aboutsummaryrefslogtreecommitdiffstats
path: root/lib/decoding/osmocom/coding/gsm0503_coding.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/decoding/osmocom/coding/gsm0503_coding.c')
-rw-r--r--lib/decoding/osmocom/coding/gsm0503_coding.c492
1 files changed, 401 insertions, 91 deletions
diff --git a/lib/decoding/osmocom/coding/gsm0503_coding.c b/lib/decoding/osmocom/coding/gsm0503_coding.c
index afbba88..3812c9f 100644
--- a/lib/decoding/osmocom/coding/gsm0503_coding.c
+++ b/lib/decoding/osmocom/coding/gsm0503_coding.c
@@ -2,9 +2,12 @@
* (C) 2013 by Andreas Eversberg <jolly@eversberg.eu>
* (C) 2015 by Alexander Chemeris <Alexander.Chemeris@fairwaves.co>
* (C) 2016 by Tom Tsou <tom.tsou@ettus.com>
+ * (C) 2017 by Harald Welte <laforge@gnumonks.org>
*
* All Rights Reserved
*
+ * SPDX-License-Identifier: GPL-2.0+
+ *
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
@@ -24,31 +27,83 @@
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
-
-#ifdef __cplusplus
-extern "C" {
-#endif
+#include <errno.h>
#include <osmocom/core/bits.h>
#include <osmocom/core/conv.h>
-#include <osmocom/core/utils.h>
+//#include <osmocom/core/utils.h>
#include <osmocom/core/crcgen.h>
#include <osmocom/core/endian.h>
-#include <osmocom/gsm/protocol/gsm_04_08.h>
-#include "gsm0503.h"
+//#include <osmocom/gsm/protocol/gsm_04_08.h>
+#include <osmocom/gprs/protocol/gsm_04_60.h>
+#include <osmocom/gprs/gprs_rlc.h>
+
+#include <osmocom/gsm/gsm0503.h>
#include <osmocom/codec/codec.h>
-#include "gsm0503_interleaving.h"
-#include "gsm0503_mapping.h"
-#include "gsm0503_tables.h"
-#include "gsm0503_coding.h"
-#include "gsm0503_parity.h"
+#include <osmocom/coding/gsm0503_interleaving.h>
+#include <osmocom/coding/gsm0503_mapping.h>
+#include <osmocom/coding/gsm0503_tables.h>
+#include <osmocom/coding/gsm0503_coding.h>
+#include <osmocom/coding/gsm0503_parity.h>
+
+/*! \mainpage libosmocoding Documentation
+ *
+ * \section sec_intro Introduction
+ * This library is a collection of definitions, tables and functions
+ * implementing the GSM/GPRS/EGPRS channel coding (and decoding) as
+ * specified in 3GPP TS 05.03 / 45.003.
+ *
+ * libosmocoding is developed as part of the Osmocom (Open Source Mobile
+ * Communications) project, a community-based, collaborative development
+ * project to create Free and Open Source implementations of mobile
+ * communications systems. For more information about Osmocom, please
+ * see https://osmocom.org/
+ *
+ * \section sec_copyright Copyright and License
+ * Copyright © 2013 by Andreas Eversberg\n
+ * Copyright © 2015 by Alexander Chemeris\n
+ * Copyright © 2016 by Tom Tsou\n
+ * Documentation Copyright © 2017 by Harald Welte\n
+ * All rights reserved. \n\n
+ * The source code of libosmocoding is licensed under the terms of the GNU
+ * General Public License as published by the Free Software Foundation;
+ * either version 2 of the License, or (at your option) any later
+ * version.\n
+ * See <http://www.gnu.org/licenses/> or COPYING included in the source
+ * code package istelf.\n
+ * The information detailed here is provided AS IS with NO WARRANTY OF
+ * ANY KIND, INCLUDING THE WARRANTY OF DESIGN, MERCHANTABILITY AND
+ * FITNESS FOR A PARTICULAR PURPOSE.
+ * \n\n
+ *
+ * \section sec_tracker Homepage + Issue Tracker
+ * libosmocoding is distributed as part of libosmocore and shares its
+ * project page at http://osmocom.org/projects/libosmocore
+ *
+ * An Issue Tracker can be found at
+ * https://osmocom.org/projects/libosmocore/issues
+ *
+ * \section sec_contact Contact and Support
+ * Community-based support is available at the OpenBSC mailing list
+ * <http://lists.osmocom.org/mailman/listinfo/openbsc>\n
+ * Commercial support options available upon request from
+ * <http://sysmocom.de/>
+ */
-#ifdef __cplusplus
-}
-#endif
+/*! \addtogroup coding
+ * @{
+ *
+ * GSM TS 05.03 coding
+ *
+ * This module is the "master module" of libosmocoding. It uses the
+ * various other modules (mapping, parity, interleaving) in order to
+ * implement the complete channel coding (and decoding) chain for the
+ * various channel types as defined in TS 05.03 / 45.003.
