aboutsummaryrefslogtreecommitdiffstats
path: root/trunk/codecs/codec_g726.c
diff options
context:
space:
mode:
Diffstat (limited to 'trunk/codecs/codec_g726.c')
-rw-r--r--trunk/codecs/codec_g726.c960
1 files changed, 960 insertions, 0 deletions
diff --git a/trunk/codecs/codec_g726.c b/trunk/codecs/codec_g726.c
new file mode 100644
index 000000000..c8a671ee8
--- /dev/null
+++ b/trunk/codecs/codec_g726.c
@@ -0,0 +1,960 @@
+/*
+ * Asterisk -- An open source telephony toolkit.
+ *
+ * Copyright (C) 1999 - 2006, Digium, Inc.
+ *
+ * Mark Spencer <markster@digium.com>
+ * Kevin P. Fleming <kpfleming@digium.com>
+ *
+ * Based on frompcm.c and topcm.c from the Emiliano MIPL browser/
+ * interpreter. See http://www.bsdtelephony.com.mx
+ *
+ * See http://www.asterisk.org for more information about
+ * the Asterisk project. Please do not directly contact
+ * any of the maintainers of this project for assistance;
+ * the project provides a web site, mailing lists and IRC
+ * channels for your use.
+ *
+ * This program is free software, distributed under the terms of
+ * the GNU General Public License Version 2. See the LICENSE file
+ * at the top of the source tree.
+ */
+
+/*! \file
+ *
+ * \brief codec_g726.c - translate between signed linear and ITU G.726-32kbps (both RFC3551 and AAL2 codeword packing)
+ *
+ * \ingroup codecs
+ */
+
+#include "asterisk.h"
+
+ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
+
+#include "asterisk/lock.h"
+#include "asterisk/linkedlists.h"
+#include "asterisk/module.h"
+#include "asterisk/config.h"
+#include "asterisk/translate.h"
+#include "asterisk/utils.h"
+
+#define WANT_ASM
+#include "log2comp.h"
+
+/* define NOT_BLI to use a faster but not bit-level identical version */
+/* #define NOT_BLI */
+
+#if defined(NOT_BLI)
+# if defined(_MSC_VER)
+typedef __int64 sint64;
+# elif defined(__GNUC__)
+typedef long long sint64;
+# else
+# error 64-bit integer type is not defined for your compiler/platform
+# endif
+#endif
+
+#define BUFFER_SAMPLES 8096 /* size for the translation buffers */
+#define BUF_SHIFT 5
+
+/* Sample frame data */
+
+#include "slin_g726_ex.h"
+#include "g726_slin_ex.h"
+
+/*
+ * The following is the definition of the state structure
+ * used by the G.726 encoder and decoder to preserve their internal
+ * state between successive calls. The meanings of the majority
+ * of the state structure fields are explained in detail in the
+ * CCITT Recommendation G.721. The field names are essentially identical
+ * to variable names in the bit level description of the coding algorithm
+ * included in this Recommendation.
+ */
+struct g726_state {
+ long yl; /* Locked or steady state step size multiplier. */
+ int yu; /* Unlocked or non-steady state step size multiplier. */
+ int dms; /* Short term energy estimate. */
+ int dml; /* Long term energy estimate. */
+ int ap; /* Linear weighting coefficient of 'yl' and 'yu'. */
+ int a[2]; /* Coefficients of pole portion of prediction filter.
+ * stored as fixed-point 1==2^14 */
+ int b[6]; /* Coefficients of zero portion of prediction filter.
+ * stored as fixed-point 1==2^14 */
+ int pk[2]; /* Signs of previous two samples of a partially
+ * reconstructed signal. */
+ int dq[6]; /* Previous 6 samples of the quantized difference signal
+ * stored as fixed point 1==2^12,
+ * or in internal floating point format */
+ int sr[2]; /* Previous 2 samples of the quantized difference signal
+ * stored as fixed point 1==2^12,
+ * or in internal floating point format */
+ int td; /* delayed tone detect, new in 1988 version */
+};
+
+static int qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400};
+/*
+ * Maps G.721 code word to reconstructed scale factor normalized log
+ * magnitude values.
