aboutsummaryrefslogtreecommitdiffstats
path: root/aeskey.c
blob: 9e8990d598cf44600f2fdeb18f962f23dca011c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
/*
 ---------------------------------------------------------------------------
 Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
 All rights reserved.

 LICENSE TERMS

 The free distribution and use of this software in both source and binary
 form is allowed (with or without changes) provided that:

   1. distributions of this source code include the above copyright
      notice, this list of conditions and the following disclaimer;

   2. distributions in binary form include the above copyright
      notice, this list of conditions and the following disclaimer
      in the documentation and/or other associated materials;

   3. the copyright holder's name is not used to endorse products
      built using this software without specific written permission.

 ALTERNATIVELY, provided that this notice is retained in full, this product
 may be distributed under the terms of the GNU General Public License (GPL),
 in which case the provisions of the GPL apply INSTEAD OF those given above.

 DISCLAIMER

 This software is provided 'as is' with no explicit or implied warranties
 in respect of its properties, including, but not limited to, correctness
 and/or fitness for purpose.
 ---------------------------------------------------------------------------
 Issue Date: 26/08/2003

 This file contains the code for implementing the key schedule for AES
 (Rijndael) for block and key sizes of 16, 24, and 32 bytes. See aesopt.h
 for further details including optimisation.
*/

#include "aesopt.h"

#if defined(__cplusplus)
extern "C"
{
#endif

/* Initialise the key schedule from the user supplied key. The key
   length can be specified in bytes, with legal values of 16, 24
   and 32, or in bits, with legal values of 128, 192 and 256. These
   values correspond with Nk values of 4, 6 and 8 respectively.

   The following macros implement a single cycle in the key
   schedule generation process. The number of cycles needed
   for each cx->n_col and nk value is:

    nk =             4  5  6  7  8
    ------------------------------
    cx->n_col = 4   10  9  8  7  7
    cx->n_col = 5   14 11 10  9  9
    cx->n_col = 6   19 15 12 11 11
    cx->n_col = 7   21 19 16 13 14
    cx->n_col = 8   29 23 19 17 14
*/

#define ke4(k,i) \
{   k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \
    k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \
}
#define kel4(k,i) \
{   k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \
    k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \
}

#define ke6(k,i) \
{   k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \
    k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \
    k[6*(i)+10] = ss[4] ^= ss[3]; k[6*(i)+11] = ss[5] ^= ss[4]; \
}
#define kel6(k,i) \
{   k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \
    k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \
}

#define ke8(k,i) \
{   k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \
    k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \
    k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); k[8*(i)+13] = ss[5] ^= ss[4]; \
    k[8*(i)+14] = ss[6] ^= ss[5]; k[8*(i)+15] = ss[7] ^= ss[6]; \
}
#define kel8(k,i) \
{   k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \
    k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \
}

#if defined(ENCRYPTION_KEY_SCHEDULE)

#if defined(AES_128) || defined(AES_VAR)

aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1])
{   aes_32t    ss[4];

    cx->ks[0] = ss[0] = word_in(in_key, 0);
    cx->ks[1] = ss[1] = word_in(in_key, 1);
    cx->ks[2] = ss[2] = word_in(in_key, 2);
    cx->ks[3] = ss[3] = word_in(in_key, 3);

#if ENC_UNROLL == NONE
    {   aes_32t i;

        for(i = 0; i < ((11 * N_COLS - 1) / 4); ++i)
            ke4(cx->ks, i);
    }
#else
    ke4(cx->ks, 0);  ke4(cx->ks, 1);
    ke4(cx->ks, 2);  ke4(cx->ks, 3);
    ke4(cx->ks, 4);  ke4(cx->ks, 5);
    ke4(cx->ks, 6);  ke4(cx->ks, 7);
    ke4(cx->ks, 8); kel4(cx->ks, 9);
#endif

    /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */
    /* key and must be non-zero for 128 and 192 bits keys   */
    cx->ks[53] = cx->ks[45] = 0;
    cx->ks[52] = 10;
#ifdef AES_ERR_CHK
    return aes_good;
#endif
}

#endif

#if defined(AES_192) || defined(AES_VAR)

aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1])
{   aes_32t    ss[6];

    cx->ks[0] = ss[0] = word_in(in_key, 0);
    cx->ks[1] = ss[1] = word_in(in_key, 1);
    cx->ks[2] = ss[2] = word_in(in_key, 2);
    cx->ks[3] = ss[3] = word_in(in_key, 3);
    cx->ks[4] = ss[4] = word_in(in_key, 4);
    cx->ks[5] = ss[5] = word_in(in_key, 5);

