/* * Asterisk -- An open source telephony toolkit. * * Copyright (C) 1999 - 2006, Digium, Inc. * * Mark Spencer * Kevin P. Fleming * * Based on frompcm.c and topcm.c from the Emiliano MIPL browser/ * interpreter. See http://www.bsdtelephony.com.mx * * See http://www.asterisk.org for more information about * the Asterisk project. Please do not directly contact * any of the maintainers of this project for assistance; * the project provides a web site, mailing lists and IRC * channels for your use. * * This program is free software, distributed under the terms of * the GNU General Public License Version 2. See the LICENSE file * at the top of the source tree. */ /*! \file * * \brief codec_g726.c - translate between signed linear and ITU G.726-32kbps (both RFC3551 and AAL2 codeword packing) * * \ingroup codecs */ #include "asterisk.h" ASTERISK_FILE_VERSION(__FILE__, "$Revision$") #include #include #include #include #include #include #include "asterisk/lock.h" #include "asterisk/logger.h" #include "asterisk/linkedlists.h" #include "asterisk/module.h" #include "asterisk/config.h" #include "asterisk/options.h" #include "asterisk/translate.h" #include "asterisk/channel.h" #include "asterisk/utils.h" #define WANT_ASM #include "log2comp.h" /* define NOT_BLI to use a faster but not bit-level identical version */ /* #define NOT_BLI */ #if defined(NOT_BLI) # if defined(_MSC_VER) typedef __int64 sint64; # elif defined(__GNUC__) typedef long long sint64; # else # error 64-bit integer type is not defined for your compiler/platform # endif #endif #define BUFFER_SAMPLES 8096 /* size for the translation buffers */ #define BUF_SHIFT 5 /* Sample frame data */ #include "slin_g726_ex.h" #include "g726_slin_ex.h" /* * The following is the definition of the state structure * used by the G.726 encoder and decoder to preserve their internal * state between successive calls. The meanings of the majority * of the state structure fields are explained in detail in the * CCITT Recommendation G.721. The field names are essentially identical * to variable names in the bit level description of the coding algorithm * included in this Recommendation. */ struct g726_state { long yl; /* Locked or steady state step size multiplier. */ int yu; /* Unlocked or non-steady state step size multiplier. */ int dms; /* Short term energy estimate. */ int dml; /* Long term energy estimate. */ int ap; /* Linear weighting coefficient of 'yl' and 'yu'. */ int a[2]; /* Coefficients of pole portion of prediction filter. * stored as fixed-point 1==2^14 */ int b[6]; /* Coefficients of zero portion of prediction filter. * stored as fixed-point 1==2^14 */ int pk[2]; /* Signs of previous two samples of a partially * reconstructed signal. */ int dq[6]; /* Previous 6 samples of the quantized difference signal * stored as fixed point 1==2^12, * or in internal floating point format */ int sr[2]; /* Previous 2 samples of the quantized difference signal * stored as fixed point 1==2^12, * or in internal floating point format */ int td; /* delayed tone detect, new in 1988 version */ }; static int qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400}; /* * Maps G.721 code word to reconstructed scale factor normalized log * magnitude values. */ static int _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425, 425, 373, 323, 273, 213, 135, 4, -2048}; /* Maps G.721 code word to log of scale factor multiplier. */ static int _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122, 1122, 355, 198, 112, 64, 41, 18, -12}; /* * Maps G.721 code words to a set of values whose long and short * term averages are computed and then compared to give an indication * how stationary (steady state) the signal is. */ static int _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00, 0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0}; /* * g72x_init_state() * * This routine initializes and/or resets the g726_state structure * pointed to by 'state_ptr'. * All the initial state