/* * Asterisk -- An open source telephony toolkit. * * Copyright (C) 1999 - 2010, Digium, Inc. * * Mark Michelson * * See http://www.asterisk.org for more information about * the Asterisk project. Please do not directly contact * any of the maintainers of this project for assistance; * the project provides a web site, mailing lists and IRC * channels for your use. * * This program is free software, distributed under the terms of * the GNU General Public License Version 2. See the LICENSE file * at the top of the source tree. */ /*! \file * \brief Call Completion Supplementary Services implementation * \author Mark Michelson */ #include "asterisk.h" ASTERISK_FILE_VERSION(__FILE__, "$Revision$") #include "asterisk/astobj2.h" #include "asterisk/strings.h" #include "asterisk/ccss.h" #include "asterisk/channel.h" #include "asterisk/pbx.h" #include "asterisk/utils.h" #include "asterisk/taskprocessor.h" #include "asterisk/event.h" #include "asterisk/module.h" #include "asterisk/app.h" #include "asterisk/cli.h" #include "asterisk/manager.h" #include "asterisk/causes.h" /*** DOCUMENTATION Request call completion service for previous call Request call completion service for a previously failed call attempt. Cancel call completion service Cancel a Call Completion Request. ***/ /* These are some file-scoped variables. It would be * nice to define them closer to their first usage, but since * they are used in many places throughout the file, defining * them here at the top is easiest. */ /*! * The sched_thread ID used for all generic CC timeouts */ static struct ast_sched_thread *cc_sched_thread; /*! * Counter used to create core IDs for CC calls. Each new * core ID is created by atomically adding 1 to the core_id_counter */ static int core_id_counter; /*! * Taskprocessor from which all CC agent and monitor callbacks * are called. */ static struct ast_taskprocessor *cc_core_taskprocessor; /*! * Name printed on all CC log messages. */ static const char *CC_LOGGER_LEVEL_NAME = "CC"; /*! * Logger level registered by the CC core. */ static int cc_logger_level; /*! * Parsed configuration value for cc_max_requests */ static unsigned int global_cc_max_requests; /*! * The current number of CC requests in the system */ static int cc_request_count; static inline void *cc_ref(void *obj, const char *debug) { ao2_t_ref(obj, +1, debug); return obj; } static inline void *cc_unref(void *obj, const char *debug) { ao2_t_ref(obj, -1, debug); return NULL; } /*! * \since 1.8 * \internal * \brief A structure for holding the configuration parameters * relating to CCSS */ struct ast_cc_config_params { enum ast_cc_agent_policies cc_agent_policy; enum ast_cc_monitor_policies cc_monitor_policy; unsigned int cc_offer_timer; unsigned int ccnr_available_timer; unsigned int ccbs_available_timer; unsigned int cc_recall_timer; unsigned int cc_max_agents; unsigned int cc_max_monitors; char cc_callback_macro[AST_MAX_EXTENSION]; char cc_agent_dialstring[AST_MAX_EXTENSION]; }; /*! * \since 1.8 * \brief The states used in the CCSS core state machine * * For more information, see doc/CCSS_architecture.pdf */ enum cc_state { /*! Entered when it is determined that CCSS may be used for the call */ CC_AVAILABLE, /*! Entered when a CCSS agent has offered CCSS to a caller */ CC_CALLER_OFFERED, /*! Entered when a CCSS agent confirms that a caller has * requested CCSS */ CC_CALLER_REQUESTED, /*! Entered when a CCSS monitor confirms acknowledgment of an * outbound CCSS request */ CC_ACTIVE, /*! Entered when a CCSS monitor alerts the core that the called party * has become available */ CC_CALLEE_READY, /*! Entered when a CCSS agent alerts the core that the calling party * may not be recalled because he is unavailable */ CC_CALLER_BUSY, /*! Entered when a CCSS agent alerts the core that the calling party * is attempting to recall the called party */ CC_RECALLING, /*! Entered when an application alerts the core that the calling party's * recall attempt has had a call progress response indicated */ CC_COMPLETE, /*! Entered any time that something goes wrong during the process, thus * resulting in the failure of the attempted CCSS transaction. Note also * that cancellations of CC are treated as failures. */ CC_FAILED, }; /*! * \brief The payload for an AST_CONTROL_CC frame * * \details * This contains all the necessary data regarding * a called device so that the CC core will be able * to allocate the proper monitoring resources. */ struct cc_control_payload { /*! * \brief The type of monitor to allocate. * * \details * The type of monitor to allocate. This is a string which corresponds * to a set of monitor callbacks registered. Examples include "generic" * and "SIP" * * \note This really should be an array of characters in case this payload * is sent accross an IAX2 link. However, this would not make too much sense * given this type may not be recognized by the other end. * Protection may be necessary to prevent it from being transmitted. * * In addition the following other problems are also possible: * 1) Endian issues with the integers/enums stored in the config_params. * 2) Alignment padding issues for the element types. */ const char *monitor_type; /*! * \brief Private data allocated by the callee * * \details * All channel drivers that monitor endpoints will need to allocate * data that is not usable by the CC core. In most cases, some or all * of this data is allocated at the time that the channel driver offers * CC to the caller. There are many opportunities for failures to occur * between when a channel driver offers CC and when a monitor is actually * allocated to watch the endpoint. For this reason, the channel driver * must give the core a pointer to the private data that was allocated so * that the core can call back into the channel driver to destroy it if * a failure occurs. If no private data has been allocated at the time that * CC is offered, then it is perfectly acceptable to pass NULL for this * field. */ void *private_data; /*! * \brief Service offered by the endpoint * * \details * This indicates the type of call completion service offered by the * endpoint. This data is not crucial to the machinations of the CC core, * but it is helpful for debugging purposes. */ enum ast_cc_service_type service; /*! * \brief Configuration parameters used by this endpoint * * \details * Each time an endpoint offers call completion, it must provide its call * completion configuration parameters. This is because settings may be different * depending on the circumstances. */ struct ast_cc_config_params config_params; /*! * \brief ID of parent extension * * \details * This is the only datum that the CC core derives on its own and is not * provided by the offerer of CC. This provides the core with information on * which extension monitor is the most immediate parent of this device. */ int parent_interface_id; /*! * \brief Name of device to be monitored * * \details * The device name by which this monitored endpoint will be referred in the * CC core. It is highly recommended that this device name is derived by using * the function ast_channel_get_device_name. */ char device_name[AST_CHANNEL_NAME]; /*! * \brief Recall dialstring * * \details * Certain channel drivers (DAHDI in particular) will require that a special * dialstring be used to indicate that the outgoing call is to interpreted as * a CC recall. If the channel driver has such a requirement, then this is * where that special recall dialstring is placed. If no special dialstring * is to be used, then the channel driver must provide the original dialstring * used to call this endpoint. */ char dialstring[AST_CHANNEL_NAME]; }; /*! * \brief The "tree" of interfaces that is dialed. * * \details * Though this is a linked list, it is logically treated * as a tree of monitors. Each monitor has an id and a parent_id * associated with it. The id is a unique ID for that monitor, and * the parent_id is the unique ID of the monitor's parent in the * tree. The tree is structured such that all of a parent's children * will appear after the parent in the tree. However, it cannot be * guaranteed exactly where after the parent the children are. * * The tree is reference counted since several threads may need * to use it, and it may last beyond the lifetime of a single * thread. */ AST_LIST_HEAD(cc_monitor_tree, ast_cc_monitor); static const int CC_CORE_INSTANCES_BUCKETS = 17; static struct ao2_container *cc_core_instances; struct cc_core_instance { /*! * Unique identifier for this instance of the CC core. */ int core_id; /*! * The current state for this instance of the CC core. */ enum cc_state current_state; /*! * The CC agent in use for this call */ struct ast_cc_agent *agent; /*! * Reference to the monitor tree formed during the initial call */ struct cc_monitor_tree *monitors; }; /*! * \internal * \brief Request that the core change states * \param state The state to which we wish to change * \param core_id The unique identifier for this instance of the CCSS core state machine * \param debug Optional message explaining the reason for the state change * \param ap varargs list * \retval 0 State change successfully queued * \retval -1 Unable to queue state change request */ static int __attribute__((format(printf, 3, 0))) cc_request_state_change(enum cc_state state, const int core_id, const char *debug, va_list ap); /*! * \internal * \brief create a new instance of the CC core and an agent for the calling channel * * This function will check to make sure that the incoming channel * is allowed to request CC by making sure that the incoming channel * has not exceeded its maximum number of allowed agents. * * Should that check pass, the core instance is created, and then the * agent for the channel. * * \param caller_chan The incoming channel for this particular call * \param called_tree A reference to the tree of called devices. The agent * will gain a reference to this tree as well * \param core_id The core_id that this core_instance will assume * \retval NULL Failed to create the core instance either due to memory allocation * errors or due to the agent count for the caller being too high * \retval non-NULL A reference to the newly created cc_core_instance */ static struct cc_core_instance *cc_core_init_instance(struct ast_channel *caller_chan, struct cc_monitor_tree *called_tree, const int core_id, struct cc_control_payload *cc_data); static const struct { enum ast_cc_service_type service; const char *service_string; } cc_service_to_string_map[] = { {AST_CC_NONE, "NONE"}, {AST_CC_CCBS, "CCBS"}, {AST_CC_CCNR, "CCNR"}, {AST_CC_CCNL, "CCNL"}, }; static const struct { enum cc_state state; const char *state_string; } cc_state_to_string_map[] = { {CC_AVAILABLE, "CC is available"}, {CC_CALLER_OFFERED, "CC offered to caller"}, {CC_CALLER_REQUESTED, "CC requested by caller"}, {CC_ACTIVE, "CC accepted by callee"}, {CC_CALLEE_READY, "Callee has become available"}, {CC_CALLER_BUSY, "Callee was ready, but caller is now unavailable"}, {CC_RECALLING, "Caller is attempting to recall"}, {CC_COMPLETE, "Recall complete"}, {CC_FAILED, "CC has failed"}, }; static const char *cc_state_to_string(enum cc_state state) { return cc_state_to_string_map[state].state_string; } static const char *cc_service_to_string(enum ast_cc_service_type service) { return cc_service_to_string_map[service].service_string; } static int cc_core_instance_hash_fn(const void *obj, const int flags) { const struct cc_core_instance *core_instance = obj; return core_instance->core_id; } static int cc_core_instance_cmp_fn(void *obj, void *arg, int flags) { struct cc_core_instance *core_instance1 = obj; struct cc_core_instance *core_instance2 = arg; return core_instance1->core_id == core_instance2->core_id ? CMP_MATCH | CMP_STOP : 0; } static struct cc_core_instance *find_cc_core_instance(const int core_id) { struct cc_core_instance finder = {.core_id = core_id,}; return ao2_t_find(cc_core_instances, &finder, OBJ_POINTER, "Finding a core_instance"); } struct cc_callback_helper { ao2_callback_fn *function; void *args; const char *type; }; static int cc_agent_callback_helper(void *obj, void *args, int flags) { struct cc_core_instance *core_instance = obj; struct cc_callback_helper *helper = args; if (strcmp(core_instance->agent->callbacks->type, helper->type)) { return 0; } return helper->function(core_instance->agent, helper->args, flags); } struct ast_cc_agent *ast_cc_agent_callback(int flags, ao2_callback_fn *function, void *args, const char * const type) { struct cc_callback_helper helper = {.function = function, .args = args, .type = type}; struct cc_core_instance *core_instance; if ((core_instance = ao2_t_callback(cc_core_instances, flags, cc_agent_callback_helper, &helper, "Calling provided agent callback function"))) { struct ast_cc_agent *agent = cc_ref(core_instance->agent, "An outside entity needs the agent"); cc_unref(core_instance, "agent callback done with the core_instance"); return agent; } return NULL; } enum match_flags { /* Only match agents that have not yet * made a CC request */ MATCH_NO_REQUEST = (1 << 0), /* Only match agents that have made * a CC request */ MATCH_REQUEST = (1 << 1), }; /* ao2_callbacks for cc_core_instances */ /*! * \internal * \brief find a core instance based on its agent * * The match flags tell whether we wish to find core instances * that have a monitor or core instances that do not. Core instances * with no monitor are core instances for which a caller has not yet * requested CC. Core instances with a monitor are ones for which the * caller has requested CC. */ static int match_agent(void *obj, void *arg, void *data, int flags) { struct cc_core_instance *core_instance = obj; const char *name = arg; unsigned long match_flags = *(unsigned long *)data; int possible_match = 0; if ((match_flags & MATCH_NO_REQUEST) && core_instance->current_state < CC_CALLER_REQUESTED) { possible_match = 1; } if ((match_flags & MATCH_REQUEST) && core_instance->current_state >= CC_CALLER_REQUESTED) { possible_match = 1; } if (!possible_match) { return 0; } if (!strcmp(core_instance->agent->device_name, name)) { return CMP_MATCH | CMP_STOP; } return 0; } struct count_agents_cb_data { int count; int core_id_exception; }; /*! * \internal * \brief Count the number of agents a specific interface is using * * We're only concerned with the number of agents that have requested * CC, so we restrict our search to core instances which have a non-NULL * monitor pointer */ static int count_agents_cb(void *obj, void *arg, void *data, int flags) { struct cc_core_instance *core_instance = obj; const char *name = arg; struct count_agents_cb_data *cb_data = data; if (cb_data->core_id_exception == core_instance->core_id) { ast_log_dynamic_level(cc_logger_level, "Found agent with core_id %d but not counting it toward total\n", core_instance->core_id); return 0; } if (core_instance->current_state >= CC_CALLER_REQUESTED && !strcmp(core_instance->agent->device_name, name)) { cb_data->count++; } return 0; } #define CC_OFFER_TIMER_DEFAULT 20 /* Seconds */ #define CCNR_AVAILABLE_TIMER_DEFAULT 7200 /* Seconds */ #define CCBS_AVAILABLE_TIMER_DEFAULT 4800 /* Seconds */ #define CC_RECALL_TIMER_DEFAULT 20 /* Seconds */ #define CC_MAX_AGENTS_DEFAULT 5 #define CC_MAX_MONITORS_DEFAULT 5 #define GLOBAL_CC_MAX_REQUESTS_DEFAULT 20 static const struct ast_cc_config_params cc_default_params = { .cc_agent_policy = AST_CC_AGENT_NEVER, .cc_monitor_policy = AST_CC_MONITOR_NEVER, .cc_offer_timer = CC_OFFER_TIMER_DEFAULT, .ccnr_available_timer = CCNR_AVAILABLE_TIMER_DEFAULT, .ccbs_available_timer = CCBS_AVAILABLE_TIMER_DEFAULT, .cc_recall_timer = CC_RECALL_TIMER_DEFAULT, .cc_max_agents = CC_MAX_AGENTS_DEFAULT, .cc_max_monitors = CC_MAX_MONITORS_DEFAULT, .cc_callback_macro = "", .cc_agent_dialstring = "", }; void ast_cc_default_config_params(struct ast_cc_config_params *params) { *params = cc_default_params; } struct ast_cc_config_params *__ast_cc_config_params_init(const char *file, int line, const char *function) { #if defined(__AST_DEBUG_MALLOC) struct ast_cc_config_params *params = __ast_malloc(sizeof(*params), file, line, function); #else struct ast_cc_config_params *params = ast_malloc(sizeof(*params)); #endif if (!params) { return NULL; } ast_cc_default_config_params(params); return params; } void ast_cc_config_params_destroy(struct ast_cc_config_params *params) { ast_free(params); } static enum ast_cc_agent_policies str_to_agent_policy(const char * const value) { if (!strcasecmp(value, "never")) { return AST_CC_AGENT_NEVER; } else if (!strcasecmp(value, "native")) { return AST_CC_AGENT_NATIVE; } else if (!strcasecmp(value, "generic")) { return AST_CC_AGENT_GENERIC; } else { ast_log(LOG_WARNING, "%s is an invalid value for cc_agent_policy. Switching to 'never'\n", value); return AST_CC_AGENT_NEVER; } } static enum ast_cc_monitor_policies str_to_monitor_policy(const char * const value) { if (!strcasecmp(value, "never")) { return AST_CC_MONITOR_NEVER; } else if (!strcasecmp(value, "native")) { return AST_CC_MONITOR_NATIVE; } else if (!strcasecmp(value, "generic")) { return AST_CC_MONITOR_GENERIC; } else if (!strcasecmp(value, "always")) { return AST_CC_MONITOR_ALWAYS; } else { ast_log(LOG_WARNING, "%s is an invalid value for cc_monitor_policy. Switching to 'never'\n", value); return AST_CC_MONITOR_NEVER; } } static const char *agent_policy_to_str(enum ast_cc_agent_policies policy) { switch (policy) { case AST_CC_AGENT_NEVER: return "never"; case AST_CC_AGENT_NATIVE: return "native"; case AST_CC_AGENT_GENERIC: return "generic"; default: /* This should never happen... */ return ""; } } static const char *monitor_policy_to_str(enum ast_cc_monitor_policies policy) { switch (policy) { case AST_CC_MONITOR_NEVER: return "never"; case AST_CC_MONITOR_NATIVE: return "native"; case AST_CC_MONITOR_GENERIC: return "generic"; case AST_CC_MONITOR_ALWAYS: return "always"; default: /* This should never happen... */ return ""; } } int ast_cc_get_param(struct ast_cc_config_params *params, const char * const name, char *buf, size_t buf_len) { const char *value = NULL; if (!strcasecmp(name, "cc_callback_macro")) { value = ast_get_cc_callback_macro(params); } else if (!strcasecmp(name, "cc_agent_policy")) { value = agent_policy_to_str(ast_get_cc_agent_policy(params)); } else if (!strcasecmp(name, "cc_monitor_policy")) { value = monitor_policy_to_str(ast_get_cc_monitor_policy(params)); } else if (!strcasecmp(name, "cc_agent_dialstring")) { value = ast_get_cc_agent_dialstring(params); } if (value) { ast_copy_string(buf, value, buf_len); return 0; } /* The rest of these are all ints of some sort and require some * snprintf-itude */ if (!strcasecmp(name, "cc_offer_timer")) { snprintf(buf, buf_len, "%u", ast_get_cc_offer_timer(params)); } else if (!strcasecmp(name, "ccnr_available_timer")) { snprintf(buf, buf_len, "%u", ast_get_ccnr_available_timer(params)); } else if (!strcasecmp(name, "ccbs_available_timer")) { snprintf(buf, buf_len, "%u", ast_get_ccbs_available_timer(params)); } else if (!strcasecmp(name, "cc_max_agents")) { snprintf(buf, buf_len, "%u", ast_get_cc_max_agents(params)); } else if (!strcasecmp(name, "cc_max_monitors")) { snprintf(buf, buf_len, "%u", ast_get_cc_max_monitors(params)); } else if (!strcasecmp(name, "cc_recall_timer")) { snprintf(buf, buf_len, "%u", ast_get_cc_recall_timer(params)); } else { ast_log(LOG_WARNING, "%s is not a valid CC parameter. Ignoring.