aboutsummaryrefslogtreecommitdiffstats
path: root/codecs
diff options
context:
space:
mode:
authormarkster <markster@f38db490-d61c-443f-a65b-d21fe96a405b>2004-02-25 04:10:32 +0000
committermarkster <markster@f38db490-d61c-443f-a65b-d21fe96a405b>2004-02-25 04:10:32 +0000
commit91a49dbd77ef94e316d10913c950fbd3753581d2 (patch)
tree340405f4743954fc4f2662d43f2c3e532e541e8d /codecs
parentb343a418182009f512a145765c0ddde458e81cc0 (diff)
Add G.726-32kbps Codec Transcoder (Tested with Cisco ATA-186)
git-svn-id: http://svn.digium.com/svn/asterisk/trunk@2239 f38db490-d61c-443f-a65b-d21fe96a405b
Diffstat (limited to 'codecs')
-rwxr-xr-xcodecs/Makefile3
-rwxr-xr-xcodecs/codec_g726.c927
-rwxr-xr-xcodecs/g726_slin_ex.h25
-rwxr-xr-xcodecs/slin_g726_ex.h25
4 files changed, 979 insertions, 1 deletions
diff --git a/codecs/Makefile b/codecs/Makefile
index 742739af4..43c4e13db 100755
--- a/codecs/Makefile
+++ b/codecs/Makefile
@@ -34,7 +34,8 @@ LIBSPEEX+=-lspeex -lm
LIBILBC=ilbc/libilbc.a
CODECS+=$(MODG723) $(MODSPEEX) $(MODILBC) codec_gsm.so codec_lpc10.so \
- codec_adpcm.so codec_ulaw.so codec_alaw.so codec_a_mu.so
+ codec_adpcm.so codec_ulaw.so codec_alaw.so codec_a_mu.so \
+ codec_g726.so
all: depend $(CODECS)
diff --git a/codecs/codec_g726.c b/codecs/codec_g726.c
new file mode 100755
index 000000000..ac32678ca
--- /dev/null
+++ b/codecs/codec_g726.c
@@ -0,0 +1,927 @@
+/* codec_g726.c - translate between signed linear and ITU G.726-32kbps
+ *
+ * Asterisk -- A telephony toolkit for Linux.
+ *
+ * Based on frompcm.c and topcm.c from the Emiliano MIPL browser/
+ * interpreter. See http://www.bsdtelephony.com.mx
+ *
+ * Copyright (c) 2004, Digium
+ *
+ * Mark Spencer <markster@digium.com>
+ *
+ * This program is free software, distributed under the terms of
+ * the GNU General Public License
+ */
+
+#include <asterisk/lock.h>
+#include <asterisk/logger.h>
+#include <asterisk/module.h>
+#include <asterisk/translate.h>
+#include <asterisk/channel.h>
+#include <fcntl.h>
+#include <netinet/in.h>
+#include <pthread.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <unistd.h>
+
+#define BUFFER_SIZE 8096 /* size for the translation buffers */
+#define BUF_SHIFT 5
+
+static ast_mutex_t localuser_lock = AST_MUTEX_INITIALIZER;
+static int localusecnt = 0;
+
+static char *tdesc = "ITU G.726-32kbps G726 Transcoder";
+
+/* Sample frame data */
+
+#include "slin_g726_ex.h"
+#include "g726_slin_ex.h"
+
+/*
+ * The following is the definition of the state structure
+ * used by the G.721/G.723 encoder and decoder to preserve their internal
+ * state between successive calls. The meanings of the majority
+ * of the state structure fields are explained in detail in the
+ * CCITT Recommendation G.721. The field names are essentially indentical
+ * to variable names in the bit level description of the coding algorithm
+ * included in this Recommendation.
+ */
+struct g726_state {
+ long yl; /* Locked or steady state step size multiplier. */
+ short yu; /* Unlocked or non-steady state step size multiplier. */
+ short dms; /* Short term energy estimate. */
+ short dml; /* Long term energy estimate. */
+ short ap; /* Linear weighting coefficient of 'yl' and 'yu'. */
+
+ short a[2]; /* Coefficients of pole portion of prediction filter. */
+ short b[6]; /* Coefficients of zero portion of prediction filter. */
+ short pk[2]; /*
+ * Signs of previous two samples of a partially
+ * reconstructed signal.
+ */
+ short dq[6]; /*
+ * Previous 6 samples of the quantized difference
+ * signal represented in an internal floating point
+ * format.
