
                phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);

                if (phase_diff > 0)                                   //if a positive phase difference was found
                {
                    to_consume = sample_number;
                    fcch_search_state = found_something;                //switch to state in which searches for FCCH
                }
                else
                {
                    fcch_search_state = search;
                }
            }

            break;

        case found_something:  // search for FCCH and the best position of it
        {
            if (phase_diff > 0)
            {
                hit_count++;       //positive phase differencies increases hits_count
            }
            else
            {
                miss_count++;      //negative increases miss_count
            }

            if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR))
            {
                //if miss_count exceeds limit before hit_count
                fcch_search_state = init;       //go to init
                continue;
            }
            else if (((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) || (hit_count > 2 * FCCH_HITS_NEEDED * d_OSR))
            {
                //if hit_count and miss_count exceeds limit then FCCH was found
                fcch_search_state = fcch_found;
                continue;
            }
            else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR))
            {
                //find difference between minimal and maximal element in the buffer
                //for FCCH this value should be low
                //this part is searching for a region where this value is lowest
                min_phase_diff = * (min_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));
                max_phase_diff = * (max_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));

                if (lowest_max_min_diff > max_phase_diff - min_phase_diff)
                {
                    lowest_max_min_diff = max_phase_diff - min_phase_diff;
                    start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR; //store start pos
                    best_sum = 0;

                    for (buffer_iter = phase_diff_buffer.begin();
                            buffer_iter != (phase_diff_buffer.end());
                            buffer_iter++)
                    {
                        best_sum += *buffer_iter - (M_PI / 2) / d_OSR;   //store best value of phase offset sum
                    }
                }
            }

            sample_number++;

            if (sample_number >= nitems)      //if there's no single sample left to check
            {
                fcch_search_state = search_fail;//FCCH search failed
                continue;
            }

            phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);
            phase_diff_buffer.push_back(phase_diff);
            fcch_search_state = found_something;
        }
        break;

        case fcch_found:
        {
            to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1; //consume one FCCH burst

            d_fcch_start_pos = d_counter + start_pos;

            //compute frequency offset
            double phase_offset = best_sum / FCCH_HITS_NEEDED;
            double freq_offset = phase_offset * 1625000.0/6 / (2 * M_PI); //1625000.0/6 - GMSK symbol rate in GSM
            computed_freq_offset = freq_offset;

            end = true;
            result = true;
            break;
        }

        case search_fail:
            end = true;
            result = false;
            break;
        }
    }

    d_counter += to_consume;
    consume_each(to_consume);

    return result;
}

double receiver_impl::compute_freq_offset(const gr_complex * input, unsigned first_sample, unsigned last_sample)
{
    double phase_sum = 0;
    unsigned ii;

    for (ii = first_sample; ii < last_sample; ii++)
    {
        double phase_diff = compute_phase_diff(input[ii], input[ii-1]) - (M_PI / 2) / d_OSR;
        phase_sum += phase_diff;
    }

    double phase_offset = phase_sum / (last_sample - first_sample);
    double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
    return freq_offset;
}

inline float receiver_impl::compute_phase_diff(gr_complex val1, gr_complex val2)
{
    gr_complex conjprod = val1 * conj(val2);
    return fast_atan2f(imag(conjprod), real(conjprod));
}

bool receiver_impl::reach_sch_burst(const int nitems)
{
    //it just consumes samples to get near to a SCH burst
    int to_consume = 0;
    bool result = false;
    unsigned sample_nr_near_sch_start = d_fcch_start_pos + (FRAME_BITS - SAFETY_MARGIN) * d_OSR;