\n", name); return -1; } return 0; } int ast_cc_set_param(struct ast_cc_config_params *params, const char * const name, const char * const value) { unsigned int value_as_uint; if (!strcasecmp(name, "cc_agent_policy")) { return ast_set_cc_agent_policy(params, str_to_agent_policy(value)); } else if (!strcasecmp(name, "cc_monitor_policy")) { return ast_set_cc_monitor_policy(params, str_to_monitor_policy(value)); } else if (!strcasecmp(name, "cc_agent_dialstring")) { ast_set_cc_agent_dialstring(params, value); } else if (!strcasecmp(name, "cc_callback_macro")) { ast_set_cc_callback_macro(params, value); return 0; } if (!sscanf(value, "%30u", &value_as_uint) == 1) { return -1; } if (!strcasecmp(name, "cc_offer_timer")) { ast_set_cc_offer_timer(params, value_as_uint); } else if (!strcasecmp(name, "ccnr_available_timer")) { ast_set_ccnr_available_timer(params, value_as_uint); } else if (!strcasecmp(name, "ccbs_available_timer")) { ast_set_ccbs_available_timer(params, value_as_uint); } else if (!strcasecmp(name, "cc_max_agents")) { ast_set_cc_max_agents(params, value_as_uint); } else if (!strcasecmp(name, "cc_max_monitors")) { ast_set_cc_max_monitors(params, value_as_uint); } else if (!strcasecmp(name, "cc_recall_timer")) { ast_set_cc_recall_timer(params, value_as_uint); } else { ast_log(LOG_WARNING, "%s is not a valid CC parameter. Ignoring.\n", name); return -1; } return 0; } int ast_cc_is_config_param(const char * const name) { return (!strcasecmp(name, "cc_agent_policy") || !strcasecmp(name, "cc_monitor_policy") || !strcasecmp(name, "cc_offer_timer") || !strcasecmp(name, "ccnr_available_timer") || !strcasecmp(name, "ccbs_available_timer") || !strcasecmp(name, "cc_max_agents") || !strcasecmp(name, "cc_max_monitors") || !strcasecmp(name, "cc_callback_macro") || !strcasecmp(name, "cc_agent_dialstring") || !strcasecmp(name, "cc_recall_timer")); } void ast_cc_copy_config_params(struct ast_cc_config_params *dest, const struct ast_cc_config_params *src) { *dest = *src; } enum ast_cc_agent_policies ast_get_cc_agent_policy(struct ast_cc_config_params *config) { return config->cc_agent_policy; } int ast_set_cc_agent_policy(struct ast_cc_config_params *config, enum ast_cc_agent_policies value) { /* Screw C and its weak type checking for making me have to do this * validation at runtime. */ if (value < AST_CC_AGENT_NEVER || value > AST_CC_AGENT_GENERIC) { return -1; } config->cc_agent_policy = value; return 0; } enum ast_cc_monitor_policies ast_get_cc_monitor_policy(struct ast_cc_config_params *config) { return config->cc_monitor_policy; } int ast_set_cc_monitor_policy(struct ast_cc_config_params *config, enum ast_cc_monitor_policies value) { /* Screw C and its weak type checking for making me have to do this * validation at runtime. */ if (value < AST_CC_MONITOR_NEVER || value > AST_CC_MONITOR_ALWAYS) { return -1; } config->cc_monitor_policy = value; return 0; } unsigned int ast_get_cc_offer_timer(struct ast_cc_config_params *config) { return config->cc_offer_timer; } void ast_set_cc_offer_timer(struct ast_cc_config_params *config, unsigned int value) { /* 0 is an unreasonable value for any timer. Stick with the default */ if (value == 0) { ast_log(LOG_WARNING, "0 is an invalid value for cc_offer_timer. Retaining value as %u\n", config->cc_offer_timer); return; } config->cc_offer_timer = value; } unsigned int ast_get_ccnr_available_timer(struct ast_cc_config_params *config) { return config->ccnr_available_timer; } void ast_set_ccnr_available_timer(struct ast_cc_config_params *config, unsigned int value) { /* 0 is an unreasonable value for any timer. Stick with the default */ if (value == 0) { ast_log(LOG_WARNING, "0 is an invalid value for ccnr_available_timer. Retaining value as %u\n", config->ccnr_available_timer); return; } config->ccnr_available_timer = value; } unsigned int ast_get_cc_recall_timer(struct ast_cc_config_params *config) { return config->cc_recall_timer; } void ast_set_cc_recall_timer(struct ast_cc_config_params *config, unsigned int value) { /* 0 is an unreasonable value for any timer. Stick with the default */ if (value == 0) { ast_log(LOG_WARNING, "0 is an invalid value for ccnr_available_timer. Retaining value as %u\n", config->cc_recall_timer); return; } config->cc_recall_timer = value; } unsigned int ast_get_ccbs_available_timer(struct ast_cc_config_params *config) { return config->ccbs_available_timer; } void ast_set_ccbs_available_timer(struct ast_cc_config_params *config, unsigned int value) { /* 0 is an unreasonable value for any timer. Stick with the default */ if (value == 0) { ast_log(LOG_WARNING, "0 is an invalid value for ccbs_available_timer. Retaining value as %u\n", config->ccbs_available_timer); return; } config->ccbs_available_timer = value; } const char *ast_get_cc_agent_dialstring(struct ast_cc_config_params *config) { return config->cc_agent_dialstring; } void ast_set_cc_agent_dialstring(struct ast_cc_config_params *config, const char *const value) { if (ast_strlen_zero(value)) { config->cc_agent_dialstring[0] = '\0'; } else { ast_copy_string(config->cc_agent_dialstring, value, sizeof(config->cc_agent_dialstring)); } } unsigned int ast_get_cc_max_agents(struct ast_cc_config_params *config) { return config->cc_max_agents; } void ast_set_cc_max_agents(struct ast_cc_config_params *config, unsigned int value) { config->cc_max_agents = value; } unsigned int ast_get_cc_max_monitors(struct ast_cc_config_params *config) { return config->cc_max_monitors; } void ast_set_cc_max_monitors(struct ast_cc_config_params *config, unsigned int value) { config->cc_max_monitors = value; } const char *ast_get_cc_callback_macro(struct ast_cc_config_params *config) { return config->cc_callback_macro; } void ast_set_cc_callback_macro(struct ast_cc_config_params *config, const char * const value) { if (ast_strlen_zero(value)) { config->cc_callback_macro[0] = '\0'; } else { ast_copy_string(config->cc_callback_macro, value, sizeof(config->cc_callback_macro)); } } struct cc_monitor_backend { AST_LIST_ENTRY(cc_monitor_backend) next; const struct ast_cc_monitor_callbacks *callbacks; }; AST_RWLIST_HEAD_STATIC(cc_monitor_backends, cc_monitor_backend); int ast_cc_monitor_register(const struct ast_cc_monitor_callbacks *callbacks) { struct cc_monitor_backend *backend = ast_calloc(1, sizeof(*backend)); if (!backend) { return -1; } backend->callbacks = callbacks; AST_RWLIST_WRLOCK(&cc_monitor_backends); AST_RWLIST_INSERT_TAIL(&cc_monitor_backends, backend, next); AST_RWLIST_UNLOCK(&cc_monitor_backends); return 0; } static const struct ast_cc_monitor_callbacks *find_monitor_callbacks(const char * const type) { struct cc_monitor_backend *backend; const struct ast_cc_monitor_callbacks *callbacks = NULL; AST_RWLIST_RDLOCK(&cc_monitor_backends); AST_RWLIST_TRAVERSE(&cc_monitor_backends, backend, next) { if (!strcmp(backend->callbacks->type, type)) { ast_log_dynamic_level(cc_logger_level, "Returning monitor backend %s\n", backend->callbacks->type); callbacks = backend->callbacks; break; } } AST_RWLIST_UNLOCK(&cc_monitor_backends); return callbacks; } void ast_cc_monitor_unregister(const struct ast_cc_monitor_callbacks *callbacks) { struct cc_monitor_backend *backend; AST_RWLIST_WRLOCK(&cc_monitor_backends); AST_RWLIST_TRAVERSE_SAFE_BEGIN(&cc_monitor_backends, backend, next) { if (backend->callbacks == callbacks) { AST_RWLIST_REMOVE_CURRENT(next); ast_free(backend); break; } } AST_RWLIST_TRAVERSE_SAFE_END; AST_RWLIST_UNLOCK(&cc_monitor_backends); } struct cc_agent_backend { AST_LIST_ENTRY(cc_agent_backend) next; const struct ast_cc_agent_callbacks *callbacks; }; AST_RWLIST_HEAD_STATIC(cc_agent_backends, cc_agent_backend); int ast_cc_agent_register(const struct ast_cc_agent_callbacks *callbacks) { struct cc_agent_backend *backend = ast_calloc(1, sizeof(*backend)); if (!backend) { return -1; } backend->callbacks = callbacks; AST_RWLIST_WRLOCK(&cc_agent_backends); AST_RWLIST_INSERT_TAIL(&cc_agent_backends, backend, next); AST_RWLIST_UNLOCK(&cc_agent_backends); return 0; } void ast_cc_agent_unregister(const struct ast_cc_agent_callbacks *callbacks) { struct cc_agent_backend *backend; AST_RWLIST_WRLOCK(&cc_agent_backends); AST_RWLIST_TRAVERSE_SAFE_BEGIN(&cc_agent_backends, backend, next) { if (backend->callbacks == callbacks) { AST_RWLIST_REMOVE_CURRENT(next); ast_free(backend); break; } } AST_RWLIST_TRAVERSE_SAFE_END; AST_RWLIST_UNLOCK(&cc_agent_backends); } static const struct ast_cc_agent_callbacks *find_agent_callbacks(struct ast_channel *chan) { struct cc_agent_backend *backend; const struct ast_cc_agent_callbacks *callbacks = NULL; struct ast_cc_config_params *cc_params; char type[32]; cc_params = ast_channel_get_cc_config_params(chan); if (!cc_params) { return NULL; } switch (ast_get_cc_agent_policy(cc_params)) { case AST_CC_AGENT_GENERIC: ast_copy_string(type, "generic", sizeof(type)); break; case AST_CC_AGENT_NATIVE: ast_channel_get_cc_agent_type(chan, type, sizeof(type)); break; default: ast_log_dynamic_level(cc_logger_level, "Not returning agent callbacks since this channel is configured not to have a CC agent\n"); return NULL; } AST_RWLIST_RDLOCK(&cc_agent_backends); AST_RWLIST_TRAVERSE(&cc_agent_backends, backend, next) { if (!strcmp(backend->callbacks->type, type)) { ast_log_dynamic_level(cc_logger_level, "Returning agent backend %s\n", backend->callbacks->type); callbacks = backend->callbacks; break; } } AST_RWLIST_UNLOCK(&cc_agent_backends); return callbacks; } static int cc_generic_monitor_request_cc(struct ast_cc_monitor *monitor, int *available_timer_id); static int cc_generic_monitor_suspend(struct ast_cc_monitor *monitor); static int cc_generic_monitor_unsuspend(struct ast_cc_monitor *monitor); static int cc_generic_monitor_cancel_available_timer(struct ast_cc_monitor *monitor, int *sched_id); static void cc_generic_monitor_destructor(void *private_data); static struct ast_cc_monitor_callbacks generic_monitor_cbs = { .type = "generic", .request_cc = cc_generic_monitor_request_cc, .suspend = cc_generic_monitor_suspend, .unsuspend = cc_generic_monitor_unsuspend, .cancel_available_timer = cc_generic_monitor_cancel_available_timer, .destructor = cc_generic_monitor_destructor, }; struct ao2_container *generic_monitors; struct generic_monitor_instance { int core_id; int is_suspended; int monitoring; AST_LIST_ENTRY(generic_monitor_instance) next; }; struct generic_monitor_instance_list { const char *device_name; enum ast_device_state current_state; /* If there are multiple instances monitoring the * same device and one should fail, we need to know * whether to signal that the device can be recalled. * The problem is that the device state is not enough * to check. If a caller has requested CCNR, then the * fact that the device is available does not indicate * that the device is ready to be recalled. Instead, as * soon as one instance of the monitor becomes available * for a recall, we mark the entire list as being fit * for recall. If a CCNR request comes in, then we will * have to mark the list as unfit for recall since this * is a clear indicator that the person at the monitored * device has gone away and is actuall not fit to be * recalled */ int fit_for_recall; struct ast_event_sub *sub; AST_LIST_HEAD_NOLOCK(, generic_monitor_instance) list; }; /*! * \brief private data for generic device monitor */ struct generic_monitor_pvt { /*! * We need the device name during destruction so we * can find the appropriate item to destroy. */ const char *device_name; /*! * We need the core ID for similar reasons. Once we * find the appropriate item in our ao2_container, we * need to remove the appropriate cc_monitor from the * list of monitors. */ int core_id; }; static int generic_monitor_hash_fn(const void *obj, const int flags) { const struct generic_monitor_instance_list *generic_list = obj; return ast_str_hash(generic_list->device_name); } static int generic_monitor_cmp_fn(void *obj, void *arg, int flags) { const struct generic_monitor_instance_list *generic_list1 = obj; const struct generic_monitor_instance_list *generic_list2 = arg; return !strcmp(generic_list1->device_name, generic_list2->device_name) ? CMP_MATCH | CMP_STOP : 0; } static struct generic_monitor_instance_list *find_generic_monitor_instance_list(const char * const device_name) { struct generic_monitor_instance_list finder = {.device_name = device_name}; return ao2_t_find(generic_monitors, &finder, OBJ_POINTER, "Finding generic monitor instance list"); } static void generic_monitor_instance_list_destructor(void *obj) { struct generic_monitor_instance_list *generic_list = obj; struct generic_monitor_instance *generic_instance; generic_list->sub = ast_event_unsubscribe(generic_list->sub); while ((generic_instance = AST_LIST_REMOVE_HEAD(&generic_list->list, next))) { ast_free(generic_instance); } ast_free((char *)generic_list->device_name); } static void generic_monitor_devstate_cb(const struct ast_event *event, void *userdata); static struct generic_monitor_instance_list *create_new_generic_list(struct ast_cc_monitor *monitor) { struct generic_monitor_instance_list *generic_list = ao2_t_alloc(sizeof(*generic_list), generic_monitor_instance_list_destructor, "allocate generic monitor instance list"); if (!generic_list) { return NULL; } if (!(generic_list->device_name = ast_strdup(monitor->interface->device_name))) { cc_unref(generic_list, "Failed to strdup the monitor's device name"); return NULL; } if (!(generic_list->sub = ast_event_subscribe(AST_EVENT_DEVICE_STATE, generic_monitor_devstate_cb, "Requesting CC", NULL, AST_EVENT_IE_DEVICE, AST_EVENT_IE_PLTYPE_STR, monitor->interface->device_name, AST_EVENT_IE_END))) { cc_unref(generic_list, "Failed to subscribe to device state"); return NULL; } generic_list->current_state = ast_device_state(monitor->interface->device_name); ao2_t_link(generic_monitors, generic_list, "linking new generic monitor instance list"); return generic_list; } struct generic_tp_cb_data { const char *device_name; enum ast_device_state new_state; }; static int generic_monitor_devstate_tp_cb(void *data) { struct generic_tp_cb_data *gtcd = data; enum ast_device_state new_state = gtcd->new_state; enum ast_device_state previous_state = gtcd->new_state; const char *monitor_name = gtcd->device_name; struct generic_monitor_instance_list *generic_list; struct generic_monitor_instance *generic_instance; if (!