values are specified in the CCITT G.721 document. */ static void g726_init_state(struct g726_state *state_ptr) { int cnta; state_ptr->yl = 34816; state_ptr->yu = 544; state_ptr->dms = 0; state_ptr->dml = 0; state_ptr->ap = 0; for (cnta = 0; cnta < 2; cnta++) { state_ptr->a[cnta] = 0; state_ptr->pk[cnta] = 0; #ifdef NOT_BLI state_ptr->sr[cnta] = 1; #else state_ptr->sr[cnta] = 32; #endif } for (cnta = 0; cnta < 6; cnta++) { state_ptr->b[cnta] = 0; #ifdef NOT_BLI state_ptr->dq[cnta] = 1; #else state_ptr->dq[cnta] = 32; #endif } state_ptr->td = 0; } /* * quan() * * quantizes the input val against the table of integers. * It returns i if table[i - 1] <= val < table[i]. * * Using linear search for simple coding. */ static int quan(int val, int *table, int size) { int i; for (i = 0; i < size && val >= *table; ++i, ++table) ; return (i); } #ifdef NOT_BLI /* faster non-identical version */ /* * predictor_zero() * * computes the estimated signal from 6-zero predictor. * */ static int predictor_zero(struct g726_state *state_ptr) { /* divide by 2 is necessary here to handle negative numbers correctly */ int i; sint64 sezi; for (sezi = 0, i = 0; i < 6; i++) /* ACCUM */ sezi += (sint64)state_ptr->b[i] * state_ptr->dq[i]; return (int)(sezi >> 13) / 2 /* 2^14 */; } /* * predictor_pole() * * computes the estimated signal from 2-pole predictor. * */ static int predictor_pole(struct g726_state *state_ptr) { /* divide by 2 is necessary here to handle negative numbers correctly */ return (int)(((sint64)state_ptr->a[1] * state_ptr->sr[1] + (sint64)state_ptr->a[0] * state_ptr->sr[0]) >> 13) / 2 /* 2^14 */; } #else /* NOT_BLI - identical version */ /* * fmult() * * returns the integer product of the fixed-point number "an" (1==2^12) and * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn". */ static int fmult(int an, int srn) { int anmag, anexp, anmant; int wanexp, wanmant; int retval; anmag = (an > 0) ? an : ((-an) & 0x1FFF); anexp = ilog2(anmag) - 5; anmant = (anmag == 0) ? 32 : (anexp >= 0) ? anmag >> anexp : anmag << -anexp; wanexp = anexp + ((srn >> 6) & 0xF) - 13; wanmant = (anmant * (srn & 077) + 0x30) >> 4; retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) : (wanmant >> -wanexp); return (((an ^ srn) < 0) ? -retval : retval); } static int predictor_zero(struct g726_state *state_ptr) { int i; int sezi; for (sezi = 0, i = 0; i < 6; i++) /* ACCUM */ sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]); return sezi; } static int predictor_pole(struct g726_state *state_ptr) { return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) + fmult(state_ptr->a[0] >> 2, state_ptr->sr[0])); } #endif /* NOT_BLI */ /* * step_size() * * computes the quantization step size of the adaptive quantizer. * */ static int step_size(struct g726_state *state_ptr) { int y; int dif; int al; if (state_ptr->ap >= 256) return (state_ptr->yu); else { y = state_ptr->yl >> 6; dif = state_ptr->yu - y; al = state_ptr->ap >> 2; if (dif > 0) y += (dif * al) >> 6; else if (dif < 0) y += (dif * al + 0x3F) >> 6; return (y); } } /* * quantize() * * Given a raw sample, 'd', of the difference signal and a * quantization step size scale factor, 'y', this routine returns the * ADPCM codeword to which that sample gets quantized. The step * size scale factor division operation is done in the log base 2 domain * as a subtraction. */ static int quantize( int d, /* Raw difference signal sample */ int y, /* Step size multiplier */ int *table, /* quantization table */ int size) /* table size of integers */ { int dqm; /* Magnitude of 'd' */ int exp; /* Integer part of base 2 log of 'd' */ int mant; /* Fractional part of base 2 log */ int dl; /* Log of magnitude of 'd' */ int dln; /* Step size scale factor normalized log */ int i; /* * LOG * * Compute base 2 log of 'd', and store in 'dl'. */ dqm = abs(d); exp = ilog2(dqm); if (exp < 0) exp = 0; mant = ((dqm << 7) >> exp) & 0x7F; /* Fractional portion. */ dl = (exp << 7) | mant; /* * SUBTB * * "Divide" by step