aboutsummaryrefslogtreecommitdiffstats
path: root/main/dsp.c
blob: ee189182343d93824ad2b6492a37e60620f06134 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
/*
 * Asterisk -- An open source telephony toolkit.
 *
 * Copyright (C) 1999 - 2005, Digium, Inc.
 *
 * Mark Spencer <markster@digium.com>
 *
 * Goertzel routines are borrowed from Steve Underwood's tremendous work on the
 * DTMF detector.
 *
 * See http://www.asterisk.org for more information about
 * the Asterisk project. Please do not directly contact
 * any of the maintainers of this project for assistance;
 * the project provides a web site, mailing lists and IRC
 * channels for your use.
 *
 * This program is free software, distributed under the terms of
 * the GNU General Public License Version 2. See the LICENSE file
 * at the top of the source tree.
 */

/*! \file
 *
 * \brief Convenience Signal Processing routines
 *
 * \author Mark Spencer <markster@digium.com>
 * \author Steve Underwood <steveu@coppice.org>
 */

/* Some routines from tone_detect.c by Steven Underwood as published under the zapata library */
/*
	tone_detect.c - General telephony tone detection, and specific
					detection of DTMF.

	Copyright (C) 2001  Steve Underwood <steveu@coppice.org>

	Despite my general liking of the GPL, I place this code in the
	public domain for the benefit of all mankind - even the slimy
	ones who might try to proprietize my work and use it to my
	detriment.
*/

#include "asterisk.h"

ASTERISK_FILE_VERSION(__FILE__, "$Revision$")

#include <math.h>

#include "asterisk/frame.h"
#include "asterisk/channel.h"
#include "asterisk/dsp.h"
#include "asterisk/ulaw.h"
#include "asterisk/alaw.h"
#include "asterisk/utils.h"
#include "asterisk/options.h"
#include "asterisk/config.h"

/*! Number of goertzels for progress detect */
enum gsamp_size {
	GSAMP_SIZE_NA = 183,			/*!< North America - 350, 440, 480, 620, 950, 1400, 1800 Hz */
	GSAMP_SIZE_CR = 188,			/*!< Costa Rica, Brazil - Only care about 425 Hz */
	GSAMP_SIZE_UK = 160 			/*!< UK disconnect goertzel feed - should trigger 400hz */
};

enum prog_mode {
	PROG_MODE_NA = 0,
	PROG_MODE_CR,
	PROG_MODE_UK
};

enum freq_index { 
	/*! For US modes { */
	HZ_350 = 0,
	HZ_440,
	HZ_480,
	HZ_620,
	HZ_950,
	HZ_1400,
	HZ_1800, /*!< } */

	/*! For CR/BR modes */
	HZ_425 = 0,

	/*! For UK mode */
	HZ_350UK = 0,
	HZ_400UK,
	HZ_440UK
};

static struct progalias {
	char *name;
	enum prog_mode mode;
} aliases[] = {
	{ "us", PROG_MODE_NA },
	{ "ca", PROG_MODE_NA },
	{ "cr", PROG_MODE_CR },
	{ "br", PROG_MODE_CR },
	{ "uk", PROG_MODE_UK },
};

static struct progress {
	enum gsamp_size size;
	int freqs[7];
} modes[] = {
	{ GSAMP_SIZE_NA, { 350, 440, 480, 620, 950, 1400, 1800 } },	/*!< North America */
	{ GSAMP_SIZE_CR, { 425 } },                                	/*!< Costa Rica, Brazil */
	{ GSAMP_SIZE_UK, { 350, 400, 440 } },                                	/*!< UK */
};

/*!\brief This value is the minimum threshold, calculated by averaging all
 * of the samples within a frame, for which a frame is determined to either
 * be silence (below the threshold) or noise (above the threshold).  Please
 * note that while the default threshold is an even exponent of 2, there is
 * no requirement that it be so.  The threshold will accept any value between
 * 0 and 32767.
 */
#define DEFAULT_THRESHOLD	512

enum busy_detect {
	BUSY_PERCENT = 10,   	/*!< The percentage difference between the two last silence periods */
	BUSY_PAT_PERCENT = 7,	/*!< The percentage difference between measured and actual pattern */
	BUSY_THRESHOLD = 100,	/*!< Max number of ms difference between max and min times in busy */
	BUSY_MIN = 75,       	/*!< Busy must be at least 80 ms in half-cadence */
	BUSY_MAX =3100       	/*!< Busy can't be longer than 3100 ms in half-cadence */
};

/*! Remember last 15 units */
#define DSP_HISTORY 		15

#define TONE_THRESH		10.0	/*!< How much louder the tone should be than channel energy */
#define TONE_MIN_THRESH 	1e8	/*!< How much tone there should be at least to attempt */

/*! All THRESH_XXX values are in GSAMP_SIZE chunks (us = 22ms) */
enum gsamp_thresh {
	THRESH_RING = 8,        	/*!< Need at least 150ms ring to accept */
	THRESH_TALK = 2,        	/*!< Talk detection does not work continuously */
	THRESH_BUSY = 4,        	/*!< Need at least 80ms to accept */
	THRESH_CONGESTION = 4,  	/*!< Need at least 80ms to accept */
	THRESH_HANGUP = 60,     	/*!< Need at least 1300ms to accept hangup */
	THRESH_RING2ANSWER = 300	/*!< Timeout from start of ring to answer (about 6600 ms) */
};

#define	MAX_DTMF_DIGITS		128

/* Basic DTMF specs:
 *
 * Minimum tone on = 40ms
 * Minimum tone off = 50ms
 * Maximum digit rate = 10 per second
 * Normal twist <= 8dB accepted
 * Reverse twist <= 4dB accepted
 * S/N >= 15dB will detect OK
 * Attenuation <= 26dB will detect OK
 * Frequency tolerance +- 1.5% will detect, +-3.5% will reject
 */

#define DTMF_THRESHOLD		8.0e7
#define FAX_THRESHOLD		8.0e7
#define FAX_2ND_HARMONIC	2.0     /* 4dB */
#define DTMF_NORMAL_TWIST	6.3     /* 8dB */
#ifdef	RADIO_RELAX
#define DTMF_REVERSE_TWIST          (relax ? 6.5 : 2.5)     /* 4dB normal */
#else
#define DTMF_REVERSE_TWIST          (relax ? 4.0 : 2.5)     /* 4dB normal */
#endif
#define DTMF_RELATIVE_PEAK_ROW	6.3     /* 8dB */
#define DTMF_RELATIVE_PEAK_COL	6.3     /* 8dB */
#define DTMF_2ND_HARMONIC_ROW       (relax ? 1.7 : 2.5)     /* 4dB normal */
#define DTMF_2ND_HARMONIC_COL	63.1    /* 18dB */
#define DTMF_TO_TOTAL_ENERGY	42.0

#define BELL_MF_THRESHOLD	1.6e9
#define BELL_MF_TWIST		4.0     /* 6dB */
#define BELL_MF_RELATIVE_PEAK	12.6    /* 11dB */

#if defined(BUSYDETECT_TONEONLY) && defined(BUSYDETECT_COMPARE_TONE_AND_SILENCE)
#error You cant use BUSYDETECT_TONEONLY together with BUSYDETECT_COMPARE_TONE_AND_SILENCE
#endif

/* The CNG signal consists of the transmission of 1100 Hz for 1/2 second,
 * followed by a 3 second silent (2100 Hz OFF) period.
 */
#define FAX_TONE_CNG_FREQ	1100
#define FAX_TONE_CNG_DURATION	500
#define FAX_TONE_CNG_DB		16

/* This signal may be sent by the Terminating FAX machine anywhere between
 * 1.8 to 2.5 seconds AFTER answering the call.  The CED signal consists
 * of a 2100 Hz tone that is from 2.6 to 4 seconds in duration.
*/
#define FAX_TONE_CED_FREQ	2100
#define FAX_TONE_CED_DURATION	2600
#define FAX_TONE_CED_DB		16

#define DEFAULT_SAMPLE_RATE		8000

/* MF goertzel size */
#define MF_GSIZE		120

/* DTMF goertzel size */
#define DTMF_GSIZE		102

/* How many successive hits needed to consider begin of a digit */
#define DTMF_HITS_TO_BEGIN	2
/* How many successive misses needed to consider end of a digit */
#define DTMF_MISSES_TO_END	3

/*!
 * \brief The default silence threshold we will use if an alternate
 * configured value is not present or is invalid.
 */
static const int DEFAULT_SILENCE_THRESHOLD = 256;

