aboutsummaryrefslogtreecommitdiffstats
path: root/main
diff options
context:
space:
mode:
authortwilson <twilson@f38db490-d61c-443f-a65b-d21fe96a405b>2010-07-21 19:11:32 +0000
committertwilson <twilson@f38db490-d61c-443f-a65b-d21fe96a405b>2010-07-21 19:11:32 +0000
commit15f42844eff69ae1f2576497c2653a7423f42395 (patch)
tree702c8203da791c3e168d1a0ef5d07dbafea3dd54 /main
parentfe09035019d8f513addec09466170dfc180a1de3 (diff)
Remove built-in AES code and use optional_api instead
Review: https://reviewboard.asterisk.org/r/793/ git-svn-id: http://svn.digium.com/svn/asterisk/trunk@278538 f38db490-d61c-443f-a65b-d21fe96a405b
Diffstat (limited to 'main')
-rw-r--r--main/aescrypt.c321
-rw-r--r--main/aeskey.c473
-rw-r--r--main/aesopt.h1029
-rw-r--r--main/aestab.c236
4 files changed, 0 insertions, 2059 deletions
diff --git a/main/aescrypt.c b/main/aescrypt.c
deleted file mode 100644
index 86aeb2133..000000000
--- a/main/aescrypt.c
+++ /dev/null
@@ -1,321 +0,0 @@
-/*
- ---------------------------------------------------------------------------
- Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software in both source and binary
- form is allowed (with or without changes) provided that:
-
- 1. distributions of this source code include the above copyright
- notice, this list of conditions and the following disclaimer;
-
- 2. distributions in binary form include the above copyright
- notice, this list of conditions and the following disclaimer
- in the documentation and/or other associated materials;
-
- 3. the copyright holder's name is not used to endorse products
- built using this software without specific written permission.
-
- ALTERNATIVELY, provided that this notice is retained in full, this product
- may be distributed under the terms of the GNU General Public License (GPL),
- in which case the provisions of the GPL apply INSTEAD OF those given above.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 26/08/2003
-
-*/
-
-/*! \file
- *
- * \brief This file contains the code for implementing encryption and decryption
- * for AES (Rijndael) for block and key sizes of 16, 24 and 32 bytes. It
- * can optionally be replaced by code written in assembler using NASM. For
- * further details see the file aesopt.h
- *
- * \author Dr Brian Gladman <brg@gladman.me.uk>
- */
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-#ifndef HAVE_CRYPTO
-
-#include "aesopt.h"
-
-#define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c])
-#define so(y,x,c) word_out(y, c, s(x,c))
-
-#if defined(ARRAYS)
-#define locals(y,x) x[4],y[4]
-#else
-#define locals(y,x) x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3
-#endif
-
-#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \
- s(y,2) = s(x,2); s(y,3) = s(x,3);
-#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3)
-#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3)
-#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3)
-
-#if defined(ENCRYPTION) && !defined(AES_ASM)
-
-/* Visual C++ .Net v7.1 provides the fastest encryption code when using
- Pentium optimiation with small code but this is poor for decryption
- so we need to control this with the following VC++ pragmas
-*/
-
-#if defined(_MSC_VER)
-#pragma optimize( "s", on )
-#endif
-
-/* Given the column (c) of the output state variable, the following
- macros give the input state variables which are needed in its
- computation for each row (r) of the state. All the alternative
- macros give the same end values but expand into different ways
- of calculating these values. In particular the complex macro
- used for dynamically variable block sizes is designed to expand
- to a compile time constant whenever possible but will expand to
- conditional clauses on some branches (I am grateful to Frank
- Yellin for this construction)
-*/
-
-#define fwd_var(x,r,c)\
- ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
- : r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\
- : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
- : ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2)))
-
-#if defined(FT4_SET)
-#undef dec_fmvars
-#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c))
-#elif defined(FT1_SET)
-#undef dec_fmvars
-#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c))
-#else
-#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c)))
-#endif
-
-#if defined(FL4_SET)
-#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c))
-#elif defined(FL1_SET)
-#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c))
-#else
-#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c))
-#endif
-
-aes_rval aes_encrypt(const void *in_blk, void *out_blk, const aes_encrypt_ctx cx[1])
-{ aes_32t locals(b0, b1);
- const aes_32t *kp = cx->ks;
-#ifdef dec_fmvars
- dec_fmvars; /* declare variables for fwd_mcol() if needed */
-#endif
-
- aes_32t nr = (kp[45] ^ kp[52] ^ kp[53] ? kp[52] : 14);
-
-#ifdef AES_ERR_CHK
- if( (nr != 10 || !(kp[0] | kp[3] | kp[4]))
- && (nr != 12 || !(kp[0] | kp[5] | kp[6]))
- && (nr != 14 || !(kp[0] | kp[7] | kp[8])) )
- return aes_error;
-#endif
-
- state_in(b0, in_blk, kp);
-
-#if (ENC_UNROLL == FULL)
-
- switch(nr)
- {
- case 14:
- round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
- round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
- kp += 2 * N_COLS;
- case 12:
- round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
- round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
- kp += 2 * N_COLS;
- case 10:
- round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
- round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
- round(fwd_rnd, b1, b0, kp + 3 * N_COLS);
- round(fwd_rnd, b0, b1, kp + 4 * N_COLS);
- round(fwd_rnd, b1, b0, kp + 5 * N_COLS);
- round(fwd_rnd, b0, b1, kp + 6 * N_COLS);
- round(fwd_rnd, b1, b0, kp + 7 * N_COLS);
- round(fwd_rnd, b0, b1, kp + 8 * N_COLS);
- round(fwd_rnd, b1, b0, kp + 9 * N_COLS);
- round(fwd_lrnd, b0, b1, kp +10 * N_COLS);
- }
-
-#else
-
-#if (ENC_UNROLL == PARTIAL)
- { aes_32t rnd;
- for(rnd = 0; rnd < (nr >> 1) - 1; ++rnd)
- {
- kp += N_COLS;
- round(fwd_rnd, b1, b0, kp);
- kp += N_COLS;
- round(fwd_rnd, b0, b1, kp);
- }
- kp += N_COLS;
- round(fwd_rnd, b1, b0, kp);
-#else
- { aes_32t rnd;
- for(rnd = 0; rnd < nr - 1; ++rnd)
- {
- kp += N_COLS;
- round(fwd_rnd, b1, b0, kp);
- l_copy(b0, b1);
- }
-#endif
- kp += N_COLS;
- round(fwd_lrnd, b0, b1, kp);
- }
-#endif
-
- state_out(out_blk, b0);
-#ifdef AES_ERR_CHK
- return aes_good;
-#endif
-}
-
-#endif
-
-#if defined(DECRYPTION) && !defined(AES_ASM)
-
-/* Visual C++ .Net v7.1 provides the fastest encryption code when using
- Pentium optimiation with small code but this is poor for decryption
- so we need to control this with the following VC++ pragmas
-*/
-
-#if defined(_MSC_VER)
-#pragma optimize( "t", on )
-#endif
-
-/* Given the column (c) of the output state variable, the following
- macros give the input state variables which are needed in its
- computation for each row (r) of the state. All the alternative
- macros give the same end values but expand into different ways
- of calculating these values. In particular the complex macro
- used for dynamically variable block sizes is designed to expand
- to a compile time constant whenever possible but will expand to
- conditional clauses on some branches (I am grateful to Frank
- Yellin for this construction)
-*/
-
-#define inv_var(x,r,c)\
- ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
- : r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\
- : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
- : ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0)))
-
-#if defined(IT4_SET)
-#undef dec_imvars
-#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c))
-#elif defined(IT1_SET)
-#undef dec_imvars
-#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c))
-#else
-#define inv_rnd(y,x,k,c) (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)))
-#endif
-
-#if defined(IL4_SET)
-#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c))
-#elif defined(IL1_SET)
-#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c))
-#else
-#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))
-#endif
-
-aes_rval aes_decrypt(const void *in_blk, void *out_blk, const aes_decrypt_ctx cx[1])
-{ aes_32t locals(b0, b1);
-#ifdef dec_imvars
- dec_imvars; /* declare variables for inv_mcol() if needed */
-#endif
-
- aes_32t nr = (cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] ? cx->ks[52] : 14);
- const aes_32t *kp = cx->ks + nr * N_COLS;
-
-#ifdef AES_ERR_CHK
- if( (nr != 10 || !(cx->ks[0] | cx->ks[3] | cx->ks[4]))
- && (nr != 12 || !(cx->ks[0] | cx->ks[5] | cx->ks[6]))
- && (nr != 14 || !(cx->ks[0] | cx->ks[7] | cx->ks[8])) )
- return aes_error;
-#endif
-
- state_in(b0, in_blk, kp);
-
-#if (DEC_UNROLL == FULL)
-
- switch(nr)
- {
- case 14:
- round(inv_rnd, b1, b0, kp - 1 * N_COLS);
- round(inv_rnd, b0, b1, kp - 2 * N_COLS);
- kp -= 2 * N_COLS;
- case 12:
- round(inv_rnd, b1, b0, kp - 1 * N_COLS);
- round(inv_rnd, b0, b1, kp - 2 * N_COLS);
- kp -= 2 * N_COLS;
- case 10:
- round(inv_rnd, b1, b0, kp - 1 * N_COLS);
- round(inv_rnd, b0, b1, kp - 2 * N_COLS);
- round(inv_rnd, b1, b0, kp - 3 * N_COLS);
- round(inv_rnd, b0, b1, kp - 4 * N_COLS);
- round(inv_rnd, b1, b0, kp - 5 * N_COLS);
- round(inv_rnd, b0, b1, kp - 6 * N_COLS);
- round(inv_rnd, b1, b0, kp - 7 * N_COLS);
- round(inv_rnd, b0, b1, kp - 8 * N_COLS);
- round(inv_rnd, b1, b0, kp - 9 * N_COLS);
- round(inv_lrnd, b0, b1, kp - 10 * N_COLS);
- }
-
-#else
-
-#if (DEC_UNROLL == PARTIAL)
- { aes_32t rnd;
- for(rnd = 0; rnd < (nr >> 1) - 1; ++rnd)
- {
- kp -= N_COLS;
- round(inv_rnd, b1, b0, kp);
- kp -= N_COLS;
- round(inv_rnd, b0, b1, kp);
- }
- kp -= N_COLS;
- round(inv_rnd, b1, b0, kp);
-#else
- { aes_32t rnd;
- for(rnd = 0; rnd < nr - 1; ++rnd)
- {
- kp -= N_COLS;
- round(inv_rnd, b1, b0, kp);
- l_copy(b0, b1);
- }
-#endif
- kp -= N_COLS;
- round(inv_lrnd, b0, b1, kp);
- }
-#endif
-
- state_out(out_blk, b0);
-#ifdef AES_ERR_CHK
- return aes_good;
-#endif
-}
-
-#endif
-
-#endif /* !HAVE_CRYPTO */
-
-#if defined(__cplusplus)
-}
-#endif
diff --git a/main/aeskey.c b/main/aeskey.c
deleted file mode 100644
index cd0c7faf8..000000000
--- a/main/aeskey.c
+++ /dev/null
@@ -1,473 +0,0 @@
-/*
- ---------------------------------------------------------------------------
- Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software in both source and binary
- form is allowed (with or without changes) provided that:
-
- 1. distributions of this source code include the above copyright
- notice, this list of conditions and the following disclaimer;
-
- 2. distributions in binary form include the above copyright
- notice, this list of conditions and the following disclaimer
- in the documentation and/or other associated materials;
-
- 3. the copyright holder's name is not used to endorse products
- built using this software without specific written permission.
-
- ALTERNATIVELY, provided that this notice is retained in full, this product
- may be distributed under the terms of the GNU General Public License (GPL),
- in which case the provisions of the GPL apply INSTEAD OF those given above.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 26/08/2003
-
-*/
-
-/*! \file
- *
- * \brief This file contains the code for implementing the key schedule for AES
- * (Rijndael) for block and key sizes of 16, 24, and 32 bytes. See aesopt.h
- * for further details including optimisation.
- *
- * \author Dr Brian Gladman <brg@gladman.me.uk>
- */
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-#ifndef HAVE_CRYPTO
-
-#include "aesopt.h"
-
-/* Initialise the key schedule from the user supplied key. The key
- length can be specified in bytes, with legal values of 16, 24
- and 32, or in bits, with legal values of 128, 192 and 256. These
- values correspond with Nk values of 4, 6 and 8 respectively.
-
- The following macros implement a single cycle in the key
- schedule generation process. The number of cycles needed
- for each cx->n_col and nk value is:
-
- nk = 4 5 6 7 8
- ------------------------------
- cx->n_col = 4 10 9 8 7 7
- cx->n_col = 5 14 11 10 9 9
- cx->n_col = 6 19 15 12 11 11
- cx->n_col = 7 21 19 16 13 14
- cx->n_col = 8 29 23 19 17 14
-*/
-
-#define ke4(k,i) \
-{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \
- k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \
-}
-#define kel4(k,i) \
-{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \
- k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \
-}
-
-#define ke6(k,i) \
-{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \
- k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \
- k[6*(i)+10] = ss[4] ^= ss[3]; k[6*(i)+11] = ss[5] ^= ss[4]; \
-}
-#define kel6(k,i) \
-{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \
- k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \
-}
-
-#define ke8(k,i) \
-{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \
- k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \
- k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); k[8*(i)+13] = ss[5] ^= ss[4]; \
- k[8*(i)+14] = ss[6] ^= ss[5]; k[8*(i)+15] = ss[7] ^= ss[6]; \
-}
-#define kel8(k,i) \
-{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \
- k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \
-}
-
-#if defined(ENCRYPTION_KEY_SCHEDULE)
-
-#if defined(AES_128) || defined(AES_VAR)
-
-aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1])
-{ aes_32t ss[4];
-
- cx->ks[0] = ss[0] = word_in(in_key, 0);
- cx->ks[1] = ss[1] = word_in(in_key, 1);
- cx->ks[2] = ss[2] = word_in(in_key, 2);
- cx->ks[3] = ss[3] = word_in(in_key, 3);
-
-#if ENC_UNROLL == NONE
- { aes_32t i;
-
- for(i = 0; i < ((11 * N_COLS - 1) / 4); ++i)
- ke4(cx->ks, i);
- }
-#else
- ke4(cx->ks, 0); ke4(cx->ks, 1);
- ke4(cx->ks, 2); ke4(cx->ks, 3);
- ke4(cx->ks, 4); ke4(cx->ks, 5);
- ke4(cx->ks, 6); ke4(cx->ks, 7);
- ke4(cx->ks, 8); kel4(cx->ks, 9);
-#endif
-
- /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit */
- /* key and must be non-zero for 128 and 192 bits keys */
- cx->ks[53] = cx->ks[45] = 0;
- cx->ks[52] = 10;
-#ifdef AES_ERR_CHK
- return aes_good;
-#endif
-}
-
-#endif
-
-#if defined(AES_192) || defined(AES_VAR)
-
-aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1])
-{ aes_32t ss[6];
-
- cx->ks[0] = ss[0] = word_in(in_key, 0);
- cx->ks[1] = ss[1] = word_in(in_key, 1);
- cx->ks[2] = ss[2] = word_in(in_key, 2);
- cx->ks[3] = ss[3] = word_in(in_key, 3);
- cx->ks[4] = ss[4] = word_in(in_key, 4);
- cx->ks[5] = ss[5] = word_in(in_key, 5);
-
-#if ENC_UNROLL == NONE
- { aes_32t i;
-
- for(i = 0; i < (13 * N_COLS - 1) / 6; ++i)
- ke6(cx->ks, i);
- }
-#else
- ke6(cx->ks, 0); ke6(cx->ks, 1);
- ke6(cx->ks, 2); ke6(cx->ks, 3);
- ke6(cx->ks, 4); ke6(cx->ks, 5);
- ke6(cx->ks, 6); kel6(cx->ks, 7);
-#endif
-
- /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit */
- /* key and must be non-zero for 128 and 192 bits keys */
- cx->ks[53] = cx->ks[45];
- cx->ks[52] = 12;
-#ifdef AES_ERR_CHK
- return aes_good;
-#endif
-}
-
-#endif
-
-#if defined(AES_256) || defined(AES_VAR)
-
-aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1])
-{ aes_32t ss[8];