    //consume samples until d_counter will be equal to sample_nr_near_sch_start
    if (d_counter < sample_nr_near_sch_start)
    {
        if (d_counter + nitems >= sample_nr_near_sch_start)
        {
            to_consume = sample_nr_near_sch_start - d_counter;
        }
        else
        {
            to_consume = nitems;
        }
        result = false;
    }
    else
    {
        to_consume = 0;
        result = true;
    }

    d_counter += to_consume;
    consume_each(to_consume);
    return result;
}

int receiver_impl::get_sch_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp)
{
    std::vector<gr_complex> correlation_buffer;
    std::vector<float> power_buffer;
    std::vector<float> window_energy_buffer;

    int strongest_window_nr;
    int burst_start = 0;
    int chan_imp_resp_center = 0;
    float max_correlation = 0;
    float energy = 0;

    for (int ii = SYNC_POS * d_OSR; ii < (SYNC_POS + SYNC_SEARCH_RANGE) *d_OSR; ii++)
    {
        gr_complex correlation = correlate_sequence(&d_sch_training_seq[5], N_SYNC_BITS - 10, &input[ii]);
        correlation_buffer.push_back(correlation);
        power_buffer.push_back(std::pow(abs(correlation), 2));
    }
    //compute window energies
    std::vector<float>::iterator iter = power_buffer.begin();
    bool loop_end = false;
    while (iter != power_buffer.end())
    {
        std::vector<float>::iterator iter_ii = iter;
        energy = 0;

        for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++, iter_ii++)
        {
            if (iter_ii == power_buffer.end())
            {
                loop_end = true;
                break;
            }
            energy += (*iter_ii);
        }
        if (loop_end)
        {
            break;
        }
        iter++;
        window_energy_buffer.push_back(energy);
    }

    strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
    //   d_channel_imp_resp.clear();

    max_correlation = 0;
    for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++)
    {
        gr_complex correlation = correlation_buffer[strongest_window_nr + ii];
        if (abs(correlation) > max_correlation)
        {
            chan_imp_resp_center = ii;
            max_correlation = abs(correlation);
        }
        //     d_channel_imp_resp.push_back(correlation);
        chan_imp_resp[ii] = correlation;
    }

    burst_start = strongest_window_nr + chan_imp_resp_center - 48 * d_OSR - 2 * d_OSR + 2 + SYNC_POS * d_OSR;
    return burst_start;
}


void receiver_impl::detect_burst(const gr_complex * input, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary)
{
    float output[BURST_SIZE];
    std::vector<gr_complex> rhh_temp(CHAN_IMP_RESP_LENGTH*d_OSR);
    gr_complex rhh[CHAN_IMP_RESP_LENGTH];
    gr_complex filtered_burst[BURST_SIZE];
    int start_state = 3;
    unsigned int stop_states[2] = {4, 12};

    autocorrelation(chan_imp_resp, &rhh_temp[0], d_chan_imp_length*d_OSR);
    for (int ii = 0; ii < (d_chan_imp_length); ii++)
    {
        rhh[ii] = conj(rhh_temp[ii*d_OSR]);
    }

    mafi(&input[burst_start], BURST_SIZE, chan_imp_resp, d_chan_imp_length*d_OSR, filtered_burst);

    viterbi_detector(filtered_burst, BURST_SIZE, rhh, start_state, stop_states, 2, output);

    for (int i = 0; i < BURST_SIZE ; i++)
    {
        output_binary[i] = (output[i] > 0);
    }
}

void receiver_impl::gmsk_mapper(const unsigned char * input, int nitems, gr_complex * gmsk_output, gr_complex start_point)
{
    gr_complex j = gr_complex(0.0, 1.0);

    int current_symbol;
    int encoded_symbol;
    int previous_symbol = 2 * input[0] - 1;
    gmsk_output[0] = start_point;

    for (int i = 1; i < nitems; i++)
    {
        //change bits representation to NRZ
        current_symbol = 2 * input[i] - 1;
        //differentially encode
        encoded_symbol = current_symbol * previous_symbol;
        //and do gmsk mapping
        gmsk_output[i] = j * gr_complex(encoded_symbol, 0.0) * gmsk_output[i-1];
        previous_symbol = current_symbol;
    }
}

gr_complex receiver_impl::correlate_sequence(const gr_complex * sequence, int length, const gr_complex * input)
{
    gr_complex result(0.0, 0.0);
    int sample_number = 0;