size multiplier. */ dln = dl - (y >> 2); /* * QUAN * * Obtain codword i for 'd'. */ i = quan(dln, table, size); if (d < 0) /* take 1's complement of i */ return ((size << 1) + 1 - i); else if (i == 0) /* take 1's complement of 0 */ return ((size << 1) + 1); /* new in 1988 */ else return (i); } /* * reconstruct() * * Returns reconstructed difference signal 'dq' obtained from * codeword 'i' and quantization step size scale factor 'y'. * Multiplication is performed in log base 2 domain as addition. */ static int reconstruct( int sign, /* 0 for non-negative value */ int dqln, /* G.72x codeword */ int y) /* Step size multiplier */ { int dql; /* Log of 'dq' magnitude */ int dex; /* Integer part of log */ int dqt; int dq; /* Reconstructed difference signal sample */ dql = dqln + (y >> 2); /* ADDA */ if (dql < 0) { #ifdef NOT_BLI return (sign) ? -1 : 1; #else return (sign) ? -0x8000 : 0; #endif } else { /* ANTILOG */ dex = (dql >> 7) & 15; dqt = 128 + (dql & 127); #ifdef NOT_BLI dq = ((dqt << 19) >> (14 - dex)); return (sign) ? -dq : dq; #else dq = (dqt << 7) >> (14 - dex); return (sign) ? (dq - 0x8000) : dq; #endif } } /* * update() * * updates the state variables for each output code */ static void update( int code_size, /* distinguish 723_40 with others */ int y, /* quantizer step size */ int wi, /* scale factor multiplier */ int fi, /* for long/short term energies */ int dq, /* quantized prediction difference */ int sr, /* reconstructed signal */ int dqsez, /* difference from 2-pole predictor */ struct g726_state *state_ptr) /* coder state pointer */ { int cnt; int mag; /* Adaptive predictor, FLOAT A */ #ifndef NOT_BLI int exp; #endif int a2p=0; /* LIMC */ int a1ul; /* UPA1 */ int pks1; /* UPA2 */ int fa1; int tr; /* tone/transition detector */ int ylint, thr2, dqthr; int ylfrac, thr1; int pk0; pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */ #ifdef NOT_BLI mag = abs(dq / 0x1000); /* prediction difference magnitude */ #else mag = dq & 0x7FFF; /* prediction difference magnitude */ #endif /* TRANS */ ylint = state_ptr->yl >> 15; /* exponent part of yl */ ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */ thr1 = (32 + ylfrac) << ylint; /* threshold */ thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */ dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */ if (state_ptr->td == 0) /* signal supposed voice */ tr = 0; else if (mag <= dqthr) /* supposed data, but small mag */ tr = 0; /* treated as voice */ else /* signal is data (modem) */ tr = 1; /* * Quantizer scale factor adaptation. */ /* FUNCTW & FILTD & DELAY */ /* update non-steady state step size multiplier */ state_ptr->yu = y + ((wi - y) >> 5); /* LIMB */ if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */ state_ptr->yu = 544; else if (state_ptr->yu > 5120) state_ptr->yu = 5120; /* FILTE & DELAY */ /* update steady state step size multiplier */ state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6); /* * Adaptive predictor coefficients. */ if (tr == 1) { /* reset a's and b's for modem signal */ state_ptr->a[0] = 0; state_ptr->a[1] = 0; state_ptr->b[0] = 0; state_ptr->b[1] = 0; state_ptr->b[2] = 0; state_ptr->b[3] = 0; state_ptr->b[4] = 0; state_ptr->b[5] = 0; } else { /* update a's and b's */ pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */ /* update predictor pole a[1] */ a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7); if (dqsez != 0) { fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0]; if (fa1 < -8191) /* a2p = function of fa1 */ a2p -= 0x100; else if (fa1 > 8191) a2p += 0xFF; else a2p += fa1 >> 5; if (pk0 ^ state_ptr->pk[1]) /* LIMC */ if (a2p <= -12160) a2p = -12288; else if (a2p >= 12416) a2p = 12288; else a2p -= 0x80; else if (a2p <= -12416) a2p = -12288; else if (a2p >= 12160) a2p = 12288; else a2p += 0x80; } /* TRIGB & DELAY */ state_ptr->a[1] = a2p; /* UPA1 */ /* update predictor pole a[0] */ state_ptr->a[0] -= state_ptr->a[0] >> 8; if (dqsez != 0) { if (pks1 == 0) state_ptr->a[0] += 192; else