(generic_list = find_generic_monitor_instance_list(monitor_name))) { /* The most likely cause for this is that we destroyed the monitor in the * time between subscribing to its device state and the time this executes. * Not really a big deal. */ ast_free((char *) gtcd->device_name); ast_free(gtcd); return 0; } if (generic_list->current_state == new_state) { /* The device state hasn't actually changed, so we don't really care */ cc_unref(generic_list, "Kill reference of generic list in devstate taskprocessor callback"); ast_free((char *) gtcd->device_name); ast_free(gtcd); return 0; } previous_state = generic_list->current_state; generic_list->current_state = new_state; if ((new_state == AST_DEVICE_NOT_INUSE || new_state == AST_DEVICE_UNKNOWN) && (previous_state == AST_DEVICE_INUSE || previous_state == AST_DEVICE_UNAVAILABLE || previous_state == AST_DEVICE_BUSY)) { AST_LIST_TRAVERSE(&generic_list->list, generic_instance, next) { if (!generic_instance->is_suspended && generic_instance->monitoring) { generic_instance->monitoring = 0; generic_list->fit_for_recall = 1; ast_cc_monitor_callee_available(generic_instance->core_id, "Generic monitored party has become available"); break; } } } cc_unref(generic_list, "Kill reference of generic list in devstate taskprocessor callback"); ast_free((char *) gtcd->device_name); ast_free(gtcd); return 0; } static void generic_monitor_devstate_cb(const struct ast_event *event, void *userdata) { /* Wow, it's cool that we've picked up on a state change, but we really want * the actual work to be done in the core's taskprocessor execution thread * so that all monitor operations can be serialized. Locks?! We don't need * no steenkin' locks! */ struct generic_tp_cb_data *gtcd = ast_calloc(1, sizeof(*gtcd)); if (!gtcd) { return; } if (!(gtcd->device_name = ast_strdup(ast_event_get_ie_str(event, AST_EVENT_IE_DEVICE)))) { ast_free(gtcd); return; } gtcd->new_state = ast_event_get_ie_uint(event, AST_EVENT_IE_STATE); if (ast_taskprocessor_push(cc_core_taskprocessor, generic_monitor_devstate_tp_cb, gtcd)) { ast_free((char *)gtcd->device_name); ast_free(gtcd); } } int ast_cc_available_timer_expire(const void *data) { struct ast_cc_monitor *monitor = (struct ast_cc_monitor *) data; int res; monitor->available_timer_id = -1; res = ast_cc_monitor_failed(monitor->core_id, monitor->interface->device_name, "Available timer expired for monitor"); cc_unref(monitor, "Unref reference from scheduler\n"); return res; } static int cc_generic_monitor_request_cc(struct ast_cc_monitor *monitor, int *available_timer_id) { struct generic_monitor_instance_list *generic_list; struct generic_monitor_instance *generic_instance; struct generic_monitor_pvt *gen_mon_pvt; enum ast_cc_service_type service = monitor->service_offered; int when; /* First things first. Native channel drivers will have their private data allocated * at the time that they tell the core that they can offer CC. Generic is quite a bit * different, and we wait until this point to allocate our private data. */ if (!(gen_mon_pvt = ast_calloc(1, sizeof(*gen_mon_pvt)))) { return -1; } if (!(gen_mon_pvt->device_name = ast_strdup(monitor->interface->device_name))) { ast_free(gen_mon_pvt); return -1; } gen_mon_pvt->core_id = monitor->core_id; monitor->private_data = gen_mon_pvt; if (!(generic_list = find_generic_monitor_instance_list(monitor->interface->device_name))) { if (!(generic_list = create_new_generic_list(monitor))) { return -1; } } if (!(generic_instance = ast_calloc(1, sizeof(*generic_instance)))) { /* The generic monitor destructor will take care of the appropriate * deallocations */ cc_unref(generic_list, "Generic monitor instance failed to allocate"); return -1; } generic_instance->core_id = monitor->core_id; generic_instance->monitoring = 1; AST_LIST_INSERT_TAIL(&generic_list->list, generic_instance, next); when = service == AST_CC_CCBS ? ast_get_ccbs_available_timer(monitor->interface->config_params) : ast_get_ccnr_available_timer(monitor->interface->config_params); *available_timer_id = ast_sched_thread_add(cc_sched_thread, when * 1000, ast_cc_available_timer_expire, cc_ref(monitor, "Give the scheduler a monitor reference")); if (*available_timer_id == -1) { cc_unref(monitor, "Failed to schedule available timer. (monitor)"); cc_unref(generic_list, "Failed to schedule available timer. (generic_list)"); return -1; } /* If the new instance was created as CCNR, then that means this device is not currently * fit for recall even if it previously was. */ if (service == AST_CC_CCNR || service == AST_CC_CCNL) { generic_list->fit_for_recall = 0; } ast_cc_monitor_request_acked(monitor->core_id, "Generic monitor for %s subscribed to device state.", monitor->interface->device_name); cc_unref(generic_list, "Finished with monitor instance reference in request cc callback"); return 0; } static int cc_generic_monitor_suspend(struct ast_cc_monitor *monitor) { struct generic_monitor_instance_list *generic_list; struct generic_monitor_instance *generic_instance; enum ast_device_state state = ast_device_state(monitor->interface->device_name); if (!(generic_list = find_generic_monitor_instance_list(monitor->interface->device_name))) { return -1; } /* First we need to mark this particular monitor as being suspended. */ AST_LIST_TRAVERSE(&generic_list->list, generic_instance, next) { if (generic_instance->core_id == monitor->core_id) { generic_instance->is_suspended = 1; break; } } /* If the device being suspended is currently in use, then we don't need to * take any further actions */ if (state != AST_DEVICE_NOT_INUSE && state != AST_DEVICE_UNKNOWN) { cc_unref(generic_list, "Device is in use. Nothing to do. Unref generic list."); return 0; } /* If the device is not in use, though, then it may be possible to report the * device's availability using a different monitor which is monitoring the * same device */ AST_LIST_TRAVERSE(&generic_list->list, generic_instance, next) { if (!generic_instance->is_suspended) { ast_cc_monitor_callee_available(generic_instance->core_id, "Generic monitored party has become available"); break; } } cc_unref(generic_list, "Done with generic list in suspend callback"); return 0; } static int cc_generic_monitor_unsuspend(struct ast_cc_monitor *monitor) { struct generic_monitor_instance *generic_instance; struct generic_monitor_instance_list *generic_list = find_generic_monitor_instance_list(monitor->interface->device_name); enum ast_device_state state = ast_device_state(monitor->interface->device_name); if (!generic_list) { return -1; } /* If the device is currently available, we can immediately announce * its availability */ if (state == AST_DEVICE_NOT_INUSE || state == AST_DEVICE_UNKNOWN) { ast_cc_monitor_callee_available(monitor->core_id, "Generic monitored party has become available"); } /* In addition, we need to mark this generic_monitor_instance as not being suspended anymore */ AST_LIST_TRAVERSE(&generic_list->list, generic_instance, next) { if (generic_instance->core_id == monitor->core_id) { generic_instance->is_suspended = 0; generic_instance->monitoring = 1; break; } } cc_unref(generic_list, "Done with generic list in cc_generic_monitor_unsuspend"); return 0; } static int cc_generic_monitor_cancel_available_timer(struct ast_cc_monitor *monitor, int *sched_id) { ast_assert(sched_id != NULL); if (*sched_id == -1) { return 0; } ast_log_dynamic_level(cc_logger_level, "Core %d: Canceling generic monitor available timer for monitor %s\n", monitor->core_id, monitor->interface->device_name); if (!ast_sched_thread_del(cc_sched_thread, *sched_id)) { cc_unref(monitor, "Remove scheduler's reference to the monitor"); } *sched_id = -1; return 0; } static void cc_generic_monitor_destructor(void *private_data) { struct generic_monitor_pvt *gen_mon_pvt = private_data; struct generic_monitor_instance_list *generic_list; struct generic_monitor_instance *generic_instance; if (!private_data) { /* If the private data is NULL, that means that the monitor hasn't even * been created yet, but that the destructor was called. While this sort * of behavior is useful for native monitors, with a generic one, there is * nothing in particular to do. */ return; } ast_log_dynamic_level(cc_logger_level, "Core %d: Destroying generic monitor %s\n", gen_mon_pvt->core_id, gen_mon_pvt->device_name); if (!(generic_list = find_generic_monitor_instance_list(gen_mon_pvt->device_name))) { /* If there's no generic list, that means that the monitor is being destroyed * before we actually got to request CC. Not a biggie. Same in the situation * below if the list traversal should complete without finding an entry. */ ast_free((char *)gen_mon_pvt->device_name); ast_free(gen_mon_pvt); return; } AST_LIST_TRAVERSE_SAFE_BEGIN(&generic_list->list, generic_instance, next) { if (generic_instance->core_id == gen_mon_pvt->core_id) { AST_LIST_REMOVE_CURRENT(next); ast_free(generic_instance); break; } } AST_LIST_TRAVERSE_SAFE_END; if (AST_LIST_EMPTY(&generic_list->list)) { /* No more monitors with this device name exist. Time to unlink this * list from the container */ ao2_t_unlink(generic_monitors, generic_list, "Generic list is empty. Unlink it from the container"); } else { /* There are still instances for this particular device. The situation * may be that we were attempting a CC recall and a failure occurred, perhaps * on the agent side. If a failure happens here and the device being monitored * is available, then we need to signal on the first unsuspended instance that * the device is available for recall. */ /* First things first. We don't even want to consider this action if * the device in question isn't available right now. */ if (generic_list->fit_for_recall && (generic_list->current_state == AST_DEVICE_NOT_INUSE || generic_list->current_state == AST_DEVICE_UNKNOWN)) { AST_LIST_TRAVERSE(&generic_list->list, generic_instance, next) { if (!generic_instance->is_suspended && generic_instance->monitoring) { ast_cc_monitor_callee_available(generic_instance->core_id, "Signaling generic monitor " "availability due to other instance's failure."); break; } } } } cc_unref(generic_list, "Done with generic list in generic monitor destructor"); ast_free((char *)gen_mon_pvt->device_name); ast_free(gen_mon_pvt); } static void cc_interface_destroy(void *data) { struct ast_cc_interface *interface = data; ast_log_dynamic_level(cc_logger_level, "Destroying cc interface %s\n", interface->device_name); ast_cc_config_params_destroy(interface->config_params); } /*! * \brief Data regarding an extension monitor's child's dialstrings * * \details * In developing CCSS, we had most aspects of its operation finished, * but there was one looming problem that we had failed to get right. * In our design document, we stated that when a CC recall occurs, all * endpoints that had been dialed originally would be called back. * Unfortunately, our implementation only allowed for devices which had * active monitors to inhabit the CC_INTERFACES channel variable, thus * making the automated recall only call monitored devices. * * Devices that were not CC-capable, or devices which failed CC at some * point during the process would not make it into the CC_INTERFACES * channel variable. This struct is meant as a remedy for the problem. */ struct extension_child_dialstring { /*! * \brief the original dialstring used to call a particular device * * \details * When someone dials a particular endpoint, the dialstring used in * the dialplan is copied into this buffer. What's important here is * that this is the ORIGINAL dialstring, not the dialstring saved on * a device monitor. The dialstring on a device monitor is what should * be used when recalling that device. The two dialstrings may not be * the same. * * By keeping a copy of the original dialstring used, we can fall back * to using it if the device either does not ever offer CC or if the * device at some point fails for some reason, such as a timer expiration. */ char original_dialstring[AST_CHANNEL_NAME]; /*! * \brief The name of the device being dialed * * \details * This serves mainly as a key when searching for a particular dialstring. * For instance, let's say that we have called device SIP/400@somepeer. This * device offers call completion, but then due to some unforeseen circumstance, * this device backs out and makes CC unavailable. When that happens, we need * to find the dialstring that corresponds to that device, and we use the * stored device name as a way to find it. * * \note There is one particular case where the device name stored here * will be empty. This is the case where we fail to request a channel, but we * still can make use of generic call completion. In such a case, since we never * were able to request the channel, we can't find what its device name is. In * this case, however, it is not important because the dialstring is guaranteed * to be the same both here and in the device monitor. */ char device_name[AST_CHANNEL_NAME]; /*! * \brief Is this structure valid for use in CC_INTERFACES? * * \details * When this structure is first created, all information stored here is planned * to be used, so we set the is_valid flag. However, if a device offers call * completion, it will potentially have its own dialstring to use for the recall, * so we find this structure and clear the is_valid flag. By clearing the is_valid * flag, we won't try to populate the CC_INTERFACES variable with the dialstring * stored in this struct. Now, if later, the device which had offered CC should fail, * perhaps due to a timer expiration, then we need to re-set the is_valid flag. This * way, we still will end up placing a call to the device again, and the dialstring * used will be the same as was originally used. */ int is_valid; AST_LIST_ENTRY(extension_child_dialstring) next; }; /*! * \brief Private data for an extension monitor */ struct extension_monitor_pvt { AST_LIST_HEAD_NOLOCK(, extension_child_dialstring) child_dialstrings; }; static void cc_extension_monitor_destructor(void *private_data) { struct extension_monitor_pvt *extension_pvt = private_data; struct extension_child_dialstring *child_dialstring; /* This shouldn't be possible, but I'm paranoid */ if (!extension_pvt) { return; } while ((child_dialstring = AST_LIST_REMOVE_HEAD(&extension_pvt->child_dialstrings, next))) { ast_free(child_dialstring); } ast_free(extension_pvt); } static void cc_monitor_destroy(void *data) { struct ast_cc_monitor *monitor = data; /* During the monitor creation process, it is possible for this * function to be called prior to when callbacks are assigned * to the monitor. Also, extension monitors do not have callbacks * assigned to them, so we wouldn't want to segfault when we try * to destroy one of them. */ ast_log_dynamic_level(cc_logger_level, "Core %d: Calling destructor for monitor %s\n", monitor->core_id, monitor->interface->device_name); if (monitor->interface->monitor_class == AST_CC_EXTENSION_MONITOR) { cc_extension_monitor_destructor(monitor->private_data); } if (monitor->callbacks) { monitor->callbacks->destructor(monitor->private_data); } cc_unref(monitor->interface, "Unreffing tree's reference to interface"); ast_free(monitor->dialstring); } static void cc_interface_tree_destroy(void *data) { struct cc_monitor_tree *cc_interface_tree = data; struct ast_cc_monitor *monitor; while ((monitor = AST_LIST_REMOVE_HEAD(cc_interface_tree, next))) { if (monitor->callbacks) { monitor->callbacks->cancel_available_timer(monitor, &monitor->available_timer_id); } cc_unref(monitor, "Destroying all monitors"); } AST_LIST_HEAD_DESTROY(cc_interface_tree); } /*! * This counter is used for assigning unique ids * to CC-enabled dialed interfaces. */ static int dialed_cc_interface_counter; /*! * \internal * \brief data stored in CC datastore * * The datastore creates a list of interfaces that were * dialed, including both extensions and devices. In addition * to the intrinsic data of the tree, some extra information * is needed for use by app_dial. */ struct dialed_cc_interfaces { /*! * This value serves a dual-purpose. When dial starts, if the * dialed_cc_interfaces datastore currently exists on the calling * channel, then the dial_parent_id will serve as a means of * letting the new extension cc_monitor we create know * who his parent is. This value will be the extension * cc_monitor that dialed the local channel that resulted * in the new Dial app being called. * * In addition, once an extension cc_monitor is created, * the dial_parent_id will be changed to the id of that newly * created interface. This way, device interfaces created from * receiving AST_CONTROL_CC frames can use this field to determine * who their parent extension interface should be. */ unsigned int dial_parent_id; /*! * Identifier for the potential CC request that may be made * based on this call. Even though an instance of the core may * not be made (since the caller may not request CC), we allocate * a new core_id at the beginning of the call so that recipient * channel drivers can have the information handy just in case * the caller does end up requesting CC. */ int core_id; /*! * When a new Dial application is started, and the datastore * already exists