/* * Asterisk -- An open source telephony toolkit. * * Copyright (C) 1999 - 2005, Digium, Inc. * * Mark Spencer * * Includes code and algorithms from the Zapata library. * * See http://www.asterisk.org for more information about * the Asterisk project. Please do not directly contact * any of the maintainers of this project for assistance; * the project provides a web site, mailing lists and IRC * channels for your use. * * This program is free software, distributed under the terms of * the GNU General Public License Version 2. See the LICENSE file * at the top of the source tree. */ /*! \file * * \brief FSK Modulator/Demodulator * * \author Mark Spencer * * \arg Includes code and algorithms from the Zapata library. * */ #include "asterisk.h" ASTERISK_FILE_VERSION(__FILE__, "$Revision$") #include #include "asterisk/fskmodem.h" #define NBW 2 #define BWLIST {75,800} #define NF 6 #define FLIST {1400,1800,1200,2200,1300,2100} #define STATE_SEARCH_STARTBIT 0 #define STATE_SEARCH_STARTBIT2 1 #define STATE_SEARCH_STARTBIT3 2 #define STATE_GET_BYTE 3 static inline float get_sample(short **buffer, int *len) { float retval; retval = (float) **buffer / 256; (*buffer)++; (*len)--; return retval; }; #define GET_SAMPLE get_sample(&buffer, len) /*! \brief Coefficients for input filters * Coefficients table, generated by program "mkfilter" * mkfilter is part of the zapatatelephony.org distribution * Format: coef[IDX_FREC][IDX_BW][IDX_COEF] * IDX_COEF = 0 => 1/GAIN * IDX_COEF = 1-6 => Coefficientes y[n] */ static double coef_in[NF][NBW][8] = { { { 1.8229206611e-04,-7.8997325866e-01,2.2401819940e+00,-4.6751353581e+00,5.5080745712e+00,-5.0571565772e+00,2.6215820004e+00,0.0000000000e+00, }, { 9.8532175289e-02,-5.6297236492e-02,3.3146713415e-01,-9.2239200436e-01,1.4844365184e+00,-2.0183258642e+00,2.0074154497e+00,0.0000000000e+00, }, }, { { 1.8229206610e-04,-7.8997325866e-01,7.7191410839e-01,-2.8075643964e+00,1.6948618347e+00,-3.0367273700e+00,9.0333559408e-01,0.0000000000e+00, } , { 9.8531161839e-02,-5.6297236492e-02,1.1421579050e-01,-4.8122536483e-01,4.0121072432e-01,-7.4834487567e-01,6.9170822332e-01,0.0000000000e+00, }, }, { { 1.8229206611e-04,-7.8997325866e-01,2.9003821430e+00,-6.1082779024e+00,7.7169345751e+00,-6.6075999680e+00,3.3941838836e+00,0.0000000000e+00, }, { 9.8539686961e-02,-5.6297236492e-02,4.2915323820e-01,-1.2609358633e+00,2.2399213250e+00,-2.9928879142e+00,2.5990173742e+00,0.0000000000e+00, }, }, { { 1.8229206610e-04,-7.8997325866e-01,-7.7191410839e-01,-2.8075643964e+00,-1.6948618347e+00,-3.0367273700e+00,-9.0333559408e-01,0.0000000000e+00, }, { 9.8531161839e-02,-5.6297236492e-02,-1.1421579050e-01,-4.8122536483e-01,-4.0121072432e-01,-7.4834487567e-01,-6.9170822332e-01,0.0000000000e+00, }, }, { { 1.8229206611e-04,-7.8997325866e-01,2.5782298908e+00,-5.3629717478e+00,6.5890882172e+00,-5.8012914776e+00,3.0171839130e+00,0.0000000000e+00, }, { 9.8534230718e-02,-5.6297236492e-02,3.8148618075e-01,-1.0848760410e+00,1.8441165168e+00,-2.4860666655e+00,2.3103384142e+00,0.0000000000e+00, }, }, { { 