aboutsummaryrefslogtreecommitdiffstats
path: root/codecs/lpc10/voicin.c
blob: 0b87d18c1759210c971b106c38c0b6e3c7105212 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
/*

$Log$
Revision 1.15  2003/11/23 22:14:32  markster
Various warning cleanups

Revision 1.14  2003/02/12 13:59:15  matteo
mer feb 12 14:56:57 CET 2003

Revision 1.1.1.1  2003/02/12 13:59:15  matteo
mer feb 12 14:56:57 CET 2003

Revision 1.2  2000/01/05 08:20:40  markster
Some OSS fixes and a few lpc changes to make it actually work

 * Revision 1.2  1996/08/20  20:45:00  jaf
 * Removed all static local variables that were SAVE'd in the Fortran
 * code, and put them in struct lpc10_encoder_state that is passed as an
 * argument.
 *
 * Removed init function, since all initialization is now done in
 * init_lpc10_encoder_state().
 *
 * Revision 1.1  1996/08/19  22:30:14  jaf
 * Initial revision
 *

*/

#ifdef P_R_O_T_O_T_Y_P_E_S
extern int voicin_(integer *vwin, real *inbuf, real *lpbuf, integer *buflim, integer *half, real *minamd, real *maxamd, integer *mintau, real *ivrc, integer *obound, integer *voibuf, integer *af, struct lpc10_encoder_state *st);
/* comlen contrl_ 12 */
/*:ref: vparms_ 14 14 4 6 6 4 4 6 4 4 4 4 6 6 6 6 */
#endif

/*  -- translated by f2c (version 19951025).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Common Block Declarations */

extern struct {
    integer order, lframe;
    logical corrp;
} contrl_;

#define contrl_1 contrl_

/****************************************************************************/

/* 	VOICIN Version 52 */

/* $Log$
 * Revision 1.15  2003/11/23 22:14:32  markster
 * Various warning cleanups
 *
/* Revision 1.14  2003/02/12 13:59:15  matteo
/* mer feb 12 14:56:57 CET 2003
/*
/* Revision 1.1.1.1  2003/02/12 13:59:15  matteo
/* mer feb 12 14:56:57 CET 2003
/*
/* Revision 1.2  2000/01/05 08:20:40  markster
/* Some OSS fixes and a few lpc changes to make it actually work
/*
 * Revision 1.2  1996/08/20  20:45:00  jaf
 * Removed all static local variables that were SAVE'd in the Fortran
 * code, and put them in struct lpc10_encoder_state that is passed as an
 * argument.
 *
 * Removed init function, since all initialization is now done in
 * init_lpc10_encoder_state().
 *
 * Revision 1.1  1996/08/19  22:30:14  jaf
 * Initial revision
 * */
/* Revision 1.10  1996/03/29  17:59:14  jaf */
/* Avoided using VALUE(9), although it shouldn't affect the function of */
/* the code at all, because it was always multiplied by VDC(9,SNRL), */
/* which is 0 for all values of SNRL.  Still, if VALUE(9) had an initial */
/* value of IEEE NaN, it might cause trouble (I don't know how IEEE */
/* defines Nan * 0.  It should either be NaN or 0.) */

/* Revision 1.9  1996/03/29  17:54:46  jaf */
/* Added a few comments about the accesses made to argument array VOIBUF */
/* and the local saved array VOICE. */

/* Revision 1.8  1996/03/27  18:19:54  jaf */
/* Added an assignment to VSTATE that does not affect the function of the */
/* program at all.  The only reason I put it in was so that the tracing */
/* statements at the end, when enabled, will print a consistent value for */
/* VSTATE when HALF .EQ. 1, rather than a garbage value that could change */
/* from one call to the next. */

/* Revision 1.7  1996/03/26  20:00:06  jaf */
/* Removed the inclusion of the file "vcomm.fh", and put its contents */
/* into this file.  It was included nowhere else but here. */

/* Revision 1.6  1996/03/26  19:38:09  jaf */
/* Commented out trace statements. */