+ *
+ * \file gsm0503_coding.c */
/*
* EGPRS coding limits
@@ -76,29 +131,49 @@ extern "C" {
#define EGPRS_DATA_C1 612
#define EGPRS_DATA_C2 EGPRS_DATA_C1
-/* TS 101318 Chapter 5.1: 260 bits + 4bit sig */
-#define GSM_FR_BYTES 33
-/* TS 101318 Chapter 5.2: 112 bits, no sig */
-#define GSM_HR_BYTES 14
-/* TS 101318 Chapter 5.3: 244 bits + 4bit sig */
-#define GSM_EFR_BYTES 31
+/*! union across the three different EGPRS Uplink header types */
+union gprs_rlc_ul_hdr_egprs {
+ struct gprs_rlc_ul_header_egprs_1 type1;
+ struct gprs_rlc_ul_header_egprs_2 type2;
+ struct gprs_rlc_ul_header_egprs_3 type3;
+};
+
+/*! union across the three different EGPRS Downlink header types */
+union gprs_rlc_dl_hdr_egprs {
+ struct gprs_rlc_dl_header_egprs_1 type1;
+ struct gprs_rlc_dl_header_egprs_2 type2;
+ struct gprs_rlc_dl_header_egprs_3 type3;
+};
+/*! Structure describing a Modulation and Coding Scheme */
struct gsm0503_mcs_code {
+ /*! Modulation and Coding Scheme (MSC) number */
uint8_t mcs;
+ /*! Length of Uplink Stealing Flag (USF) in bits */
uint8_t usf_len;
/* Header coding */
+ /*! Length of header (bits) */
uint8_t hdr_len;
+ /*! Length of header convolutional code */
uint8_t hdr_code_len;
+ /*! Length of header code puncturing sequence */
uint8_t hdr_punc_len;
+ /*! header convolutional code */
const struct osmo_conv_code *hdr_conv;
+ /*! header puncturing sequence */
const uint8_t *hdr_punc;
/* Data coding */
+ /*! length of data (bits) */
uint16_t data_len;
+ /*! length of data convolutional code */
uint16_t data_code_len;
+ /*! length of data code puncturing sequence */
uint16_t data_punc_len;
+ /*! data convolutional code */
const struct osmo_conv_code *data_conv;
+ /*! data puncturing sequences */
const uint8_t *data_punc[3];
};
@@ -113,7 +188,7 @@ static int osmo_conv_decode_ber(const struct osmo_conv_code *code,
if (n_bits_total || n_errors) {
coded_len = osmo_conv_encode(code, output, recoded);
- OSMO_ASSERT(sizeof(recoded) / sizeof(recoded[0]) >= coded_len);
+ //OSMO_ASSERT(sizeof(recoded) / sizeof(recoded[0]) >= coded_len);
}
/* Count bit errors */
@@ -132,7 +207,13 @@ static int osmo_conv_decode_ber(const struct osmo_conv_code *code,
return res;
}
-static int _xcch_decode_cB(uint8_t *l2_data, sbit_t *cB,
+/*! convenience wrapper for decoding coded bits
+ * \param[out] l2_data caller-allocated buffer for L2 Frame
+ * \param[in] cB 456 coded (soft) bits as per TS 05.03 4.1.3
+ * \param[out] n_errors Number of detected errors
+ * \param[out] n_bits_total Number of total coded bits
+ * \returns 0 on success; -1 on CRC error */
+static int _xcch_decode_cB(uint8_t *l2_data, const sbit_t *cB,
int *n_errors, int *n_bits_total)
{
ubit_t conv[224];
@@ -151,7 +232,11 @@ static int _xcch_decode_cB(uint8_t *l2_data, sbit_t *cB,
return 0;
}
-static int _xcch_encode_cB(ubit_t *cB, uint8_t *l2_data)
+/*! convenience wrapper for encoding to coded bits
+ * \param[out] cB caller-allocated buffer for 456 coded bits as per TS 05.03 4.1.3
+ * \param[out] l2_data to-be-encoded L2 Frame
+ * \returns 0 */
+static int _xcch_encode_cB(ubit_t *cB, const uint8_t *l2_data)
{
ubit_t conv[224];
@@ -167,7 +252,14 @@ static int _xcch_encode_cB(ubit_t *cB, uint8_t *l2_data)
/*
* GSM xCCH block transcoding
*/
-int gsm0503_xcch_decode(uint8_t *l2_data, sbit_t *bursts,
+
+/*! Decoding of xCCH data from bursts to L2 frame
+ * \param[out] l2_data caller-allocated output data buffer
+ * \param[in] bursts four GSM bursts in soft-bits
+ * \param[out] n_errors Number of detected errors
+ * \param[out] n_bits_total Number of total coded bits
+ */
+int gsm0503_xcch_decode(uint8_t *l2_data, const sbit_t *bursts,
int *n_errors, int *n_bits_total)
{
sbit_t iB[456], cB[456];
@@ -181,7 +273,12 @@ int gsm0503_xcch_decode(uint8_t *l2_data, sbit_t *bursts,
return _xcch_decode_cB(l2_data, cB, n_errors, n_bits_total);
}
-int gsm0503_xcch_encode(ubit_t *bursts, uint8_t *l2_data)
+/*! Encoding of xCCH data from L2 frame to bursts
+ * \param[out] bursts caller-allocated burst data (unpacked bits)
+ * \param[in] l2_data L2 input data (MAC block)
+ * \returns 0
+ */
+int gsm0503_xcch_encode(ubit_t *bursts, const uint8_t *l2_data)
{
ubit_t iB[456], cB[456], hl = 1, hn = 1;
int i;