on the channel, we can determine if we * should be adding any new interface information to tree. */ char ignore; /*! * When it comes time to offer CC to the caller, we only want to offer * it to the original incoming channel. For nested Dials and outbound * channels, it is incorrect to attempt such a thing. This flag indicates * if the channel to which this datastore is attached may be legally * offered CC when the call is finished. */ char is_original_caller; /*! * Reference-counted "tree" of interfaces. */ struct cc_monitor_tree *interface_tree; }; /*! * \internal * \brief Destructor function for cc_interfaces datastore * * This function will free the actual datastore and drop * the refcount for the monitor tree by one. In cases * where CC can actually be used, this unref will not * result in the destruction of the monitor tree, because * the CC core will still have a reference. * * \param data The dialed_cc_interfaces struct to destroy */ static void dialed_cc_interfaces_destroy(void *data) { struct dialed_cc_interfaces *cc_interfaces = data; cc_unref(cc_interfaces->interface_tree, "Unref dial's ref to monitor tree"); ast_free(cc_interfaces); } /*! * \internal * \brief Duplicate callback for cc_interfaces datastore * * Integers are copied by value, but the monitor tree * is done via a shallow copy and a bump of the refcount. * This way, sub-Dials will be appending interfaces onto * the same list as this call to Dial. * * \param data The old dialed_cc_interfaces we want to copy * \retval NULL Could not allocate memory for new dialed_cc_interfaces * \retval non-NULL The new copy of the dialed_cc_interfaces */ static void *dialed_cc_interfaces_duplicate(void *data) { struct dialed_cc_interfaces *old_cc_interfaces = data; struct dialed_cc_interfaces *new_cc_interfaces = ast_calloc(1, sizeof(*new_cc_interfaces)); if (!new_cc_interfaces) { return NULL; } new_cc_interfaces->ignore = old_cc_interfaces->ignore; new_cc_interfaces->dial_parent_id = old_cc_interfaces->dial_parent_id; new_cc_interfaces->is_original_caller = 0; cc_ref(old_cc_interfaces->interface_tree, "New ref due to duplication of monitor tree"); new_cc_interfaces->core_id = old_cc_interfaces->core_id; new_cc_interfaces->interface_tree = old_cc_interfaces->interface_tree; return new_cc_interfaces; } /*! * \internal * \brief information regarding the dialed_cc_interfaces datastore * * The dialed_cc_interfaces datastore is responsible for keeping track * of what CC-enabled interfaces have been dialed by the caller. For * more information regarding the actual structure of the tree, see * the documentation provided in include/asterisk/ccss.h */ static const struct ast_datastore_info dialed_cc_interfaces_info = { .type = "Dial CC Interfaces", .duplicate = dialed_cc_interfaces_duplicate, .destroy = dialed_cc_interfaces_destroy, }; static struct extension_monitor_pvt *extension_monitor_pvt_init(void) { struct extension_monitor_pvt *ext_pvt = ast_calloc(1, sizeof(*ext_pvt)); if (!ext_pvt) { return NULL; } AST_LIST_HEAD_INIT_NOLOCK(&ext_pvt->child_dialstrings); return ext_pvt; } void ast_cc_extension_monitor_add_dialstring(struct ast_channel *incoming, const char * const dialstring, const char * const device_name) { struct ast_datastore *cc_datastore; struct dialed_cc_interfaces *cc_interfaces; struct ast_cc_monitor *monitor; struct extension_monitor_pvt *extension_pvt; struct extension_child_dialstring *child_dialstring; struct cc_monitor_tree *interface_tree; int id; ast_channel_lock(incoming); if (!(cc_datastore = ast_channel_datastore_find(incoming, &dialed_cc_interfaces_info, NULL))) { ast_channel_unlock(incoming); return; } cc_interfaces = cc_datastore->data; interface_tree = cc_interfaces->interface_tree; id = cc_interfaces->dial_parent_id; ast_channel_unlock(incoming); AST_LIST_LOCK(interface_tree); AST_LIST_TRAVERSE(interface_tree, monitor, next) { if (monitor->id == id) { break; } } if (!monitor) { AST_LIST_UNLOCK(interface_tree); return; } extension_pvt = monitor->private_data; if (!(child_dialstring = ast_calloc(1, sizeof(*child_dialstring)))) { AST_LIST_UNLOCK(interface_tree); return; } ast_copy_string(child_dialstring->original_dialstring, dialstring, sizeof(child_dialstring->original_dialstring)); ast_copy_string(child_dialstring->device_name, device_name, sizeof(child_dialstring->device_name)); child_dialstring->is_valid = 1; AST_LIST_INSERT_TAIL(&extension_pvt->child_dialstrings, child_dialstring, next); AST_LIST_UNLOCK(interface_tree); } static void cc_extension_monitor_change_is_valid(struct cc_core_instance *core_instance, unsigned int parent_id, const char * const device_name, int is_valid) { struct ast_cc_monitor *monitor_iter; struct extension_monitor_pvt *extension_pvt; struct extension_child_dialstring *child_dialstring; AST_LIST_TRAVERSE(core_instance->monitors, monitor_iter, next) { if (monitor_iter->id == parent_id) { break; } } if (!monitor_iter) { return; } extension_pvt = monitor_iter->private_data; AST_LIST_TRAVERSE(&extension_pvt->child_dialstrings, child_dialstring, next) { if (!strcmp(child_dialstring->device_name, device_name)) { child_dialstring->is_valid = is_valid; break; } } } /*! * \internal * \brief Allocate and initialize an "extension" interface for CC purposes * * When app_dial starts, this function is called in order to set up the * information about the extension in which this Dial is occurring. Any * devices dialed will have this particular cc_monitor as a parent. * * \param exten Extension from which Dial is occurring * \param context Context to which exten belongs * \param parent_id What should we set the parent_id of this interface to? * \retval NULL Memory allocation failure * \retval non-NULL The newly-created cc_monitor for the extension */ static struct ast_cc_monitor *cc_extension_monitor_init(const char * const exten, const char * const context, const unsigned int parent_id) { struct ast_str *str = ast_str_alloca(2 * AST_MAX_EXTENSION); struct ast_cc_interface *cc_interface; struct ast_cc_monitor *monitor; ast_str_set(&str, 0, "%s@%s", exten, context); if (!(cc_interface = ao2_t_alloc(sizeof(*cc_interface) + ast_str_strlen(str), cc_interface_destroy, "Allocating new ast_cc_interface"))) { return NULL; } if (!(monitor = ao2_t_alloc(sizeof(*monitor), cc_monitor_destroy, "Allocating new ast_cc_monitor"))) { cc_unref(cc_interface, "failed to allocate the monitor, so unref the interface"); return NULL; } if (!(monitor->private_data = extension_monitor_pvt_init())) { cc_unref(monitor, "Failed to initialize extension monitor private data. uref monitor"); cc_unref(cc_interface, "Failed to initialize extension monitor private data. unref cc_interface"); } monitor->id = ast_atomic_fetchadd_int(&dialed_cc_interface_counter, +1); monitor->parent_id = parent_id; cc_interface->monitor_type = "extension"; cc_interface->monitor_class = AST_CC_EXTENSION_MONITOR; strcpy(cc_interface->device_name, ast_str_buffer(str)); monitor->interface = cc_interface; ast_log_dynamic_level(cc_logger_level, "Created an extension cc interface for '%s' with id %d and parent %d\n", cc_interface->device_name, monitor->id, monitor->parent_id); return monitor; } /*! * \internal * \brief allocate dialed_cc_interfaces datastore and initialize fields * * This function is called when Situation 1 occurs in ast_cc_call_init. * See that function for more information on what Situation 1 is. * * In this particular case, we have to do a lot of memory allocation in order * to create the datastore, the data for the datastore, the tree of interfaces * that we'll be adding to, and the initial extension interface for this Dial * attempt. * * \param chan The channel onto which the datastore should be added. * \retval -1 An error occurred * \retval 0 Success */ static int cc_interfaces_datastore_init(struct ast_channel *chan) { struct dialed_cc_interfaces *interfaces; struct ast_cc_monitor *monitor; struct ast_datastore *dial_cc_datastore; /*XXX This may be a bit controversial. In an attempt to not allocate * extra resources, I make sure that a future request will be within * limits. The problem here is that it is reasonable to think that * even if we're not within the limits at this point, we may be by * the time the requestor will have made his request. This may be * deleted at some point. */ if (!ast_cc_request_is_within_limits()) { return 0; } if (!(interfaces = ast_calloc(1, sizeof(*interfaces)))) { return -1; } if (!(monitor = cc_extension_monitor_init(S_OR(chan->macroexten, chan->exten), S_OR(chan->macrocontext, chan->context), 0))) { ast_free(interfaces); return -1; } if (!(dial_cc_datastore = ast_datastore_alloc(&dialed_cc_interfaces_info, NULL))) { cc_unref(monitor, "Could not allocate the dialed interfaces datastore. Unreffing monitor"); ast_free(interfaces); return -1; } if (!(interfaces->interface_tree = ao2_t_alloc(sizeof(*interfaces->interface_tree), cc_interface_tree_destroy, "Allocate monitor tree"))) { ast_datastore_free(dial_cc_datastore); cc_unref(monitor, "Could not allocate monitor tree on dialed interfaces datastore. Unreffing monitor"); ast_free(interfaces); return -1; } /* Finally, all that allocation is done... */ AST_LIST_HEAD_INIT(interfaces->interface_tree); AST_LIST_INSERT_TAIL(interfaces->interface_tree, monitor, next); cc_ref(monitor, "List's reference to extension monitor"); dial_cc_datastore->data = interfaces; dial_cc_datastore->inheritance = DATASTORE_INHERIT_FOREVER; interfaces->dial_parent_id = monitor->id; interfaces->core_id = monitor->core_id = ast_atomic_fetchadd_int(&core_id_counter, +1); interfaces->is_original_caller = 1; ast_channel_lock(chan); ast_channel_datastore_add(chan, dial_cc_datastore); ast_channel_unlock(chan); cc_unref(monitor, "Unreffing allocation's reference"); return 0; } /*! * \internal * \brief Call a monitor's destructor before the monitor has been allocated * \since 1.8 * * \param monitor_type The type of monitor callbacks to use when calling the destructor * \param private_data Data allocated by a channel driver that must be freed * * \details * I'll admit, this is a bit evil. * * When a channel driver determines that it can offer a call completion service to * a caller, it is very likely that the channel driver will need to allocate some * data so that when the time comes to request CC, the channel driver will have the * necessary data at hand. * * The problem is that there are many places where failures may occur before the monitor * has been properly allocated and had its callbacks assigned to it. If one of these * failures should occur, then we still need to let the channel driver know that it * must destroy the data that it allocated. * * \return Nothing */ static void call_destructor_with_no_monitor(const char * const monitor_type, void *private_data) { const struct ast_cc_monitor_callbacks *monitor_callbacks = find_monitor_callbacks(monitor_type); if (!monitor_callbacks) { return; } monitor_callbacks->destructor(private_data); } /*! * \internal * \brief Allocate and intitialize a device cc_monitor * * For all intents and purposes, this is the same as * cc_extension_monitor_init, except that there is only * a single parameter used for naming the interface. * * This function is called when handling AST_CONTROL_CC frames. * The device has reported that CC is possible, so we add it * to the interface_tree. * * Note that it is not necessarily erroneous to add the same * device to the tree twice. If the same device is called by * two different extension during the same call, then * that is a legitimate situation. Of course, I'm pretty sure * the dialed_interfaces global datastore will not allow that * to happen anyway. * * \param device_name The name of the device being added to the tree * \param dialstring The dialstring used to dial the device being added * \param parent_id The parent of this new tree node. * \retval NULL Memory allocation failure * \retval non-NULL The new ast_cc_interface created. */ static struct ast_cc_monitor *cc_device_monitor_init(const char * const device_name, const char * const dialstring, const struct cc_control_payload *cc_data, int core_id) { struct ast_cc_interface *cc_interface; struct ast_cc_monitor *monitor; size_t device_name_len = strlen(device_name); int parent_id = cc_data->parent_interface_id; if (!(cc_interface = ao2_t_alloc(sizeof(*cc_interface) + device_name_len, cc_interface_destroy, "Allocating new ast_cc_interface"))) { return NULL; } if (!(cc_interface->config_params = ast_cc_config_params_init())) { cc_unref(cc_interface, "Failed to allocate config params, unref interface"); return NULL; } if (!(monitor = ao2_t_alloc(sizeof(*monitor), cc_monitor_destroy, "Allocating new ast_cc_monitor"))) { cc_unref(cc_interface, "Failed to allocate monitor, unref interface"); return NULL; } if (!(monitor->dialstring = ast_strdup(dialstring))) { cc_unref(monitor, "Failed to copy dialable name. Unref monitor"); cc_unref(cc_interface, "Failed to copy dialable name"); return NULL; } if (!(monitor->callbacks = find_monitor_callbacks(cc_data->monitor_type))) { cc_unref(monitor, "Failed to find monitor callbacks. Unref monitor"); cc_unref(cc_interface, "Failed to find monitor callbacks"); return NULL; } strcpy(cc_interface->device_name, device_name); monitor->id = ast_atomic_fetchadd_int(&dialed_cc_interface_counter, +1); monitor->parent_id = parent_id; monitor->core_id = core_id; monitor->service_offered = cc_data->service; monitor->private_data = cc_data->private_data; cc_interface->monitor_type = cc_data->monitor_type; cc_interface->monitor_class = AST_CC_DEVICE_MONITOR; monitor->interface = cc_interface; monitor->available_timer_id = -1; ast_cc_copy_config_params(cc_interface->config_params, &cc_data->config_params); ast_log_dynamic_level(cc_logger_level, "Core %d: Created a device cc interface for '%s' with id %d and parent %d\n", monitor->core_id, cc_interface->device_name, monitor->id, monitor->parent_id); return monitor; } /*! * \details * Unless we are ignoring CC for some reason, we will always * call this function when we read an AST_CONTROL_CC frame * from an outbound channel. * * This function will call cc_device_monitor_init to * create the new cc_monitor for the device from which * we read the frame. In addition, the new device will be added * to the monitor tree on the dialed_cc_interfaces datastore * on the inbound channel. * * If this is the first AST_CONTROL_CC frame that we have handled * for this call, then we will also initialize the CC core for * this call. */ void ast_handle_cc_control_frame(struct ast_channel *inbound, struct ast_channel *outbound, void *frame_data) { char *device_name; char *dialstring; struct ast_cc_monitor *monitor; struct ast_datastore *cc_datastore; struct dialed_cc_interfaces *cc_interfaces; struct cc_control_payload *cc_data = frame_data; struct cc_core_instance *core_instance; device_name = cc_data->device_name; dialstring = cc_data->dialstring; ast_channel_lock(inbound); if (!(cc_datastore = ast_channel_datastore_find(inbound, &dialed_cc_interfaces_info, NULL))) { ast_log(LOG_WARNING, "Unable to retrieve CC datastore while processing CC frame from '%s'. CC services will be unavailable.\n", device_name); ast_channel_unlock(inbound); call_destructor_with_no_monitor(cc_data->monitor_type, cc_data->private_data); return; } cc_interfaces = cc_datastore->data; if (cc_interfaces->ignore) { ast_channel_unlock(inbound); call_destructor_with_no_monitor(cc_data->monitor_type, cc_data->private_data); return; } if (!cc_interfaces->is_original_caller) { /* If the is_original_caller is not set on the *inbound* channel, then * it must be a local channel. As such, we do not want to create a core instance * or an agent for the local channel. Instead, we want to pass this along to the * other side of the local channel so that the original caller can benefit. */ ast_channel_unlock(inbound); ast_indicate_data(inbound, AST_CONTROL_CC, cc_data, sizeof(*cc_data)); return; } core_instance = find_cc_core_instance(cc_interfaces->core_id); if (!core_instance) { core_instance = cc_core_init_instance(inbound, cc_interfaces->interface_tree, cc_interfaces->core_id, cc_data); if (!core_instance) { cc_interfaces->ignore = 1; ast_channel_unlock(inbound); call_destructor_with_no_monitor(cc_data->monitor_type, cc_data->private_data); return; } } ast_channel_unlock(inbound); /* Yeah this kind of sucks, but luckily most people * aren't dialing thousands of interfaces on every call * * This traversal helps us to not create duplicate monitors in * case a device queues multiple CC control frames. */ AST_LIST_LOCK(cc_interfaces->interface_tree); AST_LIST_TRAVERSE(cc_interfaces->interface_tree, monitor, next) { if (!strcmp(monitor->interface->device_name, device_name)) { ast_log_dynamic_level(cc_logger_level, "Core %d: Device %s sent us multiple CC control frames. Ignoring those beyond the first.