#if ENC_UNROLL == NONE
    {   aes_32t i;

        for(i = 0; i < (13 * N_COLS - 1) / 6; ++i)
            ke6(cx->ks, i);
    }
#else
    ke6(cx->ks, 0);  ke6(cx->ks, 1);
    ke6(cx->ks, 2);  ke6(cx->ks, 3);
    ke6(cx->ks, 4);  ke6(cx->ks, 5);
    ke6(cx->ks, 6); kel6(cx->ks, 7);
#endif

    /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */
    /* key and must be non-zero for 128 and 192 bits keys   */
    cx->ks[53] = cx->ks[45];
    cx->ks[52] = 12;
#ifdef AES_ERR_CHK
    return aes_good;
#endif
}

#endif

#if defined(AES_256) || defined(AES_VAR)

aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1])
{   aes_32t    ss[8];

    cx->ks[0] = ss[0] = word_in(in_key, 0);
    cx->ks[1] = ss[1] = word_in(in_key, 1);
    cx->ks[2] = ss[2] = word_in(in_key, 2);
    cx->ks[3] = ss[3] = word_in(in_key, 3);
    cx->ks[4] = ss[4] = word_in(in_key, 4);
    cx->ks[5] = ss[5] = word_in(in_key, 5);
    cx->ks[6] = ss[6] = word_in(in_key, 6);
    cx->ks[7] = ss[7] = word_in(in_key, 7);

#if ENC_UNROLL == NONE
    {   aes_32t i;

        for(i = 0; i < (15 * N_COLS - 1) / 8; ++i)
            ke8(cx->ks,  i);
    }
#else
    ke8(cx->ks, 0); ke8(cx->ks, 1);
    ke8(cx->ks, 2); ke8(cx->ks, 3);
    ke8(cx->ks, 4); ke8(cx->ks, 5);
    kel8(cx->ks, 6);
#endif
#ifdef AES_ERR_CHK
    return aes_good;
#endif
}

#endif

#if defined(AES_VAR)

aes_rval aes_encrypt_key(const void *in_key, int key_len, aes_encrypt_ctx cx[1])
{
    switch(key_len)
    {
#ifdef AES_ERR_CHK
    case 16: case 128: return aes_encrypt_key128(in_key, cx);
    case 24: case 192: return aes_encrypt_key192(in_key, cx);
    case 32: case 256: return aes_encrypt_key256(in_key, cx);
    default: return aes_error;
#else
    case 16: case 128: aes_encrypt_key128(in_key, cx); return;
    case 24: case 192: aes_encrypt_key192(in_key, cx); return;
    case 32: case 256: aes_encrypt_key256(in_key, cx); return;
#endif
    }
}

#endif

#endif

#if defined(DECRYPTION_KEY_SCHEDULE)

#if DEC_ROUND == NO_TABLES
#define ff(x)   (x)
#else
#define ff(x)   inv_mcol(x)
#ifdef  dec_imvars
#define d_vars  dec_imvars
#endif
#endif

#if 1
#define kdf4(k,i) \
{   ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; ss[1] = ss[1] ^ ss[3]; ss[2] = ss[2] ^ ss[3]; ss[3] = ss[3]; \
    ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
    ss[4] ^= k[4*(i)];   k[4*(i)+4] = ff(ss[4]); ss[4] ^= k[4*(i)+1]; k[4*(i)+5] = ff(ss[4]); \
    ss[4] ^= k[4*(i)+2]; k[4*(i)+6] = ff(ss[4]); ss[4] ^= k[4*(i)+3]; k[4*(i)+7] = ff(ss[4]); \
}
#define kd4(k,i) \
{   ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \
    k[4*(i)+4] = ss[4] ^= k[4*(i)]; k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \
    k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \
}
#define kdl4(k,i) \
{   ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
    k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; k[4*(i)+5] = ss[1] ^ ss[3]; \
    k[4*(i)+6] = ss[0]; k[4*(i)+7] = ss[1]; \
}
#else
#define kdf4(k,i) \
{   ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ff(ss[0]); ss[1] ^= ss[0]; k[4*(i)+ 5] = ff(ss[1]); \
    ss[2] ^= ss[1]; k[4*(i)+ 6] = ff(ss[2]); ss[3] ^= ss[2]; k[4*(i)+ 7] = ff(ss[3]); \
}
#define kd4(k,i) \
{   ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \
    ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[4*(i)+ 4] = ss[4] ^= k[4*(i)]; \
    ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[4] ^= k[4*(i)+ 1]; \
    ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[4] ^= k[4*(i)+ 2]; \
    ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[4] ^= k[4*(i)+ 3]; \
}
#define kdl4(k,i) \
{   ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ss[0]; ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[1]; \
    ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[2]; ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[3]; \
}
#endif