+ */
+ short sr[2]; /*
+ * Previous 2 samples of the quantized difference
+ * signal represented in an internal floating point
+ * format.
+ */
+ char td; /* delayed tone detect, new in 1988 version */
+};
+
+
+
+static short qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400};
+/*
+ * Maps G.721 code word to reconstructed scale factor normalized log
+ * magnitude values.
+ */
+static short _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
+ 425, 373, 323, 273, 213, 135, 4, -2048};
+
+/* Maps G.721 code word to log of scale factor multiplier. */
+static short _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
+ 1122, 355, 198, 112, 64, 41, 18, -12};
+/*
+ * Maps G.721 code words to a set of values whose long and short
+ * term averages are computed and then compared to give an indication
+ * how stationary (steady state) the signal is.
+ */
+static short _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
+ 0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
+
+static short power2[15] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
+ 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000};
+
+/*
+ * quan()
+ *
+ * quantizes the input val against the table of size short integers.
+ * It returns i if table[i - 1] <= val < table[i].
+ *
+ * Using linear search for simple coding.
+ */
+static int quan(int val, short *table, int size)
+{
+ int i;
+
+ for (i = 0; i < size; i++)
+ if (val < *table++)
+ break;
+ return (i);
+}
+
+/*
+ * fmult()
+ *
+ * returns the integer product of the 14-bit integer "an" and
+ * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
+ */
+static int fmult(int an, int srn)
+{
+ short anmag, anexp, anmant;
+ short wanexp, wanmant;
+ short retval;
+
+ anmag = (an > 0) ? an : ((-an) & 0x1FFF);
+ anexp = quan(anmag, power2, 15) - 6;
+ anmant = (anmag == 0) ? 32 :
+ (anexp >= 0) ? anmag >> anexp : anmag << -anexp;
+ wanexp = anexp + ((srn >> 6) & 0xF) - 13;
+
+ wanmant = (anmant * (srn & 077) + 0x30) >> 4;
+ retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
+ (wanmant >> -wanexp);
+
+ return (((an ^ srn) < 0) ? -retval : retval);
+}
+
+/*
+ * g72x_init_state()
+ *
+ * This routine initializes and/or resets the g726_state structure
+ * pointed to by 'state_ptr'.
+ * All the initial state values are specified in the CCITT G.721 document.
+ */
+static void g726_init_state(struct g726_state *state_ptr)
+{
+ int cnta;
+
+ state_ptr->yl = 34816;
+ state_ptr->yu = 544;
+ state_ptr->dms = 0;
+ state_ptr->dml = 0;
+ state_ptr->ap = 0;
+ for (cnta = 0; cnta < 2; cnta++) {
+ state_ptr->a[cnta] = 0;
+ state_ptr->pk[cnta] = 0;
+ state_ptr->sr[cnta] = 32;
+ }
+ for (cnta = 0; cnta < 6; cnta++) {
+ state_ptr->b[cnta] = 0;
+ state_ptr->dq[cnta] = 32;
+ }
+ state_ptr->td = 0;
+}
+
+/*
+ * predictor_zero()
+ *
+ * computes the estimated signal from 6-zero predictor.
+ *
+ */
+static int predictor_zero(struct g726_state *state_ptr)
+{
+ int i;
+ int sezi;
+
+ sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
+ for (i = 1; i < 6; i++) /* ACCUM */
+ sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
+ return (sezi);
+}
+/*
+ * predictor_pole()
+ *
+ * computes the estimated signal from 2-pole predictor.
+ *
+ */
+static int predictor_pole(struct g726_state *state_ptr)
+{
+ return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
+ fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
+}
+
+/*
+ * step_size()
+ *
+ * computes the quantization step size of the adaptive quantizer.
+ *
+ */
+static int step_size(struct g726_state *state_ptr)
+{
+ int y;
+ int dif;
+ int al;
+
+ if (state_ptr->ap >= 256)
+ return (state_ptr->yu);
+ else {
+ y = state_ptr->yl >> 6;
+ dif = state_ptr->yu - y;
+ al = state_ptr->ap >> 2;
+ if (dif > 0)
+ y += (dif * al) >> 6;
+ else if (dif < 0)
+ y += (dif * al + 0x3F) >> 6;
+ return (y);
+ }
+}
+
+/*
+ * quantize()
+ *
+ * Given a raw sample, 'd', of the difference signal and a
+ * quantization step size scale factor, 'y', this routine returns the
+ * ADPCM codeword to which that sample gets quantized. The step
+ * size scale factor division operation is done in the log base 2 domain
+ * as a subtraction.