#define CONFIG_FILE_NAME "dsp.conf"

typedef struct {
	int v2;
	int v3;
	int chunky;
	int fac;
	int samples;
} goertzel_state_t;

typedef struct {
	int value;
	int power;
} goertzel_result_t;

typedef struct
{
	int freq;
	int block_size;
	int squelch;		/* Remove (squelch) tone */
	goertzel_state_t tone;
	float energy;		/* Accumulated energy of the current block */
	int samples_pending;	/* Samples remain to complete the current block */
	int mute_samples;	/* How many additional samples needs to be muted to suppress already detected tone */

	int hits_required;	/* How many successive blocks with tone we are looking for */
	float threshold;	/* Energy of the tone relative to energy from all other signals to consider a hit */

	int hit_count;		/* How many successive blocks we consider tone present */
	int last_hit;		/* Indicates if the last processed block was a hit */

} tone_detect_state_t;

typedef struct
{
	goertzel_state_t row_out[4];
	goertzel_state_t col_out[4];
	int hits_to_begin;		/* How many successive hits needed to consider begin of a digit */
	int misses_to_end;		/* How many successive misses needed to consider end of a digit */
	int hits;			/* How many successive hits we have seen already */
	int misses;			/* How many successive misses we have seen already */
	int lasthit;
	int current_hit;
	float energy;
	int current_sample;
	int mute_samples;
} dtmf_detect_state_t;

typedef struct
{
	goertzel_state_t tone_out[6];
	int current_hit;
	int hits[5];
	int current_sample;
	int mute_samples;
} mf_detect_state_t;

typedef struct
{
	char digits[MAX_DTMF_DIGITS + 1];
	int digitlen[MAX_DTMF_DIGITS + 1];
	int current_digits;
	int detected_digits;
	int lost_digits;

	union {
		dtmf_detect_state_t dtmf;
		mf_detect_state_t mf;
	} td;
} digit_detect_state_t;

static const float dtmf_row[] = {
	697.0,  770.0,  852.0,  941.0
};
static const float dtmf_col[] = {
	1209.0, 1336.0, 1477.0, 1633.0
};
static const float mf_tones[] = {
	700.0, 900.0, 1100.0, 1300.0, 1500.0, 1700.0
};
static const char dtmf_positions[] = "123A" "456B" "789C" "*0#D";
static const char bell_mf_positions[] = "1247C-358A--69*---0B----#";
static int thresholds[THRESHOLD_MAX];

static inline void goertzel_sample(goertzel_state_t *s, short sample)
{
	int v1;
	
	v1 = s->v2;
	s->v2 = s->v3;
	
	s->v3 = (s->fac * s->v2) >> 15;
	s->v3 = s->v3 - v1 + (sample >> s->chunky);
	if (abs(s->v3) > 32768) {
		s->chunky++;
		s->v3 = s->v3 >> 1;
		s->v2 = s->v2 >> 1;
		v1 = v1 >> 1;
	}
}

static inline void goertzel_update(goertzel_state_t *s, short *samps, int count)
{
	int i;
	
	for (i = 0; i < count; i++) {
		goertzel_sample(s, samps[i]);
	}
}


static inline float goertzel_result(goertzel_state_t *s)
{
	goertzel_result_t r;
	r.value = (s->v3 * s->v3) + (s->v2 * s->v2);
	r.value -= ((s->v2 * s->v3) >> 15) * s->fac;
	r.power = s->chunky * 2;
	return (float)r.value * (float)(1 << r.power);
}

static inline void goertzel_init(goertzel_state_t *s, float freq, int samples, unsigned int sample_rate)
{
	s->v2 = s->v3 = s->chunky = 0.0;
	s->fac = (int)(32768.0 * 2.0 * cos(2.0 * M_PI * freq / sample_rate));
	s->samples = samples;
}

static inline void goertzel_reset(goertzel_state_t *s)
{
	s->v2 = s->v3 = s->chunky = 0.0;
}

typedef struct {
	int start;
	int end;
} fragment_t;

/* Note on tone suppression (squelching). Individual detectors (DTMF/MF/generic tone)
 * report fragmens of the frame in which detected tone resides and which needs
 * to be "muted" in order to suppress the tone. To mark fragment for muting,
 * detectors call mute_fragment passing fragment_t there. Multiple fragments
 * can be marked and ast_dsp_process later will mute all of them.
 *
 * Note: When tone starts in the middle of a Goertzel block, it won't be properly
 * detected in that block, only in the next. If we only mute the next block
 * where tone is actually detected, the user will still hear beginning
 * of the tone in preceeding block. This is why we usually want to mute some amount
 * of samples preceeding and following the block where tone was detected.
*/

struct ast_dsp {
	struct ast_frame f;
	int threshold;
	int totalsilence;
	int totalnoise;
	int features;
	int ringtimeout;
	int busymaybe;
	int busycount;
	struct ast_dsp_busy_pattern busy_cadence;
	int historicnoise[DSP_HISTORY];
	int historicsilence[DSP_HISTORY];
	goertzel_state_t freqs[7];
	int freqcount;
	int gsamps;
	enum gsamp_size gsamp_size;
	enum prog_mode progmode;
	int tstate;
	int tcount;
	int digitmode;
	int faxmode;
	int dtmf_began;
	int display_inband_dtmf_warning;
	float genergy;
	int mute_fragments;
	unsigned int sample_rate;
	fragment_t mute_data[5];
	digit_detect_state_t digit_state;
	tone_detect_state_t cng_tone_state;
	tone_detect_state_t ced_tone_state;
};

static void mute_fragment(struct ast_dsp *dsp, fragment_t *fragment)
{
	if (dsp->mute_fragments >= ARRAY_LEN(dsp->mute_data)) {
		ast_log(LOG_ERROR, "Too many fragments to mute. Ignoring\n");
		return;
	}

	dsp->mute_data[dsp->mute_fragments++] = *fragment;
}

static void ast_tone_detect_init(tone_detect_state_t *s, int freq, int duration, int amp, unsigned int sample_rate)
{
	int duration_samples;
	float x;
	int periods_in_block;

	s->freq = freq;

	/* Desired tone duration in samples */
	duration_samples = duration * sample_rate / 1000;
	/* We want to allow 10% deviation of tone duration */
	duration_samples = duration_samples * 9 / 10;

	/* If we want to remove tone, it is important to have block size not
	   to exceed frame size. Otherwise by the moment tone is detected it is too late
 	   to squelch it from previous frames. Block size is 20ms at the given sample rate.*/
	s->block_size = (20 * sample_rate) / 1000;

	periods_in_block = s->block_size * freq / sample_rate;

	/* Make sure we will have at least 5 periods at target frequency for analisys.
	   This may make block larger than expected packet and will make squelching impossible
	   but at least we will be detecting the tone */
	if (periods_in_block < 5)
		periods_in_block = 5;

	/* Now calculate final block size. It will contain integer number of periods */
	s->block_size = periods_in_block * sample_rate / freq;

	/* tone_detect is currently only used to detect fax tones and we
	   do not need suqlching the fax tones */
	s->squelch = 0;

	/* Account for the first and the last block to be incomplete
	   and thus no tone will be detected in them */
	s->hits_required = (duration_samples - (s->block_size - 1)) / s->block_size;

	goertzel_init(&s->tone, freq, s->block_size, sample_rate);

	s->samples_pending = s->block_size;
	s->hit_count = 0;
	s->last_hit = 0;
	s->energy = 0.0;