+ */
+static int _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
+ 425, 373, 323, 273, 213, 135, 4, -2048};
+
+/* Maps G.721 code word to log of scale factor multiplier. */
+static int _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
+ 1122, 355, 198, 112, 64, 41, 18, -12};
+/*
+ * Maps G.721 code words to a set of values whose long and short
+ * term averages are computed and then compared to give an indication
+ * how stationary (steady state) the signal is.
+ */
+static int _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
+ 0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
+
+
+/*
+ * g72x_init_state()
+ *
+ * This routine initializes and/or resets the g726_state structure
+ * pointed to by 'state_ptr'.
+ * All the initial state values are specified in the CCITT G.721 document.
+ */
+static void g726_init_state(struct g726_state *state_ptr)
+{
+ int cnta;
+
+ state_ptr->yl = 34816;
+ state_ptr->yu = 544;
+ state_ptr->dms = 0;
+ state_ptr->dml = 0;
+ state_ptr->ap = 0;
+ for (cnta = 0; cnta < 2; cnta++) {
+ state_ptr->a[cnta] = 0;
+ state_ptr->pk[cnta] = 0;
+#ifdef NOT_BLI
+ state_ptr->sr[cnta] = 1;
+#else
+ state_ptr->sr[cnta] = 32;
+#endif
+ }
+ for (cnta = 0; cnta < 6; cnta++) {
+ state_ptr->b[cnta] = 0;
+#ifdef NOT_BLI
+ state_ptr->dq[cnta] = 1;
+#else
+ state_ptr->dq[cnta] = 32;
+#endif
+ }
+ state_ptr->td = 0;
+}
+
+/*
+ * quan()
+ *
+ * quantizes the input val against the table of integers.
+ * It returns i if table[i - 1] <= val < table[i].
+ *
+ * Using linear search for simple coding.
+ */
+static int quan(int val, int *table, int size)
+{
+ int i;
+
+ for (i = 0; i < size && val >= *table; ++i, ++table)
+ ;
+ return (i);
+}
+
+#ifdef NOT_BLI /* faster non-identical version */
+
+/*
+ * predictor_zero()
+ *
+ * computes the estimated signal from 6-zero predictor.
+ *
+ */
+static int predictor_zero(struct g726_state *state_ptr)
+{ /* divide by 2 is necessary here to handle negative numbers correctly */
+ int i;
+ sint64 sezi;
+ for (sezi = 0, i = 0; i < 6; i++) /* ACCUM */
+ sezi += (sint64)state_ptr->b[i] * state_ptr->dq[i];
+ return (int)(sezi >> 13) / 2 /* 2^14 */;
+}
+
+/*
+ * predictor_pole()
+ *
+ * computes the estimated signal from 2-pole predictor.
+ *
+ */
+static int predictor_pole(struct g726_state *state_ptr)
+{ /* divide by 2 is necessary here to handle negative numbers correctly */
+ return (int)(((sint64)state_ptr->a[1] * state_ptr->sr[1] +
+ (sint64)state_ptr->a[0] * state_ptr->sr[0]) >> 13) / 2 /* 2^14 */;
+}
+
+#else /* NOT_BLI - identical version */
+/*
+ * fmult()
+ *
+ * returns the integer product of the fixed-point number "an" (1==2^12) and
+ * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
+ */
+static int fmult(int an, int srn)
+{
+ int anmag, anexp, anmant;
+ int wanexp, wanmant;
+ int retval;
+
+ anmag = (an > 0) ? an : ((-an) & 0x1FFF);
+ anexp = ilog2(anmag) - 5;
+ anmant = (anmag == 0) ? 32 :
+ (anexp >= 0) ? anmag >> anexp : anmag << -anexp;
+ wanexp = anexp + ((srn >> 6) & 0xF) - 13;
+
+ wanmant = (anmant * (srn & 077) + 0x30) >> 4;
+ retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
+ (wanmant >> -wanexp);
+
+ return (((an ^ srn) < 0) ? -retval : retval);
+}
+
+static int predictor_zero(struct g726_state *state_ptr)
+{
+ int i;
+ int sezi;
+ for (sezi = 0, i = 0; i < 6; i++) /* ACCUM */
+ sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
+ return sezi;
+}
+
+static int predictor_pole(struct g726_state *state_ptr)
+{
+ return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
+ fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
+}
+
+#endif /* NOT_BLI */
+
+/*
+ * step_size()
+ *
+ * computes the quantization step size of the adaptive quantizer.
