aboutsummaryrefslogtreecommitdiffstats
path: root/1.2-netsec/codecs/codec_g726.c
diff options
context:
space:
mode:
Diffstat (limited to '1.2-netsec/codecs/codec_g726.c')
-rw-r--r--1.2-netsec/codecs/codec_g726.c1092
1 files changed, 0 insertions, 1092 deletions
diff --git a/1.2-netsec/codecs/codec_g726.c b/1.2-netsec/codecs/codec_g726.c
deleted file mode 100644
index 81ec1e1ac..000000000
--- a/1.2-netsec/codecs/codec_g726.c
+++ /dev/null
@@ -1,1092 +0,0 @@
-/*
- * Asterisk -- An open source telephony toolkit.
- *
- * Copyright (C) 1999 - 2005, Digium, Inc.
- *
- * Mark Spencer <markster@digium.com>
- *
- * Based on frompcm.c and topcm.c from the Emiliano MIPL browser/
- * interpreter. See http://www.bsdtelephony.com.mx
- *
- * See http://www.asterisk.org for more information about
- * the Asterisk project. Please do not directly contact
- * any of the maintainers of this project for assistance;
- * the project provides a web site, mailing lists and IRC
- * channels for your use.
- *
- * This program is free software, distributed under the terms of
- * the GNU General Public License Version 2. See the LICENSE file
- * at the top of the source tree.
- */
-
-
-/*! \file
- *
- * \brief codec_g726.c - translate between signed linear and ITU G.726-32kbps
- *
- * \ingroup codecs
- */
-
-#include <fcntl.h>
-#include <netinet/in.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <unistd.h>
-
-#include "asterisk.h"
-
-ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
-
-#include "asterisk/lock.h"
-#include "asterisk/logger.h"
-#include "asterisk/module.h"
-#include "asterisk/config.h"
-#include "asterisk/options.h"
-#include "asterisk/translate.h"
-#include "asterisk/channel.h"
-
-#define WANT_ASM
-#include "log2comp.h"
-
-/* define NOT_BLI to use a faster but not bit-level identical version */
-/* #define NOT_BLI */
-
-#if defined(NOT_BLI)
-# if defined(_MSC_VER)
-typedef __int64 sint64;
-# elif defined(__GNUC__)
-typedef long long sint64;
-# else
-# error 64-bit integer type is not defined for your compiler/platform
-# endif
-#endif
-
-#define BUFFER_SIZE 8096 /* size for the translation buffers */
-#define BUF_SHIFT 5
-
-AST_MUTEX_DEFINE_STATIC(localuser_lock);
-static int localusecnt = 0;
-
-static char *tdesc = "ITU G.726-32kbps G726 Transcoder";
-
-static int useplc = 0;
-
-/* Sample frame data */
-
-#include "slin_g726_ex.h"
-#include "g726_slin_ex.h"
-
-/*
- * The following is the definition of the state structure
- * used by the G.721/G.723 encoder and decoder to preserve their internal
- * state between successive calls. The meanings of the majority
- * of the state structure fields are explained in detail in the
- * CCITT Recommendation G.721. The field names are essentially indentical
- * to variable names in the bit level description of the coding algorithm
- * included in this Recommendation.
- */
-struct g726_state {
- long yl; /* Locked or steady state step size multiplier. */
- int yu; /* Unlocked or non-steady state step size multiplier. */
- int dms; /* Short term energy estimate. */
- int dml; /* Long term energy estimate. */
- int ap; /* Linear weighting coefficient of 'yl' and 'yu'. */
-
- int a[2]; /* Coefficients of pole portion of prediction filter.
- * stored as fixed-point 1==2^14 */
- int b[6]; /* Coefficients of zero portion of prediction filter.
- * stored as fixed-point 1==2^14 */
- int pk[2]; /* Signs of previous two samples of a partially
- * reconstructed signal.
