/* --------------------------------------------------------------------------- Copyright (c) 2003, Dr Brian Gladman , Worcester, UK. All rights reserved. LICENSE TERMS The free distribution and use of this software in both source and binary form is allowed (with or without changes) provided that: 1. distributions of this source code include the above copyright notice, this list of conditions and the following disclaimer; 2. distributions in binary form include the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other associated materials; 3. the copyright holder's name is not used to endorse products built using this software without specific written permission. ALTERNATIVELY, provided that this notice is retained in full, this product may be distributed under the terms of the GNU General Public License (GPL), in which case the provisions of the GPL apply INSTEAD OF those given above. DISCLAIMER This software is provided 'as is' with no explicit or implied warranties in respect of its properties, including, but not limited to, correctness and/or fitness for purpose. --------------------------------------------------------------------------- Issue Date: 26/08/2003 */ /*! \file * * \brief This file contains the code for implementing the key schedule for AES * (Rijndael) for block and key sizes of 16, 24, and 32 bytes. See aesopt.h * for further details including optimisation. * * \author Dr Brian Gladman */ #if defined(__cplusplus) extern "C" { #endif #ifndef HAVE_CRYPTO #include "aesopt.h" /* Initialise the key schedule from the user supplied key. The key length can be specified in bytes, with legal values of 16, 24 and 32, or in bits, with legal values of 128, 192 and 256. These values correspond with Nk values of 4, 6 and 8 respectively. The following macros implement a single cycle in the key schedule generation process. The number of cycles needed for each cx->n_col and nk value is: nk = 4 5 6 7 8 ------------------------------ cx->n_col = 4 10 9 8 7 7 cx->n_col = 5 14 11 10 9 9 cx->n_col = 6 19 15 12 11 11 cx->n_col = 7 21 19 16 13 14 cx->n_col = 8 29 23 19 17 14 */ #define ke4(k,i) \ { k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \ k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ } #define kel4(k,i) \ { k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \ k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ } #define ke6(k,i) \ { k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \ k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \ k[6*(i)+10] = ss[4] ^= ss[3]; k[6*(i)+11] = ss[5] ^= ss[4]; \ } #define kel6(k,i) \ { k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \ k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \ } #define ke8(k,i) \ { k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \ k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \ k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); k[8*(i)+13] = ss[5] ^= ss[4]; \ k[8*(i)+14] = ss[6] ^= ss[5]; k[8*(i)+15] = ss[7] ^= ss[6]; \ } #define kel8(k,i) \ { k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \ k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \ } #if defined(ENCRYPTION_KEY_SCHEDULE) #if defined(AES_128) || defined(AES_VAR) aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1]) { aes_32t ss[4]; cx->ks[0] = ss[0] = word_in(in_key, 0); cx->ks[1] = ss[1] = word_in(in_key, 