+ *
+ */
+static int step_size(struct g726_state *state_ptr)
+{
+ int y;
+ int dif;
+ int al;
+
+ if (state_ptr->ap >= 256)
+ return (state_ptr->yu);
+ else {
+ y = state_ptr->yl >> 6;
+ dif = state_ptr->yu - y;
+ al = state_ptr->ap >> 2;
+ if (dif > 0)
+ y += (dif * al) >> 6;
+ else if (dif < 0)
+ y += (dif * al + 0x3F) >> 6;
+ return (y);
+ }
+}
+
+/*
+ * quantize()
+ *
+ * Given a raw sample, 'd', of the difference signal and a
+ * quantization step size scale factor, 'y', this routine returns the
+ * ADPCM codeword to which that sample gets quantized. The step
+ * size scale factor division operation is done in the log base 2 domain
+ * as a subtraction.
+ */
+static int quantize(
+ int d, /* Raw difference signal sample */
+ int y, /* Step size multiplier */
+ int *table, /* quantization table */
+ int size) /* table size of integers */
+{
+ int dqm; /* Magnitude of 'd' */
+ int exp; /* Integer part of base 2 log of 'd' */
+ int mant; /* Fractional part of base 2 log */
+ int dl; /* Log of magnitude of 'd' */
+ int dln; /* Step size scale factor normalized log */
+ int i;
+
+ /*
+ * LOG
+ *
+ * Compute base 2 log of 'd', and store in 'dl'.
+ */
+ dqm = abs(d);
+ exp = ilog2(dqm);
+ if (exp < 0)
+ exp = 0;
+ mant = ((dqm << 7) >> exp) & 0x7F; /* Fractional portion. */
+ dl = (exp << 7) | mant;
+
+ /*
+ * SUBTB
+ *
+ * "Divide" by step size multiplier.
+ */
+ dln = dl - (y >> 2);
+
+ /*
+ * QUAN
+ *
+ * Obtain codword i for 'd'.
+ */
+ i = quan(dln, table, size);
+ if (d < 0) /* take 1's complement of i */
+ return ((size << 1) + 1 - i);
+ else if (i == 0) /* take 1's complement of 0 */
+ return ((size << 1) + 1); /* new in 1988 */
+ else
+ return (i);
+}
+
+/*
+ * reconstruct()
+ *
+ * Returns reconstructed difference signal 'dq' obtained from
+ * codeword 'i' and quantization step size scale factor 'y'.
+ * Multiplication is performed in log base 2 domain as addition.
+ */
+static int reconstruct(
+ int sign, /* 0 for non-negative value */
+ int dqln, /* G.72x codeword */
+ int y) /* Step size multiplier */
+{
+ int dql; /* Log of 'dq' magnitude */
+ int dex; /* Integer part of log */
+ int dqt;
+ int dq; /* Reconstructed difference signal sample */
+
+ dql = dqln + (y >> 2); /* ADDA */
+
+ if (dql < 0) {
+#ifdef NOT_BLI
+ return (sign) ? -1 : 1;
+#else
+ return (sign) ? -0x8000 : 0;
+#endif
+ } else { /* ANTILOG */
+ dex = (dql >> 7) & 15;
+ dqt = 128 + (dql & 127);
+#ifdef NOT_BLI
+ dq = ((dqt << 19) >> (14 - dex));
+ return (sign) ? -dq : dq;
+#else
+ dq = (dqt << 7) >> (14 - dex);
+ return (sign) ? (dq - 0x8000) : dq;
+#endif
+ }
+}
+
+/*
+ * update()
+ *
+ * updates the state variables for each output code
+ */
+static void update(
+ int code_size, /* distinguish 723_40 with others */
+ int y, /* quantizer step size */
+ int wi, /* scale factor multiplier */
+ int fi, /* for long/short term energies */
+ int dq, /* quantized prediction difference */
+ int sr, /* reconstructed signal */
+ int dqsez, /* difference from 2-pole predictor */
+ struct g726_state *state_ptr) /* coder state pointer */
+{
+ int cnt;
+ int mag; /* Adaptive predictor, FLOAT A */
+#ifndef NOT_BLI
+ int exp;
+#endif
+ int a2p=0; /* LIMC */
+ int a1ul; /* UPA1 */
+ int pks1; /* UPA2 */
+ int fa1;
+ int tr; /* tone/transition detector */
+ int ylint, thr2, dqthr;