/* Revision 1.5  1996/03/19  20:43:45  jaf */
/* Added comments about which indices of OBOUND and VOIBUF can be */
/* accessed, and whether they are read or written.  VOIBUF is fairly */
/* messy. */

/* Revision 1.4  1996/03/19  15:00:58  jaf */
/* Moved the DATA statements for the *VDC* variables later, as it is */
/* apparently illegal to have DATA statements before local variable */
/* declarations. */

/* Revision 1.3  1996/03/19  00:10:49  jaf */
/* Heavily commented the local variables that are saved from one */
/* invocation to the next, and how the local variable FIRST is used to */
/* avoid the need to assign most of them initial values with DATA */
/* statements. */

/* A few should be initialized, but aren't.  I've guessed initial values */
/* for two of these, SFBUE and SLBUE, and I've convinced myself that for */
/* VOICE, the effects of uninitialized values will die out after 2 or 3 */
/* frame times.  It would still be good to choose initial values for */
/* these, but I don't know what reasonable values would be (0 comes to */
/* mind). */

/* Revision 1.2  1996/03/13  16:09:28  jaf */
/* Comments added explaining which of the local variables of this */
/* subroutine need to be saved from one invocation to the next, and which */
/* do not. */

/* WARNING!  Some of them that should are never given initial values in */
/* this code.  Hopefully, Fortran 77 defines initial values for them, but */
/* even so, giving them explicit initial values is preferable. */

/* WARNING!  VALUE(9) is used, but never assigned a value.  It should */
/* probably be eliminated from the code. */

/* Revision 1.1  1996/02/07 14:50:28  jaf */
/* Initial revision */


/****************************************************************************/

/*        Voicing Detection (VOICIN) makes voicing decisions for each half */
/*  frame of input speech.  Tentative voicing decisions are made two frames*/
/*   in the future (2F) for each half frame.  These decisions are carried */
/*   through one frame in the future (1F) to the present (P) frame where */
/*   they are examined and smoothed, resulting in the final voicing */
/*   decisions for each half frame. */
/*        The voicing parameter (signal measurement) column vector (VALUE) */
/*   is based on a rectangular window of speech samples determined by the */
/*  window placement algorithm.  The voicing parameter vector contains the*/
/*  AMDF windowed maximum-to-minimum ratio, the zero crossing rate, energy*/
/*   measures, reflection coefficients, and prediction gains.  The voicing */
/*  window is placed to avoid contamination of the voicing parameter vector*/
/*   with speech onsets. */
/*        The input signal is then classified as unvoiced (including */
/*   silence) or voiced.  This decision is made by a linear discriminant */
/*   function consisting of a dot product of the voicing decision */
/*   coefficient (VDC) row vector with the measurement column vector */
/*  (VALUE).  The VDC vector is 2-dimensional, each row vector is optimized*/
/*   for a particular signal-to-noise ratio (SNR).  So, before the dot */
/*   product is performed, the SNR is estimated to select the appropriate */
/*   VDC vector. */
/*        The smoothing algorithm is a modified median smoother.  The */
/*  voicing discriminant function is used by the smoother to determine how*/
/*   strongly voiced or unvoiced a signal is.  The smoothing is further */
/*   modified if a speech onset and a voicing decision transition occur */
/*   within one half frame.  In this case, the voicing decision transition */
/*  is extended to the speech onset.  For transmission purposes, there are*/
/*   constraints on the duration and transition of voicing decisions.  The */
/*   smoother takes these constraints into account. */
/*        Finally, the energy estimates are updated along with the dither */
/*   threshold used to calculate the zero crossing rate (ZC). */