1); cx->ks[2] = ss[2] = word_in(in_key, 2); cx->ks[3] = ss[3] = word_in(in_key, 3); #if ENC_UNROLL == NONE { aes_32t i; for(i = 0; i < ((11 * N_COLS - 1) / 4); ++i) ke4(cx->ks, i); } #else ke4(cx->ks, 0); ke4(cx->ks, 1); ke4(cx->ks, 2); ke4(cx->ks, 3); ke4(cx->ks, 4); ke4(cx->ks, 5); ke4(cx->ks, 6); ke4(cx->ks, 7); ke4(cx->ks, 8); kel4(cx->ks, 9); #endif /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit */ /* key and must be non-zero for 128 and 192 bits keys */ cx->ks[53] = cx->ks[45] = 0; cx->ks[52] = 10; #ifdef AES_ERR_CHK return aes_good; #endif } #endif #if defined(AES_192) || defined(AES_VAR) aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1]) { aes_32t ss[6]; cx->ks[0] = ss[0] = word_in(in_key, 0); cx->ks[1] = ss[1] = word_in(in_key, 1); cx->ks[2] = ss[2] = word_in(in_key, 2); cx->ks[3] = ss[3] = word_in(in_key, 3); cx->ks[4] = ss[4] = word_in(in_key, 4); cx->ks[5] = ss[5] = word_in(in_key, 5); #if ENC_UNROLL == NONE { aes_32t i; for(i = 0; i < (13 * N_COLS - 1) / 6; ++i) ke6(cx->ks, i); } #else ke6(cx->ks, 0); ke6(cx->ks, 1); ke6(cx->ks, 2); ke6(cx->ks, 3); ke6(cx->ks, 4); ke6(cx->ks, 5); ke6(cx->ks, 6); kel6(cx->ks, 7); #endif /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit */ /* key and must be non-zero for 128 and 192 bits keys */ cx->ks[53] = cx->ks[45]; cx->ks[52] = 12; #ifdef AES_ERR_CHK return aes_good; #endif } #endif #if defined(AES_256) || defined(AES_VAR) aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1]) { aes_32t ss[8]; cx->ks[0] = ss[0] = word_in(in_key, 0); cx->ks[1] = ss[1] = word_in(in_key, 1); cx->ks[2] = ss[2] = word_in(in_key, 2); cx->ks[3] = ss[3] = word_in(in_key, 3); cx->ks[4] = ss[4] = word_in(in_key, 4); cx->ks[5] = ss[5] = word_in(in_key, 5); cx->ks[6] = ss[6] = word_in(in_key, 6); cx->ks[7] = ss[7] = word_in(in_key, 7); #if ENC_UNROLL == NONE { aes_32t i; for(i = 0; i < (15 * N_COLS - 1) / 8; ++i) ke8(cx->ks, i); } #else ke8(cx->ks, 0); ke8(cx->ks, 1); ke8(cx->ks, 2); ke8(cx->ks, 3); ke8(cx->ks, 4); ke8(cx->ks, 5); kel8(cx->ks, 6); #endif #ifdef AES_ERR_CHK return aes_good; #endif } #endif #if defined(AES_VAR) aes_rval aes_encrypt_key(const void *in_key, int key_len, aes_encrypt_ctx cx[1]) { switch(key_len) { #ifdef AES_ERR_CHK case 16: case 128: return aes_encrypt_key128(in_key, cx); case 24: case 192: return aes_encrypt_key192(in_key, cx); case 32: case 256: return aes_encrypt_key256(in_key, cx); default: return aes_error; #else case 16: case 128: aes_encrypt_key128(in_key, cx); return; case 24: case 192: aes_encrypt_key192(in_key, cx); return; case 32: case 256: aes_encrypt_key256(in_key, cx); return; #endif } } #endif #endif #if defined(DECRYPTION_KEY_SCHEDULE) #if DEC_ROUND == NO_TABLES #define ff(x) (x) #else #define ff(x) inv_mcol(x) #ifdef dec_imvars #define d_vars dec_imvars #endif #endif #if 1 #define kdf4(k,i) \ { ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; ss[1] = ss[1] ^ ss[3]; ss[2] = ss[2] ^ ss[3]; ss[3] = ss[3]; \ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \ ss[4] ^= k[4*(i)]; k[4*(i)+4] = ff(ss[4]); ss[4] ^= k[4*(i)+1]; k[4*(i)+5] = ff(ss[4]); \ ss[4] ^= k[4*(i)+2]; k[4*(i)+6] = ff(ss[4]); ss[4] ^= k[4*(i)+3]; k[4*(i)+7] = ff(ss[4]); \ } #define kd4(k,i) \ { ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \ k[4*(i)+4] = ss[4] ^= k[4*(i)]; k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \ k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \ } #define kdl4(k,i) \ { ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \ k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; k[4*(i)+5] = ss[1] ^ ss[3]; \ k[4*(i)+6] = ss[0]; k[4*(i)+7] = ss[1]; \ } #else #define kdf4(k,i) \ { ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ff(ss[0]); ss[1] ^= ss[0]; k[4*(i)+ 5] = ff(ss[1]); \ ss[2] ^= ss[1]; k[4*(i)+ 6] = ff(ss[2]); ss[3] ^= ss[2]; k[4*(i)+ 7] = ff(ss[3]); \ } #define kd4(k,i) \ { ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \ ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[4*(i)+ 4] = ss[4] ^= k[4*(i)]; \ ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[4] ^= k[4*(i)+ 1]; \ ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[4] ^= k[4*(i)+ 2]; \ ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[4] ^= k[4*(i)+ 3]; \ } #define kdl4(k,i) \ { ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ss[0]; ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[1]; \ ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[2]; ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[3]; \ } #endif #define kdf6(k,i) \ { ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ff(ss[0]); ss[1] ^= ss[0]; k[6*(i)+ 7] = ff(ss[1]); \ ss[2] ^= ss[1]; k[6*(i)+ 8] = ff(ss[2]); ss[3] ^= ss[2]; k[6*(i)+ 9] = ff(ss[3]); \ ss[4] ^= ss[3]; k[6*(i)+10] = ff(ss[4]); ss[5] ^= ss[4]; k[6*(i)+11] = ff(ss[5]); \ } #define kd6(k,i) \ { ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \ ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \ ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \ ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \ ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \ ss[4] ^= ss[3]; k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \ ss[5] ^= ss[4]; k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \ } #define kdl6(k,i) \ { ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ss[0]; ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[1]; \ ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[2]; ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[3]; \ } #define kdf8(k,i) \ { ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ff(ss[0]); ss[1] ^= ss[0]; k[8*(i)+ 9] = ff(ss[1]); \ ss[2] ^= ss[1]; k[8*(i)+10] = ff(ss[2]); ss[3] ^= ss[2]; k[8*(i)+11] = ff(ss[3]); \ ss[4] ^= ls_box(ss[3],0); k[8*(i)+12] = ff(ss[4]); ss[5] ^= ss[4]; k[8*(i)+13] = ff(ss[5]); \ ss[6] ^= ss[5]; k[8*(i)+14] = ff(ss[6]); ss[7] ^= ss[6]; k[8*(i)+15] = ff(ss[7]); \ } #define kd8(k,i) \ { aes_32t g = ls_box(ss[7],3) ^ t_use(r,c)[i]; \ ss[0] ^= g; g = ff(g); k[8*(i)+ 8] = g ^= k[8*(i)]; \ ss[1] ^= ss[0]; k[8*(i)+ 9] = g ^= k[8*(i)+ 1]; \ ss[2] ^= ss[1]; k[8*(i)+10] = g ^= k[8*(i)+ 2]; \ ss[3] ^= ss[2]; k[8*(i)+11] = g ^= k[8*(i)+ 3]; \ g = ls_box(ss[3],0); \ ss[4] ^= g; g = ff(g); k[8*(i)+12] = g ^= k[8*(i)+ 4]; \ ss[5] ^= ss[4]; k[8*(i)+13] = g ^= k[8*(i)+ 5]; \ ss[6] ^= ss[5]; k[8*(i)+14] = g ^= k[8*(i)+ 6]; \ ss[7] ^= ss[6]; k[8*(i)+15] = g ^= k[8*(i)+ 7]; \ } #define kdl8(k,i) \ { ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ss[0]; ss[1] ^= ss[0]; k[8*(i)+ 9] = ss[1]; \ ss[2] ^= ss[1]; k[8*(i)+10] = ss[2]; ss[3] ^= ss[2]; k[8*(i)+11] = ss[3]; \ } #if defined(AES_128) || defined(AES_VAR) aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1]) { aes_32t ss[5]; #ifdef d_vars d_vars; #endif cx->ks[0] = ss[0] = word_in(in_key, 0); cx->ks[1] = ss[1] = word_in(in_key, 1); cx->ks[2] = ss[2] = word_in(in_key, 2); cx->ks[3] = ss[3] = word_in(in_key, 3); #if DEC_UNROLL == NONE { aes_32t i; for(i = 0; i < (11 * N_COLS - 1) / 4; ++i) ke4(cx->ks, i); #if !