+ int ylfrac, thr1;
+ int pk0;
+
+ pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */
+
+#ifdef NOT_BLI
+ mag = abs(dq / 0x1000); /* prediction difference magnitude */
+#else
+ mag = dq & 0x7FFF; /* prediction difference magnitude */
+#endif
+ /* TRANS */
+ ylint = state_ptr->yl >> 15; /* exponent part of yl */
+ ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */
+ thr1 = (32 + ylfrac) << ylint; /* threshold */
+ thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */
+ dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */
+ if (state_ptr->td == 0) /* signal supposed voice */
+ tr = 0;
+ else if (mag <= dqthr) /* supposed data, but small mag */
+ tr = 0; /* treated as voice */
+ else /* signal is data (modem) */
+ tr = 1;
+
+ /*
+ * Quantizer scale factor adaptation.
+ */
+
+ /* FUNCTW & FILTD & DELAY */
+ /* update non-steady state step size multiplier */
+ state_ptr->yu = y + ((wi - y) >> 5);
+
+ /* LIMB */
+ if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */
+ state_ptr->yu = 544;
+ else if (state_ptr->yu > 5120)
+ state_ptr->yu = 5120;
+
+ /* FILTE & DELAY */
+ /* update steady state step size multiplier */
+ state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
+
+ /*
+ * Adaptive predictor coefficients.
+ */
+ if (tr == 1) { /* reset a's and b's for modem signal */
+ state_ptr->a[0] = 0;
+ state_ptr->a[1] = 0;
+ state_ptr->b[0] = 0;
+ state_ptr->b[1] = 0;
+ state_ptr->b[2] = 0;
+ state_ptr->b[3] = 0;
+ state_ptr->b[4] = 0;
+ state_ptr->b[5] = 0;
+ } else { /* update a's and b's */
+ pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */
+
+ /* update predictor pole a[1] */
+ a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
+ if (dqsez != 0) {
+ fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
+ if (fa1 < -8191) /* a2p = function of fa1 */
+ a2p -= 0x100;
+ else if (fa1 > 8191)
+ a2p += 0xFF;
+ else
+ a2p += fa1 >> 5;
+
+ if (pk0 ^ state_ptr->pk[1])
+ /* LIMC */
+ if (a2p <= -12160)
+ a2p = -12288;
+ else if (a2p >= 12416)
+ a2p = 12288;
+ else
+ a2p -= 0x80;
+ else if (a2p <= -12416)
+ a2p = -12288;
+ else if (a2p >= 12160)
+ a2p = 12288;
+ else
+ a2p += 0x80;
+ }
+
+ /* TRIGB & DELAY */
+ state_ptr->a[1] = a2p;
+
+ /* UPA1 */
+ /* update predictor pole a[0] */
+ state_ptr->a[0] -= state_ptr->a[0] >> 8;
+ if (dqsez != 0) {
+ if (pks1 == 0)
+ state_ptr->a[0] += 192;
+ else
+ state_ptr->a[0] -= 192;
+ }
+ /* LIMD */
+ a1ul = 15360 - a2p;
+ if (state_ptr->a[0] < -a1ul)
+ state_ptr->a[0] = -a1ul;
+ else if (state_ptr->a[0] > a1ul)
+ state_ptr->a[0] = a1ul;
+
+ /* UPB : update predictor zeros b[6] */
+ for (cnt = 0; cnt < 6; cnt++) {
+ if (code_size == 5) /* for 40Kbps G.723 */
+ state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
+ else /* for G.721 and 24Kbps G.723 */
+ state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
+ if (mag)
+ { /* XOR */
+ if ((dq ^ state_ptr->dq[cnt]) >= 0)
+ state_ptr->b[cnt] += 128;
+ else
+ state_ptr->b[cnt] -= 128;
+ }
+ }
+ }
+
+ for (cnt = 5; cnt > 0; cnt--)
+ state_ptr->dq[cnt] = state_ptr->dq[cnt-1];
+#ifdef NOT_BLI
+ state_ptr->dq[0] = dq;
+#else
+ /* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
+ if (mag == 0) {
+ state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0x20 - 0x400;
+ } else {
+ exp = ilog2(mag) + 1;
+ state_ptr->dq[0] = (dq >= 0) ?