-
- cx->ks[0] = ss[0] = word_in(in_key, 0);
- cx->ks[1] = ss[1] = word_in(in_key, 1);
- cx->ks[2] = ss[2] = word_in(in_key, 2);
- cx->ks[3] = ss[3] = word_in(in_key, 3);
- cx->ks[4] = ss[4] = word_in(in_key, 4);
- cx->ks[5] = ss[5] = word_in(in_key, 5);
- cx->ks[6] = ss[6] = word_in(in_key, 6);
- cx->ks[7] = ss[7] = word_in(in_key, 7);
-
-#if ENC_UNROLL == NONE
- { aes_32t i;
-
- for(i = 0; i < (15 * N_COLS - 1) / 8; ++i)
- ke8(cx->ks, i);
- }
-#else
- ke8(cx->ks, 0); ke8(cx->ks, 1);
- ke8(cx->ks, 2); ke8(cx->ks, 3);
- ke8(cx->ks, 4); ke8(cx->ks, 5);
- kel8(cx->ks, 6);
-#endif
-#ifdef AES_ERR_CHK
- return aes_good;
-#endif
-}
-
-#endif
-
-#if defined(AES_VAR)
-
-aes_rval aes_encrypt_key(const void *in_key, int key_len, aes_encrypt_ctx cx[1])
-{
- switch(key_len)
- {
-#ifdef AES_ERR_CHK
- case 16: case 128: return aes_encrypt_key128(in_key, cx);
- case 24: case 192: return aes_encrypt_key192(in_key, cx);
- case 32: case 256: return aes_encrypt_key256(in_key, cx);
- default: return aes_error;
-#else
- case 16: case 128: aes_encrypt_key128(in_key, cx); return;
- case 24: case 192: aes_encrypt_key192(in_key, cx); return;
- case 32: case 256: aes_encrypt_key256(in_key, cx); return;
-#endif
- }
-}
-
-#endif
-
-#endif
-
-#if defined(DECRYPTION_KEY_SCHEDULE)
-
-#if DEC_ROUND == NO_TABLES
-#define ff(x) (x)
-#else
-#define ff(x) inv_mcol(x)
-#ifdef dec_imvars
-#define d_vars dec_imvars
-#endif
-#endif
-
-#if 1
-#define kdf4(k,i) \
-{ ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; ss[1] = ss[1] ^ ss[3]; ss[2] = ss[2] ^ ss[3]; ss[3] = ss[3]; \
- ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
- ss[4] ^= k[4*(i)]; k[4*(i)+4] = ff(ss[4]); ss[4] ^= k[4*(i)+1]; k[4*(i)+5] = ff(ss[4]); \
- ss[4] ^= k[4*(i)+2]; k[4*(i)+6] = ff(ss[4]); ss[4] ^= k[4*(i)+3]; k[4*(i)+7] = ff(ss[4]); \
-}
-#define kd4(k,i) \
-{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \
- k[4*(i)+4] = ss[4] ^= k[4*(i)]; k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \
- k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \
-}
-#define kdl4(k,i) \
-{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
- k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; k[4*(i)+5] = ss[1] ^ ss[3]; \
- k[4*(i)+6] = ss[0]; k[4*(i)+7] = ss[1]; \
-}
-#else
-#define kdf4(k,i) \
-{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ff(ss[0]); ss[1] ^= ss[0]; k[4*(i)+ 5] = ff(ss[1]); \
- ss[2] ^= ss[1]; k[4*(i)+ 6] = ff(ss[2]); ss[3] ^= ss[2]; k[4*(i)+ 7] = ff(ss[3]); \
-}
-#define kd4(k,i) \
-{ ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \
- ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[4*(i)+ 4] = ss[4] ^= k[4*(i)]; \
- ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[4] ^= k[4*(i)+ 1]; \
- ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[4] ^= k[4*(i)+ 2]; \
- ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[4] ^= k[4*(i)+ 3]; \
-}
-#define kdl4(k,i) \
-{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ss[0]; ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[1]; \
- ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[2]; ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[3]; \
-}
-#endif
-
-#define kdf6(k,i) \
-{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ff(ss[0]); ss[1] ^= ss[0]; k[6*(i)+ 7] = ff(ss[1]); \
- ss[2] ^= ss[1]; k[6*(i)+ 8] = ff(ss[2]); ss[3] ^= ss[2]; k[6*(i)+ 9] = ff(ss[3]); \
- ss[4] ^= ss[3]; k[6*(i)+10] = ff(ss[4]); ss[5] ^= ss[4]; k[6*(i)+11] = ff(ss[5]); \
-}
-#define kd6(k,i) \
-{ ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \
- ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \
- ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \
- ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \
- ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \
- ss[4] ^= ss[3]; k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \
- ss[5] ^= ss[4]; k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \
-}
-#define kdl6(k,i) \
-{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ss[0]; ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[1]; \
- ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[2]; ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[3]; \
-}
-
-#define kdf8(k,i) \
-{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ff(ss[0]); ss[1] ^= ss[0]; k[8*(i)+ 9] = ff(ss[1]); \
- ss[2] ^= ss[1]; k[8*(i)+10] = ff(ss[2]); ss[3] ^= ss[2]; k[8*(i)+11] = ff(ss[3]); \
- ss[4] ^= ls_box(ss[3],0); k[8*(i)+12] = ff(ss[4]); ss[5] ^= ss[4]; k[8*(i)+13] = ff(ss[5]); \
- ss[6] ^= ss[5]; k[8*(i)+14] = ff(ss[6]); ss[7] ^= ss[6]; k[8*(i)+15] = ff(ss[7]); \
-}
-#define kd8(k,i) \
-{ aes_32t g = ls_box(ss[7],3) ^ t_use(r,c)[i]; \
- ss[0] ^= g; g = ff(g); k[8*(i)+ 8] = g ^= k[8*(i)]; \
- ss[1] ^= ss[0]; k[8*(i)+ 9] = g ^= k[8*(i)+ 1]; \
- ss[2] ^= ss[1]; k[8*(i)+10] = g ^= k[8*(i)+ 2]; \
- ss[3] ^= ss[2]; k[8*(i)+11] = g ^= k[8*(i)+ 3]; \
- g = ls_box(ss[3],0); \
- ss[4] ^= g; g = ff(g); k[8*(i)+12] = g ^= k[8*(i)+ 4]; \
- ss[5] ^= ss[4]; k[8*(i)+13] = g ^= k[8*(i)+ 5]; \
- ss[6] ^= ss[5]; k[8*(i)+14] = g ^= k[8*(i)+ 6]; \
- ss[7] ^= ss[6]; k[8*(i)+15] = g ^= k[8*(i)+ 7]; \
-}
-#define kdl8(k,i) \
-{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ss[0]; ss[1] ^= ss[0]; k[8*(i)+ 9] = ss[1]; \
- ss[2] ^= ss[1]; k[8*(i)+10] = ss[2]; ss[3] ^= ss[2]; k[8*(i)+11] = ss[3]; \
-}
-
-#if defined(AES_128) || defined(AES_VAR)
-
-aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1])
-{ aes_32t ss[5];
-#ifdef d_vars
- d_vars;
-#endif
- cx->ks[0] = ss[0] = word_in(in_key, 0);
- cx->ks[1] = ss[1] = word_in(in_key, 1);
- cx->ks[2] = ss[2] = word_in(in_key, 2);
- cx->ks[3] = ss[3] = word_in(in_key, 3);
-
-#if DEC_UNROLL == NONE
- { aes_32t i;
-
- for(i = 0; i < (11 * N_COLS - 1) / 4; ++i)
- ke4(cx->ks, i);
-#if !(DEC_ROUND == NO_TABLES)
- for(i = N_COLS; i < 10 * N_COLS; ++i)
- cx->ks[i] = inv_mcol(cx->ks[i]);
-#endif
- }
-#else
- kdf4(cx->ks, 0); kd4(cx->ks, 1);
- kd4(cx->ks, 2); kd4(cx->ks, 3);
- kd4(cx->ks, 4); kd4(cx->ks, 5);
- kd4(cx->ks, 6); kd4(cx->ks, 7);
- kd4(cx->ks, 8); kdl4(cx->ks, 9);
-#endif
-
- /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit */
- /* key and must be non-zero for 128 and 192 bits keys */
- cx->ks[53] = cx->ks[45] = 0;
- cx->ks[52] = 10;
-#ifdef AES_ERR_CHK
- return aes_good;
-#endif
-}
-
-#endif
-
-#if defined(AES_192) || defined(AES_VAR)
-
-aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1])
-{ aes_32t ss[7];
-#ifdef d_vars
- d_vars;
-#endif
- cx->ks[0] = ss[0] = word_in(in_key, 0);
- cx->ks[1] = ss[1] = word_in(in_key, 1);
- cx->ks[2] = ss[2] = word_in(in_key, 2);
- cx->ks[3] = ss[3] = word_in(in_key, 3);
-
-#if DEC_UNROLL == NONE
- cx->ks[4] = ss[4] = word_in(in_key, 4);
- cx->ks[5] = ss[5] = word_in(in_key, 5);
- { aes_32t i;
-
- for(i = 0; i < (13 * N_COLS - 1) / 6; ++i)
- ke6(cx->ks, i);
-#if !(DEC_ROUND == NO_TABLES)
- for(i = N_COLS; i < 12 * N_COLS; ++i)
- cx->ks[i] = inv_mcol(cx->ks[i]);
-#endif
- }
-#else
- cx->ks[4] = ff(ss[4] = word_in(in_key, 4));
- cx->ks[5] = ff(ss[5] = word_in(in_key, 5));
- kdf6(cx->ks, 0); kd6(cx->ks, 1);
- kd6(cx->ks, 2); kd6(cx->ks, 3);
- kd6(cx->ks, 4); kd6(cx->ks, 5);
- kd6(cx->ks, 6); kdl6(cx->ks, 7);
-#endif
-
- /* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit */
- /* key and must be non-zero for 128 and 192 bits keys */
- cx->ks[53] = cx->ks[45];
- cx->ks[52] = 12;
-#ifdef AES_ERR_CHK
- return aes_good;
-#endif
-}
-
-#endif
-
-#if defined(AES_256) || defined(AES_VAR)
-
-aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1])
-{ aes_32t ss[8];
-#ifdef d_vars
- d_vars;
-#endif
