/* * Asterisk -- An open source telephony toolkit. * * Copyright (C) 1999 - 2010, Digium, Inc. * * Mark Spencer * * Most of this code is in the public domain, so clarified as of * June 5, 1996 by Arthur David Olson (arthur_david_olson@nih.gov). * * All modifications to this code to abstract timezones away from * the environment are by Tilghman Lesher, , with * the copyright assigned to Digium. * * See http://www.asterisk.org for more information about * the Asterisk project. Please do not directly contact * any of the maintainers of this project for assistance; * the project provides a web site, mailing lists and IRC * channels for your use. * * This program is free software, distributed under the terms of * the GNU General Public License Version 2. See the LICENSE file * at the top of the source tree. */ /*! \file * * Multi-timezone Localtime code * * The original source from this file may be obtained from ftp://elsie.nci.nih.gov/pub/ */ /* ** This file is in the public domain, so clarified as of ** 1996-06-05 by Arthur David Olson. */ /* ** Leap second handling from Bradley White. ** POSIX-style TZ environment variable handling from Guy Harris. */ /* #define DEBUG */ /*LINTLIBRARY*/ #include "asterisk.h" ASTERISK_FILE_VERSION(__FILE__, "$Revision$") #include #include #include #include #include #ifdef HAVE_INOTIFY #include #elif defined(HAVE_KQUEUE) #include #include #include #include #include #include #endif #include "private.h" #include "tzfile.h" #include "asterisk/lock.h" #include "asterisk/localtime.h" #include "asterisk/strings.h" #include "asterisk/linkedlists.h" #include "asterisk/utils.h" #include "asterisk/test.h" #ifndef lint #ifndef NOID static char __attribute__((unused)) elsieid[] = "@(#)localtime.c 8.5"; #endif /* !defined NOID */ #endif /* !defined lint */ #ifndef TZ_ABBR_MAX_LEN #define TZ_ABBR_MAX_LEN 16 #endif /* !defined TZ_ABBR_MAX_LEN */ #ifndef TZ_ABBR_CHAR_SET #define TZ_ABBR_CHAR_SET \ "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._" #endif /* !defined TZ_ABBR_CHAR_SET */ #ifndef TZ_ABBR_ERR_CHAR #define TZ_ABBR_ERR_CHAR '_' #endif /* !defined TZ_ABBR_ERR_CHAR */ /* ** SunOS 4.1.1 headers lack O_BINARY. */ #ifdef O_BINARY #define OPEN_MODE (O_RDONLY | O_BINARY) #endif /* defined O_BINARY */ #ifndef O_BINARY #define OPEN_MODE O_RDONLY #endif /* !defined O_BINARY */ static const char gmt[] = "GMT"; static const struct timeval WRONG = { 0, 0 }; #ifdef TEST_FRAMEWORK /* Protected from multiple threads by the zonelist lock */ static struct ast_test *test = NULL; #else struct ast_test; #endif /*! \note * The DST rules to use if TZ has no rules and we can't load TZDEFRULES. * We default to US rules as of 1999-08-17. * POSIX 1003.1 section 8.1.1 says that the default DST rules are * implementation dependent; for historical reasons, US rules are a * common default. */ #ifndef TZDEFRULESTRING #define TZDEFRULESTRING ",M4.1.0,M10.5.0" #endif /* !defined TZDEFDST */ /*!< \brief time type information */ struct ttinfo { /* time type information */ long tt_gmtoff; /* UTC offset in seconds */ int tt_isdst; /* used to set tm_isdst */ int tt_abbrind; /* abbreviation list index */ int tt_ttisstd; /* TRUE if transition is std time */ int tt_ttisgmt; /* TRUE if transition is UTC */ }; /*! \brief leap second information */ struct lsinfo { /* leap second information */ time_t ls_trans; /* transition time */ long ls_corr; /* correction to apply */ }; #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b)) #ifdef TZNAME_MAX #define MY_TZNAME_MAX TZNAME_MAX #endif /* defined TZNAME_MAX */ #ifndef TZNAME_MAX #define MY_TZNAME_MAX 255 #endif /* !defined TZNAME_MAX */ #ifndef TZ_STRLEN_MAX #define TZ_STRLEN_MAX 255 #endif /* !defined TZ_STRLEN_MAX */ struct state { /*! Name of the file that this references */ char name[TZ_STRLEN_MAX + 1]; int leapcnt; int timecnt; int typecnt; int charcnt; int goback; int goahead; time_t ats[TZ_MAX_TIMES]; unsigned char types[TZ_MAX_TIMES]; struct ttinfo ttis[TZ_MAX_TYPES]; char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))]; struct lsinfo lsis[TZ_MAX_LEAPS]; #ifdef HAVE_INOTIFY int wd[2]; #elif defined(HAVE_KQUEUE) int fd; # ifdef HAVE_O_SYMLINK int fds; # else DIR *dir; # endif /* defined(HAVE_O_SYMLINK) */ #else time_t mtime[2]; #endif AST_LIST_ENTRY(state) list; }; struct locale_entry { AST_LIST_ENTRY(locale_entry) list; locale_t locale; char name[0]; }; struct rule { int r_type; /* type of rule--see below */ int r_day; /* day number of rule */ int r_week; /* week number of rule */ int r_mon; /* month number of rule */ long r_time; /* transition time of rule */ }; #define JULIAN_DAY 0 /* Jn - Julian day */ #define DAY_OF_YEAR 1 /* n - day of year */ #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */ /* ** Prototypes for static functions. */ static long detzcode P((const char * codep)); static time_t detzcode64 P((const char * codep)); static int differ_by_repeat P((time_t t1, time_t t0)); static const char * getzname P((const char * strp)); static const char * getqzname P((const char * strp, const int delim)); static const char * getnum P((const char * strp, int * nump, int min, int max)); static const char * getsecs P((const char * strp, long * secsp)); static const char * getoffset P((const char * strp, long * offsetp)); static const char * getrule P((const char * strp, struct rule * rulep)); static int gmtload P((struct state * sp)); static struct ast_tm * gmtsub P((const struct timeval * timep, long offset, struct ast_tm * tmp)); static struct ast_tm * localsub P((const struct timeval * timep, long offset, struct ast_tm * tmp, const struct state *sp)); static int increment_overflow P((int * number, int delta)); static int leaps_thru_end_of P((int y)); static int long_increment_overflow P((long * number, int delta)); static int long_normalize_overflow P((long * tensptr, int * unitsptr, const int base)); static int normalize_overflow P((int * tensptr, int * unitsptr, const int base)); static struct timeval time1 P((struct ast_tm * tmp, struct ast_tm * (*funcp) P((const struct timeval *, long, struct ast_tm *, const struct state *sp)), long offset, const struct state *sp)); static struct timeval time2 P((struct ast_tm *tmp, struct ast_tm * (*funcp) P((const struct timeval *, long, struct ast_tm*, const struct state *sp)), long offset, int * okayp, const struct state *sp)); static struct timeval time2sub P((struct ast_tm *tmp, struct ast_tm * (*funcp) (const struct timeval *, long, struct ast_tm*, const struct state *sp), long offset, int * okayp, int do_norm_secs, const struct state *sp)); static struct ast_tm * timesub P((const struct timeval * timep, long offset, const struct state * sp, struct ast_tm * tmp)); static int tmcomp P((const struct ast_tm * atmp, const struct ast_tm * btmp)); static time_t transtime P((time_t janfirst, int year, const struct rule * rulep, long offset)); static int tzload P((const char * name, struct state * sp, int doextend)); static int tzparse P((const char * name, struct state * sp, int lastditch)); static AST_LIST_HEAD_STATIC(zonelist, state); #ifdef HAVE_NEWLOCALE static AST_LIST_HEAD_STATIC(localelist, locale_entry); #endif #ifndef TZ_STRLEN_MAX #define TZ_STRLEN_MAX 255 #endif /* !defined TZ_STRLEN_MAX */ static pthread_t inotify_thread = AST_PTHREADT_NULL; static ast_cond_t initialization; static ast_mutex_t initialization_lock; #ifdef HAVE_INOTIFY static int inotify_fd = -1; static void *inotify_daemon(void *data) { struct { struct inotify_event iev; char name[FILENAME_MAX + 1]; } buf; ssize_t res; struct state *cur; inotify_fd = inotify_init(); ast_mutex_lock(&initialization_lock); ast_cond_broadcast(&initialization); ast_mutex_unlock(&initialization_lock); if (inotify_fd < 0) { ast_log(LOG_ERROR, "Cannot initialize file notification service: %s (%d)\n", strerror(errno), errno); inotify_thread = AST_PTHREADT_NULL; return NULL; } for (;/*ever*/;) { /* This read should block, most of the time. */ if ((res = read(inotify_fd, &buf, sizeof(buf))) < sizeof(buf.iev) && res > 0) { /* This should never happen */ ast_log(LOG_ERROR, "Inotify read less than a full event (%zd < %zd)?!!