+ (exp << 6) + ((mag << 6) >> exp) :
+ (exp << 6) + ((mag << 6) >> exp) - 0x400;
+ }
+#endif
+
+ state_ptr->sr[1] = state_ptr->sr[0];
+#ifdef NOT_BLI
+ state_ptr->sr[0] = sr;
+#else
+ /* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
+ if (sr == 0) {
+ state_ptr->sr[0] = 0x20;
+ } else if (sr > 0) {
+ exp = ilog2(sr) + 1;
+ state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
+ } else if (sr > -0x8000) {
+ mag = -sr;
+ exp = ilog2(mag) + 1;
+ state_ptr->sr[0] = (exp << 6) + ((mag << 6) >> exp) - 0x400;
+ } else
+ state_ptr->sr[0] = 0x20 - 0x400;
+#endif
+
+ /* DELAY A */
+ state_ptr->pk[1] = state_ptr->pk[0];
+ state_ptr->pk[0] = pk0;
+
+ /* TONE */
+ if (tr == 1) /* this sample has been treated as data */
+ state_ptr->td = 0; /* next one will be treated as voice */
+ else if (a2p < -11776) /* small sample-to-sample correlation */
+ state_ptr->td = 1; /* signal may be data */
+ else /* signal is voice */
+ state_ptr->td = 0;
+
+ /*
+ * Adaptation speed control.
+ */
+ state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */
+ state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */
+
+ if (tr == 1)
+ state_ptr->ap = 256;
+ else if (y < 1536) /* SUBTC */
+ state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
+ else if (state_ptr->td == 1)
+ state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
+ else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
+ (state_ptr->dml >> 3))
+ state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
+ else
+ state_ptr->ap += (-state_ptr->ap) >> 4;
+}
+
+/*
+ * g726_decode()
+ *
+ * Description:
+ *
+ * Decodes a 4-bit code of G.726-32 encoded data of i and
+ * returns the resulting linear PCM, A-law or u-law value.
+ * return -1 for unknown out_coding value.
+ */
+static int g726_decode(int i, struct g726_state *state_ptr)
+{
+ int sezi, sez, se; /* ACCUM */
+ int y; /* MIX */
+ int sr; /* ADDB */
+ int dq;
+ int dqsez;
+
+ i &= 0x0f; /* mask to get proper bits */
+#ifdef NOT_BLI
+ sezi = predictor_zero(state_ptr);
+ sez = sezi;
+ se = sezi + predictor_pole(state_ptr); /* estimated signal */
+#else
+ sezi = predictor_zero(state_ptr);
+ sez = sezi >> 1;
+ se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
+#endif
+
+ y = step_size(state_ptr); /* dynamic quantizer step size */
+
+ dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized diff. */
+
+#ifdef NOT_BLI
+ sr = se + dq; /* reconst. signal */
+ dqsez = dq + sez; /* pole prediction diff. */
+#else
+ sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
+ dqsez = sr - se + sez; /* pole prediction diff. */
+#endif
+
+ update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
+
+#ifdef NOT_BLI
+ return (sr >> 10); /* sr was 26-bit dynamic range */
+#else
+ return (sr << 2); /* sr was 14-bit dynamic range */
+#endif
+}
+
+/*
+ * g726_encode()
+ *
+ * Encodes the input vale of linear PCM, A-law or u-law data sl and returns
+ * the resulting code. -1 is returned for unknown input coding value.
