/* * Asterisk -- An open source telephony toolkit. * * Copyright (C) 1999 - 2006, Digium, Inc. * * Mark Spencer * * See http://www.asterisk.org for more information about * the Asterisk project. Please do not directly contact * any of the maintainers of this project for assistance; * the project provides a web site, mailing lists and IRC * channels for your use. * * This program is free software, distributed under the terms of * the GNU General Public License Version 2. See the LICENSE file * at the top of the source tree. */ /*! \file * * \brief Various sorts of access control * * \author Mark Spencer */ #include "asterisk.h" ASTERISK_FILE_VERSION(__FILE__, "$Revision$") #include "asterisk/network.h" #if defined(__OpenBSD__) || defined(__NetBSD__) || defined(__FreeBSD__) || defined(__Darwin__) #include #include #endif #if defined(SOLARIS) #include #include #elif defined(HAVE_GETIFADDRS) #include #endif #include "asterisk/acl.h" #include "asterisk/channel.h" #include "asterisk/utils.h" #include "asterisk/lock.h" #include "asterisk/srv.h" #if (!defined(SOLARIS) && !defined(HAVE_GETIFADDRS)) static int get_local_address(struct ast_sockaddr *ourip) { return -1; } #else static void score_address(const struct sockaddr_in *sin, struct in_addr *best_addr, int *best_score) { const char *address; int score; address = ast_inet_ntoa(sin->sin_addr); /* RFC 1700 alias for the local network */ if (address[0] == '0') { score = -25; /* RFC 1700 localnet */ } else if (strncmp(address, "127", 3) == 0) { score = -20; /* RFC 1918 non-public address space */ } else if (strncmp(address, "10.", 3) == 0) { score = -5; /* RFC 1918 non-public address space */ } else if (strncmp(address, "172", 3) == 0) { /* 172.16.0.0 - 172.19.255.255, but not 172.160.0.0 - 172.169.255.255 */ if (address[4] == '1' && address[5] >= '6' && address[6] == '.') { score = -5; /* 172.20.0.0 - 172.29.255.255, but not 172.200.0.0 - 172.255.255.255 nor 172.2.0.0 - 172.2.255.255 */ } else if (address[4] == '2' && address[6] == '.') { score = -5; /* 172.30.0.0 - 172.31.255.255, but not 172.3.0.0 - 172.3.255.255 */ } else if (address[4] == '3' && (address[5] == '0' || address[5] == '1')) { score = -5; /* All other 172 addresses are public */ } else { score = 0; } /* RFC 2544 Benchmark test range (198.18.0.0 - 198.19.255.255, but not 198.180.0.0 - 198.199.255.255) */ } else if (strncmp(address, "198.1", 5) == 0 && address[5] >= '8' && address[6] == '.') { score = -10; /* RFC 1918 non-public address space */ } else if (strncmp(address, "192.168", 7) == 0) { score = -5; /* RFC 3330 Zeroconf network */ } else if (strncmp(address, "169.254", 7) == 0) { /*!\note Better score than a test network, but not quite as good as RFC 1918 * address space. The reason is that some Linux distributions automatically * configure a Zeroconf address before trying DHCP, so we want to prefer a * DHCP lease to a Zeroconf address. */ score = -10; /* RFC 3330 Test network */ } else if (strncmp(address, "192.0.2.", 8) == 0) { score = -15; /* Every other address should be publically routable */ } else { score = 0; } if (score > *best_score) { *best_score = score; memcpy(best_addr, &sin->sin_addr, sizeof(*best_addr)); } } static int get_local_address(struct ast_sockaddr *ourip) { int s, res = -1; #ifdef SOLARIS struct lifreq *ifr = NULL; struct lifnum ifn; struct lifconf ifc; struct sockaddr_in *sa; char *buf = NULL; int bufsz, x; #endif /* SOLARIS */ #if defined(__OpenBSD__) || defined(__NetBSD__) || defined(__FreeBSD__) || defined(__linux__) || defined(__Darwin__) struct ifaddrs *ifap, *ifaphead; int rtnerr; const struct sockaddr_in *sin; #endif /* BSD_OR_LINUX */ struct in_addr best_addr; int best_score = -100; memset(&best_addr, 0, sizeof(best_addr)); #if defined(__OpenBSD__) || defined(__NetBSD__) || defined(__FreeBSD__) || defined(__linux__) || defined(__Darwin__) rtnerr = getifaddrs(&ifaphead); if (rtnerr) { perror(NULL); return -1; } #endif /* BSD_OR_LINUX */ s = socket(AF_INET, SOCK_STREAM, 0); if (s > 0) { #if defined(__OpenBSD__) || defined(__NetBSD__) || defined(__FreeBSD__) || defined(__linux__) || defined(__Darwin__) for (ifap = ifaphead; ifap; ifap = ifap->ifa_next) { if (ifap->ifa_addr && ifap->ifa_addr->sa_family == AF_INET) { sin = (const struct sockaddr_in *) ifap->ifa_addr; score_address(sin, &best_addr, &best_score); res = 0; if (best_score == 0) { break; } } } #endif /* BSD_OR_LINUX */ /* There is no reason whatsoever that this shouldn't work on Linux or BSD also. */ #ifdef SOLARIS /* Get a count of interfaces on the machine */ ifn.lifn_family = AF_INET; ifn.lifn_flags = 0; ifn.lifn_count = 0; if (ioctl(s, SIOCGLIFNUM, &ifn) < 0) { close(s); return -1; } bufsz = ifn.lifn_count * sizeof(struct lifreq); if (!(buf = malloc(bufsz))) { close(s); return -1; } memset(buf, 0, bufsz); /* Get a list of interfaces on the machine */ ifc.lifc_len = bufsz; ifc.lifc_buf = buf; ifc.lifc_family = AF_INET; ifc.lifc_flags = 0; if (ioctl(s, SIOCGLIFCONF, &ifc) < 0) { close(s); free(buf); return -1; } for (ifr = ifc.lifc_req, x = 0; x < ifn.lifn_count; ifr++, x++) { sa = (struct sockaddr_in *)&(ifr->lifr_addr); score_address(sa, &best_addr, &best_score); res = 0; if (best_score == 0) { break; } } free(buf); #endif /* SOLARIS */ close(s); } #if defined(__OpenBSD__) || defined(__NetBSD__) || defined(__FreeBSD__) || defined(__linux__) || defined(__Darwin__) freeifaddrs(ifaphead); #endif /* BSD_OR_LINUX */ if (res == 0 && ourip) { ast_sockaddr_setnull(ourip); ourip->ss.ss_family = AF_INET; ((struct sockaddr_in *)&ourip->ss)->sin_addr = best_addr; } return res; } #endif /* HAVE_GETIFADDRS */ /* Free HA structure */ void ast_free_ha(struct ast_ha *ha) { struct ast_ha *hal; while (ha) { hal = ha; ha = ha->next; ast_free(hal); } } /* Copy HA structure */ void ast_copy_ha(const struct ast_ha *from, struct ast_ha *to) { ast_sockaddr_copy(&to->addr, &from->addr); ast_sockaddr_copy(&to->netmask, &from->netmask); to->sense = from->sense; } /* Create duplicate of ha structure */ static struct ast_ha *ast_duplicate_ha(struct ast_ha *original) { struct ast_ha *new_ha; if ((new_ha = ast_calloc(1, sizeof(*new_ha)))) { /* Copy from original to new object */ ast_copy_ha(original, new_ha); } return new_ha; } /* Create duplicate HA link list */ /* Used in chan_sip2 templates */ struct ast_ha *ast_duplicate_ha_list(struct ast_ha *original) { struct ast_ha *start = original; struct ast_ha *ret = NULL; struct ast_ha *current, *prev = NULL; while (start) { current = ast_duplicate_ha(start); /* Create copy of this object */ if (prev) { prev->next = current; /* Link previous to this object */ } if (!ret) { ret = current; /* Save starting point */ } start = start->next; /* Go to next object */ prev = current; /* Save pointer to this object */ } return ret; /* Return start of list */ } /*! * \brief * Isolate a 32-bit section of an IPv6 address * * An IPv6 address can be divided into 4 32-bit chunks. This gives * easy access to one of these chunks. * * \param sin6 A pointer to a struct sockaddr_in6 * \param index Which 32-bit chunk to operate on. Must be in the range 0-3. */ #define V6_WORD(sin6, index) ((uint32_t *)&((sin6)->sin6_addr))[(index)] /*! * \brief * Apply a netmask to an address and store the result in a separate structure. * * When dealing with IPv6 addresses, one cannot apply a netmask with a simple * logical and operation. Furthermore, the