(DEC_ROUND == NO_TABLES) for(i = N_COLS; i < 10 * N_COLS; ++i) cx->ks[i] = inv_mcol(cx->ks[i]); #endif } #else kdf4(cx->ks, 0); kd4(cx->ks, 1); kd4(cx->ks, 2); kd4(cx->ks, 3); kd4(cx->ks, 4); kd4(cx->ks, 5); kd4(cx->ks, 6); kd4(cx->ks, 7); kd4(cx->ks, 8); kdl4(cx->ks, 9); #endif /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit */ /* key and must be non-zero for 128 and 192 bits keys */ cx->ks[53] = cx->ks[45] = 0; cx->ks[52] = 10; #ifdef AES_ERR_CHK return aes_good; #endif } #endif #if defined(AES_192) || defined(AES_VAR) aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1]) { aes_32t ss[7]; #ifdef d_vars d_vars; #endif cx->ks[0] = ss[0] = word_in(in_key, 0); cx->ks[1] = ss[1] = word_in(in_key, 1); cx->ks[2] = ss[2] = word_in(in_key, 2); cx->ks[3] = ss[3] = word_in(in_key, 3); #if DEC_UNROLL == NONE cx->ks[4] = ss[4] = word_in(in_key, 4); cx->ks[5] = ss[5] = word_in(in_key, 5); { aes_32t i; for(i = 0; i < (13 * N_COLS - 1) / 6; ++i) ke6(cx->ks, i); #if !(DEC_ROUND == NO_TABLES) for(i = N_COLS; i < 12 * N_COLS; ++i) cx->ks[i] = inv_mcol(cx->ks[i]); #endif } #else cx->ks[4] = ff(ss[4] = word_in(in_key, 4)); cx->ks[5] = ff(ss[5] = word_in(in_key, 5)); kdf6(cx->ks, 0); kd6(cx->ks, 1); kd6(cx->ks, 2); kd6(cx->ks, 3); kd6(cx->ks, 4); kd6(cx->ks, 5); kd6(cx->ks, 6); kdl6(cx->ks, 7); #endif /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit */ /* key and must be non-zero for 128 and 192 bits keys */ cx->ks[53] = cx->ks[45]; cx->ks[52] = 12; #ifdef AES_ERR_CHK return aes_good; #endif } #endif #if defined(AES_256) || defined(AES_VAR) aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1]) { aes_32t ss[8]; #ifdef d_vars d_vars; #endif cx->ks[0] = ss[0] = word_in(in_key, 0); cx->ks[1] = ss[1] = word_in(in_key, 1); cx->ks[2] = ss[2] = word_in(in_key, 2); cx->ks[3] = ss[3] = word_in(in_key, 3); #if DEC_UNROLL == NONE cx->ks[4] = ss[4] = word_in(in_key, 4); cx->ks[5] = ss[5] = word_in(in_key, 5); cx->ks[6] = ss[6] = word_in(in_key, 6); cx->ks[7] = ss[7] = word_in(in_key, 7); { aes_32t i; for(i = 0; i < (15 * N_COLS - 1) / 8; ++i) ke8(cx->ks, i); #if !(DEC_ROUND == NO_TABLES) for(i = N_COLS; i < 14 * N_COLS; ++i) cx->ks[i] = inv_mcol(cx->ks[i]); #endif } #else cx->ks[4] = ff(ss[4] = word_in(in_key, 4)); cx->ks[5] = ff(ss[5] = word_in(in_key, 5)); cx->ks[6] = ff(ss[6] = word_in(in_key, 6)); cx->ks[7] = ff(ss[7] = word_in(in_key, 7)); kdf8(cx->ks, 0); kd8(cx->ks, 1); kd8(cx->ks, 2); kd8(cx->ks, 3); kd8(cx->ks, 4); kd8(cx->ks, 5); kdl8(cx->ks, 6); #endif #ifdef AES_ERR_CHK return aes_good; #endif } #endif #if defined(AES_VAR) aes_rval aes_decrypt_key(const void *in_key, int key_len, aes_decrypt_ctx cx[1]) { switch(key_len) { #ifdef AES_ERR_CHK case 16: case 128: return aes_decrypt_key128(in_key, cx); case 24: case 192: return aes_decrypt_key192(in_key, cx); case 32: case 256: return aes_decrypt_key256(in_key, cx); default: return aes_error; #else case 16: case 128: aes_decrypt_key128(in_key, cx); return; case 24: case 192: aes_decrypt_key192(in_key, cx); return; case 32: case 256: aes_decrypt_key256(in_key, cx); return; #endif } } #endif #endif #endif /* !HAVE_CRYPTO */ #if defined(__cplusplus) } #endif