+ */
+static int g726_encode(int sl, struct g726_state *state_ptr)
+{
+ int sezi, se, sez; /* ACCUM */
+ int d; /* SUBTA */
+ int sr; /* ADDB */
+ int y; /* MIX */
+ int dqsez; /* ADDC */
+ int dq, i;
+
+#ifdef NOT_BLI
+ sl <<= 10; /* 26-bit dynamic range */
+
+ sezi = predictor_zero(state_ptr);
+ sez = sezi;
+ se = sezi + predictor_pole(state_ptr); /* estimated signal */
+#else
+ sl >>= 2; /* 14-bit dynamic range */
+
+ sezi = predictor_zero(state_ptr);
+ sez = sezi >> 1;
+ se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
+#endif
+
+ d = sl - se; /* estimation difference */
+
+ /* quantize the prediction difference */
+ y = step_size(state_ptr); /* quantizer step size */
+#ifdef NOT_BLI
+ d /= 0x1000;
+#endif
+ i = quantize(d, y, qtab_721, 7); /* i = G726 code */
+
+ dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */
+
+#ifdef NOT_BLI
+ sr = se + dq; /* reconst. signal */
+ dqsez = dq + sez; /* pole prediction diff. */
+#else
+ sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
+ dqsez = sr - se + sez; /* pole prediction diff. */
+#endif
+
+ update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
+
+ return (i);
+}
+
+/*
+ * Private workspace for translating signed linear signals to G726.
+ * Don't bother to define two distinct structs.
+ */
+
+struct g726_coder_pvt {
+ /* buffer any odd byte in input - 0x80 + (value & 0xf) if present */
+ unsigned char next_flag;
+ struct g726_state g726;
+};
+
+/*! \brief init a new instance of g726_coder_pvt. */
+static int lintog726_new(struct ast_trans_pvt *pvt)
+{
+ struct g726_coder_pvt *tmp = pvt->pvt;
+
+ g726_init_state(&tmp->g726);
+
+ return 0;
+}
+
+/*! \brief decode packed 4-bit G726 values (AAL2 packing) and store in buffer. */
+static int g726aal2tolin_framein (struct ast_trans_pvt *pvt, struct ast_frame *f)
+{
+ struct g726_coder_pvt *tmp = pvt->pvt;
+ unsigned char *src = f->data;
+ int16_t *dst = (int16_t *) pvt->outbuf + pvt->samples;
+ unsigned int i;
+
+ for (i = 0; i < f->datalen; i++) {
+ *dst++ = g726_decode((src[i] >> 4) & 0xf, &tmp->g726);
+ *dst++ = g726_decode(src[i] & 0x0f, &tmp->g726);
+ }
+
+ pvt->samples += f->samples;
+ pvt->datalen += 2 * f->samples; /* 2 bytes/sample */
+
+ return 0;
+}
+
+/*! \brief compress and store data (4-bit G726 samples, AAL2 packing) in outbuf */
+static int lintog726aal2_framein(struct ast_trans_pvt *pvt, struct ast_frame *f)
+{
+ struct g726_coder_pvt *tmp = pvt->pvt;
+ int16_t *src = f->data;
+ unsigned int i;
+
+ for (i = 0; i < f->samples; i++) {
+ unsigned char d = g726_encode(src[i], &tmp->g726); /* this sample */
+
+ if (tmp->next_flag & 0x80) { /* merge with leftover sample */
+ pvt->outbuf[pvt->datalen++] = ((tmp->next_flag & 0xf)<< 4) | d;
+ pvt->samples += 2; /* 2 samples per byte */
+ tmp->next_flag = 0;
+ } else {
+ tmp->next_flag = 0x80 | d;
+ }
+ }
+
+ return 0;
+}
+
+/*! \brief decode packed 4-bit G726 values (RFC3551 packing) and store in buffer. */
+static int g726tolin_framein (struct ast_trans_pvt *pvt, struct ast_frame *f)
+{
+ struct g726_coder_pvt *tmp = pvt->pvt;