	/* We want tone energy to be amp decibels above the rest of the signal (the noise).
	   According to Parseval's theorem the energy computed in time domain equals to energy
	   computed in frequency domain. So subtracting energy in the frequency domain (Goertzel result)
	   from the energy in the time domain we will get energy of the remaining signal (without the tone
	   we are detecting). We will be checking that
		10*log(Ew / (Et - Ew)) > amp
	   Calculate threshold so that we will be actually checking
		Ew > Et * threshold
	*/

	x = pow(10.0, amp / 10.0);
	s->threshold = x / (x + 1);

	ast_debug(1, "Setup tone %d Hz, %d ms, block_size=%d, hits_required=%d\n", freq, duration, s->block_size, s->hits_required);
}

static void ast_fax_detect_init(struct ast_dsp *s)
{
	ast_tone_detect_init(&s->cng_tone_state, FAX_TONE_CNG_FREQ, FAX_TONE_CNG_DURATION, FAX_TONE_CNG_DB, s->sample_rate);
	ast_tone_detect_init(&s->ced_tone_state, FAX_TONE_CED_FREQ, FAX_TONE_CED_DURATION, FAX_TONE_CED_DB, s->sample_rate);
}

static void ast_dtmf_detect_init (dtmf_detect_state_t *s, unsigned int sample_rate)
{
	int i;

	s->lasthit = 0;
	s->current_hit = 0;
	for (i = 0;  i < 4;  i++) {
		goertzel_init(&s->row_out[i], dtmf_row[i], DTMF_GSIZE, sample_rate);
		goertzel_init(&s->col_out[i], dtmf_col[i], DTMF_GSIZE, sample_rate);
		s->energy = 0.0;
	}
	s->current_sample = 0;
	s->hits = 0;
	s->misses = 0;

	s->hits_to_begin = DTMF_HITS_TO_BEGIN;
	s->misses_to_end = DTMF_MISSES_TO_END;
}

static void ast_mf_detect_init (mf_detect_state_t *s, unsigned int sample_rate)
{
	int i;
	s->hits[0] = s->hits[1] = s->hits[2] = s->hits[3] = s->hits[4] = 0;
	for (i = 0;  i < 6;  i++) {
		goertzel_init (&s->tone_out[i], mf_tones[i], 160, sample_rate);
	}
	s->current_sample = 0;
	s->current_hit = 0;
}

static void ast_digit_detect_init(digit_detect_state_t *s, int mf, unsigned int sample_rate)
{
	s->current_digits = 0;
	s->detected_digits = 0;
	s->lost_digits = 0;
	s->digits[0] = '\0';

	if (mf) {
		ast_mf_detect_init(&s->td.mf, sample_rate);
	} else {
		ast_dtmf_detect_init(&s->td.dtmf, sample_rate);
	}
}

static int tone_detect(struct ast_dsp *dsp, tone_detect_state_t *s, int16_t *amp, int samples)
{
	float tone_energy;
	int i;
	int hit = 0;
	int limit;
	int res = 0;
	int16_t *ptr;
	int start, end;
	fragment_t mute = {0, 0};

	if (s->squelch && s->mute_samples > 0) {
		mute.end = (s->mute_samples < samples) ? s->mute_samples : samples;
		s->mute_samples -= mute.end;
	}

	for (start = 0;  start < samples;  start = end) {
		/* Process in blocks. */
		limit = samples - start;
		if (limit > s->samples_pending) {
			limit = s->samples_pending;
		}
		end = start + limit;

		for (i = limit, ptr = amp ; i > 0; i--, ptr++) {
			/* signed 32 bit int should be enough to suqare any possible signed 16 bit value */
			s->energy += (int32_t) *ptr * (int32_t) *ptr;

			goertzel_sample(&s->tone, *ptr);
		}

		s->samples_pending -= limit;

		if (s->samples_pending) {
			/* Finished incomplete (last) block */
			break;
		}

		tone_energy = goertzel_result(&s->tone);

		/* Scale to make comparable */
		tone_energy *= 2.0;
		s->energy *= s->block_size;

		ast_debug(10, "tone %d, Ew=%.2E, Et=%.2E, s/n=%10.2f\n", s->freq, tone_energy, s->energy, tone_energy / (s->energy - tone_energy));
		hit = 0;
		if (tone_energy > s->energy * s->threshold) {
			ast_debug(10, "Hit! count=%d\n", s->hit_count);
			hit = 1;
		}

		if (s->hit_count) {
			s->hit_count++;
		}

		if (hit == s->last_hit) {
			if (!hit) {
				/* Two successive misses. Tone ended */
				s->hit_count = 0;
			} else if (!s->hit_count) {
				s->hit_count++;
			}

		}

		if (s->hit_count == s->hits_required) {
			ast_debug(1, "%d Hz done detected\n", s->freq);
			res = 1;
		}

		s->last_hit = hit;

		/* If we had a hit in this block, include it into mute fragment */
		if (s->squelch && hit) {
			if (mute.end < start - s->block_size) {
				/* There is a gap between fragments */
				mute_fragment(dsp, &mute);
				mute.start = (start > s->block_size) ? (start - s->block_size) : 0;
			}
			mute.end = end + s->block_size;
		}

		/* Reinitialise the detector for the next block */
		/* Reset for the next block */
		goertzel_reset(&s->tone);

		/* Advance to the next block */
		s->energy = 0.0;
		s->samples_pending = s->block_size;

		amp += limit;
	}

	if (s->squelch && mute.end) {
		if (mute.end > samples) {
			s->mute_samples = mute.end - samples;
			mute.end = samples;
		}
		mute_fragment(dsp, &mute);
	}

	return res;
}

static void store_digit(digit_detect_state_t *s, char digit)
{
	s->detected_digits++;
	if (s->current_digits < MAX_DTMF_DIGITS) {
		s->digitlen[s->current_digits] = 0;
		s->digits[s->current_digits++] = digit;
		s->digits[s->current_digits] = '\0';
	} else {
		ast_log(LOG_WARNING, "Digit lost due to full buffer\n");
		s->lost_digits++;
	}
}

static int dtmf_detect(struct ast_dsp *dsp, digit_detect_state_t *s, int16_t amp[], int samples, int squelch, int relax)
{
	float row_energy[4];
	float col_energy[4];
	float famp;
	int i;
	int j;
	int sample;
	int best_row;
	int best_col;
	int hit;
	int limit;
	fragment_t mute = {0, 0};

	if (squelch && s->td.dtmf.mute_samples > 0) {
		mute.end = (s->td.dtmf.mute_samples < samples) ? s->td.dtmf.mute_samples : samples;
		s->td.dtmf.mute_samples -= mute.end;
	}

	hit = 0;
	for (sample = 0; sample < samples; sample = limit) {
		/* DTMF_GSIZE is optimised to meet the DTMF specs. */
		if ((samples - sample) >= (DTMF_GSIZE - s->td.dtmf.current_sample)) {
			limit = sample + (DTMF_GSIZE - s->td.dtmf.current_sample);
		} else {
			limit = samples;
		}
		/* The following unrolled loop takes only 35% (rough estimate) of the 
		   time of a rolled loop on the machine on which it was developed */
		for (j = sample; j < limit; j++) {
			famp = amp[j];
			s->td.dtmf.energy += famp*famp;
			/* With GCC 2.95, the following unrolled code seems to take about 35%
			   (rough estimate) as long as a neat little 0-3 loop */
			goertzel_sample(s->td.dtmf.row_out, amp[j]);
			goertzel_sample(s->td.dtmf.col_out, amp[j]);
			goertzel_sample(s->td.dtmf.row_out + 1, amp[j]);
			goertzel_sample(s->td.dtmf.col_out + 1, amp[j]);
			goertzel_sample(s->td.dtmf.row_out + 2, amp[j]);
			goertzel_sample(s->td.dtmf.col_out + 2, amp[j]);
			goertzel_sample(s->td.dtmf.row_out + 3, amp[j]);
			goertzel_sample(s->td.dtmf.col_out + 3, amp[j]);
		}
		s->td.dtmf.current_sample += (limit - sample);
		if (s->td.dtmf.current_sample < DTMF_GSIZE) {
			continue;
		}
		/* We are at the end of a DTMF detection block */
		/* Find the peak row and the peak column */
		row_energy[0] = goertzel_result (&s->td.dtmf.row_out[0]);
		col_energy[0] = goertzel_result (&s->td.dtmf.col_out[0]);

		for (best_row = best_col = 0, i = 1;  i < 4;  i++) {
			row_energy[i] = goertzel_result (&s->td.dtmf.row_out[i]);
			if (row_energy[i] > row_energy[best_row]) {
				best_row = i;
			}
			col_energy[i] = goertzel_result (&s->td.dtmf.col_out[i]);
			if (col_energy[i] > col_energy[best_col]) {
				best_col = i;
			}
		}
		hit = 0;
		/* Basic signal level test and the twist test */
		if (row_energy[best_row] >= DTMF_THRESHOLD && 
		    col_energy[best_col] >= DTMF_THRESHOLD &&
		    col_energy[best_col] < row_energy[best_row] * DTMF_REVERSE_TWIST &&
		    col_energy[best_col] * DTMF_NORMAL_TWIST > row_energy[best_row]) {
			/* Relative peak test */
			for (i = 0;  i < 4;  i++) {
				if ((i != best_col &&
				    col_energy[i] * DTMF_RELATIVE_PEAK_COL > col_energy[best_col]) ||
				    (i != best_row 
				     && row_energy[i] * DTMF_RELATIVE_PEAK_ROW > row_energy[best_row])) {
					break;
				}
			}
			/* ... and fraction of total energy test */
			if (i >= 4 &&
			    (row_energy[best_row] + col_energy[best_col]) > DTMF_TO_TOTAL_ENERGY * s->td.dtmf.energy) {
				/* Got a hit */
				hit = dtmf_positions[(best_row << 2) + best_col];
			}
		} 

		if (s->td.dtmf.current_hit) {
			/* We are in the middle of a digit already */
			if (hit != s->td.dtmf.current_hit) {
				s->td.dtmf.misses++;
				if (s->td.dtmf.misses == s->td.dtmf.misses_to_end) {
					/* There were enough misses to consider digit ended */
					s->td.dtmf.current_hit = 0;
				}
			} else {
				s->td.dtmf.misses = 0;
				/* Current hit was same as last, so increment digit duration (of last digit) */
				s->digitlen[s->current_digits - 1] += DTMF_GSIZE;
			}
		}

