aboutsummaryrefslogtreecommitdiffstats
path: root/lib/decoding/fire_crc.c
blob: 5800517b1a8a9f641c3ebf1fb02b70bc8327247b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*
   The Hacker's Choice - http://www.thc.org
   Part of THC's GSM SCANNER PROJECT
*/


#include "fire_crc.h"
#include <stdio.h>
#include <string.h>

#define REM(x, y)	(x) % (y)

static int FC_syndrome_shift(FC_CTX *ctx, unsigned int bit);

static int
outit(int *data, int len)
{
	int i;

	for (i = 0; i < len; i++)
		printf("%d ", data[i]);
	printf("\n");
	return 0;
}

int
FC_init(FC_CTX *ctx, unsigned int crc_size, unsigned int data_size)
{
	ctx->crc_size = crc_size;
	ctx->data_size = data_size;
	ctx->syn_start = 0;

	return 0;
}

int
FC_check_crc(FC_CTX *ctx, unsigned char *input_bits, unsigned char *control_data)
{ 
	int j,error_count = 0, error_index = 0, success_flag = 0, syn_index = 0;
	unsigned int i;

	ctx->syn_start = 0;
	// reset the syndrome register
	memset(ctx->syndrome_reg, 0, sizeof ctx->syndrome_reg);

	// shift in the data bits
    for (i=0; i < ctx->data_size; i++) {
        error_count = FC_syndrome_shift(ctx, input_bits[i]);
        control_data[i] = input_bits[i];
    }

    // shift in the crc bits
    for (i=0; i < ctx->crc_size; i++) {
        error_count = FC_syndrome_shift(ctx, 1-input_bits[i+ctx->data_size]);
    }

    // Find position of error burst
    if (error_count == 0) {
        error_index = 0;
    }
    else {
        error_index = 1;
        error_count = FC_syndrome_shift(ctx, 0);
        error_index += 1;
        while (error_index < (ctx->data_size + ctx->crc_size) ) {
            error_count = FC_syndrome_shift(ctx, 0);
            error_index += 1;
            if ( error_count == 0 ) break;
        }
    }

    // Test for correctable errors
    //printf("error_index %d\n",error_index);
    if (error_index == 224) success_flag = 0;
    else {

        // correct index depending on the position of the error
        if (error_index == 0) syn_index = error_index;
        else syn_index = error_index - 1;
        
        // error burst lies within data bits
        if (error_index < 184) {
            //printf("error < bit 184,%d\n",error_index);
            j = error_index;
            while ( j < (error_index+12) ) {
                if (j < 184) {
                    control_data[j] = control_data[j] ^ 
                       ctx->syndrome_reg[REM(ctx->syn_start+39-j+syn_index,40)];
                }               
                else break;
                j = j + 1;
            }
        }
        else if ( error_index > 212 ) {
            //printf("error > bit 212,%d\n",error_index);
            j = 0;
            while ( j < (error_index - 212) ) {
                control_data[j] = control_data[j] ^ 
                      ctx->syndrome_reg[REM(ctx->syn_start+39-j-224+syn_index,40)];
                j = j + 1;
            }
        }
        // for 183 < error_index < 213 error in parity alone so ignore
        success_flag = 1;
    }
    return success_flag;
}    

static int 
FC_syndrome_shift(FC_CTX *ctx, unsigned int bit)
{
	int error_count = 0;
	unsigned int i;

	if (ctx->syn_start == 0)
		ctx->syn_start = 39;
	else ctx->syn_start -= 1;

	int temp_syndrome_reg[sizeof ctx->syndrome_reg];

	memcpy(temp_syndrome_reg, ctx->syndrome_reg, sizeof temp_syndrome_reg);

    temp_syndrome_reg[REM(ctx->syn_start+3,40)] = 
                       ctx->syndrome_reg[REM(ctx->syn_start+3,40)] ^
                       ctx->syndrome_reg[ctx->syn_start];
    temp_syndrome_reg[REM(ctx->syn_start+17,40)] = 
                       ctx->syndrome_reg[REM(ctx->syn_start+17,40)] ^
                       ctx->syndrome_reg[ctx->syn_start];
    temp_syndrome_reg[REM(ctx->syn_start+23,40)] = 
                       ctx->syndrome_reg[REM(ctx->syn_start+23,40)] ^
                       ctx->syndrome_reg[ctx->syn_start];
    temp_syndrome_reg[REM(ctx->syn_start+26,40)] = 
                       ctx->syndrome_reg[REM(ctx->syn_start+26,40)] ^
                       ctx->syndrome_reg[ctx->syn_start];

    temp_syndrome_reg[REM(ctx->syn_start+4,40)] = 
                       ctx->syndrome_reg[REM(ctx->syn_start+4,40)] ^ bit;
    temp_syndrome_reg[REM(ctx->syn_start+6,40)] = 
                       ctx->syndrome_reg[REM(ctx->syn_start+6,40)] ^ bit;
    temp_syndrome_reg[REM(ctx->syn_start+10,40)] = 
                       ctx->syndrome_reg[REM(ctx->syn_start+10,40)] ^ bit;
    temp_syndrome_reg[REM(ctx->syn_start+16,40)] = 
                       ctx->syndrome_reg[REM(ctx->syn_start+16,40)] ^ bit;
    temp_syndrome_reg[REM(ctx->syn_start+27,40)] = 
                       ctx->syndrome_reg[REM(ctx->syn_start+27,40)] ^ bit;
    temp_syndrome_reg[REM(ctx->syn_start+29,40)] = 
                       ctx->syndrome_reg[REM(ctx->syn_start+29,40)] ^ bit;
    temp_syndrome_reg[REM(ctx->syn_start+33,40)] = 
                       ctx->syndrome_reg[REM(ctx->syn_start+33,40)] ^ bit;
    temp_syndrome_reg[REM(ctx->syn_start+39,40)] = 
                       ctx->syndrome_reg[REM(ctx->syn_start+39,40)] ^ bit;

    temp_syndrome_reg[ctx->syn_start] = ctx->syndrome_reg[ctx->syn_start] ^ bit;

	memcpy(ctx->syndrome_reg, temp_syndrome_reg, sizeof ctx->syndrome_reg);

    for (i = 0; i < 28; i++) {
       error_count = error_count + ctx->syndrome_reg[REM(ctx->syn_start+i,40)];
    }
    return error_count;
}