- cx->ks[0] = ss[0] = word_in(in_key, 0);
- cx->ks[1] = ss[1] = word_in(in_key, 1);
- cx->ks[2] = ss[2] = word_in(in_key, 2);
- cx->ks[3] = ss[3] = word_in(in_key, 3);
-
-#if DEC_UNROLL == NONE
- cx->ks[4] = ss[4] = word_in(in_key, 4);
- cx->ks[5] = ss[5] = word_in(in_key, 5);
- cx->ks[6] = ss[6] = word_in(in_key, 6);
- cx->ks[7] = ss[7] = word_in(in_key, 7);
- { aes_32t i;
-
- for(i = 0; i < (15 * N_COLS - 1) / 8; ++i)
- ke8(cx->ks, i);
-#if !(DEC_ROUND == NO_TABLES)
- for(i = N_COLS; i < 14 * N_COLS; ++i)
- cx->ks[i] = inv_mcol(cx->ks[i]);
-#endif
- }
-#else
- cx->ks[4] = ff(ss[4] = word_in(in_key, 4));
- cx->ks[5] = ff(ss[5] = word_in(in_key, 5));
- cx->ks[6] = ff(ss[6] = word_in(in_key, 6));
- cx->ks[7] = ff(ss[7] = word_in(in_key, 7));
- kdf8(cx->ks, 0); kd8(cx->ks, 1);
- kd8(cx->ks, 2); kd8(cx->ks, 3);
- kd8(cx->ks, 4); kd8(cx->ks, 5);
- kdl8(cx->ks, 6);
-#endif
-#ifdef AES_ERR_CHK
- return aes_good;
-#endif
-}
-
-#endif
-
-#if defined(AES_VAR)
-
-aes_rval aes_decrypt_key(const void *in_key, int key_len, aes_decrypt_ctx cx[1])
-{
- switch(key_len)
- {
-#ifdef AES_ERR_CHK
- case 16: case 128: return aes_decrypt_key128(in_key, cx);
- case 24: case 192: return aes_decrypt_key192(in_key, cx);
- case 32: case 256: return aes_decrypt_key256(in_key, cx);
- default: return aes_error;
-#else
- case 16: case 128: aes_decrypt_key128(in_key, cx); return;
- case 24: case 192: aes_decrypt_key192(in_key, cx); return;
- case 32: case 256: aes_decrypt_key256(in_key, cx); return;
-#endif
- }
-}
-
-#endif
-
-#endif
-
-#endif /* !HAVE_CRYPTO */
-
-#if defined(__cplusplus)
-}
-#endif
diff --git a/main/aesopt.h b/main/aesopt.h
deleted file mode 100644
index bb4f05a0b..000000000
--- a/main/aesopt.h
+++ /dev/null
@@ -1,1029 +0,0 @@
-/*
- ---------------------------------------------------------------------------
- Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software in both source and binary
- form is allowed (with or without changes) provided that:
-
- 1. distributions of this source code include the above copyright
- notice, this list of conditions and the following disclaimer;
-
- 2. distributions in binary form include the above copyright
- notice, this list of conditions and the following disclaimer
- in the documentation and/or other associated materials;
-
- 3. the copyright holder's name is not used to endorse products
- built using this software without specific written permission.
-
- ALTERNATIVELY, provided that this notice is retained in full, this product
- may be distributed under the terms of the GNU General Public License (GPL),
- in which case the provisions of the GPL apply INSTEAD OF those given above.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 26/08/2003
-
- My thanks go to Dag Arne Osvik for devising the schemes used here for key
- length derivation from the form of the key schedule
-
- This file contains the compilation options for AES (Rijndael) and code
- that is common across encryption, key scheduling and table generation.
-
- OPERATION
-
- These source code files implement the AES algorithm Rijndael designed by
- Joan Daemen and Vincent Rijmen. This version is designed for the standard
- block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
- and 32 bytes).
-
- This version is designed for flexibility and speed using operations on
- 32-bit words rather than operations on bytes. It can be compiled with
- either big or little endian internal byte order but is faster when the
- native byte order for the processor is used.
-
- THE CIPHER INTERFACE
-
- The cipher interface is implemented as an array of bytes in which lower
- AES bit sequence indexes map to higher numeric significance within bytes.
-
- aes_08t (an unsigned 8-bit type)
- aes_32t (an unsigned 32-bit type)
- struct aes_encrypt_ctx (structure for the cipher encryption context)
- struct aes_decrypt_ctx (structure for the cipher decryption context)
- aes_rval the function return type
-
- C subroutine calls:
-
- aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1]);
- aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1]);
- aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1]);
- aes_rval aes_encrypt(const void *in_blk,
- void *out_blk, const aes_encrypt_ctx cx[1]);
-
- aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1]);
- aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1]);
- aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1]);
- aes_rval aes_decrypt(const void *in_blk,
- void *out_blk, const aes_decrypt_ctx cx[1]);
-
- IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
- you call genTabs() before AES is used so that the tables are initialised.
-
- C++ aes class subroutines:
-
- Class AESencrypt for encryption
-
- Construtors:
- AESencrypt(void)
- AESencrypt(const void *in_key) - 128 bit key
- Members:
- void key128(const void *in_key)
- void key192(const void *in_key)
- void key256(const void *in_key)
- void encrypt(const void *in_blk, void *out_blk) const
-
- Class AESdecrypt for encryption
- Construtors:
- AESdecrypt(void)
- AESdecrypt(const void *in_key) - 128 bit key
- Members:
- void key128(const void *in_key)
- void key192(const void *in_key)
- void key256(const void *in_key)
- void decrypt(const void *in_blk, void *out_blk) const
-
- COMPILATION
-
- The files used to provide AES (Rijndael) are
-
- a. aes.h for the definitions needed for use in C.
- b. aescpp.h for the definitions needed for use in C++.
- c. aesopt.h for setting compilation options (also includes common code).
- d. aescrypt.c for encryption and decrytpion, or
- e. aeskey.c for key scheduling.
- f. aestab.c for table loading or generation.
- g. aescrypt.asm for encryption and decryption using assembler code.
- h. aescrypt.mmx.asm for encryption and decryption using MMX assembler.
-
- To compile AES (Rijndael) for use in C code use aes.h and set the
- defines here for the facilities you need (key lengths, encryption
- and/or decryption). Do not define AES_DLL or AES_CPP. Set the options
- for optimisations and table sizes here.
-
- To compile AES (Rijndael) for use in in C++ code use aescpp.h but do
- not define AES_DLL
-
- To compile AES (Rijndael) in C as a Dynamic Link Library DLL) use
- aes.h and include the AES_DLL define.
-
- CONFIGURATION OPTIONS (here and in aes.h)
-
- a. set AES_DLL in aes.h if AES (Rijndael) is to be compiled as a DLL
- b. You may need to set PLATFORM_BYTE_ORDER to define the byte order.
- c. If you want the code to run in a specific internal byte order, then
- ALGORITHM_BYTE_ORDER must be set accordingly.
- d. set other configuration options decribed below.
-*/
-
-#ifndef _AESOPT_H
-#define _AESOPT_H
-
-#include "asterisk/aes.h"
-#include "asterisk/endian.h"
-
-/* CONFIGURATION - USE OF DEFINES
-
- Later in this section there are a number of defines that control the
- operation of the code. In each section, the purpose of each define is
- explained so that the relevant form can be included or excluded by
- setting either 1's or 0's respectively on the branches of the related
- #if clauses.
-*/
-
-/* BYTE ORDER IN 32-BIT WORDS
-
- To obtain the highest speed on processors with 32-bit words, this code
- needs to determine the byte order of the target machine. The following
- block of code is an attempt to capture the most obvious ways in which
- various environemnts define byte order. It may well fail, in which case
- the definitions will need to be set by editing at the points marked
- **** EDIT HERE IF NECESSARY **** below. My thanks to Peter Gutmann for
- some of these defines (from cryptlib).