state_ptr->a[0] -= 192; } /* LIMD */ a1ul = 15360 - a2p; if (state_ptr->a[0] < -a1ul) state_ptr->a[0] = -a1ul; else if (state_ptr->a[0] > a1ul) state_ptr->a[0] = a1ul; /* UPB : update predictor zeros b[6] */ for (cnt = 0; cnt < 6; cnt++) { if (code_size == 5) /* for 40Kbps G.723 */ state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9; else /* for G.721 and 24Kbps G.723 */ state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8; if (mag) { /* XOR */ if ((dq ^ state_ptr->dq[cnt]) >= 0) state_ptr->b[cnt] += 128; else state_ptr->b[cnt] -= 128; } } } for (cnt = 5; cnt > 0; cnt--) state_ptr->dq[cnt] = state_ptr->dq[cnt-1]; #ifdef NOT_BLI state_ptr->dq[0] = dq; #else /* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */ if (mag == 0) { state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0x20 - 0x400; } else { exp = ilog2(mag) + 1; state_ptr->dq[0] = (dq >= 0) ? (exp << 6) + ((mag << 6) >> exp) : (exp << 6) + ((mag << 6) >> exp) - 0x400; } #endif state_ptr->sr[1] = state_ptr->sr[0]; #ifdef NOT_BLI state_ptr->sr[0] = sr; #else /* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */ if (sr == 0) { state_ptr->sr[0] = 0x20; } else if (sr > 0) { exp = ilog2(sr) + 1; state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp); } else if (sr > -0x8000) { mag = -sr; exp = ilog2(mag) + 1; state_ptr->sr[0] = (exp << 6) + ((mag << 6) >> exp) - 0x400; } else state_ptr->sr[0] = 0x20 - 0x400; #endif /* DELAY A */ state_ptr->pk[1] = state_ptr->pk[0]; state_ptr->pk[0] = pk0; /* TONE */ if (tr == 1) /* this sample has been treated as data */ state_ptr->td = 0; /* next one will be treated as voice */ else if (a2p < -11776) /* small sample-to-sample correlation */ state_ptr->td = 1; /* signal may be data */ else /* signal is voice */ state_ptr->td = 0; /* * Adaptation speed control. */ state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */ state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */ if (tr == 1) state_ptr->ap = 256; else if (y < 1536) /* SUBTC */ state_ptr->ap += (0x200 - state_ptr->ap) >> 4; else if (state_ptr->td == 1) state_ptr->ap += (0x200 - state_ptr->ap) >> 4; else if (abs((state_ptr->dms << 2) - state_ptr->dml) >= (state_ptr->dml >> 3)) state_ptr->ap += (0x200 - state_ptr->ap) >> 4; else state_ptr->ap += (-state_ptr->ap) >> 4; } /* * g726_decode() * * Description: * * Decodes a 4-bit code of G.726-32 encoded data of i and * returns the resulting linear PCM, A-law or u-law value. * return -1 for unknown out_coding value. */ static int g726_decode(int i, struct g726_state *state_ptr) { int sezi, sez, se; /* ACCUM */ int y; /* MIX */ int sr; /* ADDB */ int dq; int dqsez; i &= 0x0f; /* mask to get proper bits */ #ifdef NOT_BLI sezi = predictor_zero(state_ptr); sez = sezi; se = sezi + predictor_pole(state_ptr); /* estimated signal */ #else sezi = predictor_zero(state_ptr); sez = sezi >> 1; se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */ #endif y = step_size(state_ptr); /* dynamic quantizer step size */ dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized diff. */ #ifdef NOT_BLI sr = se + dq; /* reconst. signal */ dqsez = dq + sez; /* pole prediction diff. */ #else sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */ dqsez = sr - se + sez; /* pole prediction diff. */ #endif update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr); #ifdef NOT_BLI return (sr >> 10); /* sr was 26-bit dynamic range */ #else return (sr << 2); /* sr was 14-bit dynamic range */ #endif } /* * g726_encode() * * Encodes the input vale of linear PCM, A-law or u-law data sl and returns * the resulting code. -1 is returned for unknown input coding value. */ static int g726_encode(int sl, struct g726_state *state_ptr) { int sezi, se, sez; /* ACCUM */ int d; /* SUBTA */ int sr; /* ADDB */ int y; /* MIX */ int dqsez; /* ADDC */ int dq, i; #ifdef NOT_BLI sl <<= 10; /* 26-bit dynamic range */ sezi = predictor_zero(state_ptr); sez = sezi; se = sezi + predictor_pole(state_ptr); /* estimated