@@ -202,7 +299,14 @@ int gsm0503_xcch_encode(ubit_t *bursts, uint8_t *l2_data)
* GSM PDTCH block transcoding
*/
-int gsm0503_pdtch_decode(uint8_t *l2_data, sbit_t *bursts, uint8_t *usf_p,
+/*! Decode GPRS PDTCH
+ * \param[out] l2_data caller-allocated buffer for L2 Frame
+ * \param[in] bursts burst input data as soft unpacked bits
+ * \param[out] usf_p uplink stealing flag
+ * \param[out] n_errors number of detected bit-errors
+ * \param[out] n_bits_total total number of dcoded bits
+ * \returns 0 on success; negative on error */
+int gsm0503_pdtch_decode(uint8_t *l2_data, const sbit_t *bursts, uint8_t *usf_p,
int *n_errors, int *n_bits_total)
{
sbit_t iB[456], cB[676], hl_hn[8];
@@ -219,7 +323,7 @@ int gsm0503_pdtch_decode(uint8_t *l2_data, sbit_t *bursts, uint8_t *usf_p,
if (i == 0 || k < best) {
best = k;
- cs = i+1;
+ cs = i + 1;
}
}
@@ -246,7 +350,7 @@ int gsm0503_pdtch_decode(uint8_t *l2_data, sbit_t *bursts, uint8_t *usf_p,
cB[i] = 0;
}
- osmo_conv_decode_ber(&gsm0503_cs2, cB,
+ osmo_conv_decode_ber(&gsm0503_cs2_np, cB,
conv, n_errors, n_bits_total);
for (i = 0; i < 8; i++) {
@@ -281,7 +385,7 @@ int gsm0503_pdtch_decode(uint8_t *l2_data, sbit_t *bursts, uint8_t *usf_p,
cB[i] = 0;
}
- osmo_conv_decode_ber(&gsm0503_cs3, cB,
+ osmo_conv_decode_ber(&gsm0503_cs3_np, cB,
conv, n_errors, n_bits_total);
for (i = 0; i < 8; i++) {
@@ -351,7 +455,13 @@ int gsm0503_pdtch_decode(uint8_t *l2_data, sbit_t *bursts, uint8_t *usf_p,
return -1;
}
-int gsm0503_pdtch_encode(ubit_t *bursts, uint8_t *l2_data, uint8_t l2_len)
+
+/*! GPRS DL message encoding
+ * \param[out] bursts caller-allocated buffer for unpacked burst bits
+ * \param[in] l2_data L2 (MAC) block to be encoded
+ * \param[in] l2_len length of l2_data in bytes, used to determine CS
+ * \returns 0 on success; negative on error */
+int gsm0503_pdtch_encode(ubit_t *bursts, const uint8_t *l2_data, uint8_t l2_len)
{
ubit_t iB[456], cB[676];
const ubit_t *hl_hn;
@@ -378,7 +488,7 @@ int gsm0503_pdtch_encode(ubit_t *bursts, uint8_t *l2_data, uint8_t l2_len)
memcpy(conv, gsm0503_usf2six[usf], 6);
- osmo_conv_encode(&gsm0503_cs2, conv, cB);
+ osmo_conv_encode(&gsm0503_cs2_np, conv, cB);
for (i = 0, j = 0; i < 588; i++)
if (!gsm0503_puncture_cs2[i])
@@ -396,7 +506,7 @@ int gsm0503_pdtch_encode(ubit_t *bursts, uint8_t *l2_data, uint8_t l2_len)
memcpy(conv, gsm0503_usf2six[usf], 6);
- osmo_conv_encode(&gsm0503_cs3, conv, cB);
+ osmo_conv_encode(&gsm0503_cs3_np, conv, cB);
for (i = 0, j = 0; i < 676; i++)
if (!gsm0503_puncture_cs3[i])
@@ -435,8 +545,12 @@ int gsm0503_pdtch_encode(ubit_t *bursts, uint8_t *l2_data, uint8_t l2_len)
* GSM TCH/F FR/EFR transcoding
*/
+/*! assemble a FR codec frame in format as used inside RTP
+ * \param[out] tch_data Codec frame in RTP format
+ * \param[in] b_bits Codec frame in 'native' format
+ * \param[in] net_order FIXME */
static void tch_fr_reassemble(uint8_t *tch_data,
- ubit_t *b_bits, int net_order)
+ const ubit_t *b_bits, int net_order)
{
int i, j, k, l, o;
@@ -468,7 +582,7 @@ static void tch_fr_reassemble(uint8_t *tch_data,
}
static void tch_fr_disassemble(ubit_t *b_bits,
- uint8_t *tch_data, int net_order)
+ const uint8_t *tch_data, int net_order)
{
int i, j, k, l, o;
@@ -495,7 +609,8 @@ static void tch_fr_disassemble(ubit_t *b_bits,
}
}
-static void tch_hr_reassemble(uint8_t *tch_data, ubit_t *b_bits)
+/* assemble a HR codec frame in format as used inside RTP */
+static void tch_hr_reassemble(uint8_t *tch_data, const ubit_t *b_bits)
{
int i, j;
@@ -506,7 +621,7 @@ static void tch_hr_reassemble(uint8_t *tch_data, ubit_t *b_bits)
tch_data[j >> 3] |= (b_bits[i] << (7 - (j & 7)));
}
-static void tch_hr_disassemble(ubit_t *b_bits, uint8_t *tch_data)
+static void tch_hr_disassemble(ubit_t *b_bits, const uint8_t *tch_data)
{
int i, j;
@@ -514,7 +629,8 @@ static void tch_hr_disassemble(ubit_t *b_bits, uint8_t *tch_data)
b_bits[i] = (tch_data[j >> 3] >> (7 - (j & 7))) & 1;
}
-static void tch_efr_reassemble(uint8_t *tch_data, ubit_t *b_bits)
+/* assemble a EFR codec frame in format as used inside RTP */
+static void tch_efr_reassemble(uint8_t *tch_data, const ubit_t *b_bits)
{
int i, j;
@@ -525,7 +641,7 @@ static void tch_efr_reassemble(uint8_t *tch_data, ubit_t *b_bits)