- */
- int dq[6]; /* Previous 6 samples of the quantized difference signal
- * stored as fixed point 1==2^12,
- * or in internal floating point format */
- int sr[2]; /* Previous 2 samples of the quantized difference signal
- * stored as fixed point 1==2^12,
- * or in internal floating point format */
- int td; /* delayed tone detect, new in 1988 version */
-};
-
-
-
-static int qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400};
-/*
- * Maps G.721 code word to reconstructed scale factor normalized log
- * magnitude values.
- */
-static int _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
- 425, 373, 323, 273, 213, 135, 4, -2048};
-
-/* Maps G.721 code word to log of scale factor multiplier. */
-static int _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
- 1122, 355, 198, 112, 64, 41, 18, -12};
-/*
- * Maps G.721 code words to a set of values whose long and short
- * term averages are computed and then compared to give an indication
- * how stationary (steady state) the signal is.
- */
-static int _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
- 0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
-
-/* Deprecated
-static int power2[15] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
- 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000};
-*/
-
-/*
- * g72x_init_state()
- *
- * This routine initializes and/or resets the g726_state structure
- * pointed to by 'state_ptr'.
- * All the initial state values are specified in the CCITT G.721 document.
- */
-static void g726_init_state(struct g726_state *state_ptr)
-{
- int cnta;
-
- state_ptr->yl = 34816;
- state_ptr->yu = 544;
- state_ptr->dms = 0;
- state_ptr->dml = 0;
- state_ptr->ap = 0;
- for (cnta = 0; cnta < 2; cnta++)
- {
- state_ptr->a[cnta] = 0;
- state_ptr->pk[cnta] = 0;
-#ifdef NOT_BLI
- state_ptr->sr[cnta] = 1;
-#else
- state_ptr->sr[cnta] = 32;
-#endif
- }
- for (cnta = 0; cnta < 6; cnta++)
- {
- state_ptr->b[cnta] = 0;
-#ifdef NOT_BLI
- state_ptr->dq[cnta] = 1;
-#else
- state_ptr->dq[cnta] = 32;
-#endif
- }
- state_ptr->td = 0;
-}
-
-/*
- * quan()
- *
- * quantizes the input val against the table of integers.
- * It returns i if table[i - 1] <= val < table[i].
- *
- * Using linear search for simple coding.
- */
-static int quan(int val, int *table, int size)
-{
- int i;
-
- for (i = 0; i < size && val >= *table; ++i, ++table)
- ;
- return (i);
-}
-
-#ifdef NOT_BLI /* faster non-identical version */
-
-/*
- * predictor_zero()
- *
- * computes the estimated signal from 6-zero predictor.
- *
- */
-static int predictor_zero(struct g726_state *state_ptr)
-{ /* divide by 2 is necessary here to handle negative numbers correctly */
- int i;
- sint64 sezi;
- for (sezi = 0, i = 0; i < 6; i++) /* ACCUM */
- sezi += (sint64)state_ptr->b[i] * state_ptr->dq[i];
- return (int)(sezi >> 13) / 2 /* 2^14 */;
-}
-
-/*
- * predictor_pole()
- *
- * computes the estimated signal from 2-pole predictor.
- *
- */
-static int predictor_pole(struct g726_state *state_ptr)
-{ /* divide by 2 is necessary here to handle negative numbers correctly */
- return (int)(((sint64)state_ptr->a[1] * state_ptr->sr[1] +
- (sint64)state_ptr->a[0] * state_ptr->sr[0]) >> 13) / 2 /* 2^14 */;
-}
-
-#else /* NOT_BLI - identical version */
-/*
- * fmult()
- *
- * returns the integer product of the fixed-point number "an" (1==2^12) and
- * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
- */
-static int fmult(int an, int srn)
-{
- int anmag, anexp, anmant;
- int wanexp, wanmant;
- int retval;
-
- anmag = (an > 0) ? an : ((-an) & 0x1FFF);
- anexp = ilog2(anmag) - 5;
- anmant = (anmag == 0) ? 32 :
- (anexp >= 0) ? anmag >> anexp : anmag << -anexp;
- wanexp = anexp + ((srn >> 6) & 0xF) - 13;
-
- wanmant = (anmant * (srn & 077) + 0x30) >> 4;
- retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
- (wanmant >> -wanexp);
-
- return (((an ^ srn) < 0) ? -retval : retval);
-}
-
-static int predictor_zero(struct g726_state *state_ptr)
-{
- int i;
- int sezi;
- for (sezi = 0, i = 0; i < 6; i++) /* ACCUM */
- sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
- return sezi;
-}
-
-static int predictor_pole(struct g726_state *state_ptr)
-{
- return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
- fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
-}
-
-#endif /* NOT_BLI */
-
-/*
- * step_size()
- *
- * computes the quantization step size of the adaptive quantizer.