-*/
-
-#define BRG_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
-#define BRG_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
-
-#if defined( __alpha__ ) || defined( __alpha ) || defined( i386 ) || \
- defined( __i386__ ) || defined( _M_I86 ) || defined( _M_IX86 ) || \
- defined( __OS2__ ) || defined( sun386 ) || defined( __TURBOC__ ) || \
- defined( vax ) || defined( vms ) || defined( VMS ) || \
- defined( __VMS )
-
-#define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
-
-#endif
-
-#if defined( AMIGA ) || defined( applec ) || defined( __AS400__ ) || \
- defined( _CRAY ) || defined( __hppa ) || defined( __hp9000 ) || \
- defined( ibm370 ) || defined( mc68000 ) || defined( m68k ) || \
- defined( __MRC__ ) || defined( __MVS__ ) || defined( __MWERKS__ ) || \
- defined( sparc ) || defined( __sparc) || defined( SYMANTEC_C ) || \
- defined( __TANDEM ) || defined( THINK_C ) || defined( __VMCMS__ )
-
-#define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
-
-#endif
-
-/* if the platform is still not known, try to find its byte order */
-/* from commonly used definitions in the headers included earlier */
-
-#if !defined(PLATFORM_BYTE_ORDER)
-
-#if defined(LITTLE_ENDIAN) || defined(BIG_ENDIAN)
-# if defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN)
-# define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
-# elif !defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN)
-# define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
-# elif defined(BYTE_ORDER) && (BYTE_ORDER == LITTLE_ENDIAN)
-# define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
-# elif defined(BYTE_ORDER) && (BYTE_ORDER == BIG_ENDIAN)
-# define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
-# endif
-
-#elif defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)
-# if defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)
-# define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
-# elif !defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN)
-# define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
-# elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _LITTLE_ENDIAN)
-# define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
-# elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _BIG_ENDIAN)
-# define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
-# endif
-
-#elif defined(__LITTLE_ENDIAN__) || defined(__BIG_ENDIAN__)
-# if defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)
-# define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
-# elif !defined(__LITTLE_ENDIAN__) && defined(__BIG_ENDIAN__)
-# define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
-# elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __LITTLE_ENDIAN__)
-# define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
-# elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __BIG_ENDIAN__)
-# define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
-# endif
-
-#elif 0 /* **** EDIT HERE IF NECESSARY **** */
-#define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
-
-#elif 0 /* **** EDIT HERE IF NECESSARY **** */
-#define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
-
-#else
-#error Please edit aesopt.h (line 235 or 238) to set the platform byte order
-#endif
-
-#endif
-
-/* SOME LOCAL DEFINITIONS */
-
-#define NO_TABLES 0
-#define ONE_TABLE 1
-#define FOUR_TABLES 4
-#define NONE 0
-#define PARTIAL 1
-#define FULL 2
-
-#if defined(bswap32)
-#define aes_sw32 bswap32
-#elif defined(bswap_32)
-#define aes_sw32 bswap_32
-#else
-#define brot(x,n) (((aes_32t)(x) << n) | ((aes_32t)(x) >> (32 - n)))
-#define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
-#endif
-
-/* 1. FUNCTIONS REQUIRED
-
- This implementation provides subroutines for encryption, decryption
- and for setting the three key lengths (separately) for encryption
- and decryption. When the assembler code is not being used the following
- definition blocks allow the selection of the routines that are to be
- included in the compilation.
-*/
-#ifdef AES_ENCRYPT
-#define ENCRYPTION
-#define ENCRYPTION_KEY_SCHEDULE
-#endif
-
-#ifdef AES_DECRYPT
-#define DECRYPTION
-#define DECRYPTION_KEY_SCHEDULE
-#endif
-
-/* 2. ASSEMBLER SUPPORT
-
- This define (which can be on the command line) enables the use of the
- assembler code routines for encryption and decryption with the C code
- only providing key scheduling
-*/
-#if 0
-#define AES_ASM
-#endif
-
-/* 3. BYTE ORDER WITHIN 32 BIT WORDS
-
- The fundamental data processing units in Rijndael are 8-bit bytes. The
- input, output and key input are all enumerated arrays of bytes in which
- bytes are numbered starting at zero and increasing to one less than the
- number of bytes in the array in question. This enumeration is only used
- for naming bytes and does not imply any adjacency or order relationship
- from one byte to another. When these inputs and outputs are considered
- as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
- byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
- In this implementation bits are numbered from 0 to 7 starting at the
- numerically least significant end of each byte (bit n represents 2^n).
-
- However, Rijndael can be implemented more efficiently using 32-bit
- words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
- into word[n]. While in principle these bytes can be assembled into words
- in any positions, this implementation only supports the two formats in
- which bytes in adjacent positions within words also have adjacent byte
- numbers. This order is called big-endian if the lowest numbered bytes
- in words have the highest numeric significance and little-endian if the
- opposite applies.
-
- This code can work in either order irrespective of the order used by the
- machine on which it runs. Normally the internal byte order will be set
- to the order of the processor on which the code is to be run but this
- define can be used to reverse this in special situations
-
- NOTE: Assembler code versions rely on PLATFORM_BYTE_ORDER being set
-*/
-#if 1 || defined(AES_ASM)
-#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
-#elif 0
-#define ALGORITHM_BYTE_ORDER BRG_LITTLE_ENDIAN
-#elif 0
-#define ALGORITHM_BYTE_ORDER BRG_BIG_ENDIAN
-#else
-#error The algorithm byte order is not defined
-#endif
-
-/* 4. FAST INPUT/OUTPUT OPERATIONS.
-
- On some machines it is possible to improve speed by transferring the
- bytes in the input and output arrays to and from the internal 32-bit
- variables by addressing these arrays as if they are arrays of 32-bit
- words. On some machines this will always be possible but there may
- be a large performance penalty if the byte arrays are not aligned on
- the normal word boundaries. On other machines this technique will
- lead to memory access errors when such 32-bit word accesses are not
- properly aligned. The option SAFE_IO avoids such problems but will
- often be slower on those machines that support misaligned access
- (especially so if care is taken to align the input and output byte
- arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
- assumed that access to byte arrays as if they are arrays of 32-bit
- words will not cause problems when such accesses are misaligned.
-*/
-#if 1 && !defined(_MSC_VER)
-#define SAFE_IO
-#endif
-
-/* 5. LOOP UNROLLING
-
- The code for encryption and decrytpion cycles through a number of rounds
- that can be implemented either in a loop or by expanding the code into a
- long sequence of instructions, the latter producing a larger program but
- one that will often be much faster. The latter is called loop unrolling.
- There are also potential speed advantages in expanding two iterations in
- a loop with half the number of iterations, which is called partial loop
- unrolling. The following options allow partial or full loop unrolling
- to be set independently for encryption and decryption
-*/
-#if 1
-#define ENC_UNROLL FULL
-#elif 0
-#define ENC_UNROLL PARTIAL
-#else
-#define ENC_UNROLL NONE
-#endif
-
-#if 1
-#define DEC_UNROLL FULL
-#elif 0
-#define DEC_UNROLL PARTIAL
-#else
-#define DEC_UNROLL NONE
-#endif
-
-/* 6. FAST FINITE FIELD OPERATIONS
-
- If this section is included, tables are used to provide faster finite
- field arithmetic (this has no effect if FIXED_TABLES is defined).
-*/
-#if 1
-#define FF_TABLES
-#endif
-
-/* 7. INTERNAL STATE VARIABLE FORMAT
-
- The internal state of Rijndael is stored in a number of local 32-bit
- word varaibles which can be defined either as an array or as individual
- names variables. Include this section if you want to store these local
- varaibles in arrays. Otherwise individual local variables will be used.
-*/
-#if 1
-#define ARRAYS
-#endif
-
-/* In this implementation the columns of the state array are each held in
- 32-bit words. The state array can be held in various ways: in an array
- of words, in a number of individual word variables or in a number of
- processor registers. The following define maps a variable name x and
- a column number c to the way the state array variable is to be held.
- The first define below maps the state into an array x[c] whereas the
- second form maps the state into a number of individual variables x0,
- x1, etc. Another form could map individual state colums to machine
- register names.
-*/
-
-#if defined(ARRAYS)
-#define s(x,c) x[c]
-#else
-#define s(x,c) x##c
-#endif
-
-/* 8. FIXED OR DYNAMIC TABLES
-
- When this section is included the tables used by the code are compiled
- statically into the binary file. Otherwise the subroutine gen_tabs()
- must be called to compute them before the code is first used.