\n", res, sizeof(buf.iev)); break; } else if (res < 0) { if (errno == EINTR || errno == EAGAIN) { /* If read fails, try again */ AST_LIST_LOCK(&zonelist); ast_cond_broadcast(&initialization); AST_LIST_UNLOCK(&zonelist); continue; } /* Sanity check -- this should never happen, either */ ast_log(LOG_ERROR, "Inotify failed: %s\n", strerror(errno)); break; } AST_LIST_LOCK(&zonelist); AST_LIST_TRAVERSE_SAFE_BEGIN(&zonelist, cur, list) { if (cur->wd[0] == buf.iev.wd || cur->wd[1] == buf.iev.wd) { AST_LIST_REMOVE_CURRENT(list); ast_free(cur); break; } } AST_LIST_TRAVERSE_SAFE_END ast_cond_broadcast(&initialization); AST_LIST_UNLOCK(&zonelist); } close(inotify_fd); inotify_thread = AST_PTHREADT_NULL; return NULL; } static void add_notify(struct state *sp, const char *path) { if (inotify_thread == AST_PTHREADT_NULL) { ast_cond_init(&initialization, NULL); ast_mutex_init(&initialization_lock); ast_mutex_lock(&initialization_lock); if (!(ast_pthread_create_background(&inotify_thread, NULL, inotify_daemon, NULL))) { /* Give the thread a chance to initialize */ ast_cond_wait(&initialization, &initialization_lock); } else { fprintf(stderr, "Unable to start notification thread\n"); ast_mutex_unlock(&initialization_lock); return; } ast_mutex_unlock(&initialization_lock); } if (inotify_fd > -1) { char fullpath[FILENAME_MAX + 1] = ""; if (readlink(path, fullpath, sizeof(fullpath) - 1) != -1) { /* If file the symlink points to changes */ sp->wd[1] = inotify_add_watch(inotify_fd, fullpath, IN_ATTRIB | IN_DELETE_SELF | IN_MODIFY | IN_MOVE_SELF | IN_CLOSE_WRITE ); } else { sp->wd[1] = -1; } /* or if the symlink itself changes (or the real file is here, if path is not a symlink) */ sp->wd[0] = inotify_add_watch(inotify_fd, path, IN_ATTRIB | IN_DELETE_SELF | IN_MODIFY | IN_MOVE_SELF | IN_CLOSE_WRITE #ifdef IN_DONT_FOLLOW /* Only defined in glibc 2.5 and above */ | IN_DONT_FOLLOW #endif ); } } #elif defined(HAVE_KQUEUE) static int queue_fd = -1; static void *kqueue_daemon(void *data) { struct kevent kev; struct state *sp; struct timespec no_wait = { 0, 1 }; ast_mutex_lock(&initialization_lock); if ((queue_fd = kqueue()) < 0) { /* ast_log uses us to format messages, so if we called ast_log, we'd be * in for a nasty loop (seen already in testing) */ fprintf(stderr, "Unable to initialize kqueue(): %s\n", strerror(errno)); inotify_thread = AST_PTHREADT_NULL; /* Okay to proceed */ ast_cond_signal(&initialization); ast_mutex_unlock(&initialization_lock); return NULL; } ast_cond_signal(&initialization); ast_mutex_unlock(&initialization_lock); for (;/*ever*/;) { if (kevent(queue_fd, NULL, 0, &kev, 1, NULL) < 0) { AST_LIST_LOCK(&zonelist); ast_cond_broadcast(&initialization); AST_LIST_UNLOCK(&zonelist); continue; } sp = kev.udata; /*!\note * If the file event fired, then the file was removed, so we'll need * to reparse the entry. The directory event is a bit more * interesting. Unfortunately, the queue doesn't contain information * about the file that changed (only the directory itself), so unless * we kept a record of the directory state before, it's not really * possible to know what change occurred. But if we act paranoid and * just purge the associated file, then it will get reparsed, and * everything works fine. It may be more work, but it's a vast * improvement over the alternative implementation, which is to stat * the file repeatedly in what is essentially a busy loop. */ AST_LIST_LOCK(&zonelist); AST_LIST_REMOVE(&zonelist, sp, list); AST_LIST_UNLOCK(&zonelist); /* If the directory event fired, remove the file event */ EV_SET(&kev, sp->fd, EVFILT_VNODE, EV_DELETE, 0, 0, NULL); kevent(queue_fd, &kev, 1, NULL, 0, &no_wait); close(sp->fd); #ifdef HAVE_O_SYMLINK if (sp->fds > -1) { /* If the file event fired, remove the symlink event */ EV_SET(&kev, sp->fds, EVFILT_VNODE, EV_DELETE, 0, 0, NULL); kevent(queue_fd, &kev, 1, NULL, 0, &no_wait); close(sp->fds); } #else if (sp->dir) { /* If the file event fired, remove the directory event */ EV_SET(&kev, dirfd(sp->dir), EVFILT_VNODE, EV_DELETE, 0, 0, NULL); kevent(queue_fd, &kev, 1, NULL, 0, &no_wait); closedir(sp->dir); } #endif free(sp); /* Just in case the signal was sent late */ AST_LIST_LOCK(&zonelist); ast_cond_broadcast(&initialization); AST_LIST_UNLOCK(&zonelist); } } static void add_notify(struct state *sp, const char *path) { struct kevent kev; struct timespec no_wait = { 0, 1 }; char watchdir[PATH_MAX + 1] = ""; if (inotify_thread == AST_PTHREADT_NULL) { ast_cond_init(&initialization, NULL); ast_mutex_init(&initialization_lock); ast_mutex_lock(&initialization_lock); if (!(ast_pthread_create_background(&inotify_thread, NULL, kqueue_daemon, NULL))) { /* Give the thread a chance to initialize */ ast_cond_wait(&initialization, &initialization_lock); } ast_mutex_unlock(&initialization_lock); } if (queue_fd < 0) { /* Error already sent */ return; } #ifdef HAVE_O_SYMLINK if (readlink(path, watchdir, sizeof(watchdir) - 1) != -1 && (sp->fds = open(path, O_RDONLY | O_SYMLINK # ifdef HAVE_O_EVTONLY | O_EVTONLY # endif )) >= 0) { EV_SET(&kev, sp->fds, EVFILT_VNODE, EV_ADD | EV_ENABLE | EV_ONESHOT, NOTE_WRITE | NOTE_EXTEND | NOTE_DELETE | NOTE_REVOKE | NOTE_ATTRIB, 0, sp); if (kevent(queue_fd, &kev, 1, NULL, 0, &no_wait) < 0 && errno != 0) { /* According to the API docs, we may get -1 return value, due to the * NULL space for a returned event, but errno should be 0 unless * there's a real error. Otherwise, kevent will return 0 to indicate * that the time limit expired. */ fprintf(stderr, "Unable to watch '%s': %s\n", path, strerror(errno)); close(sp->fds); sp->fds = -1; } } #else if (readlink(path, watchdir, sizeof(watchdir) - 1) != -1) { /* Special -- watch the directory for changes, because we cannot directly watch a symlink */ char *slash; ast_copy_string(watchdir, path, sizeof(watchdir)); if ((slash = strrchr(watchdir, '/'))) { *slash = '\0'; } if (!(sp->dir = opendir(watchdir))) { fprintf(stderr, "Unable to watch directory with symlink '%s': %s\n", path, strerror(errno)); goto watch_file; } /*!