\n", core_instance->core_id, device_name); AST_LIST_UNLOCK(cc_interfaces->interface_tree); cc_unref(core_instance, "Returning early from ast_handle_cc_control_frame. Unref core_instance"); call_destructor_with_no_monitor(cc_data->monitor_type, cc_data->private_data); return; } } AST_LIST_UNLOCK(cc_interfaces->interface_tree); if (!(monitor = cc_device_monitor_init(device_name, dialstring, cc_data, core_instance->core_id))) { ast_log(LOG_WARNING, "Unable to create CC device interface for '%s'. CC services will be unavailable on this interface.\n", device_name); cc_unref(core_instance, "Returning early from ast_handle_cc_control_frame. Unref core_instance"); call_destructor_with_no_monitor(cc_data->monitor_type, cc_data->private_data); return; } AST_LIST_LOCK(cc_interfaces->interface_tree); cc_ref(monitor, "monitor tree's reference to the monitor"); AST_LIST_INSERT_TAIL(cc_interfaces->interface_tree, monitor, next); AST_LIST_UNLOCK(cc_interfaces->interface_tree); cc_extension_monitor_change_is_valid(core_instance, monitor->parent_id, monitor->interface->device_name, 0); manager_event(EVENT_FLAG_CC, "CCAvailable", "CoreID: %d\r\n" "Callee: %s\r\n" "Service: %s\r\n", cc_interfaces->core_id, device_name, cc_service_to_string(cc_data->service) ); cc_unref(core_instance, "Done with core_instance after handling CC control frame"); cc_unref(monitor, "Unref reference from allocating monitor"); } int ast_cc_call_init(struct ast_channel *chan, int *ignore_cc) { /* There are three situations to deal with here: * * 1. The channel does not have a dialed_cc_interfaces datastore on * it. This means that this is the first time that Dial has * been called. We need to create/initialize the datastore. * * 2. The channel does have a cc_interface datastore on it and * the "ignore" indicator is 0. This means that a Local channel * was called by a "parent" dial. We can check the datastore's * parent field to see who the root of this particular dial tree * is. * * 3. The channel does have a cc_interface datastore on it and * the "ignore" indicator is 1. This means that a second Dial call * is being made from an extension. In this case, we do not * want to make any additions/modifications to the datastore. We * will instead set a flag to indicate that CCSS is completely * disabled for this Dial attempt. */ struct ast_datastore *cc_interfaces_datastore; struct dialed_cc_interfaces *interfaces; struct ast_cc_monitor *monitor; struct ast_cc_config_params *cc_params; ast_channel_lock(chan); cc_params = ast_channel_get_cc_config_params(chan); if (!cc_params) { ast_channel_unlock(chan); return -1; } if (ast_get_cc_agent_policy(cc_params) == AST_CC_AGENT_NEVER) { /* We can't offer CC to this caller anyway, so don't bother with CC on this call */ *ignore_cc = 1; ast_channel_unlock(chan); ast_log_dynamic_level(cc_logger_level, "Agent policy for %s is 'never'. CC not possible\n", chan->name); return 0; } if (!(cc_interfaces_datastore = ast_channel_datastore_find(chan, &dialed_cc_interfaces_info, NULL))) { /* Situation 1 has occurred */ ast_channel_unlock(chan); return cc_interfaces_datastore_init(chan); } interfaces = cc_interfaces_datastore->data; ast_channel_unlock(chan); if (interfaces->ignore) { /* Situation 3 has occurred */ *ignore_cc = 1; ast_log_dynamic_level(cc_logger_level, "Datastore is present with ignore flag set. Ignoring CC offers on this call\n"); return 0; } /* Situation 2 has occurred */ if (!(monitor = cc_extension_monitor_init(S_OR(chan->macroexten, chan->exten), S_OR(chan->macrocontext, chan->context), interfaces->dial_parent_id))) { return -1; } monitor->core_id = interfaces->core_id; AST_LIST_LOCK(interfaces->interface_tree); cc_ref(monitor, "monitor tree's reference to the monitor"); AST_LIST_INSERT_TAIL(interfaces->interface_tree, monitor, next); AST_LIST_UNLOCK(interfaces->interface_tree); interfaces->dial_parent_id = monitor->id; cc_unref(monitor, "Unref monitor's allocation reference"); return 0; } int ast_cc_request_is_within_limits(void) { return cc_request_count < global_cc_max_requests; } int ast_cc_get_current_core_id(struct ast_channel *chan) { struct ast_datastore *datastore; struct dialed_cc_interfaces *cc_interfaces; int core_id_return; ast_channel_lock(chan); if (!(datastore = ast_channel_datastore_find(chan, &dialed_cc_interfaces_info, NULL))) { ast_channel_unlock(chan); return -1; } cc_interfaces = datastore->data; core_id_return = cc_interfaces->ignore ? -1 : cc_interfaces->core_id; ast_channel_unlock(chan); return core_id_return; } static long count_agents(const char * const caller, const int core_id_exception) { struct count_agents_cb_data data = {.core_id_exception = core_id_exception,}; ao2_t_callback_data(cc_core_instances, OBJ_NODATA, count_agents_cb, (char *)caller, &data, "Counting agents"); ast_log_dynamic_level(cc_logger_level, "Counted %d agents\n", data.count); return data.count; } static void kill_duplicate_offers(char *caller) { unsigned long match_flags = MATCH_NO_REQUEST; ao2_t_callback_data(cc_core_instances, OBJ_UNLINK | OBJ_NODATA, match_agent, caller, &match_flags, "Killing duplicate offers"); } static void check_callback_sanity(const struct ast_cc_agent_callbacks *callbacks) { ast_assert(callbacks->init != NULL); ast_assert(callbacks->start_offer_timer != NULL); ast_assert(callbacks->stop_offer_timer != NULL); ast_assert(callbacks->respond != NULL); ast_assert(callbacks->status_request != NULL); ast_assert(callbacks->start_monitoring != NULL); ast_assert(callbacks->callee_available != NULL); ast_assert(callbacks->destructor != NULL); } static void agent_destroy(void *data) { struct ast_cc_agent *agent = data; if (agent->callbacks) { agent->callbacks->destructor(agent); } ast_cc_config_params_destroy(agent->cc_params); } static struct ast_cc_agent *cc_agent_init(struct ast_channel *caller_chan, const char * const caller_name, const int core_id, struct cc_monitor_tree *interface_tree) { struct ast_cc_agent *agent; struct ast_cc_config_params *cc_params; if (!(agent = ao2_t_alloc(sizeof(*agent) + strlen(caller_name), agent_destroy, "Allocating new ast_cc_agent"))) { return NULL; } agent->core_id = core_id; strcpy(agent->device_name, caller_name); cc_params = ast_channel_get_cc_config_params(caller_chan); if (!cc_params) { cc_unref(agent, "Could not get channel config params."); return NULL; } if (!(agent->cc_params = ast_cc_config_params_init())) { cc_unref(agent, "Could not init agent config params."); return NULL; } ast_cc_copy_config_params(agent->cc_params, cc_params); if (!(agent->callbacks = find_agent_callbacks(caller_chan))) { cc_unref(agent, "Could not find agent callbacks."); return NULL; } check_callback_sanity(agent->callbacks); if (agent->callbacks->init(agent, caller_chan)) { cc_unref(agent, "Agent init callback failed."); return NULL; } ast_log_dynamic_level(cc_logger_level, "Core %d: Created an agent for caller %s\n", agent->core_id, agent->device_name); return agent; } /* Generic agent callbacks */ static int cc_generic_agent_init(struct ast_cc_agent *agent, struct ast_channel *chan); static int cc_generic_agent_start_offer_timer(struct ast_cc_agent *agent); static int cc_generic_agent_stop_offer_timer(struct ast_cc_agent *agent); static void cc_generic_agent_respond(struct ast_cc_agent *agent, enum ast_cc_agent_response_reason reason); static int cc_generic_agent_status_request(struct ast_cc_agent *agent); static int cc_generic_agent_stop_ringing(struct ast_cc_agent *agent); static int cc_generic_agent_start_monitoring(struct ast_cc_agent *agent); static int cc_generic_agent_recall(struct ast_cc_agent *agent); static void cc_generic_agent_destructor(struct ast_cc_agent *agent); static struct ast_cc_agent_callbacks generic_agent_callbacks = { .type = "generic", .init = cc_generic_agent_init, .start_offer_timer = cc_generic_agent_start_offer_timer, .stop_offer_timer = cc_generic_agent_stop_offer_timer, .respond = cc_generic_agent_respond, .status_request = cc_generic_agent_status_request, .stop_ringing = cc_generic_agent_stop_ringing, .start_monitoring = cc_generic_agent_start_monitoring, .callee_available = cc_generic_agent_recall, .destructor = cc_generic_agent_destructor, }; struct cc_generic_agent_pvt { /*! * Subscription to device state * * Used in the CC_CALLER_BUSY state. The * generic agent will subscribe to the * device state of the caller in order to * determine when we may move on */ struct ast_event_sub *sub; /*! * Scheduler id of offer timer. */ int offer_timer_id; /*! * Caller ID number * * When we re-call the caller, we need * to provide this information to * ast_request_and_dial so that the * information will be present in the * call to the callee */ char cid_num[AST_CHANNEL_NAME]; /*! * Caller ID name * * See the description of cid_num. * The same applies here, except this * is the caller's name. */ char cid_name[AST_CHANNEL_NAME]; /*! * Extension dialed * * The original extension dialed. This is used * so that when performing a recall, we can * call the proper extension. */ char exten[AST_CHANNEL_NAME]; /*! * Context dialed * * The original context dialed. This is used * so that when performaing a recall, we can * call into the proper context */ char context[AST_CHANNEL_NAME]; }; static int cc_generic_agent_init(struct ast_cc_agent *agent, struct ast_channel *chan) { struct cc_generic_agent_pvt *generic_pvt = ast_calloc(1, sizeof(*generic_pvt)); if (!generic_pvt) { return -1; } generic_pvt->offer_timer_id = -1; if (chan->caller.id.number.valid && chan->caller.id.number.str) { ast_copy_string(generic_pvt->cid_num, chan->caller.id.number.str, sizeof(generic_pvt->cid_num)); } if (chan->caller.id.name.valid && chan->caller.id.name.str) { ast_copy_string(generic_pvt->cid_name, chan->caller.id.name.str, sizeof(generic_pvt->cid_name)); } ast_copy_string(generic_pvt->exten, S_OR(chan->macroexten, chan->exten), sizeof(generic_pvt->exten)); ast_copy_string(generic_pvt->context, S_OR(chan->macrocontext, chan->context), sizeof(generic_pvt->context)); agent->private_data = generic_pvt; ast_set_flag(agent, AST_CC_AGENT_SKIP_OFFER); return 0; } static int offer_timer_expire(const void *data) { struct ast_cc_agent *agent = (struct ast_cc_agent *) data; struct cc_generic_agent_pvt *agent_pvt = agent->private_data; ast_log_dynamic_level(cc_logger_level, "Core %d: Queuing change request because offer timer has expired.\n", agent->core_id); agent_pvt->offer_timer_id = -1; ast_cc_failed(agent->core_id, "Generic agent %s offer timer expired", agent->device_name); cc_unref(agent, "Remove scheduler's reference to the agent"); return 0; } static int cc_generic_agent_start_offer_timer(struct ast_cc_agent *agent) { int when; int sched_id; struct cc_generic_agent_pvt *generic_pvt = agent->private_data; ast_assert(cc_sched_thread != NULL); ast_assert(agent->cc_params != NULL); when = ast_get_cc_offer_timer(agent->cc_params) * 1000; ast_log_dynamic_level(cc_logger_level, "Core %d: About to schedule offer timer expiration for %d ms\n", agent->core_id, when); if ((sched_id = ast_sched_thread_add(cc_sched_thread, when, offer_timer_expire, cc_ref(agent, "Give scheduler an agent ref"))) == -1) { return -1; } generic_pvt->offer_timer_id = sched_id; return 0; } static int cc_generic_agent_stop_offer_timer(struct ast_cc_agent *agent) { struct cc_generic_agent_pvt *generic_pvt = agent->private_data; if (generic_pvt->offer_timer_id != -1) { if (!ast_sched_thread_del(cc_sched_thread, generic_pvt->offer_timer_id)) { cc_unref(agent, "Remove scheduler's reference to the agent"); } generic_pvt->offer_timer_id = -1; } return 0; } static void cc_generic_agent_respond(struct ast_cc_agent *agent, enum ast_cc_agent_response_reason reason) { /* The generic agent doesn't have to do anything special to * acknowledge a CC request. Just return. */ return; } static int cc_generic_agent_status_request(struct ast_cc_agent *agent) { ast_cc_agent_status_response(agent->core_id, ast_device_state(agent->device_name)); return 0; } static int cc_generic_agent_stop_ringing(struct ast_cc_agent *agent) { struct ast_channel *recall_chan = ast_channel_get_by_name_prefix(agent->device_name, strlen(agent->device_name)); if (!recall_chan) { return 0; } ast_softhangup(recall_chan, AST_SOFTHANGUP_EXPLICIT); return 0; } static int generic_agent_devstate_unsubscribe(void *data) { struct ast_cc_agent *agent = data; struct cc_generic_agent_pvt *generic_pvt = agent->private_data; if (generic_pvt->sub != NULL) { generic_pvt->sub = ast_event_unsubscribe(generic_pvt->sub); } cc_unref(agent, "Done unsubscribing from devstate"); return 0; } static void generic_agent_devstate_cb(const struct ast_event *event, void *userdata) { struct ast_cc_agent *agent = userdata; /* We can't unsubscribe from device state events here because it causes a deadlock */ if (ast_taskprocessor_push(cc_core_taskprocessor, generic_agent_devstate_unsubscribe, cc_ref(agent, "ref agent for device state unsubscription"))) { cc_unref(agent, "Unref agent unsubscribing from devstate failed"); } ast_cc_agent_caller_available(agent->core_id, "%s is no longer busy", agent->device_name); } static int cc_generic_agent_start_monitoring(struct ast_cc_agent *agent) { struct cc_generic_agent_pvt *generic_pvt = agent->private_data; struct ast_str *str = ast_str_alloca(128); ast_assert(generic_pvt->sub == NULL); ast_str_set(&str, 0, "Starting to monitor %s device state since it is busy\n", agent->device_name); if (!(generic_pvt->sub = ast_event_subscribe( AST_EVENT_DEVICE_STATE, generic_agent_devstate_cb, ast_str_buffer(str), agent, AST_EVENT_IE_DEVICE, AST_EVENT_IE_PLTYPE_STR, agent->device_name, AST_EVENT_IE_STATE, AST_EVENT_IE_PLTYPE_UINT, AST_DEVICE_NOT_INUSE, AST_EVENT_IE_END))) { return -1; } return 0; } static void *generic_recall(void *data) { struct ast_cc_agent *agent = data; struct cc_generic_agent_pvt *generic_pvt = agent->private_data; const char *interface = S_OR(ast_get_cc_agent_dialstring(agent->cc_params), ast_strdupa(agent->device_name)); const char *tech; char *target; int reason; struct ast_channel *chan; const char *callback_macro = ast_get_cc_callback_macro(agent->cc_params); unsigned int recall_timer = ast_get_cc_recall_timer(agent->cc_params) * 1000; tech = interface; if ((target = strchr(interface, '/'))) { *target++ = '\0'; } if (!(chan = ast_request_and_dial(tech, AST_FORMAT_SLINEAR, NULL, target, recall_timer, &reason, generic_pvt->cid_num, generic_pvt->cid_name))) { /* Hmm, no channel. Sucks for you, bud. */ ast_log_dynamic_level(cc_logger_level, "Core %d: Failed to call back %s for reason %d\n", agent->core_id, agent->device_name, reason); ast_cc_failed(agent->core_id, "Failed to call back device %s/%s", tech, target); return NULL; } /* We have a channel. It's time now to set up the datastore of recalled CC interfaces. * This will be a common task for all recall functions. If it were possible, I'd have * the core do it automatically, but alas I cannot. Instead, I will provide a public * function to do so. */ ast_setup_cc_recall_datastore(chan, agent->core_id); ast_cc_agent_set_interfaces_chanvar(chan); ast_copy_string(chan->exten, generic_pvt->exten, sizeof(chan->exten)); ast_copy_string(chan->context, generic_pvt->context, sizeof(chan->context)); chan->priority = 1; pbx_builtin_setvar_helper(chan, "CC_EXTEN", generic_pvt->exten); pbx_builtin_setvar_helper(chan, "CC_CONTEXT", generic_pvt->context); if (!ast_strlen_zero(callback_macro)) { ast_log_dynamic_level(cc_logger_level, "Core %d: There's a callback macro configured for agent %s\n", agent->core_id, agent->device_name); if (ast_app_run_macro(NULL, chan, callback_macro, NULL)) { ast_cc_failed(agent->core_id, "Callback macro to %s failed. Maybe a hangup?", agent->device_name); ast_hangup(chan); return NULL; } } ast_cc_agent_recalling(agent->core_id, "Generic agent %s is recalling", agent->device_name); ast_pbx_start(chan); return NULL; } static int cc_generic_agent_recall(struct ast_cc_agent *agent) { pthread_t clotho; enum ast_device_state current_state = ast_device_state(agent->device_name); if (current_state != AST_DEVICE_NOT_INUSE && current_state != AST_DEVICE_UNKNOWN) { /* We can't try to contact the device right now because he's not available * Let the core know he's busy. */ ast_cc_agent_caller_busy(agent->core_id, "Generic agent caller %s is busy", agent->device_name); return 0; } ast_pthread_create_detached_background(&clotho, NULL, generic_recall, agent); return 0; } static void cc_generic_agent_destructor(struct ast_cc_agent *agent) { struct cc_generic_agent_pvt *agent_pvt = agent->private_data; if (!agent_pvt) { /* The agent constructor probably failed. */ return; } cc_generic_agent_stop_offer_timer(agent); if (agent_pvt->sub) { agent_pvt->sub = ast_event_unsubscribe(agent_pvt->sub); } ast_free(agent_pvt); } static void cc_core_instance_destructor(void *data) { struct cc_core_instance *core_instance = data; ast_log_dynamic_level(cc_logger_level, "Core %d: Destroying core instance\n", core_instance->core_id); if (core_instance->agent) { cc_unref(core_instance->agent, "Core instance is done with the agent now"); } if (core_instance->monitors) { core_instance->monitors = cc_unref(core_instance->monitors, "Core instance is done with interface list"); } } static struct cc_core_instance *cc_core_init_instance(struct ast_channel *caller_chan, struct cc_monitor_tree *called_tree, const int core_id, struct cc_control_payload *cc_data) { char caller[AST_CHANNEL_NAME]; struct cc_core_instance *core_instance; struct ast_cc_config_params *cc_params; long agent_count; int recall_core_id; ast_channel_get_device_name(caller_chan, caller, sizeof(caller)); cc_params = ast_channel_get_cc_config_params(caller_chan); if (!cc_params) { ast_log_dynamic_level(cc_logger_level, "Could not get CC parameters for %s\n", caller); return NULL; } /* First, we need to kill off other pending CC offers from caller. If the caller is going * to request a CC service, it may only be for the latest call he made. */ if (ast_get_cc_agent_policy(cc_params) == AST_CC_AGENT_GENERIC) { kill_duplicate_offers(caller); } ast_cc_is_recall(caller_chan, &recall_core_id, NULL); agent_count = count_agents(caller, recall_core_id); if (agent_count >= ast_get_cc_max_agents(cc_params)) { ast_log_dynamic_level(cc_logger_level, "Caller %s already has the maximum number of agents configured\n", caller); return NULL; } /* Generic agents can only have a single outstanding CC request per caller. */ if (agent_count > 0 && ast_get_cc_agent_policy(cc_params) == AST_CC_AGENT_GENERIC) { ast_log_dynamic_level(cc_logger_level, "Generic agents can only have a single outstanding request\n"); return NULL; } /* Next, we need to create the core instance for this call */ if (!