#define kdf6(k,i) \
{   ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ff(ss[0]); ss[1] ^= ss[0]; k[6*(i)+ 7] = ff(ss[1]); \
    ss[2] ^= ss[1]; k[6*(i)+ 8] = ff(ss[2]); ss[3] ^= ss[2]; k[6*(i)+ 9] = ff(ss[3]); \
    ss[4] ^= ss[3]; k[6*(i)+10] = ff(ss[4]); ss[5] ^= ss[4]; k[6*(i)+11] = ff(ss[5]); \
}
#define kd6(k,i) \
{   ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \
    ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \
    ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \
    ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \
    ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \
    ss[4] ^= ss[3]; k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \
    ss[5] ^= ss[4]; k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \
}
#define kdl6(k,i) \
{   ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ss[0]; ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[1]; \
    ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[2]; ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[3]; \
}

#define kdf8(k,i) \
{   ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ff(ss[0]); ss[1] ^= ss[0]; k[8*(i)+ 9] = ff(ss[1]); \
    ss[2] ^= ss[1]; k[8*(i)+10] = ff(ss[2]); ss[3] ^= ss[2]; k[8*(i)+11] = ff(ss[3]); \
    ss[4] ^= ls_box(ss[3],0); k[8*(i)+12] = ff(ss[4]); ss[5] ^= ss[4]; k[8*(i)+13] = ff(ss[5]); \
    ss[6] ^= ss[5]; k[8*(i)+14] = ff(ss[6]); ss[7] ^= ss[6]; k[8*(i)+15] = ff(ss[7]); \
}
#define kd8(k,i) \
{   aes_32t g = ls_box(ss[7],3) ^ t_use(r,c)[i]; \
    ss[0] ^= g; g = ff(g); k[8*(i)+ 8] = g ^= k[8*(i)]; \
    ss[1] ^= ss[0]; k[8*(i)+ 9] = g ^= k[8*(i)+ 1]; \
    ss[2] ^= ss[1]; k[8*(i)+10] = g ^= k[8*(i)+ 2]; \
    ss[3] ^= ss[2]; k[8*(i)+11] = g ^= k[8*(i)+ 3]; \
    g = ls_box(ss[3],0); \
    ss[4] ^= g; g = ff(g); k[8*(i)+12] = g ^= k[8*(i)+ 4]; \
    ss[5] ^= ss[4]; k[8*(i)+13] = g ^= k[8*(i)+ 5]; \
    ss[6] ^= ss[5]; k[8*(i)+14] = g ^= k[8*(i)+ 6]; \
    ss[7] ^= ss[6]; k[8*(i)+15] = g ^= k[8*(i)+ 7]; \
}
#define kdl8(k,i) \
{   ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ss[0]; ss[1] ^= ss[0]; k[8*(i)+ 9] = ss[1]; \
    ss[2] ^= ss[1]; k[8*(i)+10] = ss[2]; ss[3] ^= ss[2]; k[8*(i)+11] = ss[3]; \
}

#if defined(AES_128) || defined(AES_VAR)

aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1])
{   aes_32t    ss[5];
#ifdef  d_vars
        d_vars;
#endif
    cx->ks[0] = ss[0] = word_in(in_key, 0);
    cx->ks[1] = ss[1] = word_in(in_key, 1);
    cx->ks[2] = ss[2] = word_in(in_key, 2);
    cx->ks[3] = ss[3] = word_in(in_key, 3);

#if DEC_UNROLL == NONE
    {   aes_32t i;

        for(i = 0; i < (11 * N_COLS - 1) / 4; ++i)
            ke4(cx->ks, i);
#if !(DEC_ROUND == NO_TABLES)
        for(i = N_COLS; i < 10 * N_COLS; ++i)
            cx->ks[i] = inv_mcol(cx->ks[i]);
#endif
    }
#else
    kdf4(cx->ks, 0);  kd4(cx->ks, 1);
     kd4(cx->ks, 2);  kd4(cx->ks, 3);
     kd4(cx->ks, 4);  kd4(cx->ks, 5);
     kd4(cx->ks, 6);  kd4(cx->ks, 7);
     kd4(cx->ks, 8); kdl4(cx->ks, 9);
#endif