incoming address may be an IPv4 address * and need to be mapped properly before attempting to apply a rule. * * \param addr The IP address to apply the mask to. * \param netmask The netmask configured in the host access rule. * \param result The resultant address after applying the netmask to the given address * \retval 0 Successfully applied netmask * \reval -1 Failed to apply netmask */ static int apply_netmask(const struct ast_sockaddr *addr, const struct ast_sockaddr *netmask, struct ast_sockaddr *result) { int res = 0; if (ast_sockaddr_is_ipv4(addr)) { struct sockaddr_in result4 = { 0, }; struct sockaddr_in *addr4 = (struct sockaddr_in *) &addr->ss; struct sockaddr_in *mask4 = (struct sockaddr_in *) &netmask->ss; result4.sin_family = AF_INET; result4.sin_addr.s_addr = addr4->sin_addr.s_addr & mask4->sin_addr.s_addr; ast_sockaddr_from_sin(result, &result4); } else if (ast_sockaddr_is_ipv6(addr)) { struct sockaddr_in6 result6 = { 0, }; struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *) &addr->ss; struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *) &netmask->ss; int i; result6.sin6_family = AF_INET6; for (i = 0; i < 4; ++i) { V6_WORD(&result6, i) = V6_WORD(addr6, i) & V6_WORD(mask6, i); } memcpy(&result->ss, &result6, sizeof(result6)); result->len = sizeof(result6); } else { /* Unsupported address scheme */ res = -1; } return res; } /*! * \brief * Parse a netmask in CIDR notation * * \details * For a mask of an IPv4 address, this should be a number between 0 and 32. For * a mask of an IPv6 address, this should be a number between 0 and 128. This * function creates an IPv6 ast_sockaddr from the given netmask. For masks of * IPv4 addresses, this is accomplished by adding 96 to the original netmask. * * \param[out] addr The ast_sockaddr produced from the CIDR netmask * \param is_v4 Tells if the address we are masking is IPv4. * \param mask_str The CIDR mask to convert * \retval -1 Failure * \retval 0 Success */ static int parse_cidr_mask(struct ast_sockaddr *addr, int is_v4, const char *mask_str) { int mask; if (sscanf(mask_str, "%30d", &mask) != 1) { return -1; } if (is_v4) { struct sockaddr_in sin; if (mask < 0 || mask > 32) { return -1; } memset(&sin, 0, sizeof(sin)); sin.sin_family = AF_INET; /* If mask is 0, then we already have the * appropriate all 0s address in sin from * the above memset. */ if (mask != 0) { sin.sin_addr.s_addr = htonl(0xFFFFFFFF << (32 - mask)); } ast_sockaddr_from_sin(addr, &sin); } else { struct sockaddr_in6 sin6; int i; if (mask < 0 || mask > 128) { return -1; } memset(&sin6, 0, sizeof(sin6)); sin6.sin6_family = AF_INET6; for (i = 0; i < 4; ++i) { /* Once mask reaches 0, we don't have * to explicitly set anything anymore * since sin6 was zeroed out already */ if (mask > 0) { V6_WORD(&sin6, i) = htonl(0xFFFFFFFF << (mask < 32 ? (32 - mask) : 0)); mask -= mask < 32 ? mask : 32; } } memcpy(&addr->ss, &sin6, sizeof(sin6)); addr->len = sizeof(sin6); } return 0; } struct ast_ha *ast_append_ha(const char *sense, const char *stuff, struct ast_ha *path, int *error) { struct ast_ha *ha; struct ast_ha *prev = NULL; struct ast_ha *ret; char *tmp = ast_strdupa(stuff); char *address = NULL, *mask = NULL; int addr_is_v4; ret = path; while (path) { prev = path; path = path->next; } if (!(ha = ast_calloc(1, sizeof(*ha)))) { return ret; } address = strsep(&tmp, "/"); if (!address) { address = tmp; } else { mask = tmp; } if (!ast_sockaddr_parse(&ha->addr, address, PARSE_PORT_FORBID)) { ast_log(LOG_WARNING, "Invalid IP address: %s\n", address); ast_free_ha(ha); *error = 1; return ret; } /* If someone specifies an IPv4-mapped IPv6 address, * we just convert this to an IPv4 ACL */ if (ast_sockaddr_ipv4_mapped(&ha->addr, &ha->addr)) { ast_log(LOG_NOTICE, "IPv4-mapped ACL network address specified. " "Converting to an IPv4 ACL network address.