\note * You may be wondering about whether there is a potential conflict * with the kqueue interface, because we might be watching the same * directory for multiple zones. The answer is no, because kqueue * looks at the descriptor to know if there's a duplicate. Since we * (may) have opened the directory multiple times, each represents a * different event, so no replacement of an existing event will occur. * Likewise, there's no potential leak of a descriptor. */ EV_SET(&kev, dirfd(sp->dir), EVFILT_VNODE, EV_ADD | EV_ENABLE | EV_ONESHOT, NOTE_DELETE | NOTE_WRITE | NOTE_EXTEND | NOTE_REVOKE | NOTE_ATTRIB, 0, sp); if (kevent(queue_fd, &kev, 1, NULL, 0, &no_wait) < 0 && errno != 0) { fprintf(stderr, "Unable to watch '%s': %s\n", watchdir, strerror(errno)); closedir(sp->dir); sp->dir = NULL; } } watch_file: #endif if ((sp->fd = open(path, O_RDONLY # ifdef HAVE_O_EVTONLY | O_EVTONLY # endif )) < 0) { fprintf(stderr, "Unable to watch '%s' for changes: %s\n", path, strerror(errno)); return; } EV_SET(&kev, sp->fd, EVFILT_VNODE, EV_ADD | EV_ENABLE | EV_ONESHOT, NOTE_WRITE | NOTE_EXTEND | NOTE_DELETE | NOTE_REVOKE | NOTE_ATTRIB, 0, sp); if (kevent(queue_fd, &kev, 1, NULL, 0, &no_wait) < 0 && errno != 0) { /* According to the API docs, we may get -1 return value, due to the * NULL space for a returned event, but errno should be 0 unless * there's a real error. Otherwise, kevent will return 0 to indicate * that the time limit expired. */ fprintf(stderr, "Unable to watch '%s': %s\n", path, strerror(errno)); close(sp->fd); sp->fd = -1; } } #else static void *notify_daemon(void *data) { struct stat st, lst; struct state *cur; struct timespec sixty_seconds = { 60, 0 }; ast_mutex_lock(&initialization_lock); ast_cond_broadcast(&initialization); ast_mutex_unlock(&initialization_lock); for (;/*ever*/;) { char fullname[FILENAME_MAX + 1]; nanosleep(&sixty_seconds, NULL); AST_LIST_LOCK(&zonelist); AST_LIST_TRAVERSE_SAFE_BEGIN(&zonelist, cur, list) { char *name = cur->name; if (name[0] == ':') ++name; if (name[0] != '/') { (void) strcpy(fullname, TZDIR "/"); (void) strcat(fullname, name); name = fullname; } stat(name, &st); lstat(name, &lst); if (st.st_mtime > cur->mtime[0] || lst.st_mtime > cur->mtime[1]) { #ifdef TEST_FRAMEWORK if (test) { ast_test_status_update(test, "Removing cached TZ entry '%s' because underlying file changed. (%ld != %ld) or (%ld != %ld)\n", name, st.st_mtime, cur->mtime[0], lst.st_mtime, cur->mtime[1]); } else #endif { ast_log(LOG_NOTICE, "Removing cached TZ entry '%s' because underlying file changed.\n", name); } AST_LIST_REMOVE_CURRENT(list); ast_free(cur); continue; } } AST_LIST_TRAVERSE_SAFE_END ast_cond_broadcast(&initialization); AST_LIST_UNLOCK(&zonelist); } inotify_thread = AST_PTHREADT_NULL; return NULL; } static void add_notify(struct state *sp, const char *path) { struct stat st; if (inotify_thread == AST_PTHREADT_NULL) { ast_cond_init(&initialization, NULL); ast_mutex_init(&initialization_lock); ast_mutex_lock(&initialization_lock); if (!(ast_pthread_create_background(&inotify_thread, NULL, notify_daemon, NULL))) { /* Give the thread a chance to initialize */ ast_cond_wait(&initialization, &initialization_lock); } ast_mutex_unlock(&initialization_lock); } stat(path, &st); sp->mtime[0] = st.st_mtime; lstat(path, &st); sp->mtime[1] = st.st_mtime; } #endif void ast_localtime_wakeup_monitor(struct ast_test *info) { if (inotify_thread != AST_PTHREADT_NULL) { AST_LIST_LOCK(&zonelist); #ifdef TEST_FRAMEWORK test = info; #endif pthread_kill(inotify_thread, SIGURG); ast_cond_wait(&initialization, &(&zonelist)->lock); #ifdef TEST_FRAMEWORK test = NULL; #endif AST_LIST_UNLOCK(&zonelist); } } /*! \note ** Section 4.12.3 of X3.159-1989 requires that ** Except for the strftime function, these functions [asctime, ** ctime, gmtime, localtime] return values in one of two static ** objects: a broken-down time structure and an array of char. ** Thanks to Paul Eggert for noting this. */ static long detzcode(const char * const codep) { long result; int i; result = (codep[0] & 0x80) ? ~0L : 0; for (i = 0; i < 4; ++i) result = (result << 8) | (codep[i] & 0xff); return result; } static time_t detzcode64(const char * const codep) { time_t result; int i; result = (codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0; for (i = 0; i < 8; ++i) result = result * 256 + (codep[i] & 0xff); return result; } static int differ_by_repeat(const time_t t1, const time_t t0) { const long long at1 = t1, at0 = t0; if (TYPE_INTEGRAL(time_t) && TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS) return 0; return at1 - at0 == SECSPERREPEAT; } static int tzload(const char *name, struct state * const sp, const int doextend) { const char * p; int i; int fid; int stored; int nread; union { struct tzhead tzhead; char buf[2 * sizeof(struct tzhead) + 2 * sizeof *sp + 4 * TZ_MAX_TIMES]; } u; if (name == NULL && (name = TZDEFAULT) == NULL) return -1; { int doaccess; /* ** Section 4.9.1 of the C standard says that ** "FILENAME_MAX expands to an integral constant expression ** that is the size needed for an array of char large enough ** to hold the longest file name string that the implementation ** guarantees can be opened." */ char fullname[FILENAME_MAX + 1]; if (name[0] == ':') ++name; doaccess = name[0] == '/'; if (!doaccess) { if ((p = TZDIR) == NULL) return -1; if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) return -1; (void) strcpy(fullname, p); (void) strcat(fullname, "/"); (void) strcat(fullname, name); /* ** Set doaccess if '.' (as in "../") shows up in name. */ if (strchr(name, '.') != NULL) doaccess = TRUE; name = fullname; } if (doaccess && access(name, R_OK) != 0) return -1; if ((fid = open(name, OPEN_MODE)) == -1) return -1; add_notify(sp, name); } nread = read(fid, u.buf, sizeof u.buf); if (close(fid) < 0 || nread <= 0) return -1; for (stored = 4; stored <= 8; stored *= 2) { int ttisstdcnt; int ttisgmtcnt; ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt); ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt); sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt); sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt); sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt); sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt); p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt; if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS || sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES || sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES || sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS || (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) || (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) return -1; if (nread - (p - u.buf) < sp->timecnt * stored + /* ats */ sp->timecnt + /* types */ sp->typecnt * 6 + /* ttinfos */ sp->charcnt + /* chars */ sp->leapcnt * (stored + 4) + /* lsinfos */ ttisstdcnt + /* ttisstds */ ttisgmtcnt) /* ttisgmts */ return -1; for (i = 0; i < sp->timecnt; ++i) { sp->ats[i] = (stored == 4) ? detzcode(p) : detzcode64(p); p += stored; } for (i = 0; i < sp->timecnt; ++i) { sp->types[i] = (unsigned char) *p++; if (sp->types[i] >= sp->typecnt) return -1; } for (i = 0; i < sp->typecnt; ++i) { struct ttinfo * ttisp; ttisp = &sp->ttis[i]; ttisp->tt_gmtoff = detzcode(p); p += 4; ttisp->tt_isdst = (unsigned char) *p++; if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) return -1; ttisp->tt_abbrind = (unsigned char) *p++; if (ttisp->tt_abbrind < 0 || ttisp->tt_abbrind > sp->charcnt) return -1; } for (i = 0; i < sp->charcnt; ++i) sp->chars[i] = *p++; sp->chars[i] = '\0'; /* ensure '\0' at end */ for (i = 0; i < sp->leapcnt; ++i) { struct lsinfo * lsisp; lsisp = &sp->lsis[i]; lsisp->ls_trans = (stored == 