+ unsigned char *src = f->data;
+ int16_t *dst = (int16_t *) pvt->outbuf + pvt->samples;
+ unsigned int i;
+
+ for (i = 0; i < f->datalen; i++) {
+ *dst++ = g726_decode(src[i] & 0x0f, &tmp->g726);
+ *dst++ = g726_decode((src[i] >> 4) & 0xf, &tmp->g726);
+ }
+
+ pvt->samples += f->samples;
+ pvt->datalen += 2 * f->samples; /* 2 bytes/sample */
+
+ return 0;
+}
+
+/*! \brief compress and store data (4-bit G726 samples, RFC3551 packing) in outbuf */
+static int lintog726_framein(struct ast_trans_pvt *pvt, struct ast_frame *f)
+{
+ struct g726_coder_pvt *tmp = pvt->pvt;
+ int16_t *src = f->data;
+ unsigned int i;
+
+ for (i = 0; i < f->samples; i++) {
+ unsigned char d = g726_encode(src[i], &tmp->g726); /* this sample */
+
+ if (tmp->next_flag & 0x80) { /* merge with leftover sample */
+ pvt->outbuf[pvt->datalen++] = (d << 4) | (tmp->next_flag & 0xf);
+ pvt->samples += 2; /* 2 samples per byte */
+ tmp->next_flag = 0;
+ } else {
+ tmp->next_flag = 0x80 | d;
+ }
+ }
+
+ return 0;
+}
+
+/*! \brief convert G726-32 RFC3551 packed data into AAL2 packed data (or vice-versa) */
+static int g726tog726aal2_framein(struct ast_trans_pvt *pvt, struct ast_frame *f)
+{
+ unsigned char *src = f->data;
+ unsigned char *dst = (unsigned char *) pvt->outbuf + pvt->samples;
+ unsigned int i;
+
+ for (i = 0; i < f->datalen; i++)
+ *dst++ = ((src[i] & 0xf) << 4) | (src[i] >> 4);
+
+ pvt->samples += f->samples;
+ pvt->datalen += f->samples; /* 1 byte/sample */
+
+ return 0;
+}
+
+static struct ast_frame *g726tolin_sample(void)
+{
+ static struct ast_frame f = {
+ .frametype = AST_FRAME_VOICE,
+ .subclass = AST_FORMAT_G726,
+ .datalen = sizeof(g726_slin_ex),
+ .samples = sizeof(g726_slin_ex) * 2, /* 2 samples per byte */
+ .src = __PRETTY_FUNCTION__,
+ .data = g726_slin_ex,
+ };
+
+ return &f;
+}
+
+static struct ast_frame *lintog726_sample (void)
+{
+ static struct ast_frame f = {
+ .frametype = AST_FRAME_VOICE,
+ .subclass = AST_FORMAT_SLINEAR,
+ .datalen = sizeof(slin_g726_ex),
+ .samples = sizeof(slin_g726_ex) / 2, /* 1 sample per 2 bytes */
+ .src = __PRETTY_FUNCTION__,
+ .data = slin_g726_ex,
+ };
+
+ return &f;
+}
+
+static struct ast_translator g726tolin = {
+ .name = "g726tolin",
+ .srcfmt = AST_FORMAT_G726,
+ .dstfmt = AST_FORMAT_SLINEAR,
+ .newpvt = lintog726_new, /* same for both directions */
+ .framein = g726tolin_framein,
+ .sample = g726tolin_sample,
+ .desc_size = sizeof(struct g726_coder_pvt),
+ .buffer_samples = BUFFER_SAMPLES,
+ .buf_size = BUFFER_SAMPLES * 2,
+ .plc_samples = 160,
+};
+
+static struct ast_translator lintog726 = {
+ .name = "lintog726",
+ .srcfmt = AST_FORMAT_SLINEAR,
+ .dstfmt = AST_FORMAT_G726,
+ .newpvt = lintog726_new, /* same for both directions */
+ .framein = lintog726_framein,
+ .sample = lintog726_sample,
+ .desc_size = sizeof(struct g726_coder_pvt),
+ .buffer_samples = BUFFER_SAMPLES,
+ .buf_size = BUFFER_SAMPLES/2,
+};
+
+static struct ast_translator g726aal2tolin = {
+ .name = "g726aal2tolin",
+ .srcfmt = AST_FORMAT_G726_AAL2,
+ .dstfmt = AST_FORMAT_SLINEAR,