\n"); } addr_is_v4 = ast_sockaddr_is_ipv4(&ha->addr); if (!mask) { parse_cidr_mask(&ha->netmask, addr_is_v4, addr_is_v4 ? "32" : "128"); } else if (strchr(mask, ':') || strchr(mask, '.')) { int mask_is_v4; /* Mask is of x.x.x.x or x:x:x:x:x:x:x:x variety */ if (!ast_sockaddr_parse(&ha->netmask, mask, PARSE_PORT_FORBID)) { ast_log(LOG_WARNING, "Invalid netmask: %s\n", mask); ast_free_ha(ha); *error = 1; return ret; } /* If someone specifies an IPv4-mapped IPv6 netmask, * we just convert this to an IPv4 ACL */ if (ast_sockaddr_ipv4_mapped(&ha->netmask, &ha->netmask)) { ast_log(LOG_NOTICE, "IPv4-mapped ACL netmask specified. " "Converting to an IPv4 ACL netmask.\n"); } mask_is_v4 = ast_sockaddr_is_ipv4(&ha->netmask); if (addr_is_v4 ^ mask_is_v4) { ast_log(LOG_WARNING, "Address and mask are not using same address scheme.\n"); ast_free_ha(ha); *error = 1; return ret; } } else if (parse_cidr_mask(&ha->netmask, addr_is_v4, mask)) { ast_log(LOG_WARNING, "Invalid CIDR netmask: %s\n", mask); ast_free_ha(ha); *error = 1; return ret; } if (apply_netmask(&ha->addr, &ha->netmask, &ha->addr)) { /* This shouldn't happen because ast_sockaddr_parse would * have failed much earlier on an unsupported address scheme */ char *failmask = ast_strdupa(ast_sockaddr_stringify(&ha->netmask)); char *failaddr = ast_strdupa(ast_sockaddr_stringify(&ha->addr)); ast_log(LOG_WARNING, "Unable to apply netmask %s to address %s\n", failmask, failaddr); ast_free_ha(ha); *error = 1; return ret; } ha->sense = strncasecmp(sense, "p", 1) ? AST_SENSE_DENY : AST_SENSE_ALLOW; ha->next = NULL; if (prev) { prev->next = ha; } else { ret = ha; } { const char *addr = ast_strdupa(ast_sockaddr_stringify(&ha->addr)); const char *mask = ast_strdupa(ast_sockaddr_stringify(&ha->netmask)); ast_debug(1, "%s/%s sense %d appended to acl for peer\n", addr, mask, ha->sense); } return ret; } int ast_apply_ha(const struct ast_ha *ha, const struct ast_sockaddr *addr) { /* Start optimistic */ int res = AST_SENSE_ALLOW; const struct ast_ha *current_ha; for (current_ha = ha; current_ha; current_ha = current_ha->next) { struct ast_sockaddr result; struct ast_sockaddr mapped_addr; const struct ast_sockaddr *addr_to_use; #if 0 /* debugging code */ char iabuf[INET_ADDRSTRLEN]; char iabuf2[INET_ADDRSTRLEN]; /* DEBUG */ ast_copy_string(iabuf, ast_inet_ntoa(sin->sin_addr), sizeof(iabuf)); ast_copy_string(iabuf2, ast_inet_ntoa(ha->netaddr), sizeof(iabuf2)); ast_debug(1, "##### Testing %s with %s\n", iabuf, iabuf2); #endif if (ast_sockaddr_is_ipv4(&ha->addr)) { if (ast_sockaddr_is_ipv6(addr)) { if (ast_sockaddr_is_ipv4_mapped(addr)) { /* IPv4 ACLs apply to IPv4-mapped addresses */ ast_sockaddr_ipv4_mapped(addr, &mapped_addr); addr_to_use = &mapped_addr; } else { /* An IPv4 ACL does not apply to an IPv6 address */ continue; } } else { /* Address is IPv4 and ACL is IPv4. No biggie */ addr_to_use = addr; } } else { if (ast_sockaddr_is_ipv6(addr) && !ast_sockaddr_is_ipv4_mapped(addr)) { addr_to_use = addr; } else { /* Address is IPv4 or IPv4 mapped but ACL is IPv6. Skip */ continue; } } /* For each rule, if this address and the netmask = the net address apply the current rule */ if (apply_netmask(addr_to_use, ¤t_ha->netmask, &result)) { /* Unlikely to happen since we know the address to be IPv4 or IPv6 */ continue; } if (!ast_sockaddr_cmp_addr(&result, ¤t_ha->addr)) { res = current_ha->sense; } } return res; } static int resolve_first(struct ast_sockaddr *addr, const char *name, int flag, int family) { struct ast_sockaddr *addrs; int addrs_cnt; addrs_cnt = ast_sockaddr_resolve(&addrs, name, flag, family); if (addrs_cnt > 0) { if (addrs_cnt > 1) { ast_debug(1, "Multiple addresses. Using the first only\n"); } ast_sockaddr_copy(addr, &addrs[0]); ast_free(addrs); } else { ast_log(LOG_WARNING, "Unable to lookup '%s'\n", name); return -1; } return 0; } int ast_get_ip_or_srv(struct ast_sockaddr *addr, const char *value, const char *service) { char srv[256]; char host[256]; int srv_ret = 0; int tportno; if (service) { snprintf(srv, sizeof(srv), "%s.