tch_data[j >> 3] |= (b_bits[i] << (7 - (j & 7)));
}
-static void tch_efr_disassemble(ubit_t *b_bits, uint8_t *tch_data)
+static void tch_efr_disassemble(ubit_t *b_bits, const uint8_t *tch_data)
{
int i, j;
@@ -533,7 +649,8 @@ static void tch_efr_disassemble(ubit_t *b_bits, uint8_t *tch_data)
b_bits[i] = (tch_data[j >> 3] >> (7 - (j & 7))) & 1;
}
-static void tch_amr_reassemble(uint8_t *tch_data, ubit_t *d_bits, int len)
+/* assemble a AMR codec frame in format as used inside RTP */
+static void tch_amr_reassemble(uint8_t *tch_data, const ubit_t *d_bits, int len)
{
int i, j;
@@ -543,7 +660,7 @@ static void tch_amr_reassemble(uint8_t *tch_data, ubit_t *d_bits, int len)
tch_data[j >> 3] |= (d_bits[i] << (7 - (j & 7)));
}
-static void tch_amr_disassemble(ubit_t *d_bits, uint8_t *tch_data, int len)
+static void tch_amr_disassemble(ubit_t *d_bits, const uint8_t *tch_data, int len)
{
int i, j;
@@ -551,7 +668,8 @@ static void tch_amr_disassemble(ubit_t *d_bits, uint8_t *tch_data, int len)
d_bits[i] = (tch_data[j >> 3] >> (7 - (j & 7))) & 1;
}
-static void tch_fr_d_to_b(ubit_t *b_bits, ubit_t *d_bits)
+/* re-arrange according to TS 05.03 Table 2 (receiver) */
+static void tch_fr_d_to_b(ubit_t *b_bits, const ubit_t *d_bits)
{
int i;
@@ -559,7 +677,8 @@ static void tch_fr_d_to_b(ubit_t *b_bits, ubit_t *d_bits)
b_bits[gsm610_bitorder[i]] = d_bits[i];
}
-static void tch_fr_b_to_d(ubit_t *d_bits, ubit_t *b_bits)
+/* re-arrange according to TS 05.03 Table 2 (transmitter) */
+static void tch_fr_b_to_d(ubit_t *d_bits, const ubit_t *b_bits)
{
int i;
@@ -567,7 +686,8 @@ static void tch_fr_b_to_d(ubit_t *d_bits, ubit_t *b_bits)
d_bits[i] = b_bits[gsm610_bitorder[i]];
}
-static void tch_hr_d_to_b(ubit_t *b_bits, ubit_t *d_bits)
+/* re-arrange according to TS 05.03 Table 3a (receiver) */
+static void tch_hr_d_to_b(ubit_t *b_bits, const ubit_t *d_bits)
{
int i;
@@ -582,7 +702,8 @@ static void tch_hr_d_to_b(ubit_t *b_bits, ubit_t *d_bits)
b_bits[map[i]] = d_bits[i];
}
-static void tch_hr_b_to_d(ubit_t *d_bits, ubit_t *b_bits)
+/* re-arrange according to TS 05.03 Table 3a (transmitter) */
+static void tch_hr_b_to_d(ubit_t *d_bits, const ubit_t *b_bits)
{
int i;
const uint16_t *map;
@@ -596,7 +717,8 @@ static void tch_hr_b_to_d(ubit_t *d_bits, ubit_t *b_bits)
d_bits[i] = b_bits[map[i]];
}
-static void tch_efr_d_to_w(ubit_t *b_bits, ubit_t *d_bits)
+/* re-arrange according to TS 05.03 Table 6 (receiver) */
+static void tch_efr_d_to_w(ubit_t *b_bits, const ubit_t *d_bits)
{
int i;
@@ -604,7 +726,8 @@ static void tch_efr_d_to_w(ubit_t *b_bits, ubit_t *d_bits)
b_bits[gsm660_bitorder[i]] = d_bits[i];
}
-static void tch_efr_w_to_d(ubit_t *d_bits, ubit_t *b_bits)
+/* re-arrange according to TS 05.03 Table 6 (transmitter) */
+static void tch_efr_w_to_d(ubit_t *d_bits, const ubit_t *b_bits)
{
int i;
@@ -612,7 +735,8 @@ static void tch_efr_w_to_d(ubit_t *d_bits, ubit_t *b_bits)
d_bits[i] = b_bits[gsm660_bitorder[i]];
}
-static void tch_efr_protected(ubit_t *s_bits, ubit_t *b_bits)
+/* extract the 65 protected class1a+1b bits */
+static void tch_efr_protected(const ubit_t *s_bits, ubit_t *b_bits)
{
int i;
@@ -620,7 +744,7 @@ static void tch_efr_protected(ubit_t *s_bits, ubit_t *b_bits)
b_bits[i] = s_bits[gsm0503_gsm_efr_protected_bits[i] - 1];
}
-static void tch_fr_unreorder(ubit_t *d, ubit_t *p, ubit_t *u)
+static void tch_fr_unreorder(ubit_t *d, ubit_t *p, const ubit_t *u)
{
int i;
@@ -633,7 +757,7 @@ static void tch_fr_unreorder(ubit_t *d, ubit_t *p, ubit_t *u)
p[i] = u[91 + i];
}
-static void tch_fr_reorder(ubit_t *u, ubit_t *d, ubit_t *p)
+static void tch_fr_reorder(ubit_t *u, const ubit_t *d, const ubit_t *p)
{
int i;
@@ -646,19 +770,19 @@ static void tch_fr_reorder(ubit_t *u, ubit_t *d, ubit_t *p)
u[91 + i] = p[i];
}
-static void tch_hr_unreorder(ubit_t *d, ubit_t *p, ubit_t *u)
+static void tch_hr_unreorder(ubit_t *d, ubit_t *p, const ubit_t *u)
{
memcpy(d, u, 95);
memcpy(p, u + 95, 3);
}
-static void tch_hr_reorder(ubit_t *u, ubit_t *d, ubit_t *p)
+static void tch_hr_reorder(ubit_t *u, const ubit_t *d, const ubit_t *p)
{
memcpy(u, d, 95);
memcpy(u + 95, p, 3);
}
-static void tch_efr_reorder(ubit_t *w, ubit_t *s, ubit_t *p)