4) ? detzcode(p) : detzcode64(p); p += stored; lsisp->ls_corr = detzcode(p); p += 4; } for (i = 0; i < sp->typecnt; ++i) { struct ttinfo * ttisp; ttisp = &sp->ttis[i]; if (ttisstdcnt == 0) ttisp->tt_ttisstd = FALSE; else { ttisp->tt_ttisstd = *p++; if (ttisp->tt_ttisstd != TRUE && ttisp->tt_ttisstd != FALSE) return -1; } } for (i = 0; i < sp->typecnt; ++i) { struct ttinfo * ttisp; ttisp = &sp->ttis[i]; if (ttisgmtcnt == 0) ttisp->tt_ttisgmt = FALSE; else { ttisp->tt_ttisgmt = *p++; if (ttisp->tt_ttisgmt != TRUE && ttisp->tt_ttisgmt != FALSE) return -1; } } /* ** Out-of-sort ats should mean we're running on a ** signed time_t system but using a data file with ** unsigned values (or vice versa). */ for (i = 0; i < sp->timecnt - 2; ++i) if (sp->ats[i] > sp->ats[i + 1]) { ++i; if (TYPE_SIGNED(time_t)) { /* ** Ignore the end (easy). */ sp->timecnt = i; } else { /* ** Ignore the beginning (harder). */ int j; for (j = 0; j + i < sp->timecnt; ++j) { sp->ats[j] = sp->ats[j + i]; sp->types[j] = sp->types[j + i]; } sp->timecnt = j; } break; } /* ** If this is an old file, we're done. */ if (u.tzhead.tzh_version[0] == '\0') break; nread -= p - u.buf; for (i = 0; i < nread; ++i) u.buf[i] = p[i]; /* ** If this is a narrow integer time_t system, we're done. */ if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t)) break; } if (doextend && nread > 2 && u.buf[0] == '\n' && u.buf[nread - 1] == '\n' && sp->typecnt + 2 <= TZ_MAX_TYPES) { struct state ts; int result; u.buf[nread - 1] = '\0'; result = tzparse(&u.buf[1], &ts, FALSE); if (result == 0 && ts.typecnt == 2 && sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) { for (i = 0; i < 2; ++i) ts.ttis[i].tt_abbrind += sp->charcnt; for (i = 0; i < ts.charcnt; ++i) sp->chars[sp->charcnt++] = ts.chars[i]; i = 0; while (i < ts.timecnt && ts.ats[i] <= sp->ats[sp->timecnt - 1]) ++i; while (i < ts.timecnt && sp->timecnt < TZ_MAX_TIMES) { sp->ats[sp->timecnt] = ts.ats[i]; sp->types[sp->timecnt] = sp->typecnt + ts.types[i]; ++sp->timecnt; ++i; } sp->ttis[sp->typecnt++] = ts.ttis[0]; sp->ttis[sp->typecnt++] = ts.ttis[1]; } } i = 2 * YEARSPERREPEAT; sp->goback = sp->goahead = sp->timecnt > i; sp->goback = sp->goback && sp->types[i] == sp->types[0] && differ_by_repeat(sp->ats[i], sp->ats[0]); sp->goahead = sp->goahead && sp->types[sp->timecnt - 1] == sp->types[sp->timecnt - 1 - i] && differ_by_repeat(sp->ats[sp->timecnt - 1], sp->ats[sp->timecnt - 1 - i]); return 0; } static const int mon_lengths[2][MONSPERYEAR] = { { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } }; static const int year_lengths[2] = { DAYSPERNYEAR, DAYSPERLYEAR }; /*! \brief ** Given a pointer into a time zone string, scan until a character that is not ** a valid character in a zone name is found. Return a pointer to that ** character. */ static const char * getzname(const char *strp) { char c; while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && c != '+') ++strp; return strp; } /*! \brief ** Given a pointer into an extended time zone string, scan until the ending ** delimiter of the zone name is located. Return a pointer to the delimiter. ** ** As with getzname above, the legal character set is actually quite ** restricted, with other characters producing undefined results. ** We don't do any checking here; checking is done later in common-case code. */ static const char * getqzname(const char *strp, const int delim) { int c; while ((c = *strp) != '\0' && c != delim) ++strp; return strp; } /*! \brief ** Given a pointer into a time zone string, extract a number from that string. ** Check that the number is within a specified range; if it is not, return ** NULL. ** Otherwise, return a pointer to the first character not part of the number. */ static const char *getnum(const char *strp, int *nump, const int min, const int max) { char c; int num; if (strp == NULL || !is_digit(c = *strp)) return NULL; num = 0; do { num = num * 10 + (c - '0'); if (num > max) return NULL; /* illegal value */ c = *++strp; } while (is_digit(c)); if (num < min) return NULL; /* illegal value */ *nump = num; return strp; } /*! \brief ** Given a pointer into a time zone string, extract a number of seconds, ** in hh[:mm[:ss]] form, from the string. ** If any error occurs, return NULL. ** Otherwise, return a pointer to the first character not part of the number ** of seconds. */ static const char *getsecs(const char *strp, long * const secsp) { int num; /* ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like ** "M10.4.6/26", which does not conform to Posix, ** but which specifies the equivalent of ** ``02:00 on the first Sunday on or after 23 Oct''. */ strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); if (strp == NULL) return NULL; *secsp = num * (long) SECSPERHOUR; if (*strp == ':') { ++strp; strp = getnum(strp, &num, 0, MINSPERHOUR - 1); if (strp == NULL) return NULL; *secsp += num * SECSPERMIN; if (*strp == ':') { ++strp; /* `SECSPERMIN' allows for leap seconds. */ strp = getnum(strp, &num, 0, SECSPERMIN); if (strp == NULL) return NULL; *secsp += num; } } return strp; } /*! \brief ** Given a pointer into a time zone string, extract an offset, in ** [+-]hh[:mm[:ss]] form, from the string. ** If any error occurs, return NULL. ** Otherwise, return a pointer to the first character not part of the time. */ static const char *getoffset(const char *strp, long *offsetp) { int neg = 0; if (*strp == '-') { neg = 1; ++strp; } else if (*strp == '+') ++strp; strp = getsecs(strp, offsetp); if (strp == NULL) return NULL; /* illegal time */ if (neg) *offsetp = -*offsetp; return strp; } /*! \brief ** Given a pointer into a time zone string, extract a rule in the form ** date[/time]. See POSIX section 8 for the format of "date" and "time". ** If a valid rule is not found, return NULL. ** Otherwise, return a pointer to the first character not part of the rule. */ static const char *getrule(const char *strp, struct rule *rulep) { if (*strp == 'J') { /* ** Julian day. */ rulep->r_type = JULIAN_DAY; ++strp; strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); } else if (*strp == 'M') { /* ** Month, week, day. */ rulep->r_type = MONTH_NTH_DAY_OF_WEEK; ++strp; strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); if (strp == NULL) return NULL; if (*strp++ != '.') return NULL; strp = getnum(strp, &rulep->r_week, 1, 5); if (strp == NULL) return NULL; if (*strp++ != '.') return NULL; strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); } else if (is_digit(*strp)) { /* ** Day of year. */ rulep->r_type = DAY_OF_YEAR; strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); } else return NULL; /* invalid format */ if (strp == NULL) return NULL; if (*strp == '/') { /* ** Time specified. */ ++strp; strp = getsecs(strp, &rulep->r_time); } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ return strp; } /*! \brief ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the ** year, a rule, and the offset from UTC at the time that rule takes effect, ** calculate the Epoch-relative time that rule takes effect. */ static time_t transtime(const time_t janfirst, const int year, const struct rule *rulep, const long offset) { int leapyear; time_t value; int i; int d, m1, yy0, yy1, yy2, dow; INITIALIZE(value); leapyear = isleap(year); switch (rulep->r_type) { case JULIAN_DAY: /* ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap ** years. ** In non-leap years, or if the day number is 59 or less, just ** add SECSPERDAY times the day number-1 to the time of ** January 1, midnight, to get the day. */ value = janfirst + (rulep->r_day - 1) * SECSPERDAY; if (leapyear && rulep->r_day >= 60) value += SECSPERDAY; break; case DAY_OF_YEAR: /* ** n - day of year. ** Just add SECSPERDAY times the day number to the time of ** January 1, midnight, to get the day. */ value = janfirst + rulep->r_day * SECSPERDAY; break; case MONTH_NTH_DAY_OF_WEEK: /* ** Mm.n.d - nth "dth day" of month m. */ value = janfirst; for (i = 0; i < rulep->r_mon - 1; ++i) value += mon_lengths[leapyear][i] * SECSPERDAY; /* ** Use Zeller's Congruence to get day-of-week of first day of ** month. */ m1 = (rulep->r_mon + 9) % 12 + 1; yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; yy1 = yy0 / 100; yy2 = yy0 % 100; dow = ((26 * m1 - 2) / 10 + 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; if (dow < 0) dow += DAYSPERWEEK; /* ** "dow" is the day-of-week of the first day of the month. Get ** the day-of-month (zero-origin) of the first "dow" day of the ** month. */ d = rulep->r_day - dow; if (d < 0) d += DAYSPERWEEK; for (i = 1; i < rulep->r_week; ++i) { if (d + DAYSPERWEEK >= mon_lengths[leapyear][rulep->r_mon - 1]) break; d += DAYSPERWEEK; } /* ** "d" is the day-of-month (zero-origin) of the day we want. */ value += d * SECSPERDAY; break; } /* ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in ** question. To get the Epoch-relative time of the specified local ** time on that day, add the transition time and the current offset ** from UTC. */ return value + rulep->r_time + offset; } /*! \note ** Given a POSIX section 8-style TZ string, fill in the rule tables as ** appropriate. */ static int tzparse(const char *name, struct state *sp, const int lastditch) { const char * stdname; const char * dstname; size_t stdlen; size_t dstlen; long stdoffset; long dstoffset; time_t * atp; unsigned char * typep; char * cp; int load_result; INITIALIZE(dstname); stdname = name; if (lastditch) { stdlen = strlen(name); /* length of standard zone name */ name += stdlen; if (stdlen >= sizeof sp->chars) stdlen = (sizeof sp->chars) - 1; stdoffset = 0; } else { if (*name == '<') { name++; stdname = name; name = getqzname(name, '>'); if (*name != '>') return -1; stdlen = name - stdname; name++; } else { name = getzname(name); stdlen = name - stdname; } if (*name == '\0') return -1; name = getoffset(name, &stdoffset); if (name == NULL) return -1; } load_result = tzload(TZDEFRULES, sp, FALSE); if (load_result != 0) sp->leapcnt = 0; /* so, we're off a little */ if (*name != '\0') { if (*name == '<') { dstname = ++name; name = getqzname(name, '>'); if (*name != '>') return -1; dstlen = name - dstname; name++; } else { dstname = name; name = getzname(name); dstlen = name - dstname; /* length of DST zone name */ } if (*name != '\0' && *name != ',' && *name != ';') { name = getoffset(name, &dstoffset); if (name == NULL) return -1; } else dstoffset = stdoffset - SECSPERHOUR; if (*name == '\0' && load_result != 0) name = TZDEFRULESTRING; if (*name == ',' || *name == ';') { struct rule start; struct rule end; int year; time_t janfirst; time_t starttime; time_t endtime; ++name; if ((name = getrule(name, &start)) == NULL) return -1; if (*name++ != ',') return -1; if ((name = getrule(name, &end)) == NULL) return -1; if (*name != '\0') return -1; sp->typecnt = 2; /* standard time and DST */ /* ** Two transitions per year, from EPOCH_YEAR forward. */ sp->ttis[0].tt_gmtoff = -dstoffset; sp->ttis[0].tt_isdst = 1; sp->ttis[0].tt_abbrind = stdlen + 1; sp->ttis[1].tt_gmtoff = -stdoffset; sp->ttis[1].tt_isdst = 0; sp->ttis[1].tt_abbrind = 0; atp = sp->ats; typep = sp->types; janfirst = 0; sp->timecnt = 0; for (year = EPOCH_YEAR; sp->timecnt + 2 <= TZ_MAX_TIMES; ++year) { time_t newfirst; starttime = transtime(janfirst, year, &start, stdoffset); endtime = transtime(janfirst, year, &end, dstoffset); if (starttime > endtime) { *atp++ = endtime; *typep++ = 1; /* DST ends */ *atp++ = starttime; *typep++ = 0; /* DST begins */ } else { *atp++ = starttime; *typep++ = 0; /* DST begins */ *atp++ = endtime; *typep++ = 1; /* DST ends */ } sp->timecnt += 2; newfirst = janfirst; newfirst += year_lengths[isleap(year)] * SECSPERDAY; if (newfirst <= janfirst) break; janfirst = newfirst; } } else { long theirstdoffset; long theirdstoffset; long theiroffset; int isdst; int i; int j; if (*name != '\0') return -1; /* ** Initial values of theirstdoffset and theirdstoffset. */ theirstdoffset = 0; for (i = 0; i < sp->timecnt; ++i) { j = sp->types[i]; if (!sp->ttis[j].tt_isdst) { theirstdoffset = -sp->ttis[j].tt_gmtoff; break; } } theirdstoffset = 0; for (i = 0; i < sp->timecnt; ++i) { j = sp->types[i]; if (sp->ttis[j].tt_isdst) { theirdstoffset = -sp->ttis[j].tt_gmtoff; break; } } /* ** Initially we're assumed to be in standard time. */ isdst = FALSE; theiroffset = theirstdoffset; /* ** Now juggle transition times and types ** tracking offsets as you do. */ for (i = 0; i < sp->timecnt; ++i) { j = sp->types[i]; sp->types[i] = sp->ttis[j].tt_isdst; if (sp->ttis[j].tt_ttisgmt) { /* No adjustment to transition time */ } else { /* ** If summer time is in effect, and the ** transition time was not specified as ** standard time, add the summer time ** offset to the transition time; ** otherwise, add the standard time ** offset to the transition time. */ /* ** Transitions from DST to DDST ** will effectively disappear since ** POSIX provides for only one DST ** offset. */ if (isdst && !sp->ttis[j].tt_ttisstd) { sp->ats[i] += dstoffset - theirdstoffset; } else { sp->ats[i] += stdoffset - theirstdoffset; } } theiroffset = -sp->ttis[j].tt_gmtoff; if (sp->ttis[j].tt_isdst) theirdstoffset = theiroffset; else theirstdoffset = theiroffset; } /* ** Finally, fill in ttis. ** ttisstd and ttisgmt need not be handled. */ sp->ttis[0].tt_gmtoff = -stdoffset; sp->ttis[0].tt_isdst = FALSE; sp->ttis[0].tt_abbrind = 0; sp->ttis[1].tt_gmtoff = -dstoffset; sp->ttis[1].tt_isdst = TRUE; sp->ttis[1].tt_abbrind = stdlen + 1; sp->typecnt = 2; } } else { dstlen = 0; sp->typecnt = 1; /* only standard time */ sp->timecnt = 0; sp->ttis[0].tt_gmtoff = -stdoffset; sp->ttis[0].tt_isdst = 0; sp->ttis[0].tt_abbrind = 0; } sp->charcnt = stdlen + 1; if (dstlen != 0) sp->charcnt += dstlen + 1; if ((size_t) sp->charcnt > sizeof sp->chars) return -1; cp = sp->chars; (void) strncpy(cp, stdname, stdlen); cp += stdlen; *cp++ = '\0'; if (dstlen != 0) { (void) strncpy(cp, dstname, dstlen); *(cp + dstlen) = '\0'; } return 0; } static int gmtload(struct state *sp) { if (tzload(gmt, sp, TRUE) != 0) return tzparse(gmt, sp, TRUE); else return -1; } static const struct state *ast_tzset(const char *zone) { struct state *sp; if (ast_strlen_zero(zone)) { #ifdef SOLARIS zone = getenv("TZ"); if (ast_strlen_zero(zone)) { zone = "GMT"; } #else zone = "/etc/localtime"; #endif } AST_LIST_LOCK(&zonelist); AST_LIST_TRAVERSE(&zonelist, sp, list) { if (!strcmp(sp->name, zone)) { AST_LIST_UNLOCK(&zonelist); return sp; } } AST_LIST_UNLOCK(&zonelist); if (!