%s", service, value); if ((srv_ret = ast_get_srv(NULL, host, sizeof(host), &tportno, srv)) > 0) { value = host; } } if (resolve_first(addr, value, PARSE_PORT_FORBID, addr->ss.ss_family) != 0) { return -1; } if (srv_ret > 0) { ast_sockaddr_set_port(addr, tportno); } return 0; } struct dscp_codepoint { char *name; unsigned int space; }; /* IANA registered DSCP codepoints */ static const struct dscp_codepoint dscp_pool1[] = { { "CS0", 0x00 }, { "CS1", 0x08 }, { "CS2", 0x10 }, { "CS3", 0x18 }, { "CS4", 0x20 }, { "CS5", 0x28 }, { "CS6", 0x30 }, { "CS7", 0x38 }, { "AF11", 0x0A }, { "AF12", 0x0C }, { "AF13", 0x0E }, { "AF21", 0x12 }, { "AF22", 0x14 }, { "AF23", 0x16 }, { "AF31", 0x1A }, { "AF32", 0x1C }, { "AF33", 0x1E }, { "AF41", 0x22 }, { "AF42", 0x24 }, { "AF43", 0x26 }, { "EF", 0x2E }, }; int ast_str2cos(const char *value, unsigned int *cos) { int fval; if (sscanf(value, "%30d", &fval) == 1) { if (fval < 8) { *cos = fval; return 0; } } return -1; } int ast_str2tos(const char *value, unsigned int *tos) { int fval; unsigned int x; if (sscanf(value, "%30i", &fval) == 1) { *tos = fval & 0xFF; return 0; } for (x = 0; x < ARRAY_LEN(dscp_pool1); x++) { if (!strcasecmp(value, dscp_pool1[x].name)) { *tos = dscp_pool1[x].space << 2; return 0; } } return -1; } const char *ast_tos2str(unsigned int tos) { unsigned int x; for (x = 0; x < ARRAY_LEN(dscp_pool1); x++) { if (dscp_pool1[x].space == (tos >> 2)) { return dscp_pool1[x].name; } } return "unknown"; } int ast_get_ip(struct ast_sockaddr *addr, const char *value) { return ast_get_ip_or_srv(addr, value, NULL); } int ast_ouraddrfor(const struct ast_sockaddr *them, struct ast_sockaddr *us) { int port; int s; port = ast_sockaddr_port(us); if ((s = socket(ast_sockaddr_is_ipv6(them) ? AF_INET6 : AF_INET, SOCK_DGRAM, 0)) < 0) { ast_log(LOG_ERROR, "Cannot create socket\n"); return -1; } if (ast_connect(s, them)) { ast_log(LOG_WARNING, "Cannot connect\n"); close(s); return -1; } if (ast_getsockname(s, us)) { ast_log(LOG_WARNING, "Cannot get socket name\n"); close(s); return -1; } close(s); { const char *them_addr = ast_strdupa(ast_sockaddr_stringify_addr(them)); const char *us_addr = ast_strdupa(ast_sockaddr_stringify_addr(us)); ast_debug(3, "For destination '%s', our source address is '%s'.\n", them_addr, us_addr); } ast_sockaddr_set_port(us, port); return 0; } int ast_find_ourip(struct ast_sockaddr *ourip, const struct ast_sockaddr *bindaddr, int family) { char ourhost[MAXHOSTNAMELEN] = ""; struct ast_sockaddr root; /* just use the bind address if it is nonzero */ if (!ast_sockaddr_is_any(bindaddr)) { ast_sockaddr_copy(ourip, bindaddr); ast_debug(3, "Attached to given IP address\n"); return 0; } /* try to use our hostname */ if (gethostname(ourhost, sizeof(ourhost) - 1)) { ast_log(LOG_WARNING, "Unable to get hostname\n"); } else { if (resolve_first(ourip, ourhost, PARSE_PORT_FORBID, family) == 0) { return 0; } } ast_debug(3, "Trying to check A.ROOT-SERVERS.NET and get our IP address for that connection\n"); /* A.ROOT-SERVERS.NET. */ if (!resolve_first(&root, "A.ROOT-SERVERS.NET", PARSE_PORT_FORBID, 0) && !ast_ouraddrfor(&root, ourip)) { return 0; } return get_local_address(ourip); }