- *
- */
-static int step_size(struct g726_state *state_ptr)
-{
- int y;
- int dif;
- int al;
-
- if (state_ptr->ap >= 256)
- return (state_ptr->yu);
- else {
- y = state_ptr->yl >> 6;
- dif = state_ptr->yu - y;
- al = state_ptr->ap >> 2;
- if (dif > 0)
- y += (dif * al) >> 6;
- else if (dif < 0)
- y += (dif * al + 0x3F) >> 6;
- return (y);
- }
-}
-
-/*
- * quantize()
- *
- * Given a raw sample, 'd', of the difference signal and a
- * quantization step size scale factor, 'y', this routine returns the
- * ADPCM codeword to which that sample gets quantized. The step
- * size scale factor division operation is done in the log base 2 domain
- * as a subtraction.
- */
-static int quantize(
- int d, /* Raw difference signal sample */
- int y, /* Step size multiplier */
- int *table, /* quantization table */
- int size) /* table size of integers */
-{
- int dqm; /* Magnitude of 'd' */
- int exp; /* Integer part of base 2 log of 'd' */
- int mant; /* Fractional part of base 2 log */
- int dl; /* Log of magnitude of 'd' */
- int dln; /* Step size scale factor normalized log */
- int i;
-
- /*
- * LOG
- *
- * Compute base 2 log of 'd', and store in 'dl'.
- */
- dqm = abs(d);
- exp = ilog2(dqm);
- if (exp < 0)
- exp = 0;
- mant = ((dqm << 7) >> exp) & 0x7F; /* Fractional portion. */
- dl = (exp << 7) | mant;
-
- /*
- * SUBTB
- *
- * "Divide" by step size multiplier.
- */
- dln = dl - (y >> 2);
-
- /*
- * QUAN
- *
- * Obtain codword i for 'd'.
- */
- i = quan(dln, table, size);
- if (d < 0) /* take 1's complement of i */
- return ((size << 1) + 1 - i);
- else if (i == 0) /* take 1's complement of 0 */
- return ((size << 1) + 1); /* new in 1988 */
- else
- return (i);
-}
-
-/*
- * reconstruct()
- *
- * Returns reconstructed difference signal 'dq' obtained from
- * codeword 'i' and quantization step size scale factor 'y'.
- * Multiplication is performed in log base 2 domain as addition.