    for (int ii = 0; ii < length; ii++)
    {
        sample_number = (ii * d_OSR) ;
        result += sequence[ii] * conj(input[sample_number]);
    }

    result = result / gr_complex(length, 0);
    return result;
}

//computes autocorrelation for positive arguments
inline void receiver_impl::autocorrelation(const gr_complex * input, gr_complex * out, int nitems)
{
    int i, k;
    for (k = nitems - 1; k >= 0; k--)
    {
        out[k] = gr_complex(0, 0);
        for (i = k; i < nitems; i++)
        {
            out[k] += input[i] * conj(input[i-k]);
        }
    }
}

inline void receiver_impl::mafi(const gr_complex * input, int nitems, gr_complex * filter, int filter_length, gr_complex * output)
{
    int ii = 0, n, a;

    for (n = 0; n < nitems; n++)
    {
        a = n * d_OSR;
        output[n] = 0;
        ii = 0;

        while (ii < filter_length)
        {
            if ((a + ii) >= nitems*d_OSR){
                break;
            }
            output[n] += input[a+ii] * filter[ii];
            ii++;
        }
    }
}

//especially computations of strongest_window_nr
int receiver_impl::get_norm_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp, float *corr_max, int bcc)
{
    std::vector<gr_complex> correlation_buffer;
    std::vector<float> power_buffer;
    std::vector<float> window_energy_buffer;

    int strongest_window_nr;
    int burst_start = 0;
    int chan_imp_resp_center = 0;
    float max_correlation = 0;
    float energy = 0;
   
    int search_center = (int)((TRAIN_POS + GUARD_PERIOD) * d_OSR);
    int search_start_pos = search_center + 1 - 5*d_OSR;
    //   int search_start_pos = search_center -  d_chan_imp_length * d_OSR;
    int search_stop_pos = search_center + d_chan_imp_length * d_OSR + 5 * d_OSR;

    for(int ii = search_start_pos; ii < search_stop_pos; ii++)
    {
        gr_complex correlation = correlate_sequence(&d_norm_training_seq[bcc][TRAIN_BEGINNING], N_TRAIN_BITS - 10, &input[ii]);
        correlation_buffer.push_back(correlation);
        power_buffer.push_back(std::pow(abs(correlation), 2));
    }
//    plot(power_buffer);
    //compute window energies
    std::vector<float>::iterator iter = power_buffer.begin();
    bool loop_end = false;
    while (iter != power_buffer.end())
    {
        std::vector<float>::iterator iter_ii = iter;
        energy = 0;

        for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++, iter_ii++)
        {
            if (iter_ii == power_buffer.end())
            {
                loop_end = true;
                break;
            }
            energy += (*iter_ii);
        }
        if (loop_end)
        {
            break;
        }
        iter++;

        window_energy_buffer.push_back(energy);
    }

    strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()-((d_chan_imp_length)*d_OSR)) - window_energy_buffer.begin();
    //strongest_window_nr = strongest_window_nr-d_OSR; 
    if(strongest_window_nr<0){
       strongest_window_nr = 0;
    }
    
    max_correlation = 0;
    for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++)
    {
        gr_complex correlation = correlation_buffer[strongest_window_nr + ii];
        if (abs(correlation) > max_correlation)
        {
            chan_imp_resp_center = ii;
            max_correlation = abs(correlation);
        }
        //     d_channel_imp_resp.push_back(correlation);
        chan_imp_resp[ii] = correlation;
    }
    
    *corr_max = max_correlation;

    //DCOUT("strongest_window_nr_new: " << strongest_window_nr);
    burst_start = search_start_pos + strongest_window_nr - TRAIN_POS * d_OSR; //compute first sample posiiton which corresponds to the first sample of the impulse response