		/* Look for a start of a new digit no matter if we are already in the middle of some
		   digit or not. This is because hits_to_begin may be smaller than misses_to_end
		   and we may find begin of new digit before we consider last one ended. */
		if (hit) {
			if (hit == s->td.dtmf.lasthit) {
				s->td.dtmf.hits++;
			} else {
				s->td.dtmf.hits = 1;
			}

			if (s->td.dtmf.hits == s->td.dtmf.hits_to_begin && hit != s->td.dtmf.current_hit) {
				store_digit(s, hit);
				s->td.dtmf.current_hit = hit;
				s->td.dtmf.misses = 0;
			}
		} else {
			s->td.dtmf.hits = 0;
		}

		s->td.dtmf.lasthit = hit;

		/* If we had a hit in this block, include it into mute fragment */
		if (squelch && hit) {
			if (mute.end < sample - DTMF_GSIZE) {
				/* There is a gap between fragments */
				mute_fragment(dsp, &mute);
				mute.start = (sample > DTMF_GSIZE) ? (sample - DTMF_GSIZE) : 0;
			}
			mute.end = limit + DTMF_GSIZE;
		}

		/* Reinitialise the detector for the next block */
		for (i = 0; i < 4; i++) {
			goertzel_reset(&s->td.dtmf.row_out[i]);
			goertzel_reset(&s->td.dtmf.col_out[i]);
		}
		s->td.dtmf.energy = 0.0;
		s->td.dtmf.current_sample = 0;
	}

	if (squelch && mute.end) {
		if (mute.end > samples) {
			s->td.dtmf.mute_samples = mute.end - samples;
			mute.end = samples;
		}
		mute_fragment(dsp, &mute);
	}

	return (s->td.dtmf.current_hit);	/* return the debounced hit */
}

static int mf_detect(struct ast_dsp *dsp, digit_detect_state_t *s, int16_t amp[],
                 int samples, int squelch, int relax)
{
	float energy[6];
	int best;
	int second_best;
	int i;
	int j;
	int sample;
	int hit;
	int limit;
	fragment_t mute = {0, 0};

	if (squelch && s->td.mf.mute_samples > 0) {
		mute.end = (s->td.mf.mute_samples < samples) ? s->td.mf.mute_samples : samples;
		s->td.mf.mute_samples -= mute.end;
	}

	hit = 0;
	for (sample = 0;  sample < samples;  sample = limit) {
		/* 80 is optimised to meet the MF specs. */
		/* XXX So then why is MF_GSIZE defined as 120? */
		if ((samples - sample) >= (MF_GSIZE - s->td.mf.current_sample)) {
			limit = sample + (MF_GSIZE - s->td.mf.current_sample);
		} else {
			limit = samples;
		}
		/* The following unrolled loop takes only 35% (rough estimate) of the 
		   time of a rolled loop on the machine on which it was developed */
		for (j = sample;  j < limit;  j++) {
			/* With GCC 2.95, the following unrolled code seems to take about 35%
			   (rough estimate) as long as a neat little 0-3 loop */
			goertzel_sample(s->td.mf.tone_out, amp[j]);
			goertzel_sample(s->td.mf.tone_out + 1, amp[j]);
			goertzel_sample(s->td.mf.tone_out + 2, amp[j]);
			goertzel_sample(s->td.mf.tone_out + 3, amp[j]);
			goertzel_sample(s->td.mf.tone_out + 4, amp[j]);
			goertzel_sample(s->td.mf.tone_out + 5, amp[j]);
		}
		s->td.mf.current_sample += (limit - sample);
		if (s->td.mf.current_sample < MF_GSIZE) {
			continue;
		}
		/* We're at the end of an MF detection block.  */
		/* Find the two highest energies. The spec says to look for
		   two tones and two tones only. Taking this literally -ie
		   only two tones pass the minimum threshold - doesn't work
		   well. The sinc function mess, due to rectangular windowing
		   ensure that! Find the two highest energies and ensure they
		   are considerably stronger than any of the others. */
		energy[0] = goertzel_result(&s->td.mf.tone_out[0]);
		energy[1] = goertzel_result(&s->td.mf.tone_out[1]);
		if (energy[0] > energy[1]) {
			best = 0;
			second_best = 1;
		} else {
			best = 1;
			second_best = 0;
		}
		/*endif*/
		for (i = 2; i < 6; i++) {
			energy[i] = goertzel_result(&s->td.mf.tone_out[i]);
			if (energy[i] >= energy[best]) {
				second_best = best;
				best = i;
			} else if (energy[i] >= energy[second_best]) {
				second_best = i;
			}
		}
		/* Basic signal level and twist tests */
		hit = 0;
		if (energy[best] >= BELL_MF_THRESHOLD && energy[second_best] >= BELL_MF_THRESHOLD
	            && energy[best] < energy[second_best]*BELL_MF_TWIST
	            && energy[best] * BELL_MF_TWIST > energy[second_best]) {
			/* Relative peak test */
			hit = -1;
			for (i = 0; i < 6; i++) {
				if (i != best && i != second_best) {
					if (energy[i]*BELL_MF_RELATIVE_PEAK >= energy[second_best]) {
						/* The best two are not clearly the best */
						hit = 0;
						break;
					}
				}
			}
		}
		if (hit) {
			/* Get the values into ascending order */
			if (second_best < best) {
				i = best;
				best = second_best;
				second_best = i;
			}
			best = best * 5 + second_best - 1;
			hit = bell_mf_positions[best];
			/* Look for two successive similar results */
			/* The logic in the next test is:
			   For KP we need 4 successive identical clean detects, with
			   two blocks of something different preceeding it. For anything
			   else we need two successive identical clean detects, with
			   two blocks of something different preceeding it. */
			if (hit == s->td.mf.hits[4] && hit == s->td.mf.hits[3] &&
			   ((hit != '*' && hit != s->td.mf.hits[2] && hit != s->td.mf.hits[1])||
			    (hit == '*' && hit == s->td.mf.hits[2] && hit != s->td.mf.hits[1] && 
			    hit != s->td.mf.hits[0]))) {
				store_digit(s, hit);
			}
		}


		if (hit != s->td.mf.hits[4] && hit != s->td.mf.hits[3]) {
			/* Two successive block without a hit terminate current digit */
			s->td.mf.current_hit = 0;
		}

		s->td.mf.hits[0] = s->td.mf.hits[1];
		s->td.mf.hits[1] = s->td.mf.hits[2];
		s->td.mf.hits[2] = s->td.mf.hits[3];
		s->td.mf.hits[3] = s->td.mf.hits[4];
		s->td.mf.hits[4] = hit;

		/* If we had a hit in this block, include it into mute fragment */
		if (squelch && hit) {
			if (mute.end < sample - MF_GSIZE) {
				/* There is a gap between fragments */
				mute_fragment(dsp, &mute);
				mute.start = (sample > MF_GSIZE) ? (sample - MF_GSIZE) : 0;
			}
			mute.end = limit + DTMF_GSIZE;
		}