- */
-static int reconstruct(
- int sign, /* 0 for non-negative value */
- int dqln, /* G.72x codeword */
- int y) /* Step size multiplier */
-{
- int dql; /* Log of 'dq' magnitude */
- int dex; /* Integer part of log */
- int dqt;
- int dq; /* Reconstructed difference signal sample */
-
- dql = dqln + (y >> 2); /* ADDA */
-
- if (dql < 0) {
-#ifdef NOT_BLI
- return (sign) ? -1 : 1;
-#else
- return (sign) ? -0x8000 : 0;
-#endif
- } else { /* ANTILOG */
- dex = (dql >> 7) & 15;
- dqt = 128 + (dql & 127);
-#ifdef NOT_BLI
- dq = ((dqt << 19) >> (14 - dex));
- return (sign) ? -dq : dq;
-#else
- dq = (dqt << 7) >> (14 - dex);
- return (sign) ? (dq - 0x8000) : dq;
-#endif
- }
-}
-
-/*
- * update()
- *
- * updates the state variables for each output code
- */
-static void update(
- int code_size, /* distinguish 723_40 with others */
- int y, /* quantizer step size */
- int wi, /* scale factor multiplier */
- int fi, /* for long/short term energies */
- int dq, /* quantized prediction difference */
- int sr, /* reconstructed signal */
- int dqsez, /* difference from 2-pole predictor */
- struct g726_state *state_ptr) /* coder state pointer */
-{
- int cnt;
- int mag; /* Adaptive predictor, FLOAT A */
-#ifndef NOT_BLI
- int exp;
-#endif
- int a2p=0; /* LIMC */
- int a1ul; /* UPA1 */
- int pks1; /* UPA2 */
- int fa1;
- int tr; /* tone/transition detector */
- int ylint, thr2, dqthr;
- int ylfrac, thr1;
- int pk0;
-
- pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */
-
-#ifdef NOT_BLI
- mag = abs(dq / 0x1000); /* prediction difference magnitude */
-#else
- mag = dq & 0x7FFF; /* prediction difference magnitude */
-#endif
- /* TRANS */
- ylint = state_ptr->yl >> 15; /* exponent part of yl */
- ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */
- thr1 = (32 + ylfrac) << ylint; /* threshold */
- thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */
- dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */
- if (state_ptr->td == 0) /* signal supposed voice */
- tr = 0;
- else if (mag <= dqthr) /* supposed data, but small mag */
- tr = 0; /* treated as voice */
- else /* signal is data (modem) */
- tr = 1;
-
- /*
- * Quantizer scale factor adaptation.
- */
-
- /* FUNCTW & FILTD & DELAY */
- /* update non-steady state step size multiplier */
- state_ptr->yu = y + ((wi - y) >> 5);
-
- /* LIMB */
- if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */
- state_ptr->yu = 544;
- else if (state_ptr->yu > 5120)
- state_ptr->yu = 5120;
-
- /* FILTE & DELAY */
- /* update steady state step size multiplier */
- state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
-
- /*
- * Adaptive predictor coefficients.
- */
- if (tr == 1) { /* reset a's and b's for modem signal */
- state_ptr->a[0] = 0;
- state_ptr->a[1] = 0;
- state_ptr->b[0] = 0;
- state_ptr->b[1] = 0;
- state_ptr->b[2] = 0;
- state_ptr->b[3] = 0;
- state_ptr->b[4] = 0;
- state_ptr->b[5] = 0;
- } else { /* update a's and b's */
- pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */
-
- /* update predictor pole a[1] */
- a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
- if (dqsez != 0) {
- fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
- if (fa1 < -8191) /* a2p = function of fa1 */
- a2p -= 0x100;
- else if (fa1 > 8191)
- a2p += 0xFF;
- else
- a2p += fa1 >> 5;
-
- if (pk0 ^ state_ptr->pk[1])
- /* LIMC */
- if (a2p <= -12160)
- a2p = -12288;
- else if (a2p >= 12416)
- a2p = 12288;
- else
- a2p -= 0x80;
- else if (a2p <= -12416)
- a2p = -12288;
- else if (a2p >= 12160)
- a2p = 12288;
- else
- a2p += 0x80;
- }
-
- /* TRIGB & DELAY */
- state_ptr->a[1] = a2p;
-
- /* UPA1 */
- /* update predictor pole a[0] */
- state_ptr->a[0] -= state_ptr->a[0] >> 8;
- if (dqsez != 0) {
- if (pks1 == 0)
- state_ptr->a[0] += 192;
- else
- state_ptr->a[0] -= 192;
- }
- /* LIMD */
- a1ul = 15360 - a2p;
- if (state_ptr->a[0] < -a1ul)
- state_ptr->a[0] = -a1ul;
- else if (state_ptr->a[0] > a1ul)
- state_ptr->a[0] = a1ul;
-
- /* UPB : update predictor zeros b[6] */
- for (cnt = 0; cnt < 6; cnt++) {
- if (code_size == 5) /* for 40Kbps G.723 */
- state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
- else /* for G.721 and 24Kbps G.723 */
- state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
- if (mag)
- { /* XOR */
- if ((dq ^ state_ptr->dq[cnt]) >= 0)
- state_ptr->b[cnt] += 128;
- else
- state_ptr->b[cnt] -= 128;
- }
- }
- }
-
- for (cnt = 5; cnt > 0; cnt--)
- state_ptr->dq[cnt] = state_ptr->dq[cnt-1];
-#ifdef NOT_BLI
- state_ptr->dq[0] = dq;
-#else
- /* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
- if (mag == 0) {
- state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0x20 - 0x400;
- } else {
- exp = ilog2(mag) + 1;
- state_ptr->dq[0] = (dq >= 0) ?
