/* -*- c++ -*- */ /* * @file * @author Piotr Krysik * @section LICENSE * * Gr-gsm is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * Gr-gsm is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with gr-gsm; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include "receiver_impl.h" #include //files included for debuging //#include "plotting/plotting.hpp" //#include #define SYNC_SEARCH_RANGE 30 namespace gr { namespace gsm { receiver::sptr receiver::make(int osr, const std::vector &cell_allocation, const std::vector &tseq_nums, bool process_uplink) { return gnuradio::get_initial_sptr (new receiver_impl(osr, cell_allocation, tseq_nums, process_uplink)); } /* * The private constructor */ receiver_impl::receiver_impl(int osr, const std::vector &cell_allocation, const std::vector &tseq_nums, bool process_uplink) : gr::sync_block("receiver", gr::io_signature::make(1, -1, sizeof(gr_complex)), gr::io_signature::make(0, 0, 0)), d_OSR(osr), d_process_uplink(process_uplink), d_chan_imp_length(CHAN_IMP_RESP_LENGTH), d_counter(0), d_fcch_start_pos(0), d_freq_offset_setting(0), d_state(fcch_search), d_burst_nr(osr), d_failed_sch(0), d_signal_dbm(-120), d_tseq_nums(tseq_nums), d_cell_allocation(cell_allocation), d_last_time(0.0) { int i; //don't send samples to the receiver until there are at least samples for one set_output_multiple(floor((TS_BITS + 2 * GUARD_PERIOD) * d_OSR)); // burst and two gurad periods (one gurard period is an arbitrary overlap) gmsk_mapper(SYNC_BITS, N_SYNC_BITS, d_sch_training_seq, gr_complex(0.0, -1.0)); for (i = 0; i < TRAIN_SEQ_NUM; i++) { gr_complex startpoint = (train_seq[i][0]==0) ? gr_complex(1.0, 0.0) : gr_complex(-1.0, 0.0); //if first bit of the seqeunce ==0 first symbol ==1 //if first bit of the seqeunce ==1 first symbol ==-1 gmsk_mapper(train_seq[i], N_TRAIN_BITS, d_norm_training_seq[i], startpoint); } message_port_register_out(pmt::mp("C0")); message_port_register_out(pmt::mp("CX")); message_port_register_out(pmt::mp("measurements")); configure_receiver(); //configure the receiver - tell it where to find which burst type } /* * Our virtual destructor. */ receiver_impl::~receiver_impl() { } int receiver_impl::work(int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { // std::vector iii = (std::vector) input_items; // jak zrobić to rzutowanie poprawnie gr_complex * input = (gr_complex *) input_items[0]; std::vector freq_offset_tags; uint64_t start = nitems_read(0); uint64_t stop = start + noutput_items; float current_time = static_cast(start)/(GSM_SYMBOL_RATE*d_OSR); if((current_time - d_last_time) > 0.1) { pmt::pmt_t msg = pmt::make_tuple(pmt::mp("current_time"),pmt::from_double(current_time)); message_port_pub(pmt::mp("measurements"), msg); d_last_time = current_time; } pmt::pmt_t key = pmt::string_to_symbol("setting_freq_offset"); get_tags_in_range(freq_offset_tags, 0, start, stop, key); bool freq_offset_tag_in_fcch = false; uint64_t tag_offset=-1; //-1 - just some clearly invalid value if(!freq_offset_tags.empty()){ tag_t freq_offset_tag = freq_offset_tags[0]; tag_offset = freq_offset_tag.offset - start; burst_type b_type = d_channel_conf.get_burst_type(d_burst_nr); if(d_state == synchronized && b_type == fcch_burst){ uint64_t last_sample_nr = ceil((GUARD_PERIOD + 2.0 * TAIL_BITS + 156.25) * d_OSR) + 1; if(tag_offset < last_sample_nr){ freq_offset_tag_in_fcch = true; } d_freq_offset_setting = pmt::to_double(freq_offset_tag.value); } else { d_freq_offset_setting = pmt::to_double(freq_offset_tag.value); } } switch (d_state) { //bootstrapping case fcch_search: { double freq_offset_tmp; if (find_fcch_burst(input, noutput_items,freq_offset_tmp)) { pmt::pmt_t msg = pmt::make_tuple(pmt::mp("freq_offset"),pmt::from_double(freq_offset_tmp-d_freq_offset_setting),pmt::mp("fcch_search")); message_port_pub(pmt::mp("measurements"), msg); d_state = sch_search; } else { d_state = fcch_search; } break; } case sch_search: { std::vector channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR); int t1, t2, t3; int burst_start = 0; unsigned char output_binary[BURST_SIZE]; if (reach_sch_burst(noutput_items)) //wait for a SCH burst { burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); //get channel impulse response from it detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //detect bits using MLSE detection if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) //decode SCH burst { d_burst_nr.set(t1, t2, t3, 0); //set counter of bursts value d_burst_nr++; consume_each(burst_start + BURST_SIZE * d_OSR + 4*d_OSR); //consume samples up to next guard period d_state = synchronized; } else { d_state = fcch_search; //if there is error in the sch burst go back to fcch search phase } } else { d_state = sch_search; } break; } //in this state receiver is synchronized and it processes bursts according to burst type for given burst number case synchronized: { std::vector channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR); int offset = 0; int to_consume = 0; unsigned char output_binary[BURST_SIZE]; burst_type b_type; unsigned int inputs_to_process=d_cell_allocation.size(); if(d_process_uplink) { inputs_to_process = 2*inputs_to_process; } for(int input_nr=0; input_nr= MAX_SCH_ERRORS) { d_state = fcch_search; pmt::pmt_t msg = pmt::make_tuple(pmt::mp("freq_offset"),pmt::from_double(0.0),pmt::mp("sync_loss")); message_port_pub(pmt::mp("measurements"), msg); //DCOUT("Re-Synchronization!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"); } } break; } case normal_burst: { float normal_corr_max; //if it's normal burst d_c0_burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], &normal_corr_max, d_bcc); //get channel impulse response for given training sequence number - d_bcc detect_burst(input, &channel_imp_resp[0], d_c0_burst_start, output_binary); //MLSE detection of bits send_burst(d_burst_nr, output_binary, GSMTAP_BURST_NORMAL, input_nr); break; } case dummy_or_normal: { unsigned int normal_burst_start, dummy_burst_start; float dummy_corr_max, normal_corr_max; dummy_burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], &dummy_corr_max, TS_DUMMY); normal_burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], &normal_corr_max, d_bcc); if (normal_corr_max > dummy_corr_max) { d_c0_burst_start = normal_burst_start; detect_burst(input, &channel_imp_resp[0], normal_burst_start, output_binary); send_burst(d_burst_nr, output_binary, GSMTAP_BURST_NORMAL, input_nr); } else { d_c0_burst_start = dummy_burst_start; send_burst(d_burst_nr, dummy_burst, GSMTAP_BURST_DUMMY, input_nr); } break; } case rach_burst: break; case dummy: send_burst(d_burst_nr, dummy_burst, GSMTAP_BURST_DUMMY, input_nr); break; case normal_or_noise: { unsigned int burst_start; float normal_corr_max_tmp; float normal_corr_max=-1e6; int max_tn; std::vector v(input, input + noutput_items); //if(d_signal_dbm>=d_c0_signal_dbm-13) { if(d_tseq_nums.size()==0) //there is no information about training sequence { //however the receiver can detect it get_norm_chan_imp_resp(input, &channel_imp_resp[0], &normal_corr_max, 0); float ts_max=normal_corr_max; //with use of a very simple algorithm based on finding int ts_max_num=0; //maximum correlation for(int ss=1; ss<=7; ss++) { get_norm_chan_imp_resp(input, &channel_imp_resp[0], &normal_corr_max, ss); if(ts_max=0.9) { detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); send_burst(d_burst_nr, output_binary, GSMTAP_BURST_NORMAL, input_nr); } } break; } case empty: //if it's empty burst break; //do nothing } if(input_nr==input_items.size()-1) { d_burst_nr++; //go to next burst to_consume += TS_BITS * d_OSR + d_burst_nr.get_offset(); //consume samples of the burst up to next guard period consume_each(to_consume); } //and add offset which is introduced by //0.25 fractional part of a guard period } } break; } return 0; } bool receiver_impl::find_fcch_burst(const gr_complex *input, const int nitems, double & computed_freq_offset) { boost::circular_buffer phase_diff_buffer(FCCH_HITS_NEEDED * d_OSR); //circular buffer used to scan throug signal to find //best match for FCCH burst float phase_diff = 0; gr_complex conjprod; int start_pos = -1; int hit_count = 0; int miss_count = 0; float min_phase_diff; float max_phase_diff; double best_sum = 0; float lowest_max_min_diff = 99999; int to_consume = 0; int sample_number = 0; bool end = false; bool result = false; boost::circular_buffer::iterator buffer_iter; /**@name Possible states of FCCH search algorithm*/ //@{ enum states { init, ///< initialize variables search, ///< search for positive samples found_something, ///< search for FCCH and the best position of it fcch_found, ///< when FCCH was found search_fail ///< when there is no FCCH in the input vector } fcch_search_state; //@} fcch_search_state = init; while (!end) { switch (fcch_search_state) { case init: //initialize variables hit_count = 0; miss_count = 0; start_pos = -1; lowest_max_min_diff = 99999; phase_diff_buffer.clear(); fcch_search_state = search; break; case search: // search for positive samples sample_number++; if (sample_number > nitems - FCCH_HITS_NEEDED * d_OSR) //if it isn't possible to find FCCH because { //there's too few samples left to look into, to_consume = sample_number; //don't do anything with those samples which are left //and consume only those which were checked fcch_search_state = search_fail; } else { phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]); if (phase_diff > 0) //if a positive phase difference was found { to_consume = sample_number; fcch_search_state = found_something; //switch to state in which searches for FCCH } else { fcch_search_state = search; } } break; case found_something: // search for FCCH and the best position of it { if (phase_diff > 0) { hit_count++; //positive phase differencies increases hits_count } else { miss_count++; //negative increases miss_count } if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR)) { //if miss_count exceeds limit before hit_count fcch_search_state = init; //go to init continue; } else if (((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) || (hit_count > 2 * FCCH_HITS_NEEDED * d_OSR)) { //if hit_count and miss_count exceeds limit then FCCH was found fcch_search_state = fcch_found; continue; } else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) { //find difference between minimal and maximal element in the buffer //for FCCH this value should be low //this part is searching for a region where this value is lowest min_phase_diff = * (min_element(phase_diff_buffer.begin(), phase_diff_buffer.end())); max_phase_diff = * (max_element(phase_diff_buffer.begin(), phase_diff_buffer.end())); if (lowest_max_min_diff > max_phase_diff - min_phase_diff) { lowest_max_min_diff = max_phase_diff - min_phase_diff; start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR; //store start pos best_sum = 0; for (buffer_iter = phase_diff_buffer.begin(); buffer_iter != (phase_diff_buffer.end()); buffer_iter++) { best_sum += *buffer_iter - (M_PI / 2) / d_OSR; //store best value of phase offset sum } } } sample_number++; if (sample_number >= nitems) //if there's no single sample left to check { fcch_search_state = search_fail;//FCCH search failed continue; } phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]); phase_diff_buffer.push_back(phase_diff); fcch_search_state = found_something; } break; case fcch_found: { to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1; //consume one FCCH burst d_fcch_start_pos = d_counter + start_pos; //compute frequency offset double phase_offset = best_sum / FCCH_HITS_NEEDED; double freq_offset = phase_offset * 1625000.0/6 / (2 * M_PI); //1625000.0/6 - GMSK symbol rate in GSM computed_freq_offset = freq_offset; end = true; result = true; break; } case search_fail: end = true; result = false; break; } } d_counter += to_consume; consume_each(to_consume); return result; } double receiver_impl::compute_freq_offset(const gr_complex * input, unsigned first_sample, unsigned last_sample) { double phase_sum = 0; unsigned ii; for (ii = first_sample; ii < last_sample; ii++) { double phase_diff = compute_phase_diff(input[ii], input[ii-1]) - (M_PI / 2) / d_OSR; phase_sum += phase_diff; } double phase_offset = phase_sum / (last_sample - first_sample); double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI); return freq_offset; } inline float receiver_impl::compute_phase_diff(gr_complex val1, gr_complex val2) { gr_complex conjprod = val1 * conj(val2); return fast_atan2f(imag(conjprod), real(conjprod)); } bool receiver_impl::reach_sch_burst(const int nitems) { //it just consumes samples to get near to a SCH burst int to_consume = 0; bool result = false; unsigned sample_nr_near_sch_start = d_fcch_start_pos + (FRAME_BITS - SAFETY_MARGIN) * d_OSR; //consume samples until d_counter will be equal to sample_nr_near_sch_start if (d_counter < sample_nr_near_sch_start) { if (d_counter + nitems >= sample_nr_near_sch_start) { to_consume = sample_nr_near_sch_start - d_counter; } else { to_consume = nitems; } result = false; } else { to_consume = 0; result = true; } d_counter += to_consume; consume_each(to_consume); return result; } int receiver_impl::get_sch_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp) { std::vector correlation_buffer; std::vector power_buffer; std::vector window_energy_buffer; int strongest_window_nr; int burst_start = 0; int chan_imp_resp_center = 0; float max_correlation = 0; float energy = 0; for (int ii = SYNC_POS * d_OSR; ii < (SYNC_POS + SYNC_SEARCH_RANGE) *d_OSR; ii++) { gr_complex correlation = correlate_sequence(&d_sch_training_seq[5], N_SYNC_BITS - 10, &input[ii]); correlation_buffer.push_back(correlation); power_buffer.push_back(std::pow(abs(correlation), 2)); } //compute window energies std::vector::iterator iter = power_buffer.begin(); bool loop_end = false; while (iter != power_buffer.end()) { std::vector::iterator iter_ii = iter; energy = 0; for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++, iter_ii++) { if (iter_ii == power_buffer.end()) { loop_end = true; break; } energy += (*iter_ii); } if (loop_end) { break; } iter++; window_energy_buffer.push_back(energy); } strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin(); // d_channel_imp_resp.clear(); max_correlation = 0; for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++) { gr_complex correlation = correlation_buffer[strongest_window_nr + ii]; if (abs(correlation) > max_correlation) { chan_imp_resp_center = ii; max_correlation = abs(correlation); } // d_channel_imp_resp.push_back(correlation); chan_imp_resp[ii] = correlation; } burst_start = strongest_window_nr + chan_imp_resp_center - 48 * d_OSR - 2 * d_OSR + 2 + SYNC_POS * d_OSR; return burst_start; } void receiver_impl::detect_burst(const gr_complex * input, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary) { float output[BURST_SIZE]; std::vector rhh_temp(CHAN_IMP_RESP_LENGTH*d_OSR); gr_complex rhh[CHAN_IMP_RESP_LENGTH]; gr_complex filtered_burst[BURST_SIZE]; int start_state = 3; unsigned int stop_states[2] = {4, 12}; autocorrelation(chan_imp_resp, &rhh_temp[0], d_chan_imp_length*d_OSR); for (int ii = 0; ii < (d_chan_imp_length); ii++) { rhh[ii] = conj(rhh_temp[ii*d_OSR]); } mafi(&input[burst_start], BURST_SIZE, chan_imp_resp, d_chan_imp_length*d_OSR, filtered_burst); viterbi_detector(filtered_burst, BURST_SIZE, rhh, start_state, stop_states, 2, output); for (int i = 0; i < BURST_SIZE ; i++) { output_binary[i] = (output[i] > 0); } } void receiver_impl::gmsk_mapper(const unsigned char * input, int nitems, gr_complex * gmsk_output, gr_complex start_point) { gr_complex j = gr_complex(0.0, 1.0); int current_symbol; int encoded_symbol; int previous_symbol = 2 * input[0] - 1; gmsk_output[0] = start_point; for (int i = 1; i < nitems; i++) { //change bits representation to NRZ current_symbol = 2 * input[i] - 1; //differentially encode encoded_symbol = current_symbol * previous_symbol; //and do gmsk mapping gmsk_output[i] = j * gr_complex(encoded_symbol, 0.0) * gmsk_output[i-1]; previous_symbol = current_symbol; } } gr_complex receiver_impl::correlate_sequence(const gr_complex * sequence, int length, const gr_complex * input) { gr_complex result(0.0, 0.0); int sample_number = 0; for (int ii = 0; ii < length; ii++) { sample_number = (ii * d_OSR) ; result += sequence[ii] * conj(input[sample_number]); } result = result / gr_complex(length, 0); return result; } //computes autocorrelation for positive arguments inline void receiver_impl::autocorrelation(const gr_complex * input, gr_complex * out, int nitems) { int i, k; for (k = nitems - 1; k >= 0; k--) { out[k] = gr_complex(0, 0); for (i = k; i < nitems; i++) { out[k] += input[i] * conj(input[i-k]); } } } inline void receiver_impl::mafi(const gr_complex * input, int nitems, gr_complex * filter, int filter_length, gr_complex * output) { int ii = 0, n, a; for (n = 0; n < nitems; n++) { a = n * d_OSR; output[n] = 0; ii = 0; while (ii < filter_length) { if ((a + ii) >= nitems*d_OSR){ break; } output[n] += input[a+ii] * filter[ii]; ii++; } } } //especially computations of strongest_window_nr int receiver_impl::get_norm_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp, float *corr_max, int bcc) { std::vector correlation_buffer; std::vector power_buffer; std::vector window_energy_buffer; int strongest_window_nr; int burst_start = 0; int chan_imp_resp_center = 0; float max_correlation = 0; float energy = 0; int search_center = (int)((TRAIN_POS + GUARD_PERIOD) * d_OSR); int search_start_pos = search_center + 1 - 5*d_OSR; // int search_start_pos = search_center - d_chan_imp_length * d_OSR; int search_stop_pos = search_center + d_chan_imp_length * d_OSR + 5 * d_OSR; for(int ii = search_start_pos; ii < search_stop_pos; ii++) { gr_complex correlation = correlate_sequence(&d_norm_training_seq[bcc][TRAIN_BEGINNING], N_TRAIN_BITS - 10, &input[ii]); correlation_buffer.push_back(correlation); power_buffer.push_back(std::pow(abs(correlation), 2)); } // plot(power_buffer); //compute window energies std::vector::iterator iter = power_buffer.begin(); bool loop_end = false; while (iter != power_buffer.end()) { std::vector::iterator iter_ii = iter; energy = 0; for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++, iter_ii++) { if (iter_ii == power_buffer.end()) { loop_end = true; break; } energy += (*iter_ii); } if (loop_end) { break; } iter++; window_energy_buffer.push_back(energy); } strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()-((d_chan_imp_length)*d_OSR)) - window_energy_buffer.begin(); //strongest_window_nr = strongest_window_nr-d_OSR; if(strongest_window_nr<0){ strongest_window_nr = 0; } max_correlation = 0; for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++) { gr_complex correlation = correlation_buffer[strongest_window_nr + ii]; if (abs(correlation) > max_correlation) { chan_imp_resp_center = ii; max_correlation = abs(correlation); } // d_channel_imp_resp.push_back(correlation); chan_imp_resp[ii] = correlation; } *corr_max = max_correlation; //DCOUT("strongest_window_nr_new: " << strongest_window_nr); burst_start = search_start_pos + strongest_window_nr - TRAIN_POS * d_OSR; //compute first sample posiiton which corresponds to the first sample of the impulse response //DCOUT("burst_start: " << burst_start); return burst_start; } void receiver_impl::send_burst(burst_counter burst_nr, const unsigned char * burst_binary, uint8_t burst_type, unsigned int input_nr) { boost::scoped_ptr tap_header(new gsmtap_hdr()); tap_header->version = GSMTAP_VERSION; tap_header->hdr_len = sizeof(gsmtap_hdr)/4; tap_header->type = GSMTAP_TYPE_UM_BURST; tap_header->sub_type = burst_type; bool uplink_burst = (input_nr >= d_cell_allocation.size()); if(!uplink_burst) // downlink burst { tap_header->timeslot = static_cast(d_burst_nr.get_timeslot_nr()); tap_header->frame_number = htobe32(d_burst_nr.get_frame_nr()); tap_header->arfcn = htobe16(d_cell_allocation[input_nr]) ; } else //uplink burst { tap_header->timeslot = static_cast(d_burst_nr.subtract_timeslots(3).get_timeslot_nr()); tap_header->frame_number = htobe32(d_burst_nr.subtract_timeslots(3).get_frame_nr()); input_nr = input_nr - d_cell_allocation.size(); tap_header->arfcn = htobe16(d_cell_allocation[input_nr] | 0x4000); } tap_header->signal_dbm = static_cast(d_signal_dbm); tap_header->snr_db = 0; int8_t header_plus_burst[sizeof(gsmtap_hdr)+BURST_SIZE]; memcpy(header_plus_burst, tap_header.get(), sizeof(gsmtap_hdr)); memcpy(header_plus_burst+sizeof(gsmtap_hdr), burst_binary, BURST_SIZE); pmt::pmt_t blob_header_plus_burst = pmt::make_blob(header_plus_burst,sizeof(gsmtap_hdr)+BURST_SIZE); pmt::pmt_t msg = pmt::cons(pmt::PMT_NIL, blob_header_plus_burst); if(input_nr==0){ message_port_pub(pmt::mp("C0"), msg); } else { message_port_pub(pmt::mp("CX"), msg); } } void receiver_impl::configure_receiver() { d_channel_conf.set_multiframe_type(TIMESLOT0, multiframe_51); d_channel_conf.set_burst_types(TIMESLOT0, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal); d_channel_conf.set_burst_types(TIMESLOT0, TEST_CCH_FRAMES, sizeof(TEST_CCH_FRAMES) / sizeof(unsigned), dummy_or_normal); d_channel_conf.set_burst_types(TIMESLOT0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst); d_channel_conf.set_burst_types(TIMESLOT0, SCH_FRAMES, sizeof(SCH_FRAMES) / sizeof(unsigned), sch_burst); d_channel_conf.set_multiframe_type(TIMESLOT1, multiframe_51); d_channel_conf.set_burst_types(TIMESLOT1, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal); d_channel_conf.set_multiframe_type(TIMESLOT2, multiframe_51); d_channel_conf.set_burst_types(TIMESLOT2, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal); d_channel_conf.set_multiframe_type(TIMESLOT3, multiframe_51); d_channel_conf.set_burst_types(TIMESLOT3, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal); d_channel_conf.set_multiframe_type(TIMESLOT4, multiframe_51); d_channel_conf.set_burst_types(TIMESLOT4, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal); d_channel_conf.set_multiframe_type(TIMESLOT5, multiframe_51); d_channel_conf.set_burst_types(TIMESLOT5, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal); d_channel_conf.set_multiframe_type(TIMESLOT6, multiframe_51); d_channel_conf.set_burst_types(TIMESLOT6, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal); d_channel_conf.set_multiframe_type(TIMESLOT7, multiframe_51); d_channel_conf.set_burst_types(TIMESLOT7, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal); } void receiver_impl::set_cell_allocation(const std::vector &cell_allocation) { d_cell_allocation = cell_allocation; } void receiver_impl::set_tseq_nums(const std::vector & tseq_nums) { d_tseq_nums = tseq_nums; } void receiver_impl::reset() { d_state = fcch_search; } } /* namespace gsm */ } /* namespace gr */