		/* Reinitialise the detector for the next block */
		for (i = 0;  i < 6;  i++)
			goertzel_reset(&s->td.mf.tone_out[i]);
		s->td.mf.current_sample = 0;
	}

	if (squelch && mute.end) {
		if (mute.end > samples) {
			s->td.mf.mute_samples = mute.end - samples;
			mute.end = samples;
		}
		mute_fragment(dsp, &mute);
	}

	return (s->td.mf.current_hit); /* return the debounced hit */
}

static inline int pair_there(float p1, float p2, float i1, float i2, float e)
{
	/* See if p1 and p2 are there, relative to i1 and i2 and total energy */
	/* Make sure absolute levels are high enough */
	if ((p1 < TONE_MIN_THRESH) || (p2 < TONE_MIN_THRESH)) {
		return 0;
	}
	/* Amplify ignored stuff */
	i2 *= TONE_THRESH;
	i1 *= TONE_THRESH;
	e *= TONE_THRESH;
	/* Check first tone */
	if ((p1 < i1) || (p1 < i2) || (p1 < e)) {
		return 0;
	}
	/* And second */
	if ((p2 < i1) || (p2 < i2) || (p2 < e)) {
		return 0;
	}
	/* Guess it's there... */
	return 1;
}

static int __ast_dsp_call_progress(struct ast_dsp *dsp, short *s, int len)
{
	int x;
	int y;
	int pass;
	int newstate = DSP_TONE_STATE_SILENCE;
	int res = 0;
	while (len) {
		/* Take the lesser of the number of samples we need and what we have */
		pass = len;
		if (pass > dsp->gsamp_size - dsp->gsamps) {
			pass = dsp->gsamp_size - dsp->gsamps;
		}
		for (x = 0; x < pass; x++) {
			for (y = 0; y < dsp->freqcount; y++) {
				goertzel_sample(&dsp->freqs[y], s[x]);
			}
			dsp->genergy += s[x] * s[x];
		}
		s += pass;
		dsp->gsamps += pass;
		len -= pass;
		if (dsp->gsamps == dsp->gsamp_size) {
			float hz[7];
			for (y = 0; y < 7; y++) {
				hz[y] = goertzel_result(&dsp->freqs[y]);
			}
			switch (dsp->progmode) {
			case PROG_MODE_NA:
				if (pair_there(hz[HZ_480], hz[HZ_620], hz[HZ_350], hz[HZ_440], dsp->genergy)) {
					newstate = DSP_TONE_STATE_BUSY;
				} else if (pair_there(hz[HZ_440], hz[HZ_480], hz[HZ_350], hz[HZ_620], dsp->genergy)) {
					newstate = DSP_TONE_STATE_RINGING;
				} else if (pair_there(hz[HZ_350], hz[HZ_440], hz[HZ_480], hz[HZ_620], dsp->genergy)) {
					newstate = DSP_TONE_STATE_DIALTONE;
				} else if (hz[HZ_950] > TONE_MIN_THRESH * TONE_THRESH) {
					newstate = DSP_TONE_STATE_SPECIAL1;
				} else if (hz[HZ_1400] > TONE_MIN_THRESH * TONE_THRESH) {
					/* End of SPECIAL1 or middle of SPECIAL2 */
					if (dsp->tstate == DSP_TONE_STATE_SPECIAL1 || dsp->tstate == DSP_TONE_STATE_SPECIAL2) {
						newstate = DSP_TONE_STATE_SPECIAL2;
					}
				} else if (hz[HZ_1800] > TONE_MIN_THRESH * TONE_THRESH) {
					/* End of SPECIAL2 or middle of SPECIAL3 */
					if (dsp->tstate == DSP_TONE_STATE_SPECIAL2 || dsp->tstate == DSP_TONE_STATE_SPECIAL3) {
						newstate = DSP_TONE_STATE_SPECIAL3;
					}
				} else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
					newstate = DSP_TONE_STATE_TALKING;
				} else {
					newstate = DSP_TONE_STATE_SILENCE;
				}
				break;
			case PROG_MODE_CR:
				if (hz[HZ_425] > TONE_MIN_THRESH * TONE_THRESH) {
					newstate = DSP_TONE_STATE_RINGING;
				} else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
					newstate = DSP_TONE_STATE_TALKING;
				} else {
					newstate = DSP_TONE_STATE_SILENCE;
				}
				break;
			case PROG_MODE_UK:
				if (hz[HZ_400UK] > TONE_MIN_THRESH * TONE_THRESH) {
					newstate = DSP_TONE_STATE_HUNGUP;
				} else if (pair_there(hz[HZ_350UK], hz[HZ_440UK], hz[HZ_400UK], hz[HZ_400UK], dsp->genergy)) {
					newstate = DSP_TONE_STATE_DIALTONE;
				}
				break;
			default:
				ast_log(LOG_WARNING, "Can't process in unknown prog mode '%d'\n", dsp->progmode);
			}
			if (newstate == dsp->tstate) {
				dsp->tcount++;
				if (dsp->ringtimeout) {
					dsp->ringtimeout++;
				}
				switch (dsp->tstate) {
				case DSP_TONE_STATE_RINGING:
					if ((dsp->features & DSP_PROGRESS_RINGING) &&
					    (dsp->tcount == THRESH_RING)) {
						res = AST_CONTROL_RINGING;
						dsp->ringtimeout = 1;
					}
					break;
				case DSP_TONE_STATE_BUSY:
					if ((dsp->features & DSP_PROGRESS_BUSY) &&
					    (dsp->tcount == THRESH_BUSY)) {
						res = AST_CONTROL_BUSY;
						dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
					}
					break;
				case DSP_TONE_STATE_TALKING:
					if ((dsp->features & DSP_PROGRESS_TALK) &&
					    (dsp->tcount == THRESH_TALK)) {
						res = AST_CONTROL_ANSWER;
						dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
					}
					break;
				case DSP_TONE_STATE_SPECIAL3:
					if ((dsp->features & DSP_PROGRESS_CONGESTION) &&
					    (dsp->tcount == THRESH_CONGESTION)) {
						res = AST_CONTROL_CONGESTION;
						dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
					}
					break;
				case DSP_TONE_STATE_HUNGUP:
					if ((dsp->features & DSP_FEATURE_CALL_PROGRESS) &&
					    (dsp->tcount == THRESH_HANGUP)) {
						res = AST_CONTROL_HANGUP;
						dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
					}
					break;
				}
				if (dsp->ringtimeout == THRESH_RING2ANSWER) {
					ast_debug(1, "Consider call as answered because of timeout after last ring\n");
					res = AST_CONTROL_ANSWER;
					dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
				}
			} else {
				ast_debug(5, "Stop state %d with duration %d\n", dsp->tstate, dsp->tcount);
				ast_debug(5, "Start state %d\n", newstate);
				dsp->tstate = newstate;
				dsp->tcount = 1;
			}

			/* Reset goertzel */
			for (x = 0; x < 7; x++) {
				dsp->freqs[x].v2 = dsp->freqs[x].v3 = 0.0;
			}
			dsp->gsamps = 0;
			dsp->genergy = 0.0;
		}
	}

	return res;
}

int ast_dsp_call_progress(struct ast_dsp *dsp, struct ast_frame *inf)
{
	if (inf->frametype != AST_FRAME_VOICE) {
		ast_log(LOG_WARNING, "Can't check call progress of non-voice frames\n");
		return 0;
	}
	if (!ast_format_is_slinear(&inf->subclass.format)) {
		ast_log(LOG_WARNING, "Can only check call progress in signed-linear frames\n");
		return 0;
	}
	return __ast_dsp_call_progress(dsp, inf->data.ptr, inf->datalen / 2);
}

static int __ast_dsp_silence_noise(struct ast_dsp *dsp, short *s, int len, int *totalsilence, int *totalnoise, int *frames_energy)
{
	int accum;
	int x;
	int res = 0;