(sp = ast_calloc(1, sizeof *sp))) return NULL; if (tzload(zone, sp, TRUE) != 0) { if (zone[0] == ':' || tzparse(zone, sp, FALSE) != 0) (void) gmtload(sp); } ast_copy_string(sp->name, zone, sizeof(sp->name)); AST_LIST_LOCK(&zonelist); AST_LIST_INSERT_TAIL(&zonelist, sp, list); AST_LIST_UNLOCK(&zonelist); return sp; } /*! \note ** The easy way to behave "as if no library function calls" localtime ** is to not call it--so we drop its guts into "localsub", which can be ** freely called. (And no, the PANS doesn't require the above behavior-- ** but it *is* desirable.) ** ** The unused offset argument is for the benefit of mktime variants. */ static struct ast_tm *localsub(const struct timeval *timep, const long offset, struct ast_tm *tmp, const struct state *sp) { const struct ttinfo * ttisp; int i; struct ast_tm * result; struct timeval t; memcpy(&t, timep, sizeof(t)); if (sp == NULL) return gmtsub(timep, offset, tmp); if ((sp->goback && t.tv_sec < sp->ats[0]) || (sp->goahead && t.tv_sec > sp->ats[sp->timecnt - 1])) { struct timeval newt = t; time_t seconds; time_t tcycles; int_fast64_t icycles; if (t.tv_sec < sp->ats[0]) seconds = sp->ats[0] - t.tv_sec; else seconds = t.tv_sec - sp->ats[sp->timecnt - 1]; --seconds; tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR; ++tcycles; icycles = tcycles; if (tcycles - icycles >= 1 || icycles - tcycles >= 1) return NULL; seconds = icycles; seconds *= YEARSPERREPEAT; seconds *= AVGSECSPERYEAR; if (t.tv_sec < sp->ats[0]) newt.tv_sec += seconds; else newt.tv_sec -= seconds; if (newt.tv_sec < sp->ats[0] || newt.tv_sec > sp->ats[sp->timecnt - 1]) return NULL; /* "cannot happen" */ result = localsub(&newt, offset, tmp, sp); if (result == tmp) { time_t newy; newy = tmp->tm_year; if (t.tv_sec < sp->ats[0]) newy -= icycles * YEARSPERREPEAT; else newy += icycles * YEARSPERREPEAT; tmp->tm_year = newy; if (tmp->tm_year != newy) return NULL; } return result; } if (sp->timecnt == 0 || t.tv_sec < sp->ats[0]) { i = 0; while (sp->ttis[i].tt_isdst) { if (++i >= sp->typecnt) { i = 0; break; } } } else { int lo = 1; int hi = sp->timecnt; while (lo < hi) { int mid = (lo + hi) >> 1; if (t.tv_sec < sp->ats[mid]) hi = mid; else lo = mid + 1; } i = (int) sp->types[lo - 1]; } ttisp = &sp->ttis[i]; /* ** To get (wrong) behavior that's compatible with System V Release 2.0 ** you'd replace the statement below with ** t += ttisp->tt_gmtoff; ** timesub(&t, 0L, sp, tmp); */ result = timesub(&t, ttisp->tt_gmtoff, sp, tmp); tmp->tm_isdst = ttisp->tt_isdst; #ifndef SOLARIS /* Solaris doesn't have this element */ tmp->tm_gmtoff = ttisp->tt_gmtoff; #endif #ifdef TM_ZONE tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind]; #endif /* defined TM_ZONE */ tmp->tm_usec = timep->tv_usec; return result; } struct ast_tm *ast_localtime(const struct timeval *timep, struct ast_tm *tmp, const char *zone) { const struct state *sp = ast_tzset(zone); memset(tmp, 0, sizeof(*tmp)); return sp ? localsub(timep, 0L, tmp, sp) : NULL; } /* ** This function provides informaton about daylight savings time ** for the given timezone. This includes whether it can determine ** if daylight savings is used for this timezone, the UTC times for ** when daylight savings transitions, and the offset in seconds from ** UTC. */ void ast_get_dst_info(const time_t * const timep, int *dst_enabled, time_t *dst_start, time_t *dst_end, int *gmt_off, const char * const zone) { int i; int transition1 = -1; int transition2 = -1; time_t seconds; int bounds_exceeded = 0; time_t t = *timep; const struct state *sp; if (NULL == dst_enabled) return; *dst_enabled = 0; if (NULL == dst_start || NULL == dst_end || NULL == gmt_off) return; *gmt_off = 0; sp = ast_tzset(zone); if (NULL == sp) return; /* If the desired time exceeds the bounds of the defined time transitions * then give give up on determining DST info and simply look for gmt offset * This requires that I adjust the given time using increments of Gregorian * repeats to place the time within the defined time transitions in the * timezone structure. */ if ((sp->goback && t < sp->ats[0]) || (sp->goahead && t > sp->ats[sp->timecnt - 1])) { time_t tcycles; int_fast64_t icycles; if (t < sp->ats[0]) seconds = sp->ats[0] - t; else seconds = t - sp->ats[sp->timecnt - 1]; --seconds; tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR; ++tcycles; icycles = tcycles; if (tcycles - icycles >= 1 || icycles - tcycles >= 1) return; seconds = icycles; seconds *= YEARSPERREPEAT; seconds *= AVGSECSPERYEAR; if (t < sp->ats[0]) t += seconds; else t -= seconds; if (t < sp->ats[0] || t > sp->ats[sp->timecnt - 1]) return; /* "cannot happen" */ bounds_exceeded = 1; } if (sp->timecnt == 0 || t < sp->ats[0]) { /* I have no transition times or I'm before time */ *dst_enabled = 0; /* Find where I can get gmtoff */ i = 0; while (sp->ttis[i].tt_isdst) if (++i >= sp->typecnt) { i = 0; break; } *gmt_off = sp->ttis[i].tt_gmtoff; return; } for (i = 1; i < sp->timecnt; ++i) { if (t < sp->ats[i]) { transition1 = sp->types[i - 1]; transition2 = sp->types[i]; break; } } /* if I found transition times that do not bounded the given time and these correspond to or the bounding zones do not reflect a changes in day light savings, then I do not have dst active */ if (i >= sp->timecnt || 0 > transition1 || 0 > transition2 || (sp->ttis[transition1].tt_isdst == sp->ttis[transition2].tt_isdst)) { *dst_enabled = 0; *gmt_off = sp->ttis[sp->types[sp->timecnt -1]].tt_gmtoff; } else { /* I have valid daylight savings information. */ if(sp->ttis[transition2].tt_isdst) *gmt_off = sp->ttis[transition1].tt_gmtoff; else *gmt_off = sp->ttis[transition2].tt_gmtoff; /* If I adjusted the time earlier, indicate that the dst is invalid */ if (!bounds_exceeded) { *dst_enabled = 1; /* Determine which of the bounds is the start of daylight savings and which is the end */ if(sp->ttis[transition2].tt_isdst) { *dst_start = sp->ats[i]; *dst_end = sp->ats[i -1]; } else { *dst_start = sp->ats[i -1]; *dst_end = sp->ats[i]; } } } return; } /* ** gmtsub is to gmtime as localsub is to localtime. */ static struct ast_tm *gmtsub(const struct timeval *timep, const long offset, struct ast_tm *tmp) { struct ast_tm * result; struct state *sp; AST_LIST_LOCK(&zonelist); AST_LIST_TRAVERSE(&zonelist, sp, list) { if (!strcmp(sp->name, "UTC")) break; } if (!sp) { if (!(sp = (struct state *) ast_calloc(1, sizeof *sp))) return NULL; gmtload(sp); AST_LIST_INSERT_TAIL(&zonelist, sp, list); } AST_LIST_UNLOCK(&zonelist); result = timesub(timep, offset, sp, tmp); #ifdef TM_ZONE /* ** Could get fancy here and deliver something such as ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero, ** but this is no time for a treasure hunt. */ if (offset != 0) tmp->TM_ZONE = " "; else tmp->TM_ZONE = sp->chars; #endif /* defined TM_ZONE */ return result; } /*! \brief ** Return the number of leap years through the end of the given year ** where, to make the math easy, the answer for year zero is defined as zero. */ static int leaps_thru_end_of(const int y) { return (y >= 0) ? (y / 4 - y / 100 + y / 400) : -(leaps_thru_end_of(-(y + 1)) + 1); } static struct ast_tm *timesub(const struct timeval *timep, const long offset, const struct state *sp, struct ast_tm *tmp) { const struct lsinfo * lp; time_t tdays; int idays; /* unsigned would be so 2003 */ long rem; int y; const int * ip; long corr; int hit; int i; long seconds; corr = 0; hit = 0; i = (sp == NULL) ? 