/* Inputs: */
/*  VWIN      - Voicing window limits */
/*              The indices read of arrays VWIN, INBUF, LPBUF, and BUFLIM */
/*              are the same as those read by subroutine VPARMS. */
/*  INBUF     - Input speech buffer */
/*  LPBUF     - Low-pass filtered speech buffer */
/*  BUFLIM    - INBUF and LPBUF limits */
/*  HALF      - Present analysis half frame number */
/*  MINAMD    - Minimum value of the AMDF */
/*  MAXAMD    - Maximum value of the AMDF */
/*  MINTAU    - Pointer to the lag of the minimum AMDF value */
/*  IVRC(2)   - Inverse filter's RC's */
/*              Only index 2 of array IVRC read under normal operation. */
/*              (Index 1 is also read when debugging is turned on.) */
/*  OBOUND    - Onset boundary descriptions */
/*             Indices 1 through 3 read if (HALF .NE. 1), otherwise untouched.
*/
/*  AF        - The analysis frame number */
/* Output: */
/*  VOIBUF(2,0:AF) - Buffer of voicing decisions */
/*              Index (HALF,3) written. */
/*              If (HALF .EQ. 1), skip down to "Read (HALF,3)" below. */
/*              Indices (1,2), (2,1), (1,2), and (2,2) read. */
/*              One of the following is then done: */
/*                 read (1,3) and possibly write (1,2) */
/*                 read (1,3) and write (1,2) or (2,2) */
/*                 write (2,1) */
/*                 write (2,1) or (1,2) */
/*                 read (1,0) and (1,3) and then write (2,2) or (1,1) */
/*                 no reads or writes on VOIBUF */
/*              Finally, read (HALF,3) */
/* Internal: */
/*  QS        - Ratio of preemphasized to full-band energies */
/*  RC1       - First reflection coefficient */
/* AR_B      - Product of the causal forward and reverse pitch prediction gain
s*/
/* AR_F      - Product of the noncausal forward and rev. pitch prediction gain
s*/
/*  ZC        - Zero crossing rate */
/*  DITHER    - Zero crossing threshold level */
/*  MAXMIN    - AMDF's 1 octave windowed maximum-to-minimum ratio */
/*  MINPTR    - Location  of minimum AMDF value */
/*  NVDC      - Number of elements in each VDC vector */
/*  NVDCL     - Number of VDC vectors */
/*  VDCL      - SNR values corresponding to the set of VDC's */
/*  VDC       - 2-D voicing decision coefficient vector */
/*  VALUE(9)  - Voicing Parameters */
/*  VOICE(2,3)- History of LDA results */
/*              On every call when (HALF .EQ. 1), VOICE(*,I+1) is */
/*              shifted back to VOICE(*,I), for I=1,2. */
/*              VOICE(HALF,3) is written on every call. */
/*              Depending on several conditions, one or more of */
/*              (1,1), (1,2), (2,1), and (2,2) might then be read. */
/*  LBE       - Ratio of low-band instantaneous to average energies */
/*  FBE       - Ratio of full-band instantaneous to average energies */
/*  LBVE      - Low band voiced energy */
/*  LBUE      - Low band unvoiced energy */
/*  FBVE      - Full band voiced energy */
/*  FBUE      - Full band unvoiced energy */
/*  OFBUE     - Previous full-band unvoiced energy */
/*  OLBUE     - Previous low-band unvoiced energy */
/*  REF       - Reference energy for initialization and DITHER threshold */
/*  SNR       - Estimate of signal-to-noise ratio */
/*  SNR2      - Estimate of low-band signal-to-noise ratio */
/*  SNRL      - SNR level number */
/*  OT        - Onset transition present */
/*  VSTATE    - Decimal interpretation of binary voicing classifications */
/*  FIRST     - First call flag */

/* This subroutine maintains local state from one call to the next.  If */
/* you want to switch to using a new audio stream for this filter, or */
/* reinitialize its state for any other reason, call the ENTRY */
/* INITVOICIN. */