(core_instance = ao2_t_alloc(sizeof(*core_instance), cc_core_instance_destructor, "Creating core instance for CC"))) { return NULL; } core_instance->core_id = core_id; if (!(core_instance->agent = cc_agent_init(caller_chan, caller, core_instance->core_id, called_tree))) { cc_unref(core_instance, "Couldn't allocate agent, unref core_instance"); return NULL; } core_instance->monitors = cc_ref(called_tree, "Core instance getting ref to monitor tree"); ao2_t_link(cc_core_instances, core_instance, "Link core instance into container"); return core_instance; } struct cc_state_change_args { struct cc_core_instance *core_instance;/*!< Holds reference to core instance. */ enum cc_state state; int core_id; char debug[1]; }; static int is_state_change_valid(enum cc_state current_state, const enum cc_state new_state, struct ast_cc_agent *agent) { int is_valid = 0; switch (new_state) { case CC_AVAILABLE: ast_log_dynamic_level(cc_logger_level, "Core %d: Asked to change to state %d? That should never happen.\n", agent->core_id, new_state); break; case CC_CALLER_OFFERED: if (current_state == CC_AVAILABLE) { is_valid = 1; } break; case CC_CALLER_REQUESTED: if (current_state == CC_CALLER_OFFERED || (current_state == CC_AVAILABLE && ast_test_flag(agent, AST_CC_AGENT_SKIP_OFFER))) { is_valid = 1; } break; case CC_ACTIVE: if (current_state == CC_CALLER_REQUESTED || current_state == CC_CALLER_BUSY) { is_valid = 1; } break; case CC_CALLEE_READY: if (current_state == CC_ACTIVE) { is_valid = 1; } break; case CC_CALLER_BUSY: if (current_state == CC_CALLEE_READY) { is_valid = 1; } break; case CC_RECALLING: if (current_state == CC_CALLEE_READY) { is_valid = 1; } break; case CC_COMPLETE: if (current_state == CC_RECALLING) { is_valid = 1; } break; case CC_FAILED: is_valid = 1; break; default: ast_log_dynamic_level(cc_logger_level, "Core %d: Asked to change to unknown state %d\n", agent->core_id, new_state); break; } return is_valid; } static int cc_available(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state) { /* This should never happen... */ ast_log(LOG_WARNING, "Someone requested to change to CC_AVAILABLE? Ignoring.\n"); return -1; } static int cc_caller_offered(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state) { if (core_instance->agent->callbacks->start_offer_timer(core_instance->agent)) { ast_cc_failed(core_instance->core_id, "Failed to start the offer timer for %s\n", core_instance->agent->device_name); return -1; } manager_event(EVENT_FLAG_CC, "CCOfferTimerStart", "CoreID: %d\r\n" "Caller: %s\r\n" "Expires: %u\r\n", core_instance->core_id, core_instance->agent->device_name, core_instance->agent->cc_params->cc_offer_timer); ast_log_dynamic_level(cc_logger_level, "Core %d: Started the offer timer for the agent %s!\n", core_instance->core_id, core_instance->agent->device_name); return 0; } /*! * \brief check if the core instance has any device monitors * * In any case where we end up removing a device monitor from the * list of device monitors, it is important to see what the state * of the list is afterwards. If we find that we only have extension * monitors left, then no devices are actually being monitored. * In such a case, we need to declare that CC has failed for this * call. This function helps those cases to determine if they should * declare failure. * * \param core_instance The core instance we are checking for the existence * of device monitors * \retval 0 No device monitors exist on this core_instance * \retval 1 There is still at least 1 device monitor remaining */ static int has_device_monitors(struct cc_core_instance *core_instance) { struct ast_cc_monitor *iter; int res = 0; AST_LIST_TRAVERSE(core_instance->monitors, iter, next) { if (iter->interface->monitor_class == AST_CC_DEVICE_MONITOR) { res = 1; break; } } return res; } static void request_cc(struct cc_core_instance *core_instance) { struct ast_cc_monitor *monitor_iter; AST_LIST_LOCK(core_instance->monitors); AST_LIST_TRAVERSE_SAFE_BEGIN(core_instance->monitors, monitor_iter, next) { if (monitor_iter->interface->monitor_class == AST_CC_DEVICE_MONITOR) { if (monitor_iter->callbacks->request_cc(monitor_iter, &monitor_iter->available_timer_id)) { AST_LIST_REMOVE_CURRENT(next); cc_extension_monitor_change_is_valid(core_instance, monitor_iter->parent_id, monitor_iter->interface->device_name, 1); cc_unref(monitor_iter, "request_cc failed. Unref list's reference to monitor"); } else { manager_event(EVENT_FLAG_CC, "CCRequested", "CoreID: %d\r\n" "Caller: %s\r\n" "Callee: %s\r\n", core_instance->core_id, core_instance->agent->device_name, monitor_iter->interface->device_name); } } } AST_LIST_TRAVERSE_SAFE_END; if (!has_device_monitors(core_instance)) { ast_cc_failed(core_instance->core_id, "All device monitors failed to request CC"); } AST_LIST_UNLOCK(core_instance->monitors); } static int cc_caller_requested(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state) { if (!ast_cc_request_is_within_limits()) { ast_log(LOG_WARNING, "Cannot request CC since there is no more room for requests\n"); core_instance->agent->callbacks->respond(core_instance->agent, AST_CC_AGENT_RESPONSE_FAILURE_TOO_MANY); ast_cc_failed(core_instance->core_id, "Too many requests in the system"); return -1; } core_instance->agent->callbacks->stop_offer_timer(core_instance->agent); request_cc(core_instance); return 0; } static void unsuspend(struct cc_core_instance *core_instance) { struct ast_cc_monitor *monitor_iter; AST_LIST_LOCK(core_instance->monitors); AST_LIST_TRAVERSE_SAFE_BEGIN(core_instance->monitors, monitor_iter, next) { if (monitor_iter->interface->monitor_class == AST_CC_DEVICE_MONITOR) { if (monitor_iter->callbacks->unsuspend(monitor_iter)) { AST_LIST_REMOVE_CURRENT(next); cc_extension_monitor_change_is_valid(core_instance, monitor_iter->parent_id, monitor_iter->interface->device_name, 1); cc_unref(monitor_iter, "unsuspend failed. Unref list's reference to monitor"); } } } AST_LIST_TRAVERSE_SAFE_END; if (!has_device_monitors(core_instance)) { ast_cc_failed(core_instance->core_id, "All device monitors failed to unsuspend CC"); } AST_LIST_UNLOCK(core_instance->monitors); } static int cc_active(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state) { /* Either * 1. Callee accepted CC request, call agent's ack callback. * 2. Caller became available, call agent's stop_monitoring callback and * call monitor's unsuspend callback. */ if (previous_state == CC_CALLER_REQUESTED) { core_instance->agent->callbacks->respond(core_instance->agent, AST_CC_AGENT_RESPONSE_SUCCESS); manager_event(EVENT_FLAG_CC, "CCRequestAcknowledged", "CoreID: %d\r\n" "Caller: %s\r\n", core_instance->core_id, core_instance->agent->device_name); } else if (previous_state == CC_CALLER_BUSY) { manager_event(EVENT_FLAG_CC, "CCCallerStopMonitoring", "CoreID: %d\r\n" "Caller: %s\r\n", core_instance->core_id, core_instance->agent->device_name); unsuspend(core_instance); } /* Not possible for previous_state to be anything else due to the is_state_change_valid check at the beginning */ return 0; } static int cc_callee_ready(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state) { core_instance->agent->callbacks->callee_available(core_instance->agent); return 0; } static void suspend(struct cc_core_instance *core_instance) { struct ast_cc_monitor *monitor_iter; AST_LIST_LOCK(core_instance->monitors); AST_LIST_TRAVERSE_SAFE_BEGIN(core_instance->monitors, monitor_iter, next) { if (monitor_iter->interface->monitor_class == AST_CC_DEVICE_MONITOR) { if (monitor_iter->callbacks->suspend(monitor_iter)) { AST_LIST_REMOVE_CURRENT(next); cc_extension_monitor_change_is_valid(core_instance, monitor_iter->parent_id, monitor_iter->interface->device_name, 1); cc_unref(monitor_iter, "suspend failed. Unref list's reference to monitor"); } } } AST_LIST_TRAVERSE_SAFE_END; if (!has_device_monitors(core_instance)) { ast_cc_failed(core_instance->core_id, "All device monitors failed to suspend CC"); } AST_LIST_UNLOCK(core_instance->monitors); } static int cc_caller_busy(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state) { /* Callee was available, but caller was busy, call agent's begin_monitoring callback * and call monitor's suspend callback. */ suspend(core_instance); core_instance->agent->callbacks->start_monitoring(core_instance->agent); manager_event(EVENT_FLAG_CC, "CCCallerStartMonitoring", "CoreID: %d\r\n" "Caller: %s\r\n", core_instance->core_id, core_instance->agent->device_name); return 0; } static void cancel_available_timer(struct cc_core_instance *core_instance) { struct ast_cc_monitor *monitor_iter; AST_LIST_LOCK(core_instance->monitors); AST_LIST_TRAVERSE_SAFE_BEGIN(core_instance->monitors, monitor_iter, next) { if (monitor_iter->interface->monitor_class == AST_CC_DEVICE_MONITOR) { if (monitor_iter->callbacks->cancel_available_timer(monitor_iter, &monitor_iter->available_timer_id)) { AST_LIST_REMOVE_CURRENT(next); cc_extension_monitor_change_is_valid(core_instance, monitor_iter->parent_id, monitor_iter->interface->device_name, 1); cc_unref(monitor_iter, "cancel_available_timer failed. Unref list's reference to monitor"); } } } AST_LIST_TRAVERSE_SAFE_END; if (!has_device_monitors(core_instance)) { ast_cc_failed(core_instance->core_id, "All device monitors failed to cancel their available timers"); } AST_LIST_UNLOCK(core_instance->monitors); } static int cc_recalling(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state) { /* Both caller and callee are available, call agent's recall callback */ cancel_available_timer(core_instance); manager_event(EVENT_FLAG_CC, "CCCallerRecalling", "CoreID: %d\r\n" "Caller: %s\r\n", core_instance->core_id, core_instance->agent->device_name); return 0; } static int cc_complete(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state) { /* Recall has made progress, call agent and monitor destructor functions */ manager_event(EVENT_FLAG_CC, "CCRecallComplete", "CoreID: %d\r\n" "Caller: %s\r\n", core_instance->core_id, core_instance->agent->device_name); ao2_t_unlink(cc_core_instances, core_instance, "Unlink core instance since CC recall has completed"); return 0; } static int cc_failed(struct cc_core_instance *core_instance, struct cc_state_change_args *args, enum cc_state previous_state) { manager_event(EVENT_FLAG_CC, "CCFailure", "CoreID: %d\r\n" "Caller: %s\r\n" "Reason: %s\r\n", core_instance->core_id, core_instance->agent->device_name, args->debug); ao2_t_unlink(cc_core_instances, core_instance, "Unlink core instance since CC failed"); return 0; } static int (* const state_change_funcs [])(struct cc_core_instance *, struct cc_state_change_args *, enum cc_state previous_state) = { [CC_AVAILABLE] = cc_available, [CC_CALLER_OFFERED] = cc_caller_offered, [CC_CALLER_REQUESTED] = cc_caller_requested, [CC_ACTIVE] = cc_active, [CC_CALLEE_READY] = cc_callee_ready, [CC_CALLER_BUSY] = cc_caller_busy, [CC_RECALLING] = cc_recalling, [CC_COMPLETE] = cc_complete, [CC_FAILED] = cc_failed, }; static int cc_do_state_change(void *datap) { struct cc_state_change_args *args = datap; struct cc_core_instance *core_instance; enum cc_state previous_state; int res; ast_log_dynamic_level(cc_logger_level, "Core %d: State change to %d requested. Reason: %s\n", args->core_id, args->state, args->debug); core_instance = args->core_instance; if (!is_state_change_valid(core_instance->current_state, args->state, core_instance->agent)) { ast_log_dynamic_level(cc_logger_level, "Core %d: Invalid state change requested. Cannot go from %s to %s\n", args->core_id, cc_state_to_string(core_instance->current_state), cc_state_to_string(args->state)); if (args->state == CC_CALLER_REQUESTED) { /* * For out-of-order requests, we need to let the requester know that * we can't handle the request now. */ core_instance->agent->callbacks->respond(core_instance->agent, AST_CC_AGENT_RESPONSE_FAILURE_INVALID); } ast_free(args); cc_unref(core_instance, "Unref core instance from when it was found earlier"); return -1; } /* We can change to the new state now. */ previous_state = core_instance->current_state; core_instance->current_state = args->state; res = state_change_funcs[core_instance->current_state](core_instance, args, previous_state); ast_free(args); cc_unref(core_instance, "Unref since state change has completed"); /* From ao2_find */ return res; } static int cc_request_state_change(enum cc_state state, const int core_id, const char *debug, va_list ap) { int res; int debuglen; char dummy[1]; va_list aq; struct cc_core_instance *core_instance; struct cc_state_change_args *args; /* This initial call to vsnprintf is simply to find what the * size of the string needs to be */ va_copy(aq, ap); /* We add 1 to the result since vsnprintf's return does not * include the terminating null byte */ debuglen = vsnprintf(dummy, sizeof(dummy), debug, aq) + 1; va_end(aq); if (!(args = ast_calloc(1, sizeof(*args) + debuglen))) { return -1; } core_instance = find_cc_core_instance(core_id); if (!core_instance) { ast_log_dynamic_level(cc_logger_level, "Core %d: Unable to find core instance.\n", core_id); ast_free(args); return -1; } args->core_instance = core_instance; args->state = state; args->core_id = core_id; vsnprintf(args->debug, debuglen, debug, ap); res = ast_taskprocessor_push(cc_core_taskprocessor, cc_do_state_change, args); if (res) { cc_unref(core_instance, "Unref core instance. ast_taskprocessor_push failed"); ast_free(args); } return res; } struct cc_recall_ds_data { int core_id; char ignore; char nested; struct cc_monitor_tree *interface_tree; }; static void *cc_recall_ds_duplicate(void *data) { struct cc_recall_ds_data *old_data = data; struct cc_recall_ds_data *new_data = ast_calloc(1, sizeof(*new_data)); if (!new_data) { return NULL; } new_data->interface_tree = cc_ref(old_data->interface_tree, "Bump refcount of monitor tree for recall datastore duplicate"); new_data->core_id = old_data->core_id; new_data->nested = 1; return new_data; } static void cc_recall_ds_destroy(void *data) { struct cc_recall_ds_data *recall_data = data; recall_data->interface_tree = cc_unref(recall_data->interface_tree, "Unref recall monitor tree"); ast_free(recall_data); } static struct ast_datastore_info recall_ds_info = { .type = "cc_recall", .duplicate = cc_recall_ds_duplicate, .destroy = cc_recall_ds_destroy, }; int ast_setup_cc_recall_datastore(struct ast_channel *chan, const int core_id) { struct ast_datastore *recall_datastore = ast_datastore_alloc(&recall_ds_info, NULL); struct cc_recall_ds_data *recall_data; struct cc_core_instance *core_instance; if (!recall_datastore) { return -1; } if (!(recall_data = ast_calloc(1, sizeof(*recall_data)))) { ast_datastore_free(recall_datastore); return -1; } if (!(core_instance = find_cc_core_instance(core_id))) { ast_free(recall_data); ast_datastore_free(recall_datastore); return -1; } recall_data->interface_tree = cc_ref(core_instance->monitors, "Bump refcount for monitor tree for recall datastore"); recall_data->core_id = core_id; recall_datastore->data = recall_data; recall_datastore->inheritance = DATASTORE_INHERIT_FOREVER; ast_channel_lock(chan); ast_channel_datastore_add(chan, recall_datastore); ast_channel_unlock(chan); cc_unref(core_instance, "Recall datastore set up. No need for core_instance ref"); return 0; } int ast_cc_is_recall(struct ast_channel *chan, int *core_id, const char * const monitor_type) { struct ast_datastore *recall_datastore; struct cc_recall_ds_data *recall_data; struct cc_monitor_tree *interface_tree; char device_name[AST_CHANNEL_NAME]; struct ast_cc_monitor *device_monitor; int core_id_candidate; ast_assert(core_id != NULL); *core_id = -1; ast_channel_lock(chan); if (!