	if (!len) {
		return 0;
	}
	accum = 0;
	for (x = 0; x < len; x++) {
		accum += abs(s[x]);
	}
	accum /= len;
	if (accum < dsp->threshold) {
		/* Silent */
		dsp->totalsilence += len / (dsp->sample_rate / 1000);
		if (dsp->totalnoise) {
			/* Move and save history */
			memmove(dsp->historicnoise + DSP_HISTORY - dsp->busycount, dsp->historicnoise + DSP_HISTORY - dsp->busycount + 1, dsp->busycount * sizeof(dsp->historicnoise[0]));
			dsp->historicnoise[DSP_HISTORY - 1] = dsp->totalnoise;
/* we don't want to check for busydetect that frequently */
#if 0
			dsp->busymaybe = 1;
#endif
		}
		dsp->totalnoise = 0;
		res = 1;
	} else {
		/* Not silent */
		dsp->totalnoise += len / (dsp->sample_rate / 1000);
		if (dsp->totalsilence) {
			int silence1 = dsp->historicsilence[DSP_HISTORY - 1];
			int silence2 = dsp->historicsilence[DSP_HISTORY - 2];
			/* Move and save history */
			memmove(dsp->historicsilence + DSP_HISTORY - dsp->busycount, dsp->historicsilence + DSP_HISTORY - dsp->busycount + 1, dsp->busycount * sizeof(dsp->historicsilence[0]));
			dsp->historicsilence[DSP_HISTORY - 1] = dsp->totalsilence;
			/* check if the previous sample differs only by BUSY_PERCENT from the one before it */
			if (silence1 < silence2) {
				if (silence1 + silence1 * BUSY_PERCENT / 100 >= silence2) {
					dsp->busymaybe = 1;
				} else {
					dsp->busymaybe = 0;
				}
			} else {
				if (silence1 - silence1 * BUSY_PERCENT / 100 <= silence2) {
					dsp->busymaybe = 1;
				} else {
					dsp->busymaybe = 0;
				}
			}
		}
		dsp->totalsilence = 0;
	}
	if (totalsilence) {
		*totalsilence = dsp->totalsilence;
	}
	if (totalnoise) {
		*totalnoise = dsp->totalnoise;
	}
	if (frames_energy) {
		*frames_energy = accum;
	}
	return res;
}

int ast_dsp_busydetect(struct ast_dsp *dsp)
{
	int res = 0, x;
#ifndef BUSYDETECT_TONEONLY
	int avgsilence = 0, hitsilence = 0;
#endif
	int avgtone = 0, hittone = 0;

	/* if we have a 4 length pattern, the way busymaybe is set doesn't help us. */
	if (dsp->busy_cadence.length != 4) {
		if (!dsp->busymaybe) {
			return res;
		}
	}

	for (x = DSP_HISTORY - dsp->busycount; x < DSP_HISTORY; x++) {
#ifndef BUSYDETECT_TONEONLY
		avgsilence += dsp->historicsilence[x];
#endif
		avgtone += dsp->historicnoise[x];
	}
#ifndef BUSYDETECT_TONEONLY
	avgsilence /= dsp->busycount;
#endif
	avgtone /= dsp->busycount;
	for (x = DSP_HISTORY - dsp->busycount; x < DSP_HISTORY; x++) {
#ifndef BUSYDETECT_TONEONLY
		if (avgsilence > dsp->historicsilence[x]) {
			if (avgsilence - (avgsilence * BUSY_PERCENT / 100) <= dsp->historicsilence[x]) {
				hitsilence++;
			}
		} else {
			if (avgsilence + (avgsilence * BUSY_PERCENT / 100) >= dsp->historicsilence[x]) {
				hitsilence++;
			}
		}
#endif
		if (avgtone > dsp->historicnoise[x]) {
			if (avgtone - (avgtone * BUSY_PERCENT / 100) <= dsp->historicnoise[x]) {
				hittone++;
			}
		} else {
			if (avgtone + (avgtone * BUSY_PERCENT / 100) >= dsp->historicnoise[x]) {
				hittone++;
			}
		}
	}
#ifndef BUSYDETECT_TONEONLY
	if ((hittone >= dsp->busycount - 1) && (hitsilence >= dsp->busycount - 1) && 
	    (avgtone >= BUSY_MIN && avgtone <= BUSY_MAX) && 
	    (avgsilence >= BUSY_MIN && avgsilence <= BUSY_MAX)) {
#else
	if ((hittone >= dsp->busycount - 1) && (avgtone >= BUSY_MIN && avgtone <= BUSY_MAX)) {
#endif
#ifdef BUSYDETECT_COMPARE_TONE_AND_SILENCE
		if (avgtone > avgsilence) {
			if (avgtone - avgtone*BUSY_PERCENT/100 <= avgsilence) {
				res = 1;
			}
		} else {
			if (avgtone + avgtone*BUSY_PERCENT/100 >= avgsilence) {
				res = 1;
			}
		}
#else
		res = 1;
#endif
	}

	/* If we have a 4-length pattern, we can go ahead and just check it in a different way. */
	if (dsp->busy_cadence.length == 4) {
		int x;
		int errors = 0;
		int errors_max = ((4 * dsp->busycount) / 100.0) * BUSY_PAT_PERCENT;

		for (x = DSP_HISTORY - (dsp->busycount); x < DSP_HISTORY; x += 2) {
			int temp_error;
			temp_error = abs(dsp->historicnoise[x] - dsp->busy_cadence.pattern[0]);
			if ((temp_error * 100) / dsp->busy_cadence.pattern[0] > BUSY_PERCENT) {
				errors++;
			}

			temp_error = abs(dsp->historicnoise[x + 1] - dsp->busy_cadence.pattern[2]);
			if ((temp_error * 100) / dsp->busy_cadence.pattern[2] > BUSY_PERCENT) {
				errors++;
			}

			temp_error = abs(dsp->historicsilence[x] - dsp->busy_cadence.pattern[1]);
			if ((temp_error * 100) / dsp->busy_cadence.pattern[1] > BUSY_PERCENT) {
				errors++;
			}

			temp_error = abs(dsp->historicsilence[x + 1] - dsp->busy_cadence.pattern[3]);
			if ((temp_error * 100) / dsp->busy_cadence.pattern[3] > BUSY_PERCENT) {
				errors++;
			}
		}

		ast_debug(5, "errors = %d  max = %d\n", errors, errors_max);

		if (errors <= errors_max) {
			return 1;
		}
	}

	/* If we know the expected busy tone length, check we are in the range */
	if (res && (dsp->busy_cadence.pattern[0] > 0)) {
		if (abs(avgtone - dsp->busy_cadence.pattern[0]) > MAX(dsp->busy_cadence.pattern[0]*BUSY_PAT_PERCENT/100, 20)) {
#ifdef BUSYDETECT_DEBUG
			ast_debug(5, "busy detector: avgtone of %d not close enough to desired %d\n",
				avgtone, dsp->busy_cadence.pattern[0]);
#endif
			res = 0;
		}
	}
#ifndef BUSYDETECT_TONEONLY
	/* If we know the expected busy tone silent-period length, check we are in the range */
	if (res && (dsp->busy_cadence.pattern[1] > 0)) {
		if (abs(avgsilence - dsp->busy_cadence.pattern[1]) > MAX(dsp->busy_cadence.pattern[1]*BUSY_PAT_PERCENT/100, 20)) {
#ifdef BUSYDETECT_DEBUG
		ast_debug(5, "busy detector: avgsilence of %d not close enough to desired %d\n",
			avgsilence, dsp->busy_cadence.pattern[1]);
#endif
			res = 0;
		}
	}
#endif
#if !defined(BUSYDETECT_TONEONLY) && defined(BUSYDETECT_DEBUG)
	if (res) {
		ast_debug(5, "ast_dsp_busydetect detected busy, avgtone: %d, avgsilence %d\n", avgtone, avgsilence);
	} else {
		ast_debug(5, "busy detector: FAILED with avgtone: %d, avgsilence %d\n", avgtone, avgsilence);
	}
#endif
	return res;
}

int ast_dsp_silence(struct ast_dsp *dsp, struct ast_frame *f, int *totalsilence)
{
	short *s;
	int len;
	
	if (f->frametype != AST_FRAME_VOICE) {
		ast_log(LOG_WARNING, "Can't calculate silence on a non-voice frame\n");
		return 0;
	}
	if (!ast_format_is_slinear(&f->subclass.format)) {
		ast_log(LOG_WARNING, "Can only calculate silence on signed-linear frames :(\n");
		return 0;
	}
	s = f->data.ptr;
	len = f->datalen/2;
	return __ast_dsp_silence_noise(dsp, s, len, totalsilence, NULL, NULL);
}

int ast_dsp_silence_with_energy(struct ast_dsp *dsp, struct ast_frame *f, int *totalsilence, int *frames_energy)
{
	short *s;
	int len;

	if (f->frametype != AST_FRAME_VOICE) {
		ast_log(LOG_WARNING, "Can't calculate silence on a non-voice frame\n");
		return 0;
	}
	if (!ast_format_is_slinear(&f->subclass.format)) {
		ast_log(LOG_WARNING, "Can only calculate silence on signed-linear frames :(\n");
		return 0;
	}
	s = f->data.ptr;
	len = f->datalen/2;
	return __ast_dsp_silence_noise(dsp, s, len, totalsilence, NULL, frames_energy);
}