/* Subroutine */ int voicin_(integer *vwin, real *inbuf, real *
	lpbuf, integer *buflim, integer *half, real *minamd, real *maxamd, 
	integer *mintau, real *ivrc, integer *obound, integer *voibuf, 
	integer *af, struct lpc10_encoder_state *st)
{
    /* Initialized data */

    real *dither;
    static real vdc[100]	/* was [10][10] */ = { 0.f,1714.f,-110.f,
	    334.f,-4096.f,-654.f,3752.f,3769.f,0.f,1181.f,0.f,874.f,-97.f,
	    300.f,-4096.f,-1021.f,2451.f,2527.f,0.f,-500.f,0.f,510.f,-70.f,
	    250.f,-4096.f,-1270.f,2194.f,2491.f,0.f,-1500.f,0.f,500.f,-10.f,
	    200.f,-4096.f,-1300.f,2e3f,2e3f,0.f,-2e3f,0.f,500.f,0.f,0.f,
	    -4096.f,-1300.f,2e3f,2e3f,0.f,-2500.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,
	    0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,
	    0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,
	    0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f,0.f };
    static integer nvdcl = 5;
    static real vdcl[10] = { 600.f,450.f,300.f,200.f,0.f,0.f,0.f,0.f,0.f,0.f }
	    ;

    /* System generated locals */
    integer inbuf_offset = 0, lpbuf_offset = 0, i__1, i__2;
    real r__1, r__2;

    /* Builtin functions */
    integer i_nint(real *);
    double sqrt(doublereal);

    /* Local variables */
    real ar_b__, ar_f__;
    integer *lbve, *lbue, *fbve, *fbue;
    integer snrl, i__;
    integer *ofbue, *sfbue;
    real *voice;
    integer *olbue, *slbue;
    real value[9];
    integer zc;
    logical ot;
    real qs;
    real *maxmin;
    integer vstate;
    real rc1;
    extern /* Subroutine */ int vparms_(integer *, real *, real *, integer *, 
	    integer *, real *, integer *, integer *, integer *, integer *, 
	    real *, real *, real *, real *);
    integer fbe, lbe;
    real *snr;
    real snr2;

/* 	Global Variables: */
/*       Arguments */
/* $Log$
 * Revision 1.15  2003/11/23 22:14:32  markster
 * Various warning cleanups
 *
/* Revision 1.14  2003/02/12 13:59:15  matteo
/* mer feb 12 14:56:57 CET 2003
/*
/* Revision 1.1.1.1  2003/02/12 13:59:15  matteo
/* mer feb 12 14:56:57 CET 2003
/*
/* Revision 1.2  2000/01/05 08:20:40  markster
/* Some OSS fixes and a few lpc changes to make it actually work
/*
 * Revision 1.2  1996/08/20  20:45:00  jaf
 * Removed all static local variables that were SAVE'd in the Fortran
 * code, and put them in struct lpc10_encoder_state that is passed as an
 * argument.
 *
 * Removed init function, since all initialization is now done in
 * init_lpc10_encoder_state().
 *
 * Revision 1.1  1996/08/19  22:30:14  jaf
 * Initial revision
 * */
/* Revision 1.3  1996/03/29  22:05:55  jaf */
/* Commented out the common block variables that are not needed by the */
/* embedded version. */

/* Revision 1.2  1996/03/26  19:34:50  jaf */
/* Added comments indicating which constants are not needed in an */
/* application that uses the LPC-10 coder. */

/* Revision 1.1  1996/02/07  14:44:09  jaf */
/* Initial revision */

/*   LPC Processing control variables: */

/* *** Read-only: initialized in setup */

/*  Files for Speech, Parameter, and Bitstream Input & Output, */
/*    and message and debug outputs. */