(recall_datastore = ast_channel_datastore_find(chan, &recall_ds_info, NULL))) { /* Obviously not a recall if the datastore isn't present */ ast_channel_unlock(chan); return 0; } recall_data = recall_datastore->data; if (recall_data->ignore) { /* Though this is a recall, the call to this particular interface is not part of the * recall either because this is a call forward or because this is not the first * invocation of Dial during this call */ ast_channel_unlock(chan); return 0; } if (!recall_data->nested) { /* If the nested flag is not set, then this means that * the channel passed to this function is the caller making * the recall. This means that we shouldn't look through * the monitor tree for the channel because it shouldn't be * there. However, this is a recall though, so return true. */ *core_id = recall_data->core_id; ast_channel_unlock(chan); return 1; } if (ast_strlen_zero(monitor_type)) { /* If someone passed a NULL or empty monitor type, then it is clear * the channel they passed in was an incoming channel, and so searching * the list of dialed interfaces is not going to be helpful. Just return * false immediately. */ ast_channel_unlock(chan); return 0; } interface_tree = recall_data->interface_tree; ast_channel_get_device_name(chan, device_name, sizeof(device_name)); /* We grab the value of the recall_data->core_id so that we * can unlock the channel before we start looking through the * interface list. That way we don't have to worry about a possible * clash between the channel lock and the monitor tree lock. */ core_id_candidate = recall_data->core_id; ast_channel_unlock(chan); /* * Now we need to find out if the channel device name * is in the list of interfaces in the called tree. */ AST_LIST_LOCK(interface_tree); AST_LIST_TRAVERSE(interface_tree, device_monitor, next) { if (!strcmp(device_monitor->interface->device_name, device_name) && !strcmp(device_monitor->interface->monitor_type, monitor_type)) { /* BOOM! Device is in the tree! We have a winner! */ *core_id = core_id_candidate; AST_LIST_UNLOCK(interface_tree); return 1; } } AST_LIST_UNLOCK(interface_tree); return 0; } struct ast_cc_monitor *ast_cc_get_monitor_by_recall_core_id(const int core_id, const char * const device_name) { struct cc_core_instance *core_instance = find_cc_core_instance(core_id); struct ast_cc_monitor *monitor_iter; if (!core_instance) { return NULL; } AST_LIST_LOCK(core_instance->monitors); AST_LIST_TRAVERSE(core_instance->monitors, monitor_iter, next) { if (!strcmp(monitor_iter->interface->device_name, device_name)) { /* Found a monitor. */ cc_ref(monitor_iter, "Hand the requester of the monitor a reference"); break; } } AST_LIST_UNLOCK(core_instance->monitors); cc_unref(core_instance, "Done with core instance ref in ast_cc_get_monitor_by_recall_core_id"); return monitor_iter; } /*! * \internal * \brief uniquely append a dialstring to our CC_INTERFACES chanvar string. * * We will only append a string if it has not already appeared in our channel * variable earlier. We ensure that we don't erroneously match substrings by * adding an ampersand to the end of our potential dialstring and searching for * it plus the ampersand in our variable. * * It's important to note that once we have built the full CC_INTERFACES string, * there will be an extra ampersand at the end which must be stripped off by * the caller of this function. * * \param str An ast_str holding what we will add to CC_INTERFACES * \param dialstring A new dialstring to add * \retval void */ static void cc_unique_append(struct ast_str *str, const char *dialstring) { char dialstring_search[AST_CHANNEL_NAME]; if (ast_strlen_zero(dialstring)) { /* No dialstring to append. */ return; } snprintf(dialstring_search, sizeof(dialstring_search), "%s%c", dialstring, '&'); if (strstr(ast_str_buffer(str), dialstring_search)) { return; } ast_str_append(&str, 0, "%s", dialstring_search); } /*! * \internal * \brief Build the CC_INTERFACES channel variable * * The method used is to traverse the child dialstrings in the * passed-in extension monitor, adding any that have the is_valid * flag set. Then, traverse the monitors, finding all children * of the starting extension monitor and adding their dialstrings * as well. * * \param starting_point The extension monitor that is the parent to all * monitors whose dialstrings should be added to CC_INTERFACES * \param str Where we will store CC_INTERFACES * \retval void */ static void build_cc_interfaces_chanvar(struct ast_cc_monitor *starting_point, struct ast_str *str) { struct extension_monitor_pvt *extension_pvt; struct extension_child_dialstring *child_dialstring; struct ast_cc_monitor *monitor_iter = starting_point; int top_level_id = starting_point->id; size_t length; /* Init to an empty string. */ ast_str_truncate(str, 0); /* First we need to take all of the is_valid child_dialstrings from * the extension monitor we found and add them to the CC_INTERFACES * chanvar */ extension_pvt = starting_point->private_data; AST_LIST_TRAVERSE(&extension_pvt->child_dialstrings, child_dialstring, next) { if (child_dialstring->is_valid) { cc_unique_append(str, child_dialstring->original_dialstring); } } /* And now we get the dialstrings from each of the device monitors */ while ((monitor_iter = AST_LIST_NEXT(monitor_iter, next))) { if (monitor_iter->parent_id == top_level_id) { cc_unique_append(str, monitor_iter->dialstring); } } /* str will have an extra '&' tacked onto the end of it, so we need * to get rid of that. */ length = ast_str_strlen(str); if (length) { ast_str_truncate(str, length - 1); } if (length <= 1) { /* Nothing to recall? This should not happen. */ ast_log(LOG_ERROR, "CC_INTERFACES is empty. starting device_name:'%s'\n", starting_point->interface->device_name); } } int ast_cc_agent_set_interfaces_chanvar(struct ast_channel *chan) { struct ast_datastore *recall_datastore; struct cc_monitor_tree *interface_tree; struct ast_cc_monitor *monitor; struct cc_recall_ds_data *recall_data; struct ast_str *str = ast_str_create(64); int core_id; if (!str) { return -1; } ast_channel_lock(chan); if (!(recall_datastore = ast_channel_datastore_find(chan, &recall_ds_info, NULL))) { ast_channel_unlock(chan); ast_free(str); return -1; } recall_data = recall_datastore->data; interface_tree = recall_data->interface_tree; core_id = recall_data->core_id; ast_channel_unlock(chan); AST_LIST_LOCK(interface_tree); monitor = AST_LIST_FIRST(interface_tree); build_cc_interfaces_chanvar(monitor, str); AST_LIST_UNLOCK(interface_tree); pbx_builtin_setvar_helper(chan, "CC_INTERFACES", ast_str_buffer(str)); ast_log_dynamic_level(cc_logger_level, "Core %d: CC_INTERFACES set to %s\n", core_id, ast_str_buffer(str)); ast_free(str); return 0; } int ast_set_cc_interfaces_chanvar(struct ast_channel *chan, const char * const extension) { struct ast_datastore *recall_datastore; struct cc_monitor_tree *interface_tree; struct ast_cc_monitor *monitor_iter; struct cc_recall_ds_data *recall_data; struct ast_str *str = ast_str_create(64); int core_id; if (!str) { return -1; } ast_channel_lock(chan); if (!(recall_datastore = ast_channel_datastore_find(chan, &recall_ds_info, NULL))) { ast_channel_unlock(chan); ast_free(str); return -1; } recall_data = recall_datastore->data; interface_tree = recall_data->interface_tree; core_id = recall_data->core_id; ast_channel_unlock(chan); AST_LIST_LOCK(interface_tree); AST_LIST_TRAVERSE(interface_tree, monitor_iter, next) { if (!strcmp(monitor_iter->interface->device_name, extension)) { break; } } if (!monitor_iter) { /* We couldn't find this extension. This may be because * we have been directed into an unexpected extension because * the admin has changed a CC_INTERFACES variable at some point. */ AST_LIST_UNLOCK(interface_tree); ast_free(str); return -1; } build_cc_interfaces_chanvar(monitor_iter, str); AST_LIST_UNLOCK(interface_tree); pbx_builtin_setvar_helper(chan, "CC_INTERFACES", ast_str_buffer(str)); ast_log_dynamic_level(cc_logger_level, "Core %d: CC_INTERFACES set to %s\n", core_id, ast_str_buffer(str)); ast_free(str); return 0; } void ast_ignore_cc(struct ast_channel *chan) { struct ast_datastore *cc_datastore; struct ast_datastore *cc_recall_datastore; struct dialed_cc_interfaces *cc_interfaces; struct cc_recall_ds_data *recall_cc_data; ast_channel_lock(chan); if ((cc_datastore = ast_channel_datastore_find(chan, &dialed_cc_interfaces_info, NULL))) { cc_interfaces = cc_datastore->data; cc_interfaces->ignore = 1; } if ((cc_recall_datastore = ast_channel_datastore_find(chan, &recall_ds_info, NULL))) { recall_cc_data = cc_recall_datastore->data; recall_cc_data->ignore = 1; } ast_channel_unlock(chan); } static __attribute__((format(printf, 2, 3))) int cc_offer(const int core_id, const char * const debug, ...) { va_list ap; int res; va_start(ap, debug); res = cc_request_state_change(CC_CALLER_OFFERED, core_id, debug, ap); va_end(ap); return res; } int ast_cc_offer(struct ast_channel *caller_chan) { int core_id; int res = -1; struct ast_datastore *datastore; struct dialed_cc_interfaces *cc_interfaces; char cc_is_offerable; ast_channel_lock(caller_chan); if (!(datastore = ast_channel_datastore_find(caller_chan, &dialed_cc_interfaces_info, NULL))) { ast_channel_unlock(caller_chan); return res; } cc_interfaces = datastore->data; cc_is_offerable = cc_interfaces->is_original_caller; core_id = cc_interfaces->core_id; ast_channel_unlock(caller_chan); if (cc_is_offerable) { res = cc_offer(core_id, "CC offered to caller %s", caller_chan->name); } return res; } int ast_cc_agent_accept_request(int core_id, const char * const debug, ...) { va_list ap; int res; va_start(ap, debug); res = cc_request_state_change(CC_CALLER_REQUESTED, core_id, debug, ap); va_end(ap); return res; } int ast_cc_monitor_request_acked(int core_id, const char * const debug, ...) { va_list ap; int res; va_start(ap, debug); res = cc_request_state_change(CC_ACTIVE, core_id, debug, ap); va_end(ap); return res; } int ast_cc_monitor_callee_available(const int core_id, const char * const debug, ...) { va_list ap; int res; va_start(ap, debug); res = cc_request_state_change(CC_CALLEE_READY, core_id, debug, ap); va_end(ap); return res; } int ast_cc_agent_caller_busy(int core_id, const char * debug, ...) { va_list ap; int res; va_start(ap, debug); res = cc_request_state_change(CC_CALLER_BUSY, core_id, debug, ap); va_end(ap); return res; } int ast_cc_agent_caller_available(int core_id, const char * const debug, ...) { va_list ap; int res; va_start(ap, debug); res = cc_request_state_change(CC_ACTIVE, core_id, debug, ap); va_end(ap); return res; } int ast_cc_agent_recalling(int core_id, const char * const debug, ...) { va_list ap; int res; va_start(ap, debug); res = cc_request_state_change(CC_RECALLING, core_id, debug, ap); va_end(ap); return res; } int ast_cc_completed(struct ast_channel *chan, const char * const debug, ...) { struct ast_datastore *recall_datastore; struct cc_recall_ds_data *recall_data; int core_id; va_list ap; int res; ast_channel_lock(chan); if (!(recall_datastore = ast_channel_datastore_find(chan, &recall_ds_info, NULL))) { /* Silly! Why did you call this function if there's no recall DS? */ ast_channel_unlock(chan); return -1; } recall_data = recall_datastore->data; if (recall_data->nested || recall_data->ignore) { /* If this is being called from a nested Dial, it is too * early to determine if the recall has actually completed. * The outermost dial is the only one with the authority to * declare the recall to be complete. * * Similarly, if this function has been called when the * recall has progressed beyond the first dial, this is not * a legitimate time to declare the recall to be done. In fact, * that should have been done already. */ ast_channel_unlock(chan); return -1; } core_id = recall_data->core_id; ast_channel_unlock(chan); va_start(ap, debug); res = cc_request_state_change(CC_COMPLETE, core_id, debug, ap); va_end(ap); return res; } int ast_cc_failed(int core_id, const char * const debug, ...) { va_list ap; int res; va_start(ap, debug); res = cc_request_state_change(CC_FAILED, core_id, debug, ap); va_end(ap); return res; } struct ast_cc_monitor_failure_data { const char *device_name; char *debug; int core_id; }; static int cc_monitor_failed(void *data) { struct ast_cc_monitor_failure_data *failure_data = data; struct cc_core_instance *core_instance; struct ast_cc_monitor *monitor_iter; core_instance = find_cc_core_instance(failure_data->core_id); if (!core_instance) { /* Core instance no longer exists or invalid core_id. */ ast_log_dynamic_level(cc_logger_level, "Core %d: Could not find core instance for device %s '%s'\n", failure_data->core_id, failure_data->device_name, failure_data->debug); ast_free((char *) failure_data->device_name); ast_free((char *) failure_data->debug); ast_free(failure_data); return -1; } AST_LIST_LOCK(core_instance->monitors); AST_LIST_TRAVERSE_SAFE_BEGIN(core_instance->monitors, monitor_iter, next) { if (monitor_iter->interface->monitor_class == AST_CC_DEVICE_MONITOR) { if (!strcmp(monitor_iter->interface->device_name, failure_data->device_name)) { AST_LIST_REMOVE_CURRENT(next); cc_extension_monitor_change_is_valid(core_instance, monitor_iter->parent_id, monitor_iter->interface->device_name, 1); monitor_iter->callbacks->cancel_available_timer(monitor_iter, &monitor_iter->available_timer_id); manager_event(EVENT_FLAG_CC, "CCMonitorFailed", "CoreID: %d\r\n" "Callee: %s\r\n", monitor_iter->core_id, monitor_iter->interface->device_name); cc_unref(monitor_iter, "Monitor reported failure. Unref list's reference."); } } } AST_LIST_TRAVERSE_SAFE_END; if (!has_device_monitors(core_instance)) { ast_cc_failed(core_instance->core_id, "All monitors have failed\n"); } AST_LIST_UNLOCK(core_instance->monitors); cc_unref(core_instance, "Finished with core_instance in cc_monitor_failed\n"); ast_free((char *) failure_data->device_name); ast_free((char *) failure_data->debug); ast_free(failure_data); return 0; } int ast_cc_monitor_failed(int core_id, const char *const monitor_name, const char * const debug, ...) { struct ast_cc_monitor_failure_data *failure_data; int res; va_list ap; if (!(failure_data = ast_calloc(1, sizeof(*failure_data)))) { return -1; } if (!(failure_data->device_name = ast_strdup(monitor_name))) { ast_free(failure_data); return -1; } va_start(ap, debug); if (ast_vasprintf(&failure_data->debug, debug, ap) == -1) { va_end(ap); ast_free((char *)failure_data->device_name); ast_free(failure_data); return -1; } va_end(ap); failure_data->core_id = core_id; res = ast_taskprocessor_push(cc_core_taskprocessor, cc_monitor_failed, failure_data); if (res) { ast_free((char *)failure_data->device_name); ast_free((char *)failure_data->debug); ast_free(failure_data); } return res; } static int cc_status_request(void *data) { struct cc_core_instance *core_instance= data; int res; res = core_instance->agent->callbacks->status_request(core_instance->agent); cc_unref(core_instance, "Status request finished. Unref core instance"); return res; } int ast_cc_monitor_status_request(int core_id) { int res; struct cc_core_instance *core_instance = find_cc_core_instance(core_id); if (!core_instance) { return -1; } res = ast_taskprocessor_push(cc_core_taskprocessor, cc_status_request, core_instance); if (res) { cc_unref(core_instance, "Unref core instance. ast_taskprocessor_push failed"); } return res; } static int cc_stop_ringing(void *data) { struct cc_core_instance *core_instance = data; int res = 0; if (core_instance->agent->callbacks->stop_ringing) { res = core_instance->agent->callbacks->stop_ringing(core_instance->agent); } /* If an agent is being asked to stop ringing, then he needs to be prepared if for * whatever reason he needs to be called back again. The proper state to be in to * detect such a circumstance is the CC_ACTIVE state. * * We get to this state using the slightly unintuitive method of calling * ast_cc_monitor_request_acked because it gets us to the proper state. */ ast_cc_monitor_request_acked(core_instance->core_id, "Agent %s asked to stop ringing. Be prepared to be recalled again.", core_instance->agent->device_name); cc_unref(core_instance, "Stop ringing finished. Unref core_instance"); return res; } int ast_cc_monitor_stop_ringing(int core_id) { int res; struct cc_core_instance *core_instance = find_cc_core_instance(core_id); if (!core_instance) { return -1; } res = ast_taskprocessor_push(cc_core_taskprocessor, cc_stop_ringing, core_instance); if (res) { cc_unref(core_instance, "Unref core instance. ast_taskprocessor_push failed"); } return res; } static int cc_party_b_free(void *data) { struct cc_core_instance *core_instance = data; int res = 0; if (core_instance->agent->callbacks->party_b_free) { res = core_instance->agent->callbacks->party_b_free(core_instance->agent); } cc_unref(core_instance, "Party