- (exp << 6) + ((mag << 6) >> exp) :
- (exp << 6) + ((mag << 6) >> exp) - 0x400;
- }
-#endif
-
- state_ptr->sr[1] = state_ptr->sr[0];
-#ifdef NOT_BLI
- state_ptr->sr[0] = sr;
-#else
- /* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
- if (sr == 0) {
- state_ptr->sr[0] = 0x20;
- } else if (sr > 0) {
- exp = ilog2(sr) + 1;
- state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
- } else if (sr > -0x8000) {
- mag = -sr;
- exp = ilog2(mag) + 1;
- state_ptr->sr[0] = (exp << 6) + ((mag << 6) >> exp) - 0x400;
- } else
- state_ptr->sr[0] = 0x20 - 0x400;
-#endif
-
- /* DELAY A */
- state_ptr->pk[1] = state_ptr->pk[0];
- state_ptr->pk[0] = pk0;
-
- /* TONE */
- if (tr == 1) /* this sample has been treated as data */
- state_ptr->td = 0; /* next one will be treated as voice */
- else if (a2p < -11776) /* small sample-to-sample correlation */
- state_ptr->td = 1; /* signal may be data */
- else /* signal is voice */
- state_ptr->td = 0;
-
- /*
- * Adaptation speed control.
- */
- state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */
- state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */
-
- if (tr == 1)
- state_ptr->ap = 256;
- else if (y < 1536) /* SUBTC */
- state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
- else if (state_ptr->td == 1)
- state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
- else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
- (state_ptr->dml >> 3))
- state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
- else
- state_ptr->ap += (-state_ptr->ap) >> 4;
-}
-
-/*
- * g726_decode()
- *
- * Description:
- *
- * Decodes a 4-bit code of G.726-32 encoded data of i and
- * returns the resulting linear PCM, A-law or u-law value.
- * return -1 for unknown out_coding value.
- */
-static int g726_decode(int i, struct g726_state *state_ptr)
-{
- int sezi, sez, se; /* ACCUM */
- int y; /* MIX */
- int sr; /* ADDB */
- int dq;
- int dqsez;
-
- i &= 0x0f; /* mask to get proper bits */
-#ifdef NOT_BLI
- sezi = predictor_zero(state_ptr);
- sez = sezi;
- se = sezi + predictor_pole(state_ptr); /* estimated signal */
-#else
- sezi = predictor_zero(state_ptr);
- sez = sezi >> 1;
- se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
-#endif
-
- y = step_size(state_ptr); /* dynamic quantizer step size */
-
- dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized diff. */
-
-#ifdef NOT_BLI
- sr = se + dq; /* reconst. signal */
- dqsez = dq + sez; /* pole prediction diff. */
-#else
- sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
- dqsez = sr - se + sez; /* pole prediction diff. */
-#endif
-
- update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
-
-#ifdef NOT_BLI
- return (sr >> 10); /* sr was 26-bit dynamic range */
-#else
- return (sr << 2); /* sr was 14-bit dynamic range */
-#endif
-}
-
-/*
- * g726_encode()
- *
- * Encodes the input vale of linear PCM, A-law or u-law data sl and returns
- * the resulting code. -1 is returned for unknown input coding value.