+static void tch_efr_reorder(ubit_t *w, const ubit_t *s, const ubit_t *p)
{
memcpy(w, s, 71);
w[71] = w[72] = s[69];
@@ -672,55 +796,66 @@ static void tch_efr_reorder(ubit_t *w, ubit_t *s, ubit_t *p)
memcpy(w + 252, p, 8);
}
-static void tch_efr_unreorder(ubit_t *s, ubit_t *p, ubit_t *w)
+static void tch_efr_unreorder(ubit_t *s, ubit_t *p, const ubit_t *w)
{
int sum;
memcpy(s, w, 71);
sum = s[69] + w[71] + w[72];
- s[69] = (sum > 2);
+ s[69] = (sum >= 2);
memcpy(s + 71, w + 73, 50);
sum = s[119] + w[123] + w[124];
- s[119] = (sum > 2);
+ s[119] = (sum >= 2);
memcpy(s + 121, w + 125, 53);
sum = s[172] + w[178] + w[179];
s[172] = (sum > 2);
memcpy(s + 174, w + 180, 50);
- sum = s[220] + w[230] + w[231];
- s[222] = (sum > 2);
+ sum = s[222] + w[230] + w[231];
+ s[222] = (sum >= 2);
memcpy(s + 224, w + 232, 20);
memcpy(p, w + 252, 8);
}
-static void tch_amr_merge(ubit_t *u, ubit_t *d, ubit_t *p, int len, int prot)
+static void tch_amr_merge(ubit_t *u, const ubit_t *d, const ubit_t *p, int len, int prot)
{
memcpy(u, d, prot);
memcpy(u + prot, p, 6);
memcpy(u + prot + 6, d + prot, len - prot);
}
-static void tch_amr_unmerge(ubit_t *d, ubit_t *p,
- ubit_t *u, int len, int prot)
+static void tch_amr_unmerge(ubit_t *d, ubit_t *p, const ubit_t *u, int len, int prot)
{
memcpy(d, u, prot);
- memcpy(p, u+prot, 6);
+ memcpy(p, u + prot, 6);
memcpy(d + prot, u + prot + 6, len - prot);
}
-int gsm0503_tch_fr_decode(uint8_t *tch_data, sbit_t *bursts,
+/*! Perform channel decoding of a FR/EFR channel according TS 05.03
+ * \param[out] tch_data Codec frame in RTP payload format
+ * \param[in] bursts buffer containing the symbols of 8 bursts
+ * \param[in] net_order FIXME
+ * \param[in] efr Is this channel using EFR (1) or FR (0)
+ * \param[out] n_errors Number of detected bit errors
+ * \param[out] n_bits_total Total number of bits
+ * \returns length of bytes used in \a tch_data output buffer */
+int gsm0503_tch_fr_decode(uint8_t *tch_data, const sbit_t *bursts,
int net_order, int efr, int *n_errors, int *n_bits_total)
{
sbit_t iB[912], cB[456], h;
ubit_t conv[185], s[244], w[260], b[65], d[260], p[8];
int i, rv, len, steal = 0;
- for (i=0; i<8; i++) {
+ /* map from 8 bursts to interleaved data bits (iB) */
+ for (i = 0; i < 8; i++) {
gsm0503_tch_burst_unmap(&iB[i * 114],
&bursts[i * 116], &h, i >> 2);
steal -= h;
}
+ /* we now have the bits of the four bursts (interface 4 in
+ * Figure 1a of TS 05.03 */
gsm0503_tch_fr_deinterleave(cB, iB);
+ /* we now have the coded bits c(B): interface 3 in Fig. 1a */
if (steal > 0) {
rv = _xcch_decode_cB(tch_data, cB, n_errors, n_bits_total);
@@ -733,12 +868,15 @@ int gsm0503_tch_fr_decode(uint8_t *tch_data, sbit_t *bursts,
}
osmo_conv_decode_ber(&gsm0503_tch_fr, cB, conv, n_errors, n_bits_total);
+ /* we now have the data bits 'u': interface 2 in Fig. 1a */
+ /* input: 'conv', output: d[ata] + p[arity] */
tch_fr_unreorder(d, p, conv);
for (i = 0; i < 78; i++)
d[i + 182] = (cB[i + 378] < 0) ? 1 : 0;
+ /* check if parity of first 50 (class 1) 'd'-bits match 'p' */
rv = osmo_crc8gen_check_bits(&gsm0503_tch_fr_crc3, d, 50, p);
if (rv) {
/* Error checking CRC8 for the FR part of an EFR/FR frame */
@@ -747,11 +885,17 @@ int gsm0503_tch_fr_decode(uint8_t *tch_data, sbit_t *bursts,
if (efr) {
tch_efr_d_to_w(w, d);
+ /* we now have the preliminary-coded bits w(k) */
tch_efr_unreorder(s, p, w);
+ /* we now have the data delivered to the preliminary
+ * channel encoding unit s(k) */
+ /* extract the 65 most important bits according TS 05.03 3.1.1.1 */
tch_efr_protected(s, b);
+ /* perform CRC-8 on 65 most important bits (50 bits of
+ * class 1a + 15 bits of class 1b) */
rv = osmo_crc8gen_check_bits(&gsm0503_tch_efr_crc8, b, 65, p);
if (rv) {
/* Error checking CRC8 for the EFR part of an EFR frame */
@@ -772,7 +916,13 @@ int gsm0503_tch_fr_decode(uint8_t *tch_data, sbit_t *bursts,
return len;
}
-int gsm0503_tch_fr_encode(ubit_t *bursts, uint8_t *tch_data,
+/*! Perform channel encoding on a TCH/FS channel according to TS 05.03
+ * \param[out] bursts caller-allocated output buffer for bursts bits
+ * \param[in] tch_data Codec input data in RTP payload format
+ * \param[in] len Length of \a tch_data in bytes
+ * \param[in] net_order FIXME