    /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */
    /* key and must be non-zero for 128 and 192 bits keys   */
    cx->ks[53] = cx->ks[45] = 0;
    cx->ks[52] = 10;
#ifdef AES_ERR_CHK
    return aes_good;
#endif
}

#endif

#if defined(AES_192) || defined(AES_VAR)

aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1])
{   aes_32t    ss[7];
#ifdef  d_vars
        d_vars;
#endif
    cx->ks[0] = ss[0] = word_in(in_key, 0);
    cx->ks[1] = ss[1] = word_in(in_key, 1);
    cx->ks[2] = ss[2] = word_in(in_key, 2);
    cx->ks[3] = ss[3] = word_in(in_key, 3);

#if DEC_UNROLL == NONE
    cx->ks[4] = ss[4] = word_in(in_key, 4);
    cx->ks[5] = ss[5] = word_in(in_key, 5);
    {   aes_32t i;

        for(i = 0; i < (13 * N_COLS - 1) / 6; ++i)
            ke6(cx->ks, i);
#if !(DEC_ROUND == NO_TABLES)
        for(i = N_COLS; i < 12 * N_COLS; ++i)
            cx->ks[i] = inv_mcol(cx->ks[i]);
#endif
    }
#else
    cx->ks[4] = ff(ss[4] = word_in(in_key, 4));
    cx->ks[5] = ff(ss[5] = word_in(in_key, 5));
    kdf6(cx->ks, 0); kd6(cx->ks, 1);
    kd6(cx->ks, 2);  kd6(cx->ks, 3);
    kd6(cx->ks, 4);  kd6(cx->ks, 5);
    kd6(cx->ks, 6); kdl6(cx->ks, 7);
#endif

    /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit       */
    /* key and must be non-zero for 128 and 192 bits keys   */
    cx->ks[53] = cx->ks[45];
    cx->ks[52] = 12;
#ifdef AES_ERR_CHK
    return aes_good;
#endif
}

#endif

#if defined(AES_256) || defined(AES_VAR)

aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1])
{   aes_32t    ss[8];
#ifdef  d_vars
        d_vars;
#endif
    cx->ks[0] = ss[0] = word_in(in_key, 0);
    cx->ks[1] = ss[1] = word_in(in_key, 1);
    cx->ks[2] = ss[2] = word_in(in_key, 2);
    cx->ks[3] = ss[3] = word_in(in_key, 3);

#if DEC_UNROLL == NONE
    cx->ks[4] = ss[4] = word_in(in_key, 4);
    cx->ks[5] = ss[5] = word_in(in_key, 5);
    cx->ks[6] = ss[6] = word_in(in_key, 6);
    cx->ks[7] = ss[7] = word_in(in_key, 7);
    {   aes_32t i;

        for(i = 0; i < (15 * N_COLS - 1) / 8; ++i)
            ke8(cx->ks,  i);
#if !(DEC_ROUND == NO_TABLES)
        for(i = N_COLS; i < 14 * N_COLS; ++i)
            cx->ks[i] = inv_mcol(cx->ks[i]);
#endif
    }
#else
    cx->ks[4] = ff(ss[4] = word_in(in_key, 4));
    cx->ks[5] = ff(ss[5] = word_in(in_key, 5));
    cx->ks[6] = ff(ss[6] = word_in(in_key, 6));
    cx->ks[7] = ff(ss[7] = word_in(in_key, 7));
    kdf8(cx->ks, 0); kd8(cx->ks, 1);
    kd8(cx->ks, 2);  kd8(cx->ks, 3);
    kd8(cx->ks, 4);  kd8(cx->ks, 5);
    kdl8(cx->ks, 6);
#endif
#ifdef AES_ERR_CHK
    return aes_good;
#endif
}

#endif

#if defined(AES_VAR)

aes_rval aes_decrypt_key(const void *in_key, int key_len, aes_decrypt_ctx cx[1])
{
    switch(key_len)
    {
#ifdef AES_ERR_CHK
    case 16: case 128: return aes_decrypt_key128(in_key, cx);
    case 24: case 192: return aes_decrypt_key192(in_key, cx);
    case 32: case 256: return aes_decrypt_key256(in_key, cx);
    default: return aes_error;
#else
    case 16: case 128: aes_decrypt_key128(in_key, cx); return;
    case 24: case 192: aes_decrypt_key192(in_key, cx); return;
    case 32: case 256: aes_decrypt_key256(in_key, cx); return;
#endif
    }
}

#endif

#endif

#if defined(__cplusplus)
}
#endif