B free finished. Unref core_instance"); return res; } int ast_cc_monitor_party_b_free(int core_id) { int res; struct cc_core_instance *core_instance = find_cc_core_instance(core_id); if (!core_instance) { return -1; } res = ast_taskprocessor_push(cc_core_taskprocessor, cc_party_b_free, core_instance); if (res) { cc_unref(core_instance, "Unref core instance. ast_taskprocessor_push failed"); } return res; } struct cc_status_response_args { struct cc_core_instance *core_instance; enum ast_device_state devstate; }; static int cc_status_response(void *data) { struct cc_status_response_args *args = data; struct cc_core_instance *core_instance = args->core_instance; struct ast_cc_monitor *monitor_iter; enum ast_device_state devstate = args->devstate; ast_free(args); AST_LIST_LOCK(core_instance->monitors); AST_LIST_TRAVERSE(core_instance->monitors, monitor_iter, next) { if (monitor_iter->interface->monitor_class == AST_CC_DEVICE_MONITOR && monitor_iter->callbacks->status_response) { monitor_iter->callbacks->status_response(monitor_iter, devstate); } } AST_LIST_UNLOCK(core_instance->monitors); cc_unref(core_instance, "Status response finished. Unref core instance"); return 0; } int ast_cc_agent_status_response(int core_id, enum ast_device_state devstate) { struct cc_status_response_args *args; struct cc_core_instance *core_instance; int res; args = ast_calloc(1, sizeof(*args)); if (!args) { return -1; } core_instance = find_cc_core_instance(core_id); if (!core_instance) { ast_free(args); return -1; } args->core_instance = core_instance; args->devstate = devstate; res = ast_taskprocessor_push(cc_core_taskprocessor, cc_status_response, args); if (res) { cc_unref(core_instance, "Unref core instance. ast_taskprocessor_push failed"); ast_free(args); } return res; } static int cc_build_payload(struct ast_channel *chan, struct ast_cc_config_params *cc_params, const char *monitor_type, const char * const device_name, const char * dialstring, enum ast_cc_service_type service, void *private_data, struct cc_control_payload *payload) { struct ast_datastore *datastore; struct dialed_cc_interfaces *cc_interfaces; int dial_parent_id; ast_channel_lock(chan); datastore = ast_channel_datastore_find(chan, &dialed_cc_interfaces_info, NULL); if (!datastore) { ast_channel_unlock(chan); return -1; } cc_interfaces = datastore->data; dial_parent_id = cc_interfaces->dial_parent_id; ast_channel_unlock(chan); payload->monitor_type = monitor_type; payload->private_data = private_data; payload->service = service; ast_cc_copy_config_params(&payload->config_params, cc_params); payload->parent_interface_id = dial_parent_id; ast_copy_string(payload->device_name, device_name, sizeof(payload->device_name)); ast_copy_string(payload->dialstring, dialstring, sizeof(payload->dialstring)); return 0; } int ast_queue_cc_frame(struct ast_channel *chan, const char *monitor_type, const char * const dialstring, enum ast_cc_service_type service, void *private_data) { struct ast_frame frame = {0,}; char device_name[AST_CHANNEL_NAME]; int retval; struct ast_cc_config_params *cc_params; cc_params = ast_channel_get_cc_config_params(chan); if (!cc_params) { return -1; } ast_channel_get_device_name(chan, device_name, sizeof(device_name)); if (ast_cc_monitor_count(device_name, monitor_type) >= ast_get_cc_max_monitors(cc_params)) { ast_log(LOG_NOTICE, "Not queuing a CC frame for device %s since it already has its maximum monitors allocated\n", device_name); return -1; } if (ast_cc_build_frame(chan, cc_params, monitor_type, device_name, dialstring, service, private_data, &frame)) { /* Frame building failed. We can't use this. */ return -1; } retval = ast_queue_frame(chan, &frame); ast_frfree(&frame); return retval; } int ast_cc_build_frame(struct ast_channel *chan, struct ast_cc_config_params *cc_params, const char *monitor_type, const char * const device_name, const char * const dialstring, enum ast_cc_service_type service, void *private_data, struct ast_frame *frame) { struct cc_control_payload *payload = ast_calloc(1, sizeof(*payload)); if (!payload) { return -1; } if (cc_build_payload(chan, cc_params, monitor_type, device_name, dialstring, service, private_data, payload)) { /* Something screwed up, we can't make a frame with this */ ast_free(payload); return -1; } frame->frametype = AST_FRAME_CONTROL; frame->subclass.integer = AST_CONTROL_CC; frame->data.ptr = payload; frame->datalen = sizeof(*payload); frame->mallocd = AST_MALLOCD_DATA; return 0; } void ast_cc_call_failed(struct ast_channel *incoming, struct ast_channel *outgoing, const char * const dialstring) { char device_name[AST_CHANNEL_NAME]; struct cc_control_payload payload; struct ast_cc_config_params *cc_params; if (outgoing->hangupcause != AST_CAUSE_BUSY && outgoing->hangupcause != AST_CAUSE_CONGESTION) { /* It doesn't make sense to try to offer CCBS to the caller if the reason for ast_call * failing is something other than busy or congestion */ return; } cc_params = ast_channel_get_cc_config_params(outgoing); if (!cc_params) { return; } if (ast_get_cc_monitor_policy(cc_params) != AST_CC_MONITOR_GENERIC) { /* This sort of CCBS only works if using generic CC. For native, we would end up sending * a CC request for a non-existent call. The far end will reject this every time */ return; } ast_channel_get_device_name(outgoing, device_name, sizeof(device_name)); if (cc_build_payload(outgoing, cc_params, AST_CC_GENERIC_MONITOR_TYPE, device_name, dialstring, AST_CC_CCBS, NULL, &payload)) { /* Something screwed up, we can't make a frame with this */ return; } ast_handle_cc_control_frame(incoming, outgoing, &payload); } void ast_cc_busy_interface(struct ast_channel *inbound, struct ast_cc_config_params *cc_params, const char *monitor_type, const char * const device_name, const char * const dialstring, void *private_data) { struct cc_control_payload payload; if (cc_build_payload(inbound, cc_params, monitor_type, device_name, dialstring, AST_CC_CCBS, private_data, &payload)) { /* Something screwed up. Don't try to handle this payload */ call_destructor_with_no_monitor(monitor_type, private_data); return; } ast_handle_cc_control_frame(inbound, NULL, &payload); } int ast_cc_callback(struct ast_channel *inbound, const char * const tech, const char * const dest, ast_cc_callback_fn callback) { const struct ast_channel_tech *chantech = ast_get_channel_tech(tech); if (chantech && chantech->cc_callback) { chantech->cc_callback(inbound, dest, callback); } return 0; } static const char *ccreq_app = "CallCompletionRequest"; static int ccreq_exec(struct ast_channel *chan, const char *data) { struct cc_core_instance *core_instance; char device_name[AST_CHANNEL_NAME]; unsigned long match_flags; int res; ast_channel_get_device_name(chan, device_name, sizeof(device_name)); match_flags = MATCH_NO_REQUEST; if (!(core_instance = ao2_t_callback_data(cc_core_instances, 0, match_agent, device_name, &match_flags, "Find core instance for CallCompletionRequest"))) { ast_log_dynamic_level(cc_logger_level, "Couldn't find a core instance for caller %s\n", device_name); return -1; } ast_log_dynamic_level(cc_logger_level, "Core %d: Found core_instance for caller %s\n", core_instance->core_id, device_name); if (strcmp(core_instance->agent->callbacks->type, "generic")) { ast_log_dynamic_level(cc_logger_level, "Core %d: CallCompletionRequest is only for generic agent types.\n", core_instance->core_id); pbx_builtin_setvar_helper(chan, "CC_REQUEST_RESULT", "FAIL"); cc_unref(core_instance, "Unref core_instance since CallCompletionRequest was called with native agent"); return 0; } if (!ast_cc_request_is_within_limits()) { ast_log_dynamic_level(cc_logger_level, "Core %d: CallCompletionRequest failed. Too many requests in the system\n", core_instance->core_id); ast_cc_failed(core_instance->core_id, "Too many CC requests\n"); pbx_builtin_setvar_helper(chan, "CC_REQUEST_RESULT", "FAIL"); cc_unref(core_instance, "Unref core_instance since too many CC requests"); return 0; } res = ast_cc_agent_accept_request(core_instance->core_id, "CallCompletionRequest called by caller %s for core_id %d", device_name, core_instance->core_id); pbx_builtin_setvar_helper(chan, "CC_REQUEST_RESULT", res ? "FAIL" : "SUCCESS"); cc_unref(core_instance, "Done with CallCompletionRequest"); return res; } static const char *cccancel_app = "CallCompletionCancel"; static int cccancel_exec(struct ast_channel *chan, const char *data) { struct cc_core_instance *core_instance; char device_name[AST_CHANNEL_NAME]; unsigned long match_flags; int res; ast_channel_get_device_name(chan, device_name, sizeof(device_name)); match_flags = MATCH_REQUEST; if (!(core_instance = ao2_t_callback_data(cc_core_instances, 0, match_agent, device_name, &match_flags, "Find core instance for CallCompletionCancel"))) { ast_log(LOG_WARNING, "Cannot find CC transaction to cancel for caller %s\n", device_name); return -1; } if (strcmp(core_instance->agent->callbacks->type, "generic")) { ast_log(LOG_WARNING, "CallCompletionCancel may only be used for calles with a generic agent\n"); cc_unref(core_instance, "Unref core instance found during CallCompletionCancel"); return -1; } res = ast_cc_failed(core_instance->core_id, "Call completion request Cancelled for core ID %d by caller %s", core_instance->core_id, device_name); cc_unref(core_instance, "Unref core instance found during CallCompletionCancel"); return res; } struct count_monitors_cb_data { const char *device_name; const char *monitor_type; int count; }; static int count_monitors_cb(void *obj, void *arg, int flags) { struct cc_core_instance *core_instance = obj; struct count_monitors_cb_data *cb_data = arg; const char *device_name = cb_data->device_name; const char *monitor_type = cb_data->monitor_type; struct ast_cc_monitor *monitor_iter; AST_LIST_LOCK(core_instance->monitors); AST_LIST_TRAVERSE(core_instance->monitors, monitor_iter, next) { if (!strcmp(monitor_iter->interface->device_name, device_name) && !strcmp(monitor_iter->interface->monitor_type, monitor_type)) { cb_data->count++; break; } } AST_LIST_UNLOCK(core_instance->monitors); return 0; } int ast_cc_monitor_count(const char * const name, const char * const type) { struct count_monitors_cb_data data = {.device_name = name, .monitor_type = type,}; ao2_t_callback(cc_core_instances, OBJ_NODATA, count_monitors_cb, &data, "Counting agents"); ast_log_dynamic_level(cc_logger_level, "Counted %d monitors\n", data.count); return data.count; } static void initialize_cc_max_requests(void) { struct ast_config *cc_config; const char *cc_max_requests_str; struct ast_flags config_flags = {0,}; char *endptr; cc_config = ast_config_load2("ccss.conf", "ccss", config_flags); if (!cc_config || cc_config == CONFIG_STATUS_FILEINVALID) { ast_log(LOG_WARNING, "Could not find valid ccss.conf file. Using cc_max_requests default\n"); global_cc_max_requests = GLOBAL_CC_MAX_REQUESTS_DEFAULT; return; } if (!(cc_max_requests_str = ast_variable_retrieve(cc_config, "general", "cc_max_requests"))) { ast_config_destroy(cc_config); global_cc_max_requests = GLOBAL_CC_MAX_REQUESTS_DEFAULT; return; } global_cc_max_requests = strtol(cc_max_requests_str, &endptr, 10); if (!ast_strlen_zero(endptr)) { ast_log(LOG_WARNING, "Invalid input given for cc_max_requests. Using default\n"); global_cc_max_requests = GLOBAL_CC_MAX_REQUESTS_DEFAULT; } ast_config_destroy(cc_config); return; } static void cc_cli_print_monitor_stats(struct ast_cc_monitor *monitor, int fd, int parent_id) { struct ast_cc_monitor *child_monitor_iter = monitor; if (!monitor) { return; } ast_cli(fd, "\t\t|-->%s", monitor->interface->device_name); if (monitor->interface->monitor_class == AST_CC_DEVICE_MONITOR) { ast_cli(fd, "(%s)", cc_service_to_string(monitor->service_offered)); } ast_cli(fd, "\n"); while ((child_monitor_iter = AST_LIST_NEXT(child_monitor_iter, next))) { if (child_monitor_iter->parent_id == monitor->id) { cc_cli_print_monitor_stats(child_monitor_iter, fd, child_monitor_iter->id); } } } static int print_stats_cb(void *obj, void *arg, int flags) { int *cli_fd = arg; struct cc_core_instance *core_instance = obj; ast_cli(*cli_fd, "%d\t\t%s\t\t%s\n", core_instance->core_id, core_instance->agent->device_name, cc_state_to_string(core_instance->current_state)); AST_LIST_LOCK(core_instance->monitors); cc_cli_print_monitor_stats(AST_LIST_FIRST(core_instance->monitors), *cli_fd, 0); AST_LIST_UNLOCK(core_instance->monitors); return 0; } static int cc_cli_output_status(void *data) { int *cli_fd = data; int count = ao2_container_count(cc_core_instances); if (!count) { ast_cli(*cli_fd, "There are currently no active call completion transactions\n"); } else { ast_cli(*cli_fd, "%d Call completion transactions\n", count); ast_cli(*cli_fd, "Core ID\t\tCaller\t\t\t\tStatus\n"); ast_cli(*cli_fd, "----------------------------------------------------------------------------\n"); ao2_t_callback(cc_core_instances, OBJ_NODATA, print_stats_cb, cli_fd, "Printing stats to CLI"); } ast_free(cli_fd); return 0; } static char *handle_cc_status(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a) { int *cli_fd; switch (cmd) { case CLI_INIT: e->command = "cc report status"; e->usage = "Usage: cc report status\n" " Report the current status of any ongoing CC transactions\n"; return NULL; case CLI_GENERATE: return NULL; } if (a->argc != 3) { return CLI_SHOWUSAGE; } cli_fd = ast_malloc(sizeof(*cli_fd)); if (!cli_fd) { return CLI_FAILURE; } *cli_fd = a->fd; if (ast_taskprocessor_push(cc_core_taskprocessor, cc_cli_output_status, cli_fd)) { ast_free(cli_fd); return CLI_FAILURE; } return CLI_SUCCESS; } static int kill_cores(void *obj, void *arg, int flags) { int *core_id = arg; struct cc_core_instance *core_instance = obj; if (!core_id || (core_instance->core_id == *core_id)) { ast_cc_failed(core_instance->core_id, "CC transaction canceled administratively\n"); } return 0; } static char *complete_core_id(const char *line, const char *word, int pos, int state) { int which = 0; int wordlen = strlen(word); char *ret = NULL; struct ao2_iterator core_iter = ao2_iterator_init(cc_core_instances, 0); struct cc_core_instance *core_instance; for (; (core_instance = ao2_t_iterator_next(&core_iter, "Next core instance")); cc_unref(core_instance, "CLI tab completion iteration")) { char core_id_str[20]; snprintf(core_id_str, sizeof(core_id_str), "%d", core_instance->core_id); if (!strncmp(word, core_id_str, wordlen) && ++which > state) { ret = ast_strdup(core_id_str); cc_unref(core_instance, "Found a matching core ID for CLI tab-completion"); break; } } ao2_iterator_destroy(&core_iter); return ret; } static char *handle_cc_kill(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a) { static const char * const option[] = { "core", "all", NULL }; switch (cmd) { case CLI_INIT: e->command = "cc cancel"; e->usage = "Usage: cc cancel can be used in two ways.\n" " 1. 'cc cancel core [core ID]' will cancel the CC transaction with\n" " core ID equal to the specified core ID.\n" " 2. 'cc cancel all' will cancel all active CC transactions.\n"; return NULL; case CLI_GENERATE: if (a->pos == 2) { return ast_cli_complete(a->word, option, a->n); } if (a->pos == 3) { return complete_core_id(a->line, a->word, a->pos, a->n); } return NULL; } if (a->argc == 4) { int core_id; char *endptr; if (strcasecmp(a->argv[2], "core")) { return CLI_SHOWUSAGE; } core_id = strtol(a->argv[3], &endptr, 10); if ((errno != 0 && core_id == 0) || (endptr == a->argv[3])) { return CLI_SHOWUSAGE; } ao2_t_callback(cc_core_instances, OBJ_NODATA, kill_cores, &core_id, "CLI Killing Core Id"); } else if (a->argc == 3) { if (strcasecmp(a->argv[2], "all")) { return CLI_SHOWUSAGE; } ao2_t_callback(cc_core_instances, OBJ_NODATA, kill_cores, NULL, "CLI Killing all CC cores"); } else { return CLI_SHOWUSAGE; } return CLI_SUCCESS; } static struct ast_cli_entry cc_cli[] = { AST_CLI_DEFINE(handle_cc_status, "Reports CC stats"), AST_CLI_DEFINE(handle_cc_kill, "Kill a CC transaction"), }; int ast_cc_init(void) { int res; if (!(cc_core_instances = ao2_t_container_alloc(CC_CORE_INSTANCES_BUCKETS, cc_core_instance_hash_fn, cc_core_instance_cmp_fn, "Create core instance container"))) { return -1; } if (!(generic_monitors = ao2_t_container_alloc(CC_CORE_INSTANCES_BUCKETS, generic_monitor_hash_fn, generic_monitor_cmp_fn, "Create generic monitor container"))) { return -1; } if (!(cc_core_taskprocessor = ast_taskprocessor_get("CCSS core", TPS_REF_DEFAULT))) { return -1; } if (!(cc_sched_thread = ast_sched_thread_create())) { return -1; } res = ast_register_application2(ccreq_app, ccreq_exec, NULL, NULL, NULL); res |= ast_register_application2(cccancel_app, cccancel_exec, NULL, NULL, NULL); res |= ast_cc_monitor_register(&generic_monitor_cbs); res |= ast_cc_agent_register(&generic_agent_callbacks); ast_cli_register_multiple(cc_cli, ARRAY_LEN(cc_cli)); cc_logger_level = ast_logger_register_level(CC_LOGGER_LEVEL_NAME); dialed_cc_interface_counter = 1; initialize_cc_max_requests(); return res; }