1.8229206610e-04,-7.8997325866e-01,-3.8715051001e-01,-2.6192408538e+00,-8.3977994034e-01,-2.8329897913e+00,-4.5306444352e-01,0.0000000000e+00, }, { 9.8531160936e-02,-5.6297236492e-02,-5.7284484199e-02,-4.3673866734e-01,-1.9564766257e-01,-6.2028156584e-01,-3.4692356122e-01,0.0000000000e+00, }, }, }; /*! \brief Coefficients for output filter * Coefficients table, generated by program "mkfilter" * Format: coef[IDX_BW][IDX_COEF] * IDX_COEF = 0 => 1/GAIN * IDX_COEF = 1-6 => Coefficientes y[n] */ static double coef_out[NBW][8] = { { 1.3868644653e-08,-6.3283665042e-01,4.0895057217e+00,-1.1020074592e+01,1.5850766191e+01,-1.2835109292e+01,5.5477477340e+00,0.0000000000e+00, }, { 3.1262119724e-03,-7.8390522307e-03,8.5209627801e-02,-4.0804129163e-01,1.1157139955e+00,-1.8767603680e+00,1.8916395224e+00,0.0000000000e+00, }, }; /*! Band-pass filter for MARK frequency */ static inline float filterM(fsk_data *fskd,float in) { int i, j; double s; double *pc; pc = &coef_in[fskd->f_mark_idx][fskd->bw][0]; fskd->fmxv[(fskd->fmp+6)&7] = in*(*pc++); s = (fskd->fmxv[(fskd->fmp + 6) & 7] - fskd->fmxv[fskd->fmp]) + 3 * (fskd->fmxv[(fskd->fmp + 2) & 7] - fskd->fmxv[(fskd->fmp + 4) & 7]); for (i = 0, j = fskd->fmp; i < 6; i++, j++) s += fskd->fmyv[j&7]*(*pc++); fskd->fmyv[j&7] = s; fskd->fmp++; fskd->fmp &= 7; return s; } /*! Band-pass filter for SPACE frequency */ static inline float filterS(fsk_data *fskd,float in) { int i, j; double s; double *pc; pc = &coef_in[fskd->f_space_idx][fskd->bw][0]; fskd->fsxv[(fskd->fsp+6)&7] = in*(*pc++); s = (fskd->fsxv[(fskd->fsp + 6) & 7] - fskd->fsxv[fskd->fsp]) + 3 * (fskd->fsxv[(fskd->fsp + 2) & 7] - fskd->fsxv[(fskd->fsp + 4) & 7]); for (i = 0, j = fskd->fsp; i < 6; i++, j++) s += fskd->fsyv[j&7]*(*pc++); fskd->fsyv[j&7] = s; fskd->fsp++; fskd->fsp &= 7; return s; } /*! Low-pass filter for demodulated data */ static inline float filterL(fsk_data *fskd,float in) { int i, j; double s; double *pc; pc = &coef_out[fskd->bw][0]; fskd->flxv[(fskd->flp + 6) & 7] = in * (*pc++); s = (fskd->flxv[fskd->flp] + fskd->flxv[(fskd->flp+6)&7]) + 6 * (fskd->flxv[(fskd->flp+1)&7] + fskd->flxv[(fskd->flp+5)&7]) + 15 * (fskd->flxv[(fskd->flp+2)&7] + fskd->flxv[(fskd->flp+4)&7]) + 20 * fskd->flxv[(fskd->flp+3)&7]; for (i = 0,j = fskd->flp;i<6;i++,j++) s += fskd->flyv[j&7]*(*pc++); fskd->flyv[j&7] = s; fskd->flp++; fskd->flp &= 7; return s; } static inline int demodulator(fsk_data *fskd, float *retval, float x) { float xS,xM; fskd->cola_in[fskd->pcola] = x; xS = filterS(fskd,x); xM = filterM(fskd,x); fskd->cola_filter[fskd->pcola] = xM-xS; x = filterL(fskd,xM*xM - xS*xS); fskd->cola_demod[fskd->pcola++] = x; fskd->pcola &= (NCOLA-1); *retval = x; return 0; } static int get_bit_raw(fsk_data *fskd, short *buffer, int *len) { /* This function implements a DPLL to synchronize with the bits */ float x,spb,spb2,ds; int f; spb = fskd->spb; if (fskd->spb == 7) spb = 8000.0 / 1200.0; ds = spb/32.; spb2 = spb/2.; for (f = 0;;) { if (demodulator(fskd, &x, GET_SAMPLE)) return -1; if ((x * fskd->x0) < 0) { /* Transition */ if (!f) { if (fskd->cont<(spb2)) fskd->cont += ds; else fskd->cont -= ds; f = 1; } } fskd->x0 = x; fskd->cont += 1.; if (fskd->cont > spb) { fskd->cont -= spb; break; } } f = (x > 0) ? 