+ * \returns 0 in case of success; negative on error */
+int gsm0503_tch_fr_encode(ubit_t *bursts, const uint8_t *tch_data,
int len, int net_order)
{
ubit_t iB[912], cB[456], h;
@@ -830,7 +980,14 @@ coding_efr_fr:
return 0;
}
-int gsm0503_tch_hr_decode(uint8_t *tch_data, sbit_t *bursts, int odd,
+/*! Perform channel decoding of a HR(v1) channel according TS 05.03
+ * \param[out] tch_data Codec frame in RTP payload format
+ * \param[in] bursts buffer containing the symbols of 8 bursts
+ * \param[in] odd Odd (1) or even (0) frame number
+ * \param[out] n_errors Number of detected bit errors
+ * \param[out] n_bits_total Total number of bits
+ * \returns length of bytes used in \a tch_data output buffer */
+int gsm0503_tch_hr_decode(uint8_t *tch_data, const sbit_t *bursts, int odd,
int *n_errors, int *n_bits_total)
{
sbit_t iB[912], cB[456], h;
@@ -900,7 +1057,12 @@ int gsm0503_tch_hr_decode(uint8_t *tch_data, sbit_t *bursts, int odd,
return 15;
}
-int gsm0503_tch_hr_encode(ubit_t *bursts, uint8_t *tch_data, int len)
+/*! Perform channel encoding on a TCH/HS channel according to TS 05.03
+ * \param[out] bursts caller-allocated output buffer for bursts bits
+ * \param[in] tch_data Codec input data in RTP payload format
+ * \param[in] len Length of \a tch_data in bytes
+ * \returns 0 in case of success; negative on error */
+int gsm0503_tch_hr_encode(ubit_t *bursts, const uint8_t *tch_data, int len)
{
ubit_t iB[912], cB[456], h;
ubit_t conv[98], b[112], d[112], p[3];
@@ -937,12 +1099,12 @@ int gsm0503_tch_hr_encode(ubit_t *bursts, uint8_t *tch_data, int len)
gsm0503_tch_fr_interleave(cB, iB);
- for (i=0; i<6; i++) {
+ for (i = 0; i < 6; i++) {
gsm0503_tch_burst_map(&iB[i * 114],
&bursts[i * 116], &h, i >> 2);
}
- for (i=2; i<4; i++) {
+ for (i = 2; i < 4; i++) {
gsm0503_tch_burst_map(&iB[i * 114 + 456],
&bursts[i * 116], &h, 1);
}
@@ -955,7 +1117,18 @@ int gsm0503_tch_hr_encode(ubit_t *bursts, uint8_t *tch_data, int len)
return 0;
}
-int gsm0503_tch_afs_decode(uint8_t *tch_data, sbit_t *bursts,
+/*! Perform channel decoding of a TCH/AFS channel according TS 05.03
+ * \param[out] tch_data Codec frame in RTP payload format
+ * \param[in] bursts buffer containing the symbols of 8 bursts
+ * \param[in] codec_mode_req is this CMR (1) or CMC (0)
+ * \param[in] codec array of active codecs (active codec set)
+ * \param[in] codecs number of codecs in \a codec
+ * \param ft Frame Type; Input if \a codec_mode_req = 1, Output * otherwise
+ * \param[out] cmr Output in \a codec_mode_req = 1
+ * \param[out] n_errors Number of detected bit errors
+ * \param[out] n_bits_total Total number of bits
+ * \returns length of bytes used in \a tch_data output buffer */
+int gsm0503_tch_afs_decode(uint8_t *tch_data, const sbit_t *bursts,
int codec_mode_req, uint8_t *codec, int codecs, uint8_t *ft,
uint8_t *cmr, int *n_errors, int *n_bits_total)
{
@@ -1150,7 +1323,17 @@ int gsm0503_tch_afs_decode(uint8_t *tch_data, sbit_t *bursts,
return len;
}
-int gsm0503_tch_afs_encode(ubit_t *bursts, uint8_t *tch_data, int len,
+/*! Perform channel encoding on a TCH/AFS channel according to TS 05.03
+ * \param[out] bursts caller-allocated output buffer for bursts bits
+ * \param[in] tch_data Codec input data in RTP payload format
+ * \param[in] len Length of \a tch_data in bytes
+ * \param[in] codec_mode_req Use CMR (1) or FT (0)
+ * \param[in] codec Array of codecs (active codec set)
+ * \param[in] codecs Number of entries in \a codec
+ * \param[in] ft Frame Type to be used for encoding (index to \a codec)
+ * \param[in] cmr Codec Mode Request (used in codec_mode_req = 1 only)
+ * \returns 0 in case of success; negative on error */
+int gsm0503_tch_afs_encode(ubit_t *bursts, const uint8_t *tch_data, int len,
int codec_mode_req, uint8_t *codec, int codecs, uint8_t ft,
uint8_t cmr)
{
@@ -1310,7 +1493,19 @@ invalid_length:
return -1;
}
-int gsm0503_tch_ahs_decode(uint8_t *tch_data, sbit_t *bursts, int odd,
+/*! Perform channel decoding of a TCH/AFS channel according TS 05.03
+ * \param[out] tch_data Codec frame in RTP payload format
+ * \param[in] bursts buffer containing the symbols of 8 bursts
+ * \param[in] odd Is this an odd (1) or even (0) frame number?