0 : sp->leapcnt; while (--i >= 0) { lp = &sp->lsis[i]; if (timep->tv_sec >= lp->ls_trans) { if (timep->tv_sec == lp->ls_trans) { hit = ((i == 0 && lp->ls_corr > 0) || lp->ls_corr > sp->lsis[i - 1].ls_corr); if (hit) while (i > 0 && sp->lsis[i].ls_trans == sp->lsis[i - 1].ls_trans + 1 && sp->lsis[i].ls_corr == sp->lsis[i - 1].ls_corr + 1) { ++hit; --i; } } corr = lp->ls_corr; break; } } y = EPOCH_YEAR; tdays = timep->tv_sec / SECSPERDAY; rem = timep->tv_sec - tdays * SECSPERDAY; while (tdays < 0 || tdays >= year_lengths[isleap(y)]) { int newy; time_t tdelta; int idelta; int leapdays; tdelta = tdays / DAYSPERLYEAR; idelta = tdelta; if (tdelta - idelta >= 1 || idelta - tdelta >= 1) return NULL; if (idelta == 0) idelta = (tdays < 0) ? -1 : 1; newy = y; if (increment_overflow(&newy, idelta)) return NULL; leapdays = leaps_thru_end_of(newy - 1) - leaps_thru_end_of(y - 1); tdays -= ((time_t) newy - y) * DAYSPERNYEAR; tdays -= leapdays; y = newy; } seconds = tdays * SECSPERDAY + 0.5; tdays = seconds / SECSPERDAY; rem += seconds - tdays * SECSPERDAY; /* ** Given the range, we can now fearlessly cast... */ idays = tdays; rem += offset - corr; while (rem < 0) { rem += SECSPERDAY; --idays; } while (rem >= SECSPERDAY) { rem -= SECSPERDAY; ++idays; } while (idays < 0) { if (increment_overflow(&y, -1)) return NULL; idays += year_lengths[isleap(y)]; } while (idays >= year_lengths[isleap(y)]) { idays -= year_lengths[isleap(y)]; if (increment_overflow(&y, 1)) return NULL; } tmp->tm_year = y; if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) return NULL; tmp->tm_yday = idays; /* ** The "extra" mods below avoid overflow problems. */ tmp->tm_wday = EPOCH_WDAY + ((y - EPOCH_YEAR) % DAYSPERWEEK) * (DAYSPERNYEAR % DAYSPERWEEK) + leaps_thru_end_of(y - 1) - leaps_thru_end_of(EPOCH_YEAR - 1) + idays; tmp->tm_wday %= DAYSPERWEEK; if (tmp->tm_wday < 0) tmp->tm_wday += DAYSPERWEEK; tmp->tm_hour = (int) (rem / SECSPERHOUR); rem %= SECSPERHOUR; tmp->tm_min = (int) (rem / SECSPERMIN); /* ** A positive leap second requires a special ** representation. This uses "... ??:59:60" et seq. */ tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; ip = mon_lengths[isleap(y)]; for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) idays -= ip[tmp->tm_mon]; tmp->tm_mday = (int) (idays + 1); tmp->tm_isdst = 0; #ifdef TM_GMTOFF tmp->TM_GMTOFF = offset; #endif /* defined TM_GMTOFF */ tmp->tm_usec = timep->tv_usec; return tmp; } /*! \note ** Adapted from code provided by Robert Elz, who writes: ** The "best" way to do mktime I think is based on an idea of Bob ** Kridle's (so its said...) from a long time ago. ** It does a binary search of the time_t space. Since time_t's are ** just 32 bits, its a max of 32 iterations (even at 64 bits it ** would still be very reasonable). */ /*! \brief ** Simplified normalize logic courtesy Paul Eggert. */ static int increment_overflow(int *number, int delta) { int number0; number0 = *number; *number += delta; return (*number < number0) != (delta < 0); } static int long_increment_overflow(long *number, int delta) { long number0; number0 = *number; *number += delta; return (*number < number0) != (delta < 0); } static int normalize_overflow(int *tensptr, int *unitsptr, const int base) { int tensdelta; tensdelta = (*unitsptr >= 0) ? (*unitsptr / base) : (-1 - (-1 - *unitsptr) / base); *unitsptr -= tensdelta * base; return increment_overflow(tensptr, tensdelta); } static int long_normalize_overflow(long *tensptr, int *unitsptr, const int base) { int tensdelta; tensdelta = (*unitsptr >= 0) ? (*unitsptr / base) : (-1 - (-1 - *unitsptr) / base); *unitsptr -= tensdelta * base; return long_increment_overflow(tensptr, tensdelta); } static int tmcomp(const struct ast_tm *atmp, const struct ast_tm *btmp) { int result; if ((result = (atmp->tm_year - btmp->tm_year)) == 0 && (result = (atmp->tm_mon - btmp->tm_mon)) == 0 && (result = (atmp->tm_mday - btmp->tm_mday)) == 0 && (result = (atmp->tm_hour - btmp->tm_hour)) == 0 && (result = (atmp->tm_min - btmp->tm_min)) == 0 && (result = (atmp->tm_sec - btmp->tm_sec)) == 0) result = atmp->tm_usec - btmp->tm_usec; return result; } static struct timeval time2sub(struct ast_tm *tmp, struct ast_tm * (* const funcp) (const struct timeval *, long, struct ast_tm *, const struct state *), const long offset, int *okayp, const int do_norm_secs, const struct state *sp) { int dir; int i, j; int saved_seconds; long li; time_t lo; time_t hi; long y; struct timeval newt = { 0, 0 }; struct timeval t = { 0, 0 }; struct ast_tm yourtm, mytm; *okayp = FALSE; yourtm = *tmp; if (do_norm_secs) { if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, SECSPERMIN)) return WRONG; } if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) return WRONG; if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) return WRONG; y = yourtm.tm_year; if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR)) return WRONG; /* ** Turn y into an actual year number for now. ** It is converted back to an offset from TM_YEAR_BASE later. */ if (long_increment_overflow(&y, TM_YEAR_BASE)) return WRONG; while (yourtm.tm_mday <= 0) { if (long_increment_overflow(&y, -1)) return WRONG; li = y + (1 < yourtm.tm_mon); yourtm.tm_mday += year_lengths[isleap(li)]; } while (yourtm.tm_mday > DAYSPERLYEAR) { li = y + (1 < yourtm.tm_mon); yourtm.tm_mday -= year_lengths[isleap(li)]; if (long_increment_overflow(&y, 1)) return WRONG; } for ( ; ; ) { i = mon_lengths[isleap(y)][yourtm.tm_mon]; if (yourtm.tm_mday <= i) break; yourtm.tm_mday -= i; if (++yourtm.tm_mon >= MONSPERYEAR) { yourtm.tm_mon = 0; if (long_increment_overflow(&y, 1)) return WRONG; } } if (long_increment_overflow(&y, -TM_YEAR_BASE)) return WRONG; yourtm.tm_year = y; if (yourtm.tm_year != y) return WRONG; if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) saved_seconds = 0; else if (y + TM_YEAR_BASE < EPOCH_YEAR) { /* ** We can't set tm_sec to 0, because that might push the ** time below the minimum representable time. ** Set tm_sec to 59 instead. ** This assumes that the minimum representable time is ** not in the same minute that a leap second was deleted from, ** which is a safer assumption than using 58 would be. */ if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) return WRONG; saved_seconds = yourtm.tm_sec; yourtm.tm_sec = SECSPERMIN - 1; } else { saved_seconds = yourtm.tm_sec; yourtm.tm_sec = 0; } /* ** Do a binary search (this works whatever time_t's type is). */ if (!TYPE_SIGNED(time_t)) { lo = 0; hi = lo - 1; } else if (!TYPE_INTEGRAL(time_t)) { if (sizeof(time_t) > sizeof(float)) hi = (time_t) DBL_MAX; else hi = (time_t) FLT_MAX; lo = -hi; } else { lo = 1; for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i) lo *= 2; hi = -(lo + 1); } for ( ; ; ) { t.tv_sec = lo / 2 + hi / 2; if (t.tv_sec < lo) t.tv_sec = lo; else if (t.tv_sec > hi) t.tv_sec = hi; if ((*funcp)(&t, offset, &mytm, sp) == NULL) { /* ** Assume that t is too extreme to be represented in ** a struct ast_tm; arrange things so that it is less ** extreme on the next pass. */ dir = (t.tv_sec > 0) ? 