/* Here are the only files which use these variables: */

/* lpcsim.f setup.f trans.f error.f vqsetup.f */

/* Many files which use fdebug are not listed, since it is only used in */
/* those other files conditionally, to print trace statements. */
/* 	integer fsi, fso, fpi, fpo, fbi, fbo, pbin, fmsg, fdebug */
/*  LPC order, Frame size, Quantization rate, Bits per frame, */
/*    Error correction */
/* Subroutine SETUP is the only place where order is assigned a value, */
/* and that value is 10.  It could increase efficiency 1% or so to */
/* declare order as a constant (i.e., a Fortran PARAMETER) instead of as 
*/
/* a variable in a COMMON block, since it is used in many places in the */
/* core of the coding and decoding routines.  Actually, I take that back. 
*/
/* At least when compiling with f2c, the upper bound of DO loops is */
/* stored in a local variable before the DO loop begins, and then that is 
*/
/* compared against on each iteration. */
/* Similarly for lframe, which is given a value of MAXFRM in SETUP. */
/* Similarly for quant, which is given a value of 2400 in SETUP.  quant */
/* is used in only a few places, and never in the core coding and */
/* decoding routines, so it could be eliminated entirely. */
/* nbits is similar to quant, and is given a value of 54 in SETUP. */
/* corrp is given a value of .TRUE. in SETUP, and is only used in the */
/* subroutines ENCODE and DECODE.  It doesn't affect the speed of the */
/* coder significantly whether it is .TRUE. or .FALSE., or whether it is 
*/
/* a constant or a variable, since it is only examined once per frame. */
/* Leaving it as a variable that is set to .TRUE.  seems like a good */
/* idea, since it does enable some error-correction capability for */
/* unvoiced frames, with no change in the coding rate, and no noticeable 
*/
/* quality difference in the decoded speech. */
/* 	integer quant, nbits */
/* *** Read/write: variables for debugging, not needed for LPC algorithm 
*/

/*  Current frame, Unstable frames, Output clip count, Max onset buffer, 
*/
/*    Debug listing detail level, Line count on listing page */

/* nframe is not needed for an embedded LPC10 at all. */
/* nunsfm is initialized to 0 in SETUP, and incremented in subroutine */
/* ERROR, which is only called from RCCHK.  When LPC10 is embedded into */
/* an application, I would recommend removing the call to ERROR in RCCHK, 
*/
/* and remove ERROR and nunsfm completely. */
/* iclip is initialized to 0 in SETUP, and incremented in entry SWRITE in 
*/
/* sread.f.  When LPC10 is embedded into an application, one might want */
/* to cause it to be incremented in a routine that takes the output of */
/* SYNTHS and sends it to an audio device.  It could be optionally */
/* displayed, for those that might want to know what it is. */
/* maxosp is never initialized to 0 in SETUP, although it probably should 
*/
/* be, and it is updated in subroutine ANALYS.  I doubt that its value */
/* would be of much interest to an application in which LPC10 is */
/* embedded. */
/* listl and lincnt are not needed for an embedded LPC10 at all. */
/* 	integer nframe, nunsfm, iclip, maxosp, listl, lincnt */
/* 	common /contrl/ fsi, fso, fpi, fpo, fbi, fbo, pbin, fmsg, fdebug */
/* 	common /contrl/ quant, nbits */
/* 	common /contrl/ nframe, nunsfm, iclip, maxosp, listl, lincnt */
/* 	Parameters/constants */
/*       Voicing coefficient and Linear Discriminant Analysis variables: 
*/
/*       Max number of VDC's and VDC levels */
/*       The following are not Fortran PARAMETER's, but they are */
/*       initialized with DATA statements, and never modified. */
/*       Actual number of VDC's and levels */
/*       Local variables that need not be saved */
/*       Note: */

/*       VALUE(1) through VALUE(8) are assigned values, but VALUE(9) */
/*       never is.  Yet VALUE(9) is read in the loop that begins "DO I = 
*/
/*       1, 9" below.  I believe that this doesn't cause any problems in 
*/
/*       this subroutine, because all VDC(9,*) array elements are 0, and 
*/
/*       this is what is multiplied by VALUE(9) in all cases.  Still, it 
*/
/*       would save a multiplication to change the loop to "DO I = 1, 8". 
*/
/*       Local state */
/*       WARNING! */

/*       VOICE, SFBUE, and SLBUE should be saved from one invocation to */
/*       the next, but they are never given an initial value. */

/*       Does Fortran 77 specify some default initial value, like 0, or */
/*       is it undefined?  If it is undefined, then this code should be */
/*       corrected to specify an initial value. */

/*       For VOICE, note that it is "shifted" in the statement that */
/*       begins "IF (HALF .EQ. 1) THEN" below.  Also, uninitialized */
/*       values in the VOICE array can only affect entries in the VOIBUF 
*/
/*       array that are for the same frame, or for an older frame.  Thus 
*/
/*       the effects of uninitialized values in VOICE cannot linger on */
/*       for more than 2 or 3 frame times. */

