/* * Asterisk -- An open source telephony toolkit. * * Copyright (C) 1999 - 2005, Digium, Inc. * * Mark Spencer * * Includes code and algorithms from the Zapata library. * * See http://www.asterisk.org for more information about * the Asterisk project. Please do not directly contact * any of the maintainers of this project for assistance; * the project provides a web site, mailing lists and IRC * channels for your use. * * This program is free software, distributed under the terms of * the GNU General Public License Version 2. See the LICENSE file * at the top of the source tree. */ /*! \file * * \brief FSK Modulator/Demodulator * */ #include #include "asterisk.h" ASTERISK_FILE_VERSION(__FILE__, "$Revision$") #include "asterisk/fskmodem.h" #define NBW 2 #define BWLIST {75,800} #define NF 6 #define FLIST {1400,1800,1200,2200,1300,2100} #define STATE_SEARCH_STARTBIT 0 #define STATE_SEARCH_STARTBIT2 1 #define STATE_SEARCH_STARTBIT3 2 #define STATE_GET_BYTE 3 static inline float get_sample(short **buffer, int *len) { float retval; retval = (float) **buffer / 256; (*buffer)++; (*len)--; return retval; } #define GET_SAMPLE get_sample(&buffer, len) /* Coeficientes para filtros de entrada */ /* Tabla de coeficientes, generada a partir del programa "mkfilter" */ /* Formato: coef[IDX_FREC][IDX_BW][IDX_COEF] */ /* IDX_COEF=0 => 1/GAIN */ /* IDX_COEF=1-6 => Coeficientes y[n] */ static double coef_in[NF][NBW][8]={ #include "coef_in.h" }; /* Coeficientes para filtro de salida */ /* Tabla de coeficientes, generada a partir del programa "mkfilter" */ /* Formato: coef[IDX_BW][IDX_COEF] */ /* IDX_COEF=0 => 1/GAIN */ /* IDX_COEF=1-6 => Coeficientes y[n] */ static double coef_out[NBW][8]={ #include "coef_out.h" }; /*! Filtro pasa-banda para frecuencia de MARCA */ static inline float filtroM(fsk_data *fskd,float in) { int i,j; double s; double *pc; pc=&coef_in[fskd->f_mark_idx][fskd->bw][0]; fskd->fmxv[(fskd->fmp+6)&7]=in*(*pc++); s=(fskd->fmxv[(fskd->fmp+6)&7] - fskd->fmxv[fskd->fmp]) + 3 * (fskd->fmxv[(fskd->fmp+2)&7] - fskd->fmxv[(fskd->fmp+4)&7]); for (i=0,j=fskd->fmp;i<6;i++,j++) s+=fskd->fmyv[j&7]*(*pc++); fskd->fmyv[j&7]=s; fskd->fmp++; fskd->fmp&=7; return s; } /*! Filtro pasa-banda para frecuencia de ESPACIO */ static inline float filtroS(fsk_data *fskd,float in) { int i,j; double s; double *pc; pc=&coef_in[fskd->f_space_idx][fskd->bw][0]; fskd->fsxv[(fskd->fsp+6)&7]=in*(*pc++); s=(fskd->fsxv[(fskd->fsp+6)&7] - fskd->fsxv[fskd->fsp]) + 3 * (fskd->fsxv[(fskd->fsp+2)&7] - fskd->fsxv[(fskd->fsp+4)&7]); for (i=0,j=fskd->fsp;i<6;i++,j++) s+=fskd->fsyv[j&7]*(*pc++); fskd->fsyv[j&7]=s; fskd->fsp++; fskd->fsp&=7; return s; } /*! Filtro pasa-bajos para datos demodulados */ static inline float filtroL(fsk_data *fskd,float in) { int i,j; double s; double *pc; pc=&coef_out[fskd->bw][0]; fskd->flxv[(fskd->flp + 6) & 7]=in * (*pc++); s= (fskd->flxv[fskd->flp] + fskd->flxv[(fskd->flp+6)&7]) + 6 * (fskd->flxv[(fskd->flp+1)&7] + fskd->flxv[(fskd->flp+5)&7]) + 15 * (fskd->flxv[(fskd->flp+2)&7] + fskd->flxv[(fskd->flp+4)&7]) + 20 * fskd->flxv[(fskd->flp+3)&7]; for (i=0,j=fskd->flp;i<6;i++,j++) s+=fskd->flyv[j&7]*(*pc++); fskd->flyv[j&7]=s; fskd->flp++; fskd->flp&=7; return s; } static inline int demodulador(fsk_data *fskd, float *retval, float x) { float xS,xM; fskd->cola_in[fskd->pcola]=x; xS=filtroS(fskd,x); xM=filtroM(fskd,x); fskd->cola_filtro[fskd->pcola]=xM-xS; x=filtroL(fskd,xM*xM - xS*xS); fskd->cola_demod[fskd->pcola++]=x; fskd->pcola &= (NCOLA-1); *retval = x; return(0); } static int get_bit_raw(fsk_data *fskd, short *buffer, int *len) { /* Esta funcion implementa un DPLL para sincronizarse con los bits */ float x,spb,spb2,ds; int f; spb=fskd->spb; if (fskd->spb == 7) spb = 8000.0 / 1200.0; ds=spb/32.; spb2=spb/2.; for (f=0;;){ if (demodulador(fskd,&x, GET_SAMPLE)) return(-1); if ((x*fskd->x0)<0) { /* Transicion */ if (!f) { if (fskd->cont<(spb2)) fskd->cont+=ds; else fskd->cont-=ds; f=1; } } fskd->x0=x; fskd->cont+=1.; if (fskd->cont>spb) { fskd->cont-=spb; break; } } f=(x>0)?0x80:0; return(f); } int fsk_serie(fsk_data *fskd, short *buffer, int *len, int *outbyte) { int a; int i,j,n1,r; int samples=0; int olen; switch(fskd->state) { /* Pick up where we left off */ case STATE_SEARCH_STARTBIT2: goto search_startbit2; case STATE_SEARCH_STARTBIT3: goto search_startbit3; case STATE_GET_BYTE: goto getbyte; } /* Esperamos bit de start */ do { /* this was jesus's nice, reasonable, working (at least with RTTY) code to look for the beginning of the start bit. Unfortunately, since TTY/TDD's just start sending a start bit with nothing preceding it at the beginning of a transmission (what a LOSING design), we cant do it this elegantly */ /* if (demodulador(zap,&x1)) return(-1); for(;;) { if (demodulador(zap,&x2)) return(-1); if (x1>0 && x2<0) break; x1=x2; } */ /* this is now the imprecise, losing, but functional code to detect the beginning of a start bit in the TDD sceanario. It just looks for sufficient level to maybe, perhaps, guess, maybe that its maybe the beginning of a start bit, perhaps. This whole thing stinks! */ if (demodulador(fskd,&fskd->x1,GET_SAMPLE)) return(-1); samples++; for(;;) { search_startbit2: if (!*len) { fskd->state = STATE_SEARCH_STARTBIT2; return 0; } samples++; if (demodulador(fskd,&fskd->x2,GET_SAMPLE)) return(-1); #if 0 printf("x2 = %5.5f ", fskd->x2); #endif if (fskd->x2 < -0.5) break; } search_startbit3: /* Esperamos 0.5 bits antes de usar DPLL */ i=fskd->spb/2; if (*len < i) { fskd->state = STATE_SEARCH_STARTBIT3; return 0; } for(;i;i--) { if (demodulador(fskd,&fskd->x1,GET_SAMPLE)) return(-1); #if 0 printf("x1 = %5.5f ", fskd->x1); #endif samples++; } /* x1 debe ser negativo (confirmación del bit de start) */ } while (fskd->x1>0); fskd->state = STATE_GET_BYTE; getbyte: /* Need at least 80 samples (for 1200) or 1320 (for 45.5) to be sure we'll have a byte */ if (fskd->nbit < 8) { if (*len < 1320) return 0; } else { if (*len < 80) return 0; } /* Leemos ahora los bits de datos */ j=fskd->nbit; for (a=n1=0;j;j--) { olen = *len; i=get_bit_raw(fskd, buffer, len); buffer += (olen - *len); if (i == -1) return(-1); if (i) n1++; a>>=1; a|=i; } j=8-fskd->nbit; a>>=j; /* Leemos bit de paridad (si existe) y la comprobamos */ if (fskd->paridad) { olen = *len; i=get_bit_raw(fskd, buffer, len); buffer += (olen - *len); if (i == -1) return(-1); if (i) n1++; if (fskd->paridad==1) { /* paridad=1 (par) */ if (n1&1) a|=0x100; /* error */ } else { /* paridad=2 (impar) */ if (!(n1&1)) a|=0x100; /* error */ } } /* Leemos bits de STOP. Todos deben ser 1 */ for (j=fskd->nstop;j;j--) { r = get_bit_raw(fskd, buffer, len); if (r == -1) return(-1); if (!r) a|=0x200; } /* Por fin retornamos */ /* Bit 8 : Error de paridad */ /* Bit 9 : Error de Framming */ *outbyte = a; fskd->state = STATE_SEARCH_STARTBIT; return 1; }