-*/
-#if 1
-#define FIXED_TABLES
-#endif
-
-/* 9. TABLE ALIGNMENT
-
- On some sytsems speed will be improved by aligning the AES large lookup
- tables on particular boundaries. This define should be set to a power of
- two giving the desired alignment. It can be left undefined if alignment
- is not needed. This option is specific to the Microsft VC++ compiler -
- it seems to sometimes cause trouble for the VC++ version 6 compiler.
-*/
-
-#if 0 && defined(_MSC_VER) && (_MSC_VER >= 1300)
-#define TABLE_ALIGN 64
-#endif
-
-/* 10. INTERNAL TABLE CONFIGURATION
-
- This cipher proceeds by repeating in a number of cycles known as 'rounds'
- which are implemented by a round function which can optionally be speeded
- up using tables. The basic tables are each 256 32-bit words, with either
- one or four tables being required for each round function depending on
- how much speed is required. The encryption and decryption round functions
- are different and the last encryption and decrytpion round functions are
- different again making four different round functions in all.
-
- This means that:
- 1. Normal encryption and decryption rounds can each use either 0, 1
- or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
- 2. The last encryption and decryption rounds can also use either 0, 1
- or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
-
- Include or exclude the appropriate definitions below to set the number
- of tables used by this implementation.
-*/
-
-#if 1 /* set tables for the normal encryption round */
-#define ENC_ROUND FOUR_TABLES
-#elif 0
-#define ENC_ROUND ONE_TABLE
-#else
-#define ENC_ROUND NO_TABLES
-#endif
-
-#if 1 /* set tables for the last encryption round */
-#define LAST_ENC_ROUND FOUR_TABLES
-#elif 0
-#define LAST_ENC_ROUND ONE_TABLE
-#else
-#define LAST_ENC_ROUND NO_TABLES
-#endif
-
-#if 1 /* set tables for the normal decryption round */
-#define DEC_ROUND FOUR_TABLES
-#elif 0
-#define DEC_ROUND ONE_TABLE
-#else
-#define DEC_ROUND NO_TABLES
-#endif
-
-#if 1 /* set tables for the last decryption round */
-#define LAST_DEC_ROUND FOUR_TABLES
-#elif 0
-#define LAST_DEC_ROUND ONE_TABLE
-#else
-#define LAST_DEC_ROUND NO_TABLES
-#endif
-
-/* The decryption key schedule can be speeded up with tables in the same
- way that the round functions can. Include or exclude the following
- defines to set this requirement.
-*/
-#if 1
-#define KEY_SCHED FOUR_TABLES
-#elif 0
-#define KEY_SCHED ONE_TABLE
-#else
-#define KEY_SCHED NO_TABLES
-#endif
-
-/* END OF CONFIGURATION OPTIONS */
-
-#define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))
-
-/* Disable or report errors on some combinations of options */
-
-#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
-#undef LAST_ENC_ROUND
-#define LAST_ENC_ROUND NO_TABLES
-#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
-#undef LAST_ENC_ROUND
-#define LAST_ENC_ROUND ONE_TABLE
-#endif
-
-#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
-#undef ENC_UNROLL
-#define ENC_UNROLL NONE
-#endif
-
-#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
-#undef LAST_DEC_ROUND
-#define LAST_DEC_ROUND NO_TABLES
-#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
-#undef LAST_DEC_ROUND
-#define LAST_DEC_ROUND ONE_TABLE
-#endif
-
-#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
-#undef DEC_UNROLL
-#define DEC_UNROLL NONE
-#endif
-
-/* upr(x,n): rotates bytes within words by n positions, moving bytes to
- higher index positions with wrap around into low positions
- ups(x,n): moves bytes by n positions to higher index positions in
- words but without wrap around
- bval(x,n): extracts a byte from a word
-
- NOTE: The definitions given here are intended only for use with
- unsigned variables and with shift counts that are compile
- time constants
-*/
-
-#if (ALGORITHM_BYTE_ORDER == BRG_LITTLE_ENDIAN)
-#define upr(x,n) (((aes_32t)(x) << (8 * (n))) | ((aes_32t)(x) >> (32 - 8 * (n))))
-#define ups(x,n) ((aes_32t) (x) << (8 * (n)))
-#define bval(x,n) ((aes_08t)((x) >> (8 * (n))))
-#define bytes2word(b0, b1, b2, b3) \
- (((aes_32t)(b3) << 24) | ((aes_32t)(b2) << 16) | ((aes_32t)(b1) << 8) | (b0))
-#endif
-
-#if (ALGORITHM_BYTE_ORDER == BRG_BIG_ENDIAN)
-#define upr(x,n) (((aes_32t)(x) >> (8 * (n))) | ((aes_32t)(x) << (32 - 8 * (n))))
-#define ups(x,n) ((aes_32t) (x) >> (8 * (n))))
-#define bval(x,n) ((aes_08t)((x) >> (24 - 8 * (n))))
-#define bytes2word(b0, b1, b2, b3) \
- (((aes_32t)(b0) << 24) | ((aes_32t)(b1) << 16) | ((aes_32t)(b2) << 8) | (b3))
-#endif
-
-#if defined(SAFE_IO)
-
-#define word_in(x,c) bytes2word(((aes_08t*)(x)+4*c)[0], ((aes_08t*)(x)+4*c)[1], \
- ((aes_08t*)(x)+4*c)[2], ((aes_08t*)(x)+4*c)[3])
-#define word_out(x,c,v) { ((aes_08t*)(x)+4*c)[0] = bval(v,0); ((aes_08t*)(x)+4*c)[1] = bval(v,1); \
- ((aes_08t*)(x)+4*c)[2] = bval(v,2); ((aes_08t*)(x)+4*c)[3] = bval(v,3); }
-
-#elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER)
-
-#define word_in(x,c) (*((aes_32t*)(x)+(c)))
-#define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = (v))
-
-#else
-
-#define word_in(x,c) aes_sw32(*((aes_32t*)(x)+(c)))
-#define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = aes_sw32(v))
-
-#endif
-
-/* the finite field modular polynomial and elements */
-
-#define WPOLY 0x011b
-#define BPOLY 0x1b
-
-/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
-
-#define m1 0x80808080
-#define m2 0x7f7f7f7f
-#define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
-
-/* The following defines provide alternative definitions of gf_mulx that might
- give improved performance if a fast 32-bit multiply is not available. Note
- that a temporary variable u needs to be defined where gf_mulx is used.