/*       For SFBUE and SLBUE, the effects of uninitialized values can */
/*       linger on for many frame times, because their previous values */
/*       are exponentially decayed.  Thus it is more important to choose 
*/
/*       initial values for these variables.  I would guess that a */
/*       reasonable initial value for SFBUE is REF/16, the same as used */
/*       for FBUE and OFBUE.  Similarly, SLBUE can be initialized to */
/*       REF/32, the same as for LBUE and OLBUE. */

/*       These guessed initial values should be validated by re-running */
/*       the modified program on some audio samples. */

/*   Declare and initialize filters: */

    dither = (&st->dither);
    snr = (&st->snr);
    maxmin = (&st->maxmin);
    voice = (&st->voice[0]);
    lbve = (&st->lbve);
    lbue = (&st->lbue);
    fbve = (&st->fbve);
    fbue = (&st->fbue);
    ofbue = (&st->ofbue);
    olbue = (&st->olbue);
    sfbue = (&st->sfbue);
    slbue = (&st->slbue);

    /* Parameter adjustments */
    if (vwin) {
	--vwin;
	}
    if (buflim) {
	--buflim;
	}
    if (inbuf) {
	inbuf_offset = buflim[1];
	inbuf -= inbuf_offset;
	}
    if (lpbuf) {
	lpbuf_offset = buflim[3];
	lpbuf -= lpbuf_offset;
	}
    if (ivrc) {
	--ivrc;
	}
    if (obound) {
	--obound;
	}
    if (voibuf) {
	--voibuf;
	}

    /* Function Body */

/*       The following variables are saved from one invocation to the */
/*       next, but are not initialized with DATA statements.  This is */
/*       acceptable, because FIRST is initialized ot .TRUE., and the */
/*       first time that this subroutine is then called, they are all */
/*       given initial values. */

/*       SNR */
/*       LBVE, LBUE, FBVE, FBUE, OFBUE, OLBUE */

/*       MAXMIN is initialized on the first call, assuming that HALF */
/*       .EQ. 1 on first call.  This is how ANALYS calls this subroutine. 
*/

/*   Voicing Decision Parameter vector (* denotes zero coefficient): */

/* 	* MAXMIN */
/* 	  LBE/LBVE */
/* 	  ZC */
/* 	  RC1 */
/* 	  QS */
/* 	  IVRC2 */
/* 	  aR_B */
/* 	  aR_F */
/* 	* LOG(LBE/LBVE) */
/*  Define 2-D voicing decision coefficient vector according to the voicin
g*/
/*  parameter order above.  Each row (VDC vector) is optimized for a speci
fic*/
/*   SNR.  The last element of the vector is the constant. */
/* 	         E    ZC    RC1    Qs   IVRC2  aRb   aRf        c */

/*  The VOICE array contains the result of the linear discriminant functio
n*/
/*   (analog values).  The VOIBUF array contains the hard-limited binary 
*/
/*   voicing decisions.  The VOICE and VOIBUF arrays, according to FORTRAN
 */
/*   memory allocation, are addressed as: */

/* 	   (half-frame number, future-frame number) */

/* 	   |   Past    |  Present  |  Future1  |  Future2  | */
/* 	   | 1,0 | 2,0 | 1,1 | 2,1 | 1,2 | 2,2 | 1,3 | 2,3 |  --->  time */