    //DCOUT("burst_start: " << burst_start);
    return burst_start;
}


void receiver_impl::send_burst(burst_counter burst_nr, const unsigned char * burst_binary, uint8_t burst_type, unsigned int input_nr)
{
    boost::scoped_ptr<gsmtap_hdr> tap_header(new gsmtap_hdr());
   
    tap_header->version = GSMTAP_VERSION;
    tap_header->hdr_len = sizeof(gsmtap_hdr)/4;
    tap_header->type = GSMTAP_TYPE_UM_BURST;
    tap_header->sub_type = burst_type;
    bool uplink_burst = (input_nr >= d_cell_allocation.size());
    if(!uplink_burst) // downlink burst
    {
        tap_header->timeslot = static_cast<uint8_t>(d_burst_nr.get_timeslot_nr());
        tap_header->frame_number = htobe32(d_burst_nr.get_frame_nr());
        tap_header->arfcn = htobe16(d_cell_allocation[input_nr]) ; 
    }
    else //uplink burst
    {
        tap_header->timeslot = static_cast<uint8_t>(d_burst_nr.subtract_timeslots(3).get_timeslot_nr());
        tap_header->frame_number = htobe32(d_burst_nr.subtract_timeslots(3).get_frame_nr());
        input_nr = input_nr - d_cell_allocation.size();
        tap_header->arfcn = htobe16(d_cell_allocation[input_nr] | 0x4000);
    }
    tap_header->signal_dbm = static_cast<int8_t>(d_signal_dbm);
    tap_header->snr_db = 0;

    int8_t header_plus_burst[sizeof(gsmtap_hdr)+BURST_SIZE];
    memcpy(header_plus_burst, tap_header.get(), sizeof(gsmtap_hdr));
    memcpy(header_plus_burst+sizeof(gsmtap_hdr), burst_binary, BURST_SIZE);
    
    pmt::pmt_t blob_header_plus_burst = pmt::make_blob(header_plus_burst,sizeof(gsmtap_hdr)+BURST_SIZE);
    pmt::pmt_t msg = pmt::cons(pmt::PMT_NIL, blob_header_plus_burst);
    
    if(input_nr==0){
        message_port_pub(pmt::mp("C0"), msg);
    } else {
        message_port_pub(pmt::mp("CX"), msg);
    }
}

void receiver_impl::configure_receiver()
{
    d_channel_conf.set_multiframe_type(TIMESLOT0, multiframe_51);  
    d_channel_conf.set_burst_types(TIMESLOT0, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);

    d_channel_conf.set_burst_types(TIMESLOT0, TEST_CCH_FRAMES, sizeof(TEST_CCH_FRAMES) / sizeof(unsigned), dummy_or_normal);
    d_channel_conf.set_burst_types(TIMESLOT0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst);
    d_channel_conf.set_burst_types(TIMESLOT0, SCH_FRAMES, sizeof(SCH_FRAMES) / sizeof(unsigned), sch_burst);

    d_channel_conf.set_multiframe_type(TIMESLOT1, multiframe_51);
    d_channel_conf.set_burst_types(TIMESLOT1, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
    d_channel_conf.set_multiframe_type(TIMESLOT2, multiframe_51);
    d_channel_conf.set_burst_types(TIMESLOT2, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
    d_channel_conf.set_multiframe_type(TIMESLOT3, multiframe_51);
    d_channel_conf.set_burst_types(TIMESLOT3, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
    d_channel_conf.set_multiframe_type(TIMESLOT4, multiframe_51);
    d_channel_conf.set_burst_types(TIMESLOT4, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
    d_channel_conf.set_multiframe_type(TIMESLOT5, multiframe_51);
    d_channel_conf.set_burst_types(TIMESLOT5, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
    d_channel_conf.set_multiframe_type(TIMESLOT6, multiframe_51);
    d_channel_conf.set_burst_types(TIMESLOT6, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
    d_channel_conf.set_multiframe_type(TIMESLOT7, multiframe_51);
    d_channel_conf.set_burst_types(TIMESLOT7, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
}

void receiver_impl::set_cell_allocation(const std::vector<int> &cell_allocation)
{
    d_cell_allocation = cell_allocation;
}

void receiver_impl::set_tseq_nums(const std::vector<int> & tseq_nums)
{
    d_tseq_nums = tseq_nums;
}

void receiver_impl::reset()
{
    d_state = fcch_search;
}

} /* namespace gsm */
} /* namespace gr */