signal */ #else sl >>= 2; /* 14-bit dynamic range */ sezi = predictor_zero(state_ptr); sez = sezi >> 1; se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */ #endif d = sl - se; /* estimation difference */ /* quantize the prediction difference */ y = step_size(state_ptr); /* quantizer step size */ #ifdef NOT_BLI d /= 0x1000; #endif i = quantize(d, y, qtab_721, 7); /* i = G726 code */ dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */ #ifdef NOT_BLI sr = se + dq; /* reconst. signal */ dqsez = dq + sez; /* pole prediction diff. */ #else sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */ dqsez = sr - se + sez; /* pole prediction diff. */ #endif update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr); return (i); } /* * Private workspace for translating signed linear signals to G726. * Don't bother to define two distinct structs. */ struct g726_coder_pvt { /* buffer any odd byte in input - 0x80 + (value & 0xf) if present */ unsigned char next_flag; struct g726_state g726; }; /*! \brief init a new instance of g726_coder_pvt. */ static int lintog726_new(struct ast_trans_pvt *pvt) { struct g726_coder_pvt *tmp = pvt->pvt; g726_init_state(&tmp->g726); return 0; } /*! \brief decode packed 4-bit G726 values (AAL2 packing) and store in buffer. */ static int g726aal2tolin_framein (struct ast_trans_pvt *pvt, struct ast_frame *f) { struct g726_coder_pvt *tmp = pvt->pvt; unsigned char *src = f->data; int16_t *dst = (int16_t *) pvt->outbuf + pvt->samples; unsigned int i; for (i = 0; i < f->datalen; i++) { *dst++ = g726_decode((src[i] >> 4) & 0xf, &tmp->g726); *dst++ = g726_decode(src[i] & 0x0f, &tmp->g726); } pvt->samples += f->samples; pvt->datalen += 2 * f->samples; /* 2 bytes/sample */ return 0; } /*! \brief compress and store data (4-bit G726 samples, AAL2 packing) in outbuf */ static int lintog726aal2_framein(struct ast_trans_pvt *pvt, struct ast_frame *f) { struct g726_coder_pvt *tmp = pvt->pvt; int16_t *src = f->data; unsigned int i; for (i = 0; i < f->samples; i++) { unsigned char d = g726_encode(src[i], &tmp->g726); /* this sample */ if (tmp->next_flag & 0x80) { /* merge with leftover sample */ pvt->outbuf[pvt->datalen++] = ((tmp->next_flag & 0xf)<< 4) | d; pvt->samples += 2; /* 2 samples per byte */ tmp->next_flag = 0; } else { tmp->next_flag = 0x80 | d; } } return 0; } /*! \brief decode packed 4-bit G726 values (RFC3551 packing) and store in buffer. */ static int g726tolin_framein (struct ast_trans_pvt *pvt, struct ast_frame *f) { struct g726_coder_pvt *tmp = pvt->pvt; unsigned char *src = f->data; int16_t *dst = (int16_t *) pvt->outbuf + pvt->samples; unsigned int i; for (i = 0; i < f->datalen; i++) { *dst++ = g726_decode(src[i] & 0x0f, &tmp->g726); *dst++ = g726_decode((src[i] >> 4) & 0xf, &tmp->g726); } pvt->samples += f->samples; pvt->datalen += 2 * f->samples; /* 2 bytes/sample */ return 0; } /*! \brief compress and store data (4-bit G726 samples, RFC3551 packing) in outbuf */ static int lintog726_framein(struct ast_trans_pvt *pvt, struct ast_frame *f) { struct g726_coder_pvt *tmp = pvt->pvt; int16_t *src = f->data; unsigned int i; for (i = 0; i < f->samples; i++) { unsigned char d = g726_encode(src[i], &tmp->g726); /* this sample */ if (tmp->next_flag & 0x80) { /* merge with leftover sample */ pvt->outbuf[pvt->datalen++] = (d << 4) | (tmp->next_flag & 0xf); pvt->samples += 2; /* 2 samples per byte */ tmp->next_flag = 0; } else { tmp->next_flag = 0x80 | d; } } return 0; } /*! \brief convert G726-32 RFC3551 packed data into AAL2 packed data (or vice-versa) */ static int g726tog726aal2_framein(struct ast_trans_pvt *pvt, struct ast_frame *f) { unsigned char *src = f->data; unsigned char *dst = (unsigned char *) pvt->outbuf + pvt->samples; unsigned int i; for (i = 0; i < f->datalen; i++) *dst++ = ((src[i] & 0xf) << 4) | (src[i] >> 4); pvt->samples += f->samples; pvt->datalen += f->samples; /* 1 byte/sample */ return 0; } static struct ast_frame *g726tolin_sample(void) { static struct ast_frame