/*   Update linear discriminant function history each frame: */
    if (*half == 1) {
	voice[0] = voice[2];
	voice[1] = voice[3];
	voice[2] = voice[4];
	voice[3] = voice[5];
	*maxmin = *maxamd / max(*minamd,1.f);
    }
/*   Calculate voicing parameters twice per frame: */
    vparms_(&vwin[1], &inbuf[inbuf_offset], &lpbuf[lpbuf_offset], &buflim[1], 
	    half, dither, mintau, &zc, &lbe, &fbe, &qs, &rc1, &ar_b__, &
	    ar_f__);
/*   Estimate signal-to-noise ratio to select the appropriate VDC vector. 
*/
/*   The SNR is estimated as the running average of the ratio of the */
/*   running average full-band voiced energy to the running average */
/*   full-band unvoiced energy. SNR filter has gain of 63. */
    r__1 = (*snr + *fbve / (real) max(*fbue,1)) * 63 / 64.f;
    *snr = (real) i_nint(&r__1);
    snr2 = *snr * *fbue / max(*lbue,1);
/*   Quantize SNR to SNRL according to VDCL thresholds. */
    snrl = 1;
    i__1 = nvdcl - 1;
    for (snrl = 1; snrl <= i__1; ++snrl) {
	if (snr2 > vdcl[snrl - 1]) {
	    goto L69;
	}
    }
/*   	(Note:  SNRL = NVDCL here) */
L69:
/*   Linear discriminant voicing parameters: */
    value[0] = *maxmin;
    value[1] = (real) lbe / max(*lbve,1);
    value[2] = (real) zc;
    value[3] = rc1;
    value[4] = qs;
    value[5] = ivrc[2];
    value[6] = ar_b__;
    value[7] = ar_f__;
/*   Evaluation of linear discriminant function: */
    voice[*half + 3] = vdc[snrl * 10 - 1];
    for (i__ = 1; i__ <= 8; ++i__) {
	voice[*half + 3] += vdc[i__ + snrl * 10 - 11] * value[i__ - 1];
    }
/*   Classify as voiced if discriminant > 0, otherwise unvoiced */
/*   Voicing decision for current half-frame:  1 = Voiced; 0 = Unvoiced */
    if (voice[*half + 3] > 0.f) {
	voibuf[*half + 6] = 1;
    } else {
	voibuf[*half + 6] = 0;
    }
/*   Skip voicing decision smoothing in first half-frame: */
/*     Give a value to VSTATE, so that trace statements below will print 
*/
/*     a consistent value from one call to the next when HALF .EQ. 1. */
/*     The value of VSTATE is not used for any other purpose when this is 
*/
/*     true. */
    vstate = -1;
    if (*half == 1) {
	goto L99;
    }
/*   Voicing decision smoothing rules (override of linear combination): */

/* 	Unvoiced half-frames:  At least two in a row. */
/* 	-------------------- */

/* 	Voiced half-frames:    At least two in a row in one frame. */
/* 	-------------------    Otherwise at least three in a row. */
/* 			       (Due to the way transition frames are encoded) */

/* 	In many cases, the discriminant function determines how to smooth. */
/*	In the following chart, the decisions marked with a * may be overridden
.*/

/*   Voicing override of transitions at onsets: */
/* 	If a V/UV or UV/V voicing decision transition occurs within one-half 
*/
/* 	frame of an onset bounding a voicing window, then the transition is */
/* 	moved to occur at the onset. */

/* 	P	1F */
/* 	-----	----- */
/* 	0   0   0   0 */
/* 	0   0   0*  1	(If there is an onset there) */
/* 	0   0   1*  0*	(Based on 2F and discriminant distance) */
/* 	0   0   1   1 */
/* 	0   1*  0   0	(Always) */
/* 	0   1*  0*  1	(Based on discriminant distance) */
/* 	0*  1   1   0*	(Based on past, 2F, and discriminant distance) */
/* 	0   1*  1   1	(If there is an onset there) */
/* 	1   0*  0   0	(If there is an onset there) */
/* 	1   0   0   1 */
/* 	1   0*  1*  0	(Based on discriminant distance) */
/* 	1   0*  1   1	(Always) */
/* 	1   1   0   0 */
/* 	1   1   0*  1*	(Based on 2F and discriminant distance) */
/* 	1   1   1*  0	(If there is an onset there) */
/* 	1   1   1   1 */