-
-#define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
-#define m4 (0x01010101 * BPOLY)
-#define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
-*/
-
-/* Work out which tables are needed for the different options */
-
-#ifdef AES_ASM
-#ifdef ENC_ROUND
-#undef ENC_ROUND
-#endif
-#define ENC_ROUND FOUR_TABLES
-#ifdef LAST_ENC_ROUND
-#undef LAST_ENC_ROUND
-#endif
-#define LAST_ENC_ROUND FOUR_TABLES
-#ifdef DEC_ROUND
-#undef DEC_ROUND
-#endif
-#define DEC_ROUND FOUR_TABLES
-#ifdef LAST_DEC_ROUND
-#undef LAST_DEC_ROUND
-#endif
-#define LAST_DEC_ROUND FOUR_TABLES
-#ifdef KEY_SCHED
-#undef KEY_SCHED
-#define KEY_SCHED FOUR_TABLES
-#endif
-#endif
-
-#if defined(ENCRYPTION) || defined(AES_ASM)
-#if ENC_ROUND == ONE_TABLE
-#define FT1_SET
-#elif ENC_ROUND == FOUR_TABLES
-#define FT4_SET
-#else
-#define SBX_SET
-#endif
-#if LAST_ENC_ROUND == ONE_TABLE
-#define FL1_SET
-#elif LAST_ENC_ROUND == FOUR_TABLES
-#define FL4_SET
-#elif !defined(SBX_SET)
-#define SBX_SET
-#endif
-#endif
-
-#if defined(DECRYPTION) || defined(AES_ASM)
-#if DEC_ROUND == ONE_TABLE
-#define IT1_SET
-#elif DEC_ROUND == FOUR_TABLES
-#define IT4_SET
-#else
-#define ISB_SET
-#endif
-#if LAST_DEC_ROUND == ONE_TABLE
-#define IL1_SET
-#elif LAST_DEC_ROUND == FOUR_TABLES
-#define IL4_SET
-#elif !defined(ISB_SET)
-#define ISB_SET
-#endif
-#endif
-
-#if defined(ENCRYPTION_KEY_SCHEDULE) || defined(DECRYPTION_KEY_SCHEDULE)
-#if KEY_SCHED == ONE_TABLE
-#define LS1_SET
-#define IM1_SET
-#elif KEY_SCHED == FOUR_TABLES
-#define LS4_SET
-#define IM4_SET
-#elif !defined(SBX_SET)
-#define SBX_SET
-#endif
-#endif
-
-/* generic definitions of Rijndael macros that use tables */
-
-#define no_table(x,box,vf,rf,c) bytes2word( \
- box[bval(vf(x,0,c),rf(0,c))], \
- box[bval(vf(x,1,c),rf(1,c))], \
- box[bval(vf(x,2,c),rf(2,c))], \
- box[bval(vf(x,3,c),rf(3,c))])
-
-#define one_table(x,op,tab,vf,rf,c) \
- ( tab[bval(vf(x,0,c),rf(0,c))] \
- ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
- ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
- ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
-
-#define four_tables(x,tab,vf,rf,c) \
- ( tab[0][bval(vf(x,0,c),rf(0,c))] \
- ^ tab[1][bval(vf(x,1,c),rf(1,c))] \
- ^ tab[2][bval(vf(x,2,c),rf(2,c))] \
- ^ tab[3][bval(vf(x,3,c),rf(3,c))])
-
-#define vf1(x,r,c) (x)
-#define rf1(r,c) (r)
-#define rf2(r,c) ((8+r-c)&3)
-
-/* perform forward and inverse column mix operation on four bytes in long word x in */
-/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */
-
-#if defined(FM4_SET) /* not currently used */
-#define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0)
-#elif defined(FM1_SET) /* not currently used */
-#define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0)
-#else
-#define dec_fmvars aes_32t g2
-#define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
-#endif
-
-#if defined(IM4_SET)
-#define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0)
-#elif defined(IM1_SET)
-#define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0)
-#else
-#define dec_imvars aes_32t g2, g4, g9
-#define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
- (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
-#endif
-
-#if defined(FL4_SET)
-#define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c)
-#elif defined(LS4_SET)
-#define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c)
-#elif defined(FL1_SET)
-#define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c)
-#elif defined(LS1_SET)
-#define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c)
-#else
-#define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c)
-#endif
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-/* If there are no global variables, the definitions here can be
- used to put the AES tables in a structure so that a pointer
- can then be added to the AES context to pass them to the AES
- routines that need them. If this facility is used, the calling
- program has to ensure that this pointer is managed appropriately.
- In particular, the value of the t_dec(in,it) item in the table
- structure must be set to zero in order to ensure that the tables
- are initialised. In practice the three code sequences in aeskey.c
- that control the calls to gen_tabs() and the gen_tabs() routine
- itself will have to be changed for a specific implementation. If
- global variables are available it will generally be preferable to
- use them with the precomputed FIXED_TABLES option that uses static
- global tables.
-
- The following defines can be used to control the way the tables
- are defined, initialised and used in embedded environments that
- require special features for these purposes
-
- the 't_dec' construction is used to declare fixed table arrays
- the 't_set' construction is used to set fixed table values
- the 't_use' construction is used to access fixed table values
-
- 256 byte tables:
-
- t_xxx(s,box) => forward S box
- t_xxx(i,box) => inverse S box
-
- 256 32-bit word OR 4 x 256 32-bit word tables:
-
- t_xxx(f,n) => forward normal round
- t_xxx(f,l) => forward last round
- t_xxx(i,n) => inverse normal round
- t_xxx(i,l) => inverse last round
- t_xxx(l,s) => key schedule table
- t_xxx(i,m) => key schedule table
-
- Other variables and tables:
-
- t_xxx(r,c) => the rcon table
-*/
-
-#define t_dec(m,n) t_##m##n
-#define t_set(m,n) t_##m##n
-#define t_use(m,n) t_##m##n
-
-#if defined(DO_TABLES) /* declare and instantiate tables */
-
-/* finite field arithmetic operations for table generation */
-
-#if defined(FIXED_TABLES) || !defined(FF_TABLES)
-
-#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY))
-#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))
-#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \
- ^ (((x>>5) & 4) * WPOLY))
-#define f3(x) (f2(x) ^ x)
-#define f9(x) (f8(x) ^ x)
-#define fb(x) (f8(x) ^ f2(x) ^ x)
-#define fd(x) (f8(x) ^ f4(x) ^ x)
-#define fe(x) (f8(x) ^ f4(x) ^ f2(x))
-
-#else
-
-#define f2(x) ((x) ? pow[log[x] + 0x19] : 0)
-#define f3(x) ((x) ? pow[log[x] + 0x01] : 0)
-#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0)
-#define fb(x) ((x) ? pow[log[x] + 0x68] : 0)
-#define fd(x) ((x) ? pow[log[x] + 0xee] : 0)
-#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0)
-#define fi(x) ((x) ? pow[ 255 - log[x]] : 0)
-
-#endif
-
-#if defined(FIXED_TABLES) /* declare and set values for static tables */
-
-#define sb_data(w) \
- w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\
- w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\
- w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\
- w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\
- w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\
- w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\
- w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\
- w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\
- w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\
- w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\
- w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\
- w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\
- w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\
- w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\
- w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\
- w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\
- w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\
- w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\
- w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\
- w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\
- w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\
- w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\
- w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\
- w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\
- w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\
- w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\
- w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\
- w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\
- w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\
- w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\
- w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\
- w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16)
-
-#define isb_data(w) \
- w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\
- w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\
- w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\
- w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\
- w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\
- w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\
- w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\
- w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\
- w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\
- w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\
- w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\
- w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\
- w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\
- w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\
- w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\
- w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\
- w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\
- w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\
- w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\
- w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\
- w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\
- w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\
- w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\
- w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\
- w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\
- w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\
- w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\
- w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\
- w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\
- w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\
- w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\
- w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d),
-
-#define mm_data(w) \
- w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\
- w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\
- w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\
- w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\
- w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\
- w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\
- w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\
- w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\
- w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\
- w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\
- w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\
- w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\
- w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\
- w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\
- w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\
- w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\
- w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\
- w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\
- w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\
- w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\
- w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\
- w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\
- w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\
- w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\
- w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\
- w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\
- w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\
- w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\
- w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\
- w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\
- w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\
- w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff)
-
-#define h0(x) (x)
-
-/* These defines are used to ensure tables are generated in the
- right format depending on the internal byte order required
-*/
-
-#define w0(p) bytes2word(p, 0, 0, 0)
-#define w1(p) bytes2word(0, p, 0, 0)
-#define w2(p) bytes2word(0, 0, p, 0)
-#define w3(p) bytes2word(0, 0, 0, p)
-
-#define u0(p) bytes2word(f2(p), p, p, f3(p))
-#define u1(p) bytes2word(f3(p), f2(p), p, p)
-#define u2(p) bytes2word(p, f3(p), f2(p), p)
-#define u3(p) bytes2word(p, p, f3(p), f2(p))
-
-#define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p))
-#define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p))
-#define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p))
-#define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p))
-
-const aes_32t t_dec(r,c)[RC_LENGTH] =
-{
- w0(0x01), w0(0x02), w0(0x04), w0(0x08), w0(0x10),
- w0(0x20), w0(0x40), w0(0x80), w0(0x1b), w0(0x36)
-};
-
-#define d_1(t,n,b,v) const t n[256] = { b(v##0) }
-#define d_4(t,n,b,v) const t n[4][256] = { { b(v##0) }, { b(v##1) }, { b(v##2) }, { b(v##3) } }
-
-#else /* declare and instantiate tables for dynamic value generation in in tab.c */
-
-aes_32t t_dec(r,c)[RC_LENGTH];
-
-#define d_1(t,n,b,v) t n[256]
-#define d_4(t,n,b,v) t n[4][256]
-
-#endif
-
-#else /* declare tables without instantiation */
-
-#if defined(FIXED_TABLES)
-
-extern const aes_32t t_dec(r,c)[RC_LENGTH];
-
-#if defined(_MSC_VER) && defined(TABLE_ALIGN)
-#define d_1(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) const t n[256]
-#define d_4(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) const t n[4][256]
-#else
-#define d_1(t,n,b,v) extern const t n[256]
-#define d_4(t,n,b,v) extern const t n[4][256]
-#endif
-#else
-
-extern aes_32t t_dec(r,c)[RC_LENGTH];
-
-#if defined(_MSC_VER) && defined(TABLE_ALIGN)
-#define d_1(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) t n[256]
-#define d_4(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) t n[4][256]
-#else
-#define d_1(t,n,b,v) extern t n[256]
-#define d_4(t,n,b,v) extern t n[4][256]
-#endif
-#endif
-
-#endif
-
-#ifdef SBX_SET
- d_1(aes_08t, t_dec(s,box), sb_data, h);
-#endif
-#ifdef ISB_SET
- d_1(aes_08t, t_dec(i,box), isb_data, h);
-#endif
-
-#ifdef FT1_SET
- d_1(aes_32t, t_dec(f,n), sb_data, u);
-#endif
-#ifdef FT4_SET
- d_4(aes_32t, t_dec(f,n), sb_data, u);
-#endif
-
-#ifdef FL1_SET
- d_1(aes_32t, t_dec(f,l), sb_data, w);
-#endif
-#ifdef FL4_SET
- d_4(aes_32t, t_dec(f,l), sb_data, w);
-#endif
-
-#ifdef IT1_SET
- d_1(aes_32t, t_dec(i,n), isb_data, v);
-#endif
-#ifdef IT4_SET
- d_4(aes_32t, t_dec(i,n), isb_data, v);
-#endif
-
-#ifdef IL1_SET
- d_1(aes_32t, t_dec(i,l), isb_data, w);
-#endif
-#ifdef IL4_SET
- d_4(aes_32t, t_dec(i,l), isb_data, w);
-#endif
-
-#ifdef LS1_SET
-#ifdef FL1_SET
-#undef LS1_SET
-#else
- d_1(aes_32t, t_dec(l,s), sb_data, w);
-#endif
-#endif
-
-#ifdef LS4_SET
-#ifdef FL4_SET
-#undef LS4_SET
-#else
- d_4(aes_32t, t_dec(l,s), sb_data, w);
-#endif
-#endif
-
-#ifdef IM1_SET
- d_1(aes_32t, t_dec(i,m), mm_data, v);
-#endif
-#ifdef IM4_SET
- d_4(aes_32t, t_dec(i,m), mm_data, v);
-#endif
-
-#if defined(__cplusplus)
-}
-#endif
-
-#endif
diff --git a/main/aestab.c b/main/aestab.c
deleted file mode 100644
index b134d22d8..000000000
--- a/main/aestab.c
+++ /dev/null
@@ -1,236 +0,0 @@
-/*
- ---------------------------------------------------------------------------
- Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software in both source and binary
- form is allowed (with or without changes) provided that:
-
- 1. distributions of this source code include the above copyright
- notice, this list of conditions and the following disclaimer;
-
- 2. distributions in binary form include the above copyright
- notice, this list of conditions and the following disclaimer
- in the documentation and/or other associated materials;
-
- 3. the copyright holder's name is not used to endorse products
- built using this software without specific written permission.