f = { .frametype = AST_FRAME_VOICE, .subclass = AST_FORMAT_G726, .datalen = sizeof(g726_slin_ex), .samples = sizeof(g726_slin_ex) * 2, /* 2 samples per byte */ .src = __PRETTY_FUNCTION__, .data = g726_slin_ex, }; return &f; } static struct ast_frame *lintog726_sample (void) { static struct ast_frame f = { .frametype = AST_FRAME_VOICE, .subclass = AST_FORMAT_SLINEAR, .datalen = sizeof(slin_g726_ex), .samples = sizeof(slin_g726_ex) / 2, /* 1 sample per 2 bytes */ .src = __PRETTY_FUNCTION__, .data = slin_g726_ex, }; return &f; } static struct ast_translator g726tolin = { .name = "g726tolin", .srcfmt = AST_FORMAT_G726, .dstfmt = AST_FORMAT_SLINEAR, .newpvt = lintog726_new, /* same for both directions */ .framein = g726tolin_framein, .sample = g726tolin_sample, .desc_size = sizeof(struct g726_coder_pvt), .buffer_samples = BUFFER_SAMPLES, .buf_size = BUFFER_SAMPLES * 2, .plc_samples = 160, }; static struct ast_translator lintog726 = { .name = "lintog726", .srcfmt = AST_FORMAT_SLINEAR, .dstfmt = AST_FORMAT_G726, .newpvt = lintog726_new, /* same for both directions */ .framein = lintog726_framein, .sample = lintog726_sample, .desc_size = sizeof(struct g726_coder_pvt), .buffer_samples = BUFFER_SAMPLES, .buf_size = BUFFER_SAMPLES/2, }; static struct ast_translator g726aal2tolin = { .name = "g726aal2tolin", .srcfmt = AST_FORMAT_G726_AAL2, .dstfmt = AST_FORMAT_SLINEAR, .newpvt = lintog726_new, /* same for both directions */ .framein = g726aal2tolin_framein, .sample = g726tolin_sample, .desc_size = sizeof(struct g726_coder_pvt), .buffer_samples = BUFFER_SAMPLES, .buf_size = BUFFER_SAMPLES * 2, .plc_samples = 160, }; static struct ast_translator lintog726aal2 = { .name = "lintog726aal2", .srcfmt = AST_FORMAT_SLINEAR, .dstfmt = AST_FORMAT_G726_AAL2, .newpvt = lintog726_new, /* same for both directions */ .framein = lintog726aal2_framein, .sample = lintog726_sample, .desc_size = sizeof(struct g726_coder_pvt), .buffer_samples = BUFFER_SAMPLES, .buf_size = BUFFER_SAMPLES / 2, }; static struct ast_translator g726tog726aal2 = { .name = "g726tog726aal2", .srcfmt = AST_FORMAT_G726, .dstfmt = AST_FORMAT_G726_AAL2, .framein = g726tog726aal2_framein, /* same for both directions */ .sample = lintog726_sample, .buffer_samples = BUFFER_SAMPLES, .buf_size = BUFFER_SAMPLES, }; static struct ast_translator g726aal2tog726 = { .name = "g726aal2tog726", .srcfmt = AST_FORMAT_G726_AAL2, .dstfmt = AST_FORMAT_G726, .framein = g726tog726aal2_framein, /* same for both directions */ .sample = lintog726_sample, .buffer_samples = BUFFER_SAMPLES, .buf_size = BUFFER_SAMPLES, }; static void parse_config(void) { struct ast_variable *var; struct ast_config *cfg = ast_config_load("codecs.conf"); if (!cfg) return; for (var = ast_variable_browse(cfg, "plc"); var; var = var->next) { if (!strcasecmp(var->name, "genericplc")) { g726tolin.useplc = ast_true(var->value) ? 1 : 0; if (option_verbose > 2) ast_verbose(VERBOSE_PREFIX_3 "codec_g726: %susing generic PLC\n", g726tolin.useplc ? "" : "not "); } } ast_config_destroy(cfg); } static int reload(void) { parse_config(); return 0; } static int unload_module(void) { int res = 0; res |= ast_unregister_translator(&g726tolin); res |= ast_unregister_translator(&lintog726); res |= ast_unregister_translator(&g726aal2tolin); res |= ast_unregister_translator(&lintog726aal2); res |= ast_unregister_translator(&g726aal2tog726); res |= ast_unregister_translator(&g726tog726aal2); return res; } static int load_module(void) { int res = 0; parse_config(); res |= ast_register_translator(&g726tolin); res |= ast_register_translator(&lintog726); res |= ast_register_translator(&g726aal2tolin); res |= ast_register_translator(&lintog726aal2); res |= ast_register_translator(&g726aal2tog726); res |= ast_register_translator(&g726tog726aal2); if (res) unload_module(); return res; } AST_MODULE_INFO(ASTERISK_GPL_KEY, AST_MODFLAG_DEFAULT, "ITU G.726-32kbps G726 Transcoder", .load = load_module, .unload = unload_module, .reload = reload, );