int ast_dsp_noise(struct ast_dsp *dsp, struct ast_frame *f, int *totalnoise)
{
       short *s;
       int len;

       if (f->frametype != AST_FRAME_VOICE) {
               ast_log(LOG_WARNING, "Can't calculate noise on a non-voice frame\n");
               return 0;
       }
       if (!ast_format_is_slinear(&f->subclass.format)) {
               ast_log(LOG_WARNING, "Can only calculate noise on signed-linear frames :(\n");
               return 0;
       }
       s = f->data.ptr;
       len = f->datalen/2;
       return __ast_dsp_silence_noise(dsp, s, len, NULL, totalnoise, NULL);
}


struct ast_frame *ast_dsp_process(struct ast_channel *chan, struct ast_dsp *dsp, struct ast_frame *af)
{
	int silence;
	int res;
	int digit = 0, fax_digit = 0;
	int x;
	short *shortdata;
	unsigned char *odata;
	int len;
	struct ast_frame *outf = NULL;

	if (!af) {
		return NULL;
	}
	if (af->frametype != AST_FRAME_VOICE) {
		return af;
	}

	odata = af->data.ptr;
	len = af->datalen;
	/* Make sure we have short data */
	if (ast_format_is_slinear(&af->subclass.format)) {
		shortdata = af->data.ptr;
		len = af->datalen / 2;
	} else {
		switch (af->subclass.format.id) {
		case AST_FORMAT_ULAW:
		case AST_FORMAT_TESTLAW:
			shortdata = alloca(af->datalen * 2);
			for (x = 0;x < len; x++) {
				shortdata[x] = AST_MULAW(odata[x]);
			}
			break;
		case AST_FORMAT_ALAW:
			shortdata = alloca(af->datalen * 2);
			for (x = 0; x < len; x++) {
				shortdata[x] = AST_ALAW(odata[x]);
			}
			break;
		default:
			/*Display warning only once. Otherwise you would get hundreds of warnings every second */
			if (dsp->display_inband_dtmf_warning)
				ast_log(LOG_WARNING, "Inband DTMF is not supported on codec %s. Use RFC2833\n", ast_getformatname(&af->subclass.format));
			dsp->display_inband_dtmf_warning = 0;
			return af;
		}
	}

	/* Initially we do not want to mute anything */
	dsp->mute_fragments = 0;

	/* Need to run the silence detection stuff for silence suppression and busy detection */
	if ((dsp->features & DSP_FEATURE_SILENCE_SUPPRESS) || (dsp->features & DSP_FEATURE_BUSY_DETECT)) {
		res = __ast_dsp_silence_noise(dsp, shortdata, len, &silence, NULL, NULL);
	}

	if ((dsp->features & DSP_FEATURE_SILENCE_SUPPRESS) && silence) {
		memset(&dsp->f, 0, sizeof(dsp->f));
		dsp->f.frametype = AST_FRAME_NULL;
		ast_frfree(af);
		return ast_frisolate(&dsp->f);
	}
	if ((dsp->features & DSP_FEATURE_BUSY_DETECT) && ast_dsp_busydetect(dsp)) {
		chan->_softhangup |= AST_SOFTHANGUP_DEV;
		memset(&dsp->f, 0, sizeof(dsp->f));
		dsp->f.frametype = AST_FRAME_CONTROL;
		dsp->f.subclass.integer = AST_CONTROL_BUSY;
		ast_frfree(af);
		ast_debug(1, "Requesting Hangup because the busy tone was detected on channel %s\n", chan->name);
		return ast_frisolate(&dsp->f);
	}

	if ((dsp->features & DSP_FEATURE_FAX_DETECT)) {
		if ((dsp->faxmode & DSP_FAXMODE_DETECT_CNG) && tone_detect(dsp, &dsp->cng_tone_state, shortdata, len)) {
			fax_digit = 'f';
		}

		if ((dsp->faxmode & DSP_FAXMODE_DETECT_CED) && tone_detect(dsp, &dsp->ced_tone_state, shortdata, len)) {
			fax_digit = 'e';
		}
	}

	if (dsp->features & (DSP_FEATURE_DIGIT_DETECT | DSP_FEATURE_BUSY_DETECT)) {
		if (dsp->digitmode & DSP_DIGITMODE_MF)
			digit = mf_detect(dsp, &dsp->digit_state, shortdata, len, (dsp->digitmode & DSP_DIGITMODE_NOQUELCH) == 0, (dsp->digitmode & DSP_DIGITMODE_RELAXDTMF));
		else
			digit = dtmf_detect(dsp, &dsp->digit_state, shortdata, len, (dsp->digitmode & DSP_DIGITMODE_NOQUELCH) == 0, (dsp->digitmode & DSP_DIGITMODE_RELAXDTMF));

		if (dsp->digit_state.current_digits) {
			int event = 0, event_len = 0;
			char event_digit = 0;

			if (!dsp->dtmf_began) {
				/* We have not reported DTMF_BEGIN for anything yet */

				if (dsp->features & DSP_FEATURE_DIGIT_DETECT) {
					event = AST_FRAME_DTMF_BEGIN;
					event_digit = dsp->digit_state.digits[0];
				}
				dsp->dtmf_began = 1;

			} else if (dsp->digit_state.current_digits > 1 || digit != dsp->digit_state.digits[0]) {
				/* Digit changed. This means digit we have reported with DTMF_BEGIN ended */
				if (dsp->features & DSP_FEATURE_DIGIT_DETECT) {
					event = AST_FRAME_DTMF_END;
					event_digit = dsp->digit_state.digits[0];
					event_len = dsp->digit_state.digitlen[0] * 1000 / dsp->sample_rate;
				}
				memmove(&dsp->digit_state.digits[0], &dsp->digit_state.digits[1], dsp->digit_state.current_digits);
				memmove(&dsp->digit_state.digitlen[0], &dsp->digit_state.digitlen[1], dsp->digit_state.current_digits * sizeof(dsp->digit_state.digitlen[0]));
				dsp->digit_state.current_digits--;
				dsp->dtmf_began = 0;

				if (dsp->features & DSP_FEATURE_BUSY_DETECT) {
					/* Reset Busy Detector as we have some confirmed activity */ 
					memset(dsp->historicsilence, 0, sizeof(dsp->historicsilence));
					memset(dsp->historicnoise, 0, sizeof(dsp->historicnoise));
					ast_debug(1, "DTMF Detected - Reset busydetector\n");
				}
			}

			if (event) {
				memset(&dsp->f, 0, sizeof(dsp->f));
				dsp->f.frametype = event;
				dsp->f.subclass.integer = event_digit;
				dsp->f.len = event_len;
				outf = &dsp->f;
				goto done;
			}
		}
	}

	if (fax_digit) {
		/* Fax was detected - digit is either 'f' or 'e' */

		memset(&dsp->f, 0, sizeof(dsp->f));
		dsp->f.frametype = AST_FRAME_DTMF;
		dsp->f.subclass.integer = fax_digit;
		outf = &dsp->f;
		goto done;
	}

	if ((dsp->features & DSP_FEATURE_CALL_PROGRESS)) {
		res = __ast_dsp_call_progress(dsp, shortdata, len);
		if (res) {
			switch (res) {
			case AST_CONTROL_ANSWER:
			case AST_CONTROL_BUSY:
			case AST_CONTROL_RINGING:
			case AST_CONTROL_CONGESTION:
			case AST_CONTROL_HANGUP:
				memset(&dsp->f, 0, sizeof(dsp->f));
				dsp->f.frametype = AST_FRAME_CONTROL;
				dsp->f.subclass.integer = res;
				dsp->f.src = "dsp_progress";
				if (chan) 
					ast_queue_frame(chan, &dsp->f);
				break;
			default:
				ast_log(LOG_WARNING, "Don't know how to represent call progress message %d\n", res);
			}
		}
	} else if ((dsp->features & DSP_FEATURE_WAITDIALTONE)) {
		res = __ast_dsp_call_progress(dsp, shortdata, len);
	}

done:
	/* Mute fragment of the frame */
	for (x = 0; x < dsp->mute_fragments; x++) {
		memset(shortdata + dsp->mute_data[x].start, 0, sizeof(int16_t) * (dsp->mute_data[x].end - dsp->mute_data[x].start));
	}

	switch (af->subclass.format.id) {
	case AST_FORMAT_ULAW:
		for (x = 0; x < len; x++) {
			odata[x] = AST_LIN2MU((unsigned short) shortdata[x]);
		}
		break;
	case AST_FORMAT_ALAW:
		for (x = 0; x < len; x++) {
			odata[x] = AST_LIN2A((unsigned short) shortdata[x]);
		}
		/* fall through */
	default:
		break;
	}