-
- ALTERNATIVELY, provided that this notice is retained in full, this product
- may be distributed under the terms of the GNU General Public License (GPL),
- in which case the provisions of the GPL apply INSTEAD OF those given above.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 26/08/2003
-
-*/
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-#ifndef HAVE_CRYPTO
-
-#define DO_TABLES
-
-#include "aesopt.h"
-
-#if defined(FIXED_TABLES)
-
-/* implemented in case of wrong call for fixed tables */
-
-void gen_tabs(void)
-{
-}
-
-#else /* dynamic table generation */
-
-#if !defined(FF_TABLES)
-
-/* Generate the tables for the dynamic table option
-
- It will generally be sensible to use tables to compute finite
- field multiplies and inverses but where memory is scarse this
- code might sometimes be better. But it only has effect during
- initialisation so its pretty unimportant in overall terms.
-*/
-
-/* return 2 ^ (n - 1) where n is the bit number of the highest bit
- set in x with x in the range 1 < x < 0x00000200. This form is
- used so that locals within fi can be bytes rather than words
-*/
-
-static aes_08t hibit(const aes_32t x)
-{ aes_08t r = (aes_08t)((x >> 1) | (x >> 2));
-
- r |= (r >> 2);
- r |= (r >> 4);
- return (r + 1) >> 1;
-}
-
-/* return the inverse of the finite field element x */
-
-static aes_08t fi(const aes_08t x)
-{ aes_08t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0;
-
- if(x < 2) return x;
-
- for(;;)
- {
- if(!n1) return v1;
-
- while(n2 >= n1)
- {
- n2 /= n1; p2 ^= p1 * n2; v2 ^= v1 * n2; n2 = hibit(p2);
- }
-
- if(!n2) return v2;
-
- while(n1 >= n2)
- {
- n1 /= n2; p1 ^= p2 * n1; v1 ^= v2 * n1; n1 = hibit(p1);
- }
- }
-}
-
-#endif
-
-/* The forward and inverse affine transformations used in the S-box */
-
-#define fwd_affine(x) \
- (w = (aes_32t)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(aes_08t)(w^(w>>8)))
-
-#define inv_affine(x) \
- (w = (aes_32t)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(aes_08t)(w^(w>>8)))
-
-static int init = 0;
-
-void gen_tabs(void)
-{ aes_32t i, w;
-
-#if defined(FF_TABLES)
-
- aes_08t pow[512], log[256];
-
- if(init) return;
- /* log and power tables for GF(2^8) finite field with
- WPOLY as modular polynomial - the simplest primitive
- root is 0x03, used here to generate the tables
- */
-
- i = 0; w = 1;
- do
- {
- pow[i] = (aes_08t)w;
- pow[i + 255] = (aes_08t)w;
- log[w] = (aes_08t)i++;
- w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0);
- }
- while (w != 1);
-
-#else
- if(init) return;
-#endif
-
- for(i = 0, w = 1; i < RC_LENGTH; ++i)
- {
- t_set(r,c)[i] = bytes2word(w, 0, 0, 0);
- w = f2(w);
- }
-
- for(i = 0; i < 256; ++i)
- { aes_08t b;
-
- b = fwd_affine(fi((aes_08t)i));
- w = bytes2word(f2(b), b, b, f3(b));
-
-#ifdef SBX_SET
- t_set(s,box)[i] = b;
-#endif
-
-#ifdef FT1_SET /* tables for a normal encryption round */
- t_set(f,n)[i] = w;
-#endif
-#ifdef FT4_SET
- t_set(f,n)[0][i] = w;
- t_set(f,n)[1][i] = upr(w,1);
- t_set(f,n)[2][i] = upr(w,2);
- t_set(f,n)[3][i] = upr(w,3);
-#endif
- w = bytes2word(b, 0, 0, 0);
-
-#ifdef FL1_SET /* tables for last encryption round (may also */
- t_set(f,l)[i] = w; /* be used in the key schedule) */
-#endif
-#ifdef FL4_SET
- t_set(f,l)[0][i] = w;
- t_set(f,l)[1][i] = upr(w,1);
- t_set(f,l)[2][i] = upr(w,2);
- t_set(f,l)[3][i] = upr(w,3);
-#endif
-
-#ifdef LS1_SET /* table for key schedule if t_set(f,l) above is */
- t_set(l,s)[i] = w; /* not of the required form */
-#endif
-#ifdef LS4_SET
- t_set(l,s)[0][i] = w;
- t_set(l,s)[1][i] = upr(w,1);
- t_set(l,s)[2][i] = upr(w,2);
- t_set(l,s)[3][i] = upr(w,3);
-#endif
-
- b = fi(inv_affine((aes_08t)i));
- w = bytes2word(fe(b), f9(b), fd(b), fb(b));
-
-#ifdef IM1_SET /* tables for the inverse mix column operation */
- t_set(i,m)[b] = w;
-#endif
-#ifdef IM4_SET
- t_set(i,m)[0][b] = w;
- t_set(i,m)[1][b] = upr(w,1);
- t_set(i,m)[2][b] = upr(w,2);
- t_set(i,m)[3][b] = upr(w,3);
-#endif
-
-#ifdef ISB_SET
- t_set(i,box)[i] = b;
-#endif
-#ifdef IT1_SET /* tables for a normal decryption round */
- t_set(i,n)[i] = w;
-#endif
-#ifdef IT4_SET
- t_set(i,n)[0][i] = w;
- t_set(i,n)[1][i] = upr(w,1);
- t_set(i,n)[2][i] = upr(w,2);
- t_set(i,n)[3][i] = upr(w,3);
-#endif
- w = bytes2word(b, 0, 0, 0);
-#ifdef IL1_SET /* tables for last decryption round */
- t_set(i,l)[i] = w;
-#endif
-#ifdef IL4_SET
- t_set(i,l)[0][i] = w;
- t_set(i,l)[1][i] = upr(w,1);
- t_set(i,l)[2][i] = upr(w,2);
- t_set(i,l)[3][i] = upr(w,3);
-#endif
- }
- init = 1;
-}
-
-#endif
-
-#endif /* !HAVE_CRYPTO */
-
-#if defined(__cplusplus)
-}
-#endif
-