- */
-static int g726_encode(int sl, struct g726_state *state_ptr)
-{
- int sezi, se, sez; /* ACCUM */
- int d; /* SUBTA */
- int sr; /* ADDB */
- int y; /* MIX */
- int dqsez; /* ADDC */
- int dq, i;
-
-#ifdef NOT_BLI
- sl <<= 10; /* 26-bit dynamic range */
-
- sezi = predictor_zero(state_ptr);
- sez = sezi;
- se = sezi + predictor_pole(state_ptr); /* estimated signal */
-#else
- sl >>= 2; /* 14-bit dynamic range */
-
- sezi = predictor_zero(state_ptr);
- sez = sezi >> 1;
- se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
-#endif
-
- d = sl - se; /* estimation difference */
-
- /* quantize the prediction difference */
- y = step_size(state_ptr); /* quantizer step size */
-#ifdef NOT_BLI
- d /= 0x1000;
-#endif
- i = quantize(d, y, qtab_721, 7); /* i = G726 code */
-
- dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */
-
-#ifdef NOT_BLI
- sr = se + dq; /* reconst. signal */
- dqsez = dq + sez; /* pole prediction diff. */
-#else
- sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
- dqsez = sr - se + sez; /* pole prediction diff. */
-#endif
-
- update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
-
- return (i);
-}
-
-/*
- * Private workspace for translating signed linear signals to G726.
- */
-
-struct g726_encoder_pvt
-{
- struct ast_frame f;
- char offset[AST_FRIENDLY_OFFSET]; /* Space to build offset */
- unsigned char outbuf[BUFFER_SIZE]; /* Encoded G726, two nibbles to a word */
- unsigned char next_flag;
- struct g726_state g726;
- int tail;
-};
-
-/*
- * Private workspace for translating G726 signals to signed linear.
- */
-
-struct g726_decoder_pvt
-{
- struct ast_frame f;
- char offset[AST_FRIENDLY_OFFSET]; /* Space to build offset */
- short outbuf[BUFFER_SIZE]; /* Decoded signed linear values */
- struct g726_state g726;
- int tail;
- plc_state_t plc;
-};
-
-/*
- * G726ToLin_New
- * Create a new instance of g726_decoder_pvt.
- *
- * Results:
- * Returns a pointer to the new instance.
- *
- * Side effects:
- * None.
- */
-
-static struct ast_translator_pvt *
-g726tolin_new (void)
-{
- struct g726_decoder_pvt *tmp;
- tmp = malloc (sizeof (struct g726_decoder_pvt));
- if (tmp)
- {
- memset(tmp, 0, sizeof(*tmp));
- tmp->tail = 0;
- plc_init(&tmp->plc);
- localusecnt++;
- g726_init_state(&tmp->g726);
- ast_update_use_count ();
- }
- return (struct ast_translator_pvt *) tmp;
-}
-
-/*
- * LinToG726_New
- * Create a new instance of g726_encoder_pvt.
- *
- * Results:
- * Returns a pointer to the new instance.
- *
- * Side effects:
- * None.
- */
-
-static struct ast_translator_pvt *
-lintog726_new (void)
-{
- struct g726_encoder_pvt *tmp;
- tmp = malloc (sizeof (struct g726_encoder_pvt));
- if (tmp)
- {
- memset(tmp, 0, sizeof(*tmp));
- localusecnt++;
- tmp->tail = 0;
- g726_init_state(&tmp->g726);
- ast_update_use_count ();
- }
- return (struct ast_translator_pvt *) tmp;
-}
-
-/*
- * G726ToLin_FrameIn
- * Fill an input buffer with packed 4-bit G726 values if there is room
- * left.
- *
- * Results:
- * Foo
- *
- * Side effects:
- * tmp->tail is the number of packed values in the buffer.