+ * \param[in] codec_mode_req is this CMR (1) or CMC (0)
+ * \param[in] codec array of active codecs (active codec set)
+ * \param[in] codecs number of codecs in \a codec
+ * \param ft Frame Type; Input if \a codec_mode_req = 1, Output * otherwise
+ * \param[out] cmr Output in \a codec_mode_req = 1
+ * \param[out] n_errors Number of detected bit errors
+ * \param[out] n_bits_total Total number of bits
+ * \returns length of bytes used in \a tch_data output buffer */
+int gsm0503_tch_ahs_decode(uint8_t *tch_data, const sbit_t *bursts, int odd,
int codec_mode_req, uint8_t *codec, int codecs, uint8_t *ft,
uint8_t *cmr, int *n_errors, int *n_bits_total)
{
@@ -1513,7 +1708,17 @@ int gsm0503_tch_ahs_decode(uint8_t *tch_data, sbit_t *bursts, int odd,
return len;
}
-int gsm0503_tch_ahs_encode(ubit_t *bursts, uint8_t *tch_data, int len,
+/*! Perform channel encoding on a TCH/AHS channel according to TS 05.03
+ * \param[out] bursts caller-allocated output buffer for bursts bits
+ * \param[in] tch_data Codec input data in RTP payload format
+ * \param[in] len Length of \a tch_data in bytes
+ * \param[in] codec_mode_req Use CMR (1) or FT (0)
+ * \param[in] codec Array of codecs (active codec set)
+ * \param[in] codecs Number of entries in \a codec
+ * \param[in] ft Frame Type to be used for encoding (index to \a codec)
+ * \param[in] cmr Codec Mode Request (used in codec_mode_req = 1 only)
+ * \returns 0 in case of success; negative on error */
+int gsm0503_tch_ahs_encode(ubit_t *bursts, const uint8_t *tch_data, int len,
int codec_mode_req, uint8_t *codec, int codecs, uint8_t ft,
uint8_t cmr)
{
@@ -1676,46 +1881,140 @@ invalid_length:
* b(0) = MSB of PLMN colour code
* b(5) = LSB of BS colour code
*/
-static int rach_apply_bsic(ubit_t *d, uint8_t bsic)
+static inline void rach_apply_bsic(ubit_t *d, uint8_t bsic, uint8_t start)
{
int i;
/* Apply it */
for (i = 0; i < 6; i++)
- d[8 + i] ^= ((bsic >> (5 - i)) & 1);
-
- return 0;
+ d[start + i] ^= ((bsic >> (5 - i)) & 1);
}
-int gsm0503_rach_decode(uint8_t *ra, sbit_t *burst, uint8_t bsic)
+static inline int16_t rach_decode_ber(const sbit_t *burst, uint8_t bsic, bool is_11bit,
+ int *n_errors, int *n_bits_total)
{
- ubit_t conv[14];
+ ubit_t conv[17];
+ uint8_t ra[2] = { 0 }, nbits = is_11bit ? 11 : 8;
int rv;
- osmo_conv_decode(&gsm0503_rach, burst, conv);
+ osmo_conv_decode_ber(is_11bit ? &gsm0503_rach_ext : &gsm0503_rach, burst, conv,
+ n_errors, n_bits_total);
- rach_apply_bsic(conv, bsic);
+ rach_apply_bsic(conv, bsic, nbits);
- rv = osmo_crc8gen_check_bits(&gsm0503_rach_crc6, conv, 8, conv + 8);
+ rv = osmo_crc8gen_check_bits(&gsm0503_rach_crc6, conv, nbits, conv + nbits);
if (rv)
return -1;
- osmo_ubit2pbit_ext(ra, 0, conv, 0, 8, 1);
+ osmo_ubit2pbit_ext(ra, 0, conv, 0, nbits, 1);
+
+ return is_11bit ? osmo_load16le(ra) : ra[0];
+}
+
+/*! Decode the Extended (11-bit) RACH according to 3GPP TS 45.003
+ * \param[out] ra output buffer for RACH data
+ * \param[in] burst Input burst data
+ * \param[in] bsic BSIC used in this cell
+ * \returns 0 on success; negative on error (e.g. CRC error) */
+int gsm0503_rach_ext_decode(uint16_t *ra, const sbit_t *burst, uint8_t bsic)
+{
+ int16_t r = rach_decode_ber(burst, bsic, true, NULL, NULL);
+
+ if (r < 0)
+ return r;
+
+ *ra = r;
+
+ return 0;
+}
+
+/*! Decode the (8-bit) RACH according to TS 05.03
+ * \param[out] ra output buffer for RACH data
+ * \param[in] burst Input burst data
+ * \param[in] bsic BSIC used in this cell
+ * \returns 0 on success; negative on error (e.g. CRC error) */
+int gsm0503_rach_decode(uint8_t *ra, const sbit_t *burst, uint8_t bsic)
+{
+ int16_t r = rach_decode_ber(burst, bsic, false, NULL, NULL);
+ if (r < 0)
+ return r;