0x80 : 0; return f; } int fsk_serial(fsk_data *fskd, short *buffer, int *len, int *outbyte) { int a; int i,j,n1,r; int samples = 0; int olen; int beginlen=*len; int beginlenx; switch (fskd->state) { /* Pick up where we left off */ case STATE_SEARCH_STARTBIT2: goto search_startbit2; case STATE_SEARCH_STARTBIT3: goto search_startbit3; case STATE_GET_BYTE: goto getbyte; } /* We await for start bit */ do { /* this was jesus's nice, reasonable, working (at least with RTTY) code to look for the beginning of the start bit. Unfortunately, since TTY/TDD's just start sending a start bit with nothing preceding it at the beginning of a transmission (what a LOSING design), we cant do it this elegantly */ /* if (demodulator(zap,&x1)) return(-1); for (;;) { if (demodulator(zap,&x2)) return(-1); if (x1>0 && x2<0) break; x1 = x2; } */ /* this is now the imprecise, losing, but functional code to detect the beginning of a start bit in the TDD sceanario. It just looks for sufficient level to maybe, perhaps, guess, maybe that its maybe the beginning of a start bit, perhaps. This whole thing stinks! */ beginlenx=beginlen; /* just to avoid unused war warnings */ if (demodulator(fskd, &fskd->x1, GET_SAMPLE)) return -1; samples++; for (;;) { search_startbit2: if (*len <= 0) { fskd->state = STATE_SEARCH_STARTBIT2; return 0; } samples++; if (demodulator(fskd, &fskd->x2, GET_SAMPLE)) return(-1); #if 0 printf("x2 = %5.5f ", fskd->x2); #endif if (fskd->x2 < -0.5) break; } search_startbit3: /* We await for 0.5 bits before using DPLL */ i = fskd->spb/2; if (*len < i) { fskd->state = STATE_SEARCH_STARTBIT3; return 0; } for (; i>0; i--) { if (demodulator(fskd, &fskd->x1, GET_SAMPLE)) return(-1); #if 0 printf("x1 = %5.5f ", fskd->x1); #endif samples++; } /* x1 must be negative (start bit confirmation) */ } while (fskd->x1 > 0); fskd->state = STATE_GET_BYTE; getbyte: /* Need at least 80 samples (for 1200) or 1320 (for 45.5) to be sure we'll have a byte */ if (fskd->nbit < 8) { if (*len < 1320) return 0; } else { if (*len < 80) return 0; } /* Now we read the data bits */ j = fskd->nbit; for (a = n1 = 0; j; j--) { olen = *len; i = get_bit_raw(fskd, buffer, len); buffer += (olen - *len); if (i == -1) return(-1); if (i) n1++; a >>= 1; a |= i; } j = 8-fskd->nbit; a >>= j; /* We read parity bit (if exists) and check parity */ if (fskd->parity) { olen = *len; i = get_bit_raw(fskd, buffer, len); buffer += (olen - *len); if (i == -1) return(-1); if (i) n1++; if (fskd->parity == 1) { /* parity=1 (even) */ if (n1&1) a |= 0x100; /* error */ } else { /* parity=2 (odd) */ if (!(n1&1)) a |= 0x100; /* error */ } } /* We read STOP bits. All of them must be 1 */ for (j = fskd->nstop;j;j--) { r = get_bit_raw(fskd, buffer, len); if (r == -1) return(-1); if (!r) a |= 0x200; } /* And finally we return */ /* Bit 8 : Parity error */ /* Bit 9 : Framming error*/ *outbyte = a; fskd->state = STATE_SEARCH_STARTBIT; return 1; }