/*   Determine if there is an onset transition between P and 1F. */
/*   OT (Onset Transition) is true if there is an onset between */
/*   P and 1F but not after 1F. */
    ot = ((obound[1] & 2) != 0 || obound[2] == 1) && (obound[3] & 1) == 0;
/*   Multi-way dispatch on voicing decision history: */
    vstate = (voibuf[3] << 3) + (voibuf[4] << 2) + (voibuf[5] << 1) + voibuf[
	    6];
    switch (vstate + 1) {
	case 1:  goto L99;
	case 2:  goto L1;
	case 3:  goto L2;
	case 4:  goto L99;
	case 5:  goto L4;
	case 6:  goto L5;
	case 7:  goto L6;
	case 8:  goto L7;
	case 9:  goto L8;
	case 10:  goto L99;
	case 11:  goto L10;
	case 12:  goto L11;
	case 13:  goto L99;
	case 14:  goto L13;
	case 15:  goto L14;
	case 16:  goto L99;
    }
L1:
    if (ot && voibuf[7] == 1) {
	voibuf[5] = 1;
    }
    goto L99;
L2:
    if (voibuf[7] == 0 || voice[2] < -voice[3]) {
	voibuf[5] = 0;
    } else {
	voibuf[6] = 1;
    }
    goto L99;
L4:
    voibuf[4] = 0;
    goto L99;
L5:
    if (voice[1] < -voice[2]) {
	voibuf[4] = 0;
    } else {
	voibuf[5] = 1;
    }
    goto L99;
/*   VOIBUF(2,0) must be 0 */
L6:
    if (voibuf[1] == 1 || voibuf[7] == 1 || voice[3] > voice[0]) {
	voibuf[6] = 1;
    } else {
	voibuf[3] = 1;
    }
    goto L99;
L7:
    if (ot) {
	voibuf[4] = 0;
    }
    goto L99;
L8:
    if (ot) {
	voibuf[4] = 1;
    }
    goto L99;
L10:
    if (voice[2] < -voice[1]) {
	voibuf[5] = 0;
    } else {
	voibuf[4] = 1;
    }
    goto L99;
L11:
    voibuf[4] = 1;
    goto L99;
L13:
    if (voibuf[7] == 0 && voice[3] < -voice[2]) {
	voibuf[6] = 0;
    } else {
	voibuf[5] = 1;
    }
    goto L99;
L14:
    if (ot && voibuf[7] == 0) {
	voibuf[5] = 0;
    }
/* 	GOTO 99 */
L99:
/*   Now update parameters: */
/*   ---------------------- */

/*  During unvoiced half-frames, update the low band and full band unvoice
d*/
/*   energy estimates (LBUE and FBUE) and also the zero crossing */
/*   threshold (DITHER).  (The input to the unvoiced energy filters is */
/*   restricted to be less than 10dB above the previous inputs of the */
/*   filters.) */
/*   During voiced half-frames, update the low-pass (LBVE) and all-pass */
/*   (FBVE) voiced energy estimates. */
    if (voibuf[*half + 6] == 0) {
/* Computing MIN */
	i__1 = fbe, i__2 = *ofbue * 3;
	r__1 = (*sfbue * 63 + (min(i__1,i__2) << 3)) / 64.f;
	*sfbue = i_nint(&r__1);
	*fbue = *sfbue / 8;
	*ofbue = fbe;
/* Computing MIN */
	i__1 = lbe, i__2 = *olbue * 3;
	r__1 = (*slbue * 63 + (min(i__1,i__2) << 3)) / 64.f;
	*slbue = i_nint(&r__1);
	*lbue = *slbue / 8;
	*olbue = lbe;
    } else {
	r__1 = (*lbve * 63 + lbe) / 64.f;
	*lbve = i_nint(&r__1);
	r__1 = (*fbve * 63 + fbe) / 64.f;
	*fbve = i_nint(&r__1);
    }
/*   Set dither threshold to yield proper zero crossing rates in the */
/*   presence of low frequency noise and low level signal input. */
/*   NOTE: The divisor is a function of REF, the expected energies. */
/* Computing MIN */
/* Computing MAX */
    r__2 = sqrt((real) (*lbue * *lbve)) * 64 / 3000;
    r__1 = max(r__2,1.f);
    *dither = min(r__1,20.f);
/*   Voicing decisions are returned in VOIBUF. */
    return 0;
} /* voicin_ */