+
+ *ra = r;
+ return 0;
+}
+
+/*! Decode the Extended (11-bit) RACH according to 3GPP TS 45.003
+ * \param[out] ra output buffer for RACH data
+ * \param[in] burst Input burst data
+ * \param[in] bsic BSIC used in this cell
+ * \param[out] n_errors Number of detected bit errors
+ * \param[out] n_bits_total Total number of bits
+ * \returns 0 on success; negative on error (e.g. CRC error) */
+int gsm0503_rach_ext_decode_ber(uint16_t *ra, const sbit_t *burst, uint8_t bsic,
+ int *n_errors, int *n_bits_total)
+{
+ int16_t r = rach_decode_ber(burst, bsic, true, n_errors, n_bits_total);
+ if (r < 0)
+ return r;
+
+ *ra = r;
+ return 0;
+}
+
+/*! Decode the (8-bit) RACH according to TS 05.03
+ * \param[out] ra output buffer for RACH data
+ * \param[in] burst Input burst data
+ * \param[in] bsic BSIC used in this cell
+ * \param[out] n_errors Number of detected bit errors
+ * \param[out] n_bits_total Total number of bits
+ * \returns 0 on success; negative on error (e.g. CRC error) */
+int gsm0503_rach_decode_ber(uint8_t *ra, const sbit_t *burst, uint8_t bsic,
+ int *n_errors, int *n_bits_total)
+{
+ int16_t r = rach_decode_ber(burst, bsic, false, n_errors, n_bits_total);
+
+ if (r < 0)
+ return r;
+
+ *ra = r;
return 0;
}
-int gsm0503_rach_encode(ubit_t *burst, uint8_t *ra, uint8_t bsic)
+/*! Encode the (8-bit) RACH according to TS 05.03
+ * \param[out] burst Caller-allocated output burst buffer
+ * \param[in] ra Input RACH data
+ * \param[in] bsic BSIC used in this cell
+ * \returns 0 on success; negative on error */
+int gsm0503_rach_encode(ubit_t *burst, const uint8_t *ra, uint8_t bsic)
+{
+ return gsm0503_rach_ext_encode(burst, *ra, bsic, false);
+}
+
+/*! Encode the Extended (11-bit) or regular (8-bit) RACH according to 3GPP TS 45.003
+ * \param[out] burst Caller-allocated output burst buffer
+ * \param[in] ra11 Input RACH data
+ * \param[in] bsic BSIC used in this cell
+ * \param[in] is_11bit whether given RA is 11 bit or not
+ * \returns 0 on success; negative on error */
+int gsm0503_rach_ext_encode(ubit_t *burst, uint16_t ra11, uint8_t bsic, bool is_11bit)
{
- ubit_t conv[14];
+ ubit_t conv[17];
+ uint8_t ra[2] = { 0 }, nbits = 8;
- osmo_pbit2ubit_ext(conv, 0, ra, 0, 8, 1);
+ if (is_11bit) {
+ osmo_store16le(ra11, ra);
+ nbits = 11;
+ } else
+ ra[0] = (uint8_t)ra11;
- osmo_crc8gen_set_bits(&gsm0503_rach_crc6, conv, 8, conv + 8);
+ osmo_pbit2ubit_ext(conv, 0, ra, 0, nbits, 1);
- rach_apply_bsic(conv, bsic);
+ osmo_crc8gen_set_bits(&gsm0503_rach_crc6, conv, nbits, conv + nbits);
- osmo_conv_encode(&gsm0503_rach, conv, burst);
+ rach_apply_bsic(conv, bsic, nbits);
+
+ osmo_conv_encode(is_11bit ? &gsm0503_rach_ext : &gsm0503_rach, conv, burst);
return 0;
}
@@ -1723,7 +2022,12 @@ int gsm0503_rach_encode(ubit_t *burst, uint8_t *ra, uint8_t bsic)
/*
* GSM SCH transcoding
*/
-int gsm0503_sch_decode(uint8_t *sb_info, sbit_t *burst)
+
+/*! Decode the SCH according to TS 05.03
+ * \param[out] sb_info output buffer for SCH data
+ * \param[in] burst Input burst data
+ * \returns 0 on success; negative on error (e.g. CRC error) */
+int gsm0503_sch_decode(uint8_t *sb_info, const sbit_t *burst)
{
ubit_t conv[35];
int rv;
@@ -1739,7 +2043,11 @@ int gsm0503_sch_decode(uint8_t *sb_info, sbit_t *burst)
return 0;
}
-int gsm0503_sch_encode(ubit_t *burst, uint8_t *sb_info)
+/*! Encode the SCH according to TS 05.03
+ * \param[out] burst Caller-allocated output burst buffer
+ * \param[in] sb_info Input SCH data
+ * \returns 0 on success; negative on error */
+int gsm0503_sch_encode(ubit_t *burst, const uint8_t *sb_info)
{
ubit_t conv[35];
@@ -1751,3 +2059,5 @@ int gsm0503_sch_encode(ubit_t *burst, uint8_t *sb_info)
return 0;
}
+
+/*! @} */