- */
-
-static int
-g726tolin_framein (struct ast_translator_pvt *pvt, struct ast_frame *f)
-{
- struct g726_decoder_pvt *tmp = (struct g726_decoder_pvt *) pvt;
- unsigned char *b;
- int x;
-
- if(f->datalen == 0) { /* perform PLC with nominal framesize of 20ms/160 samples */
- if((tmp->tail + 160) > BUFFER_SIZE) {
- ast_log(LOG_WARNING, "Out of buffer space\n");
- return -1;
- }
- if(useplc) {
- plc_fillin(&tmp->plc, tmp->outbuf+tmp->tail, 160);
- tmp->tail += 160;
- }
- return 0;
- }
-
- b = f->data;
- for (x=0;x<f->datalen;x++) {
- if (tmp->tail >= BUFFER_SIZE) {
- ast_log(LOG_WARNING, "Out of buffer space!\n");
- return -1;
- }
- tmp->outbuf[tmp->tail++] = g726_decode((b[x] >> 4) & 0xf, &tmp->g726);
- if (tmp->tail >= BUFFER_SIZE) {
- ast_log(LOG_WARNING, "Out of buffer space!\n");
- return -1;
- }
- tmp->outbuf[tmp->tail++] = g726_decode(b[x] & 0x0f, &tmp->g726);
- }
-
- if(useplc) plc_rx(&tmp->plc, tmp->outbuf+tmp->tail-f->datalen*2, f->datalen*2);
-
- return 0;
-}
-
-/*
- * G726ToLin_FrameOut
- * Convert 4-bit G726 encoded signals to 16-bit signed linear.
- *
- * Results:
- * Converted signals are placed in tmp->f.data, tmp->f.datalen
- * and tmp->f.samples are calculated.
- *
- * Side effects:
- * None.
- */
-
-static struct ast_frame *
-g726tolin_frameout (struct ast_translator_pvt *pvt)
-{
- struct g726_decoder_pvt *tmp = (struct g726_decoder_pvt *) pvt;
-
- if (!tmp->tail)
- return NULL;
-
- tmp->f.frametype = AST_FRAME_VOICE;
- tmp->f.subclass = AST_FORMAT_SLINEAR;
- tmp->f.datalen = tmp->tail * 2;
- tmp->f.samples = tmp->tail;
- tmp->f.mallocd = 0;
- tmp->f.offset = AST_FRIENDLY_OFFSET;
- tmp->f.src = __PRETTY_FUNCTION__;
- tmp->f.data = tmp->outbuf;
- tmp->tail = 0;
- return &tmp->f;
-}
-
-/*
- * LinToG726_FrameIn
- * Fill an input buffer with 16-bit signed linear PCM values.
- *
- * Results:
- * None.
- *
- * Side effects:
- * tmp->tail is number of signal values in the input buffer.
- */
-
-static int
-lintog726_framein (struct ast_translator_pvt *pvt, struct ast_frame *f)
-{
- struct g726_encoder_pvt *tmp = (struct g726_encoder_pvt *) pvt;
- short *s = f->data;
- int samples = f->datalen / 2;
- int x;
- for (x=0;x<samples;x++) {
- if (tmp->next_flag & 0x80) {
- if (tmp->tail >= BUFFER_SIZE) {
- ast_log(LOG_WARNING, "Out of buffer space\n");
- return -1;
- }
- tmp->outbuf[tmp->tail++] = ((tmp->next_flag & 0xf)<< 4) | g726_encode(s[x], &tmp->g726);
- tmp->next_flag = 0;
- } else {
- tmp->next_flag = 0x80 | g726_encode(s[x], &tmp->g726);
- }
- }
- return 0;
-}
-
-/*
- * LinToG726_FrameOut
- * Convert a buffer of raw 16-bit signed linear PCM to a buffer
- * of 4-bit G726 packed two to a byte (Big Endian).
- *
- * Results:
- * Foo
- *
- * Side effects:
- * Leftover inbuf data gets packed, tail gets updated.