1 : -1; } else dir = tmcomp(&mytm, &yourtm); if (dir != 0) { if (t.tv_sec == lo) { ++t.tv_sec; if (t.tv_sec <= lo) return WRONG; ++lo; } else if (t.tv_sec == hi) { --t.tv_sec; if (t.tv_sec >= hi) return WRONG; --hi; } if (lo > hi) return WRONG; if (dir > 0) hi = t.tv_sec; else lo = t.tv_sec; continue; } if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) break; /* ** Right time, wrong type. ** Hunt for right time, right type. ** It's okay to guess wrong since the guess ** gets checked. */ /* ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's. */ for (i = sp->typecnt - 1; i >= 0; --i) { if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) continue; for (j = sp->typecnt - 1; j >= 0; --j) { if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) continue; newt.tv_sec = t.tv_sec + sp->ttis[j].tt_gmtoff - sp->ttis[i].tt_gmtoff; if ((*funcp)(&newt, offset, &mytm, sp) == NULL) continue; if (tmcomp(&mytm, &yourtm) != 0) continue; if (mytm.tm_isdst != yourtm.tm_isdst) continue; /* ** We have a match. */ t = newt; goto label; } } return WRONG; } label: newt.tv_sec = t.tv_sec + saved_seconds; if ((newt.tv_sec < t.tv_sec) != (saved_seconds < 0)) return WRONG; t.tv_sec = newt.tv_sec; if ((*funcp)(&t, offset, tmp, sp)) *okayp = TRUE; return t; } static struct timeval time2(struct ast_tm *tmp, struct ast_tm * (* const funcp) (const struct timeval *, long, struct ast_tm*, const struct state *sp), const long offset, int *okayp, const struct state *sp) { struct timeval t; /*! \note ** First try without normalization of seconds ** (in case tm_sec contains a value associated with a leap second). ** If that fails, try with normalization of seconds. */ t = time2sub(tmp, funcp, offset, okayp, FALSE, sp); return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE, sp); } static struct timeval time1(struct ast_tm *tmp, struct ast_tm * (* const funcp) (const struct timeval *, long, struct ast_tm *, const struct state *), const long offset, const struct state *sp) { struct timeval t; int samei, otheri; int sameind, otherind; int i; int nseen; int seen[TZ_MAX_TYPES]; int types[TZ_MAX_TYPES]; int okay; if (tmp->tm_isdst > 1) tmp->tm_isdst = 1; t = time2(tmp, funcp, offset, &okay, sp); #ifdef PCTS /* ** PCTS code courtesy Grant Sullivan. */ if (okay) return t; if (tmp->tm_isdst < 0) tmp->tm_isdst = 0; /* reset to std and try again */ #endif /* defined PCTS */ #ifndef PCTS if (okay || tmp->tm_isdst < 0) return t; #endif /* !defined PCTS */ /* ** We're supposed to assume that somebody took a time of one type ** and did some math on it that yielded a "struct ast_tm" that's bad. ** We try to divine the type they started from and adjust to the ** type they need. */ if (sp == NULL) return WRONG; for (i = 0; i < sp->typecnt; ++i) seen[i] = FALSE; nseen = 0; for (i = sp->timecnt - 1; i >= 0; --i) if (!seen[sp->types[i]]) { seen[sp->types[i]] = TRUE; types[nseen++] = sp->types[i]; } for (sameind = 0; sameind < nseen; ++sameind) { samei = types[sameind]; if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) continue; for (otherind = 0; otherind < nseen; ++otherind) { otheri = types[otherind]; if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) continue; tmp->tm_sec += sp->ttis[otheri].tt_gmtoff - sp->ttis[samei].tt_gmtoff; tmp->tm_isdst = !tmp->tm_isdst; t = time2(tmp, funcp, offset, &okay, sp); if (okay) return t; tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff - sp->ttis[samei].tt_gmtoff; tmp->tm_isdst = !tmp->tm_isdst; } } return WRONG; } struct timeval ast_mktime(struct ast_tm *tmp, const char *zone) { const struct state *sp; if (!(sp = ast_tzset(zone))) return WRONG; return time1(tmp, localsub, 0L, sp); } #ifdef HAVE_NEWLOCALE static struct locale_entry *find_by_locale(locale_t locale) { struct locale_entry *cur; AST_LIST_TRAVERSE(&localelist, cur, list) { if (locale == cur->locale) { return cur; } } return NULL; } static struct locale_entry *find_by_name(const char *name) { struct locale_entry *cur; AST_LIST_TRAVERSE(&localelist, cur, list) { if (strcmp(name, cur->name) == 0) { return cur; } } return NULL; } static const char *store_by_locale(locale_t prevlocale) { struct locale_entry *cur; if (prevlocale == LC_GLOBAL_LOCALE) { return NULL; } else { /* Get a handle for this entry, if any */ if ((cur = find_by_locale(prevlocale))) { return cur->name; } else { /* Create an entry, so it can be restored later */ int x; cur = NULL; AST_LIST_LOCK(&localelist); for (x = 0; x < 10000; x++) { char name[5]; snprintf(name, sizeof(name), "%04d", x); if (!find_by_name(name)) { if ((cur = ast_calloc(1, sizeof(*cur) + strlen(name) + 1))) { cur->locale = prevlocale; strcpy(cur->name, name); /* SAFE */ AST_LIST_INSERT_TAIL(&localelist, cur, list); } break; } } AST_LIST_UNLOCK(&localelist); return cur ? cur->name : NULL; } } } const char *ast_setlocale(const char *locale) { struct locale_entry *cur; locale_t prevlocale = LC_GLOBAL_LOCALE; if (locale == NULL) { return store_by_locale(uselocale(LC_GLOBAL_LOCALE)); } AST_LIST_LOCK(&localelist); if ((cur = find_by_name(locale))) { prevlocale = uselocale(cur->locale); } if (!cur) { if ((cur = ast_calloc(1, sizeof(*cur) + strlen(locale) + 1))) { cur->locale = newlocale(LC_ALL_MASK, locale, NULL); strcpy(cur->name, locale); /* SAFE */ AST_LIST_INSERT_TAIL(&localelist, cur, list); prevlocale = uselocale(cur->locale); } } AST_LIST_UNLOCK(&localelist); return store_by_locale(prevlocale); } #else const char *ast_setlocale(const char *unused) { return NULL; } #endif int ast_strftime_locale(char *buf, size_t len, const char *tmp, const struct ast_tm *tm, const char *locale) { size_t fmtlen = strlen(tmp) + 1; char *format = ast_calloc(1, fmtlen), *fptr = format, *newfmt; int decimals = -1, i, res; long fraction; const char *prevlocale; if (!format) { return -1; } for (; *tmp; tmp++) { if (*tmp == '%') { switch (tmp[1]) { case '1': case '2': case '3': case '4': case '5': case '6': if (tmp[2] != 'q') { goto defcase; } decimals = tmp[1] - '0'; tmp++; /* Fall through */ case 'q': /* Milliseconds */ if (decimals == -1) { decimals = 3; } /* Juggle some memory to fit the item */ newfmt = ast_realloc(format, fmtlen + decimals); if (!newfmt) { ast_free(format); return -1; } fptr = fptr - format + newfmt; format = newfmt; fmtlen += decimals; /* Reduce the fraction of time to the accuracy needed */ for (i = 6, fraction = tm->tm_usec; i > decimals; i--) { fraction /= 10; } fptr += sprintf(fptr, "%0*ld", decimals, fraction); /* Reset, in case more than one 'q' specifier exists */ decimals = -1; tmp++; break; default: goto defcase; } } else { defcase: *fptr++ = *tmp; } } *fptr = '\0'; #undef strftime if (locale) { prevlocale = ast_setlocale(locale); } res = (int)strftime(buf, len, format, (struct tm *)tm); if (locale) { ast_setlocale(prevlocale); } ast_free(format); return res; } int ast_strftime(char *buf, size_t len, const char *tmp, const struct ast_tm *tm) { return ast_strftime_locale(buf, len, tmp, tm, NULL); } char *ast_strptime_locale(const char *s, const char *format, struct ast_tm *tm, const char *locale) { struct tm tm2 = { 0, }; char *res; const char *prevlocale; prevlocale = ast_setlocale(locale); res = strptime(s, format, &tm2); ast_setlocale(prevlocale); memcpy(tm, &tm2, sizeof(*tm)); tm->tm_usec = 0; /* strptime(3) doesn't set .tm_isdst correctly, so to force ast_mktime(3) * to deal with it correctly, we set it to -1. */ tm->tm_isdst = -1; return res; } char *ast_strptime(const char *s, const char *format, struct ast_tm *tm) { return ast_strptime_locale(s, format, tm, NULL); }