+ .newpvt = lintog726_new, /* same for both directions */
+ .framein = g726aal2tolin_framein,
+ .sample = g726tolin_sample,
+ .desc_size = sizeof(struct g726_coder_pvt),
+ .buffer_samples = BUFFER_SAMPLES,
+ .buf_size = BUFFER_SAMPLES * 2,
+ .plc_samples = 160,
+};
+
+static struct ast_translator lintog726aal2 = {
+ .name = "lintog726aal2",
+ .srcfmt = AST_FORMAT_SLINEAR,
+ .dstfmt = AST_FORMAT_G726_AAL2,
+ .newpvt = lintog726_new, /* same for both directions */
+ .framein = lintog726aal2_framein,
+ .sample = lintog726_sample,
+ .desc_size = sizeof(struct g726_coder_pvt),
+ .buffer_samples = BUFFER_SAMPLES,
+ .buf_size = BUFFER_SAMPLES / 2,
+};
+
+static struct ast_translator g726tog726aal2 = {
+ .name = "g726tog726aal2",
+ .srcfmt = AST_FORMAT_G726,
+ .dstfmt = AST_FORMAT_G726_AAL2,
+ .framein = g726tog726aal2_framein, /* same for both directions */
+ .sample = lintog726_sample,
+ .buffer_samples = BUFFER_SAMPLES,
+ .buf_size = BUFFER_SAMPLES,
+};
+
+static struct ast_translator g726aal2tog726 = {
+ .name = "g726aal2tog726",
+ .srcfmt = AST_FORMAT_G726_AAL2,
+ .dstfmt = AST_FORMAT_G726,
+ .framein = g726tog726aal2_framein, /* same for both directions */
+ .sample = lintog726_sample,
+ .buffer_samples = BUFFER_SAMPLES,
+ .buf_size = BUFFER_SAMPLES,
+};
+
+static int parse_config(int reload)
+{
+ struct ast_variable *var;
+ struct ast_flags config_flags = { reload ? CONFIG_FLAG_FILEUNCHANGED : 0 };
+ struct ast_config *cfg = ast_config_load("codecs.conf", config_flags);
+
+ if (cfg == NULL)
+ return 0;
+ if (cfg == CONFIG_STATUS_FILEUNCHANGED)
+ return 0;
+ for (var = ast_variable_browse(cfg, "plc"); var; var = var->next) {
+ if (!strcasecmp(var->name, "genericplc")) {
+ g726tolin.useplc = ast_true(var->value) ? 1 : 0;
+ ast_verb(3, "codec_g726: %susing generic PLC\n",
+ g726tolin.useplc ? "" : "not ");
+ }
+ }
+ ast_config_destroy(cfg);
+ return 0;
+}
+
+static int reload(void)
+{
+ if (parse_config(1))
+ return AST_MODULE_LOAD_DECLINE;
+ return AST_MODULE_LOAD_SUCCESS;
+}
+
+static int unload_module(void)
+{
+ int res = 0;
+
+ res |= ast_unregister_translator(&g726tolin);
+ res |= ast_unregister_translator(&lintog726);
+
+ res |= ast_unregister_translator(&g726aal2tolin);
+ res |= ast_unregister_translator(&lintog726aal2);
+
+ res |= ast_unregister_translator(&g726aal2tog726);
+ res |= ast_unregister_translator(&g726tog726aal2);
+
+ return res;
+}
+
+static int load_module(void)
+{
+ int res = 0;
+
+
+ if (parse_config(0))
+ return AST_MODULE_LOAD_DECLINE;
+
+ res |= ast_register_translator(&g726tolin);
+ res |= ast_register_translator(&lintog726);
+
+ res |= ast_register_translator(&g726aal2tolin);
+ res |= ast_register_translator(&lintog726aal2);
+
+ res |= ast_register_translator(&g726aal2tog726);
+ res |= ast_register_translator(&g726tog726aal2);
+
+ if (res) {
+ unload_module();
+ return AST_MODULE_LOAD_FAILURE;
+ }
+
+ return AST_MODULE_LOAD_SUCCESS;
+}
+
+AST_MODULE_INFO(ASTERISK_GPL_KEY, AST_MODFLAG_DEFAULT, "ITU G.726-32kbps G726 Transcoder",
+ .load = load_module,
+ .unload = unload_module,
+ .reload = reload,
+ );