- */
-
-static struct ast_frame *
-lintog726_frameout (struct ast_translator_pvt *pvt)
-{
- struct g726_encoder_pvt *tmp = (struct g726_encoder_pvt *) pvt;
-
- if (!tmp->tail)
- return NULL;
- tmp->f.frametype = AST_FRAME_VOICE;
- tmp->f.subclass = AST_FORMAT_G726;
- tmp->f.samples = tmp->tail * 2;
- tmp->f.mallocd = 0;
- tmp->f.offset = AST_FRIENDLY_OFFSET;
- tmp->f.src = __PRETTY_FUNCTION__;
- tmp->f.data = tmp->outbuf;
- tmp->f.datalen = tmp->tail;
-
- tmp->tail = 0;
- return &tmp->f;
-}
-
-
-/*
- * G726ToLin_Sample
- */
-
-static struct ast_frame *
-g726tolin_sample (void)
-{
- static struct ast_frame f;
- f.frametype = AST_FRAME_VOICE;
- f.subclass = AST_FORMAT_G726;
- f.datalen = sizeof (g726_slin_ex);
- f.samples = sizeof(g726_slin_ex) * 2;
- f.mallocd = 0;
- f.offset = 0;
- f.src = __PRETTY_FUNCTION__;
- f.data = g726_slin_ex;
- return &f;
-}
-
-/*
- * LinToG726_Sample
- */
-
-static struct ast_frame *
-lintog726_sample (void)
-{
- static struct ast_frame f;
- f.frametype = AST_FRAME_VOICE;
- f.subclass = AST_FORMAT_SLINEAR;
- f.datalen = sizeof (slin_g726_ex);
- /* Assume 8000 Hz */
- f.samples = sizeof (slin_g726_ex) / 2;
- f.mallocd = 0;
- f.offset = 0;
- f.src = __PRETTY_FUNCTION__;
- f.data = slin_g726_ex;
- return &f;
-}
-
-/*
- * G726_Destroy
- * Destroys a private workspace.
- *
- * Results:
- * It's gone!
- *
- * Side effects:
- * None.
- */
-
-static void
-g726_destroy (struct ast_translator_pvt *pvt)
-{
- free (pvt);
- localusecnt--;
- ast_update_use_count ();
-}
-
-/*
- * The complete translator for G726ToLin.
- */
-
-static struct ast_translator g726tolin = {
- "g726tolin",
- AST_FORMAT_G726,
- AST_FORMAT_SLINEAR,
- g726tolin_new,
- g726tolin_framein,
- g726tolin_frameout,
- g726_destroy,
- /* NULL */
- g726tolin_sample
-};
-
-/*
- * The complete translator for LinToG726.
- */
-
-static struct ast_translator lintog726 = {
- "lintog726",
- AST_FORMAT_SLINEAR,
- AST_FORMAT_G726,
- lintog726_new,
- lintog726_framein,
- lintog726_frameout,
- g726_destroy,
- /* NULL */
- lintog726_sample
-};
-
-static void
-parse_config(void)
-{
- struct ast_config *cfg;
- struct ast_variable *var;
- if ((cfg = ast_config_load("codecs.conf"))) {
- if ((var = ast_variable_browse(cfg, "plc"))) {
- while (var) {
- if (!strcasecmp(var->name, "genericplc")) {
- useplc = ast_true(var->value) ? 1 : 0;
- if (option_verbose > 2)
- ast_verbose(VERBOSE_PREFIX_3 "codec_g726: %susing generic PLC\n", useplc ? "" : "not ");
- }
- var = var->next;
- }
- }
- ast_config_destroy(cfg);
- }
-}
-
-int
-reload(void)
-{
- parse_config();
- return 0;
-}
-
-int
-unload_module (void)
-{
- int res;
- ast_mutex_lock (&localuser_lock);
- res = ast_unregister_translator (&lintog726);
- if (!res)
- res = ast_unregister_translator (&g726tolin);
- if (localusecnt)
- res = -1;
- ast_mutex_unlock (&localuser_lock);
- return res;
-}
-
-int
-load_module (void)
-{
- int res;
- parse_config();
- res = ast_register_translator (&g726tolin);
- if (!res)
- res = ast_register_translator (&lintog726);
- else
- ast_unregister_translator (&g726tolin);
- return res;
-}
-
-/*
- * Return a description of this module.
- */
-
-char *
-description (void)
-{
- return tdesc;
-}
-
-int
-usecount (void)
-{
- int res;
- STANDARD_USECOUNT (res);
- return res;
-}
-
-char *
-key ()
-{
- return ASTERISK_GPL_KEY;
-}