	if (outf) {
		if (chan) {
			ast_queue_frame(chan, af);
		}
		ast_frfree(af);
		return ast_frisolate(outf);
	} else {
		return af;
	}
}

static void ast_dsp_prog_reset(struct ast_dsp *dsp)
{
	int max = 0;
	int x;
	
	dsp->gsamp_size = modes[dsp->progmode].size;
	dsp->gsamps = 0;
	for (x = 0; x < ARRAY_LEN(modes[dsp->progmode].freqs); x++) {
		if (modes[dsp->progmode].freqs[x]) {
			goertzel_init(&dsp->freqs[x], (float)modes[dsp->progmode].freqs[x], dsp->gsamp_size, dsp->sample_rate);
			max = x + 1;
		}
	}
	dsp->freqcount = max;
	dsp->ringtimeout= 0;
}

unsigned int ast_dsp_get_sample_rate(const struct ast_dsp *dsp)
{
	return dsp->sample_rate;
}

static struct ast_dsp *__ast_dsp_new(unsigned int sample_rate)
{
	struct ast_dsp *dsp;
	
	if ((dsp = ast_calloc(1, sizeof(*dsp)))) {		
		dsp->threshold = DEFAULT_THRESHOLD;
		dsp->features = DSP_FEATURE_SILENCE_SUPPRESS;
		dsp->busycount = DSP_HISTORY;
		dsp->digitmode = DSP_DIGITMODE_DTMF;
		dsp->faxmode = DSP_FAXMODE_DETECT_CNG;
		dsp->sample_rate = sample_rate;
		/* Initialize digit detector */
		ast_digit_detect_init(&dsp->digit_state, dsp->digitmode & DSP_DIGITMODE_MF, dsp->sample_rate);
		dsp->display_inband_dtmf_warning = 1;
		/* Initialize initial DSP progress detect parameters */
		ast_dsp_prog_reset(dsp);
		/* Initialize fax detector */
		ast_fax_detect_init(dsp);
	}
	return dsp;
}

struct ast_dsp *ast_dsp_new(void)
{
	return __ast_dsp_new(DEFAULT_SAMPLE_RATE);
}

struct ast_dsp *ast_dsp_new_with_rate(unsigned int sample_rate)
{
	return __ast_dsp_new(sample_rate);
}

void ast_dsp_set_features(struct ast_dsp *dsp, int features)
{
	dsp->features = features;
	if (!(features & DSP_FEATURE_DIGIT_DETECT)) {
		dsp->display_inband_dtmf_warning = 0;
	}
}

void ast_dsp_free(struct ast_dsp *dsp)
{
	ast_free(dsp);
}

void ast_dsp_set_threshold(struct ast_dsp *dsp, int threshold)
{
	dsp->threshold = threshold;
}

void ast_dsp_set_busy_count(struct ast_dsp *dsp, int cadences)
{
	if (cadences < 4) {
		cadences = 4;
	}
	if (cadences > DSP_HISTORY) {
		cadences = DSP_HISTORY;
	}
	dsp->busycount = cadences;
}

void ast_dsp_set_busy_pattern(struct ast_dsp *dsp, const struct ast_dsp_busy_pattern *cadence)
{
	dsp->busy_cadence = *cadence;
	ast_debug(1, "dsp busy pattern set to %d,%d,%d,%d\n", cadence->pattern[0], cadence->pattern[1], (cadence->length == 4) ? cadence->pattern[2] : 0, (cadence->length == 4) ? cadence->pattern[3] : 0);
}

void ast_dsp_digitreset(struct ast_dsp *dsp)
{
	int i;
	
	dsp->dtmf_began = 0;
	if (dsp->digitmode & DSP_DIGITMODE_MF) {
		mf_detect_state_t *s = &dsp->digit_state.td.mf;
		/* Reinitialise the detector for the next block */
		for (i = 0;  i < 6;  i++) {
			goertzel_reset(&s->tone_out[i]);
		}
		s->hits[4] = s->hits[3] = s->hits[2] = s->hits[1] = s->hits[0] = s->current_hit = 0;
		s->current_sample = 0;
	} else {
		dtmf_detect_state_t *s = &dsp->digit_state.td.dtmf;
		/* Reinitialise the detector for the next block */
		for (i = 0;  i < 4;  i++) {
			goertzel_reset(&s->row_out[i]);
			goertzel_reset(&s->col_out[i]);
		}
		s->lasthit = s->current_hit = 0;
		s->energy = 0.0;
		s->current_sample = 0;
		s->hits = 0;
		s->misses = 0;
	}

	dsp->digit_state.digits[0] = '\0';
	dsp->digit_state.current_digits = 0;
}

void ast_dsp_reset(struct ast_dsp *dsp)
{
	int x;
	
	dsp->totalsilence = 0;
	dsp->gsamps = 0;
	for (x = 0; x < 4; x++) {
		dsp->freqs[x].v2 = dsp->freqs[x].v3 = 0.0;
	}
	memset(dsp->historicsilence, 0, sizeof(dsp->historicsilence));
	memset(dsp->historicnoise, 0, sizeof(dsp->historicnoise));	
	dsp->ringtimeout= 0;
}

int ast_dsp_set_digitmode(struct ast_dsp *dsp, int digitmode)
{
	int new;
	int old;
	
	old = dsp->digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
	new = digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
	if (old != new) {
		/* Must initialize structures if switching from MF to DTMF or vice-versa */
		ast_digit_detect_init(&dsp->digit_state, new & DSP_DIGITMODE_MF, dsp->sample_rate);
	}
	dsp->digitmode = digitmode;
	return 0;
}

int ast_dsp_set_faxmode(struct ast_dsp *dsp, int faxmode)
{
	if (dsp->faxmode != faxmode) {
		ast_fax_detect_init(dsp);
	}
	dsp->faxmode = faxmode;
	return 0;
}

int ast_dsp_set_call_progress_zone(struct ast_dsp *dsp, char *zone)
{
	int x;
	
	for (x = 0; x < ARRAY_LEN(aliases); x++) {
		if (!strcasecmp(aliases[x].name, zone)) {
			dsp->progmode = aliases[x].mode;
			ast_dsp_prog_reset(dsp);
			return 0;
		}
	}
	return -1;
}

int ast_dsp_was_muted(struct ast_dsp *dsp)
{
	return (dsp->mute_fragments > 0);
}

int ast_dsp_get_tstate(struct ast_dsp *dsp) 
{
	return dsp->tstate;
}

int ast_dsp_get_tcount(struct ast_dsp *dsp) 
{
	return dsp->tcount;
}

static int _dsp_init(int reload)
{
	struct ast_flags config_flags = { reload ? CONFIG_FLAG_FILEUNCHANGED : 0 };
	struct ast_config *cfg;

	cfg = ast_config_load2(CONFIG_FILE_NAME, "dsp", config_flags);
	if (cfg == CONFIG_STATUS_FILEMISSING || cfg == CONFIG_STATUS_FILEINVALID) {
		ast_verb(5, "Can't find dsp config file %s. Assuming default silencethreshold of %d.\n", CONFIG_FILE_NAME, DEFAULT_SILENCE_THRESHOLD);
		thresholds[THRESHOLD_SILENCE] = DEFAULT_SILENCE_THRESHOLD;
		return 0;
	}

	if (cfg == CONFIG_STATUS_FILEUNCHANGED) {
		return 0;
	}

	if (cfg) {
		const char *value;

		value = ast_variable_retrieve(cfg, "default", "silencethreshold");
		if (value && sscanf(value, "%30d", &thresholds[THRESHOLD_SILENCE]) != 1) {
			ast_verb(5, "%s: '%s' is not a valid silencethreshold value\n", CONFIG_FILE_NAME, value);
			thresholds[THRESHOLD_SILENCE] = DEFAULT_SILENCE_THRESHOLD;
		} else if (!value) {
			thresholds[THRESHOLD_SILENCE] = DEFAULT_SILENCE_THRESHOLD;
		}

		ast_config_destroy(cfg);
	}
	return 0;
}

int ast_dsp_get_threshold_from_settings(enum threshold which)
{
	return thresholds[which];
}

int ast_dsp_init(void)
{
	return _dsp_init(0);
}

int ast_dsp_reload(void)
{
	return _dsp_init(1);
}