+ */
+static int quantize(
+ int d, /* Raw difference signal sample */
+ int y, /* Step size multiplier */
+ short *table, /* quantization table */
+ int size) /* table size of short integers */
+{
+ short dqm; /* Magnitude of 'd' */
+ short exp; /* Integer part of base 2 log of 'd' */
+ short mant; /* Fractional part of base 2 log */
+ short dl; /* Log of magnitude of 'd' */
+ short dln; /* Step size scale factor normalized log */
+ int i;
+
+ /*
+ * LOG
+ *
+ * Compute base 2 log of 'd', and store in 'dl'.
+ */
+ dqm = abs(d);
+ exp = quan(dqm >> 1, power2, 15);
+ mant = ((dqm << 7) >> exp) & 0x7F; /* Fractional portion. */
+ dl = (exp << 7) + mant;
+
+ /*
+ * SUBTB
+ *
+ * "Divide" by step size multiplier.
+ */
+ dln = dl - (y >> 2);
+
+ /*
+ * QUAN
+ *
+ * Obtain codword i for 'd'.
+ */
+ i = quan(dln, table, size);
+ if (d < 0) /* take 1's complement of i */
+ return ((size << 1) + 1 - i);
+ else if (i == 0) /* take 1's complement of 0 */
+ return ((size << 1) + 1); /* new in 1988 */
+ else
+ return (i);
+}
+
+/*
+ * reconstruct()
+ *
+ * Returns reconstructed difference signal 'dq' obtained from
+ * codeword 'i' and quantization step size scale factor 'y'.
+ * Multiplication is performed in log base 2 domain as addition.
+ */
+static int reconstruct(
+ int sign, /* 0 for non-negative value */
+ int dqln, /* G.72x codeword */
+ int y) /* Step size multiplier */
+{
+ short dql; /* Log of 'dq' magnitude */
+ short dex; /* Integer part of log */
+ short dqt;
+ short dq; /* Reconstructed difference signal sample */
+
+ dql = dqln + (y >> 2); /* ADDA */
+
+ if (dql < 0) {
+ return ((sign) ? -0x8000 : 0);
+ } else { /* ANTILOG */
+ dex = (dql >> 7) & 15;
+ dqt = 128 + (dql & 127);
+ dq = (dqt << 7) >> (14 - dex);
+ return ((sign) ? (dq - 0x8000) : dq);
+ }
+}
+
+/*
+ * update()
+ *
+ * updates the state variables for each output code
+ */
+static void update(
+ int code_size, /* distinguish 723_40 with others */
+ int y, /* quantizer step size */
+ int wi, /* scale factor multiplier */
+ int fi, /* for long/short term energies */
+ int dq, /* quantized prediction difference */
+ int sr, /* reconstructed signal */
+ int dqsez, /* difference from 2-pole predictor */
+ struct g726_state *state_ptr) /* coder state pointer */
+{
+ int cnt;
+ short mag, exp; /* Adaptive predictor, FLOAT A */
+ short a2p=0; /* LIMC */
+ short a1ul; /* UPA1 */
+ short pks1; /* UPA2 */
+ short fa1;
+ char tr; /* tone/transition detector */
+ short ylint, thr2, dqthr;
+ short ylfrac, thr1;
+ short pk0;
+
+ pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */
+
+ mag = dq & 0x7FFF; /* prediction difference magnitude */
+ /* TRANS */
+ ylint = state_ptr->yl >> 15; /* exponent part of yl */
+ ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */
+ thr1 = (32 + ylfrac) << ylint; /* threshold */
+ thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */
+ dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */
+ if (state_ptr->td == 0) /* signal supposed voice */
+ tr = 0;
+ else if (mag <= dqthr) /* supposed data, but small mag */
+ tr = 0; /* treated as voice */
+ else /* signal is data (modem) */
+ tr = 1;
+
+ /*
+ * Quantizer scale factor adaptation.
+ */
+
+ /* FUNCTW & FILTD & DELAY */
+ /* update non-steady state step size multiplier */
+ state_ptr->yu = y + ((wi - y) >> 5);
+
+ /* LIMB */
+ if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */
+ state_ptr->yu = 544;
+ else if (state_ptr->yu > 5120)
+ state_ptr->yu = 5120;
+
+ /* FILTE & DELAY */
+ /* update steady state step size multiplier */
+ state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
+
+ /*
+ * Adaptive predictor coefficients.
+ */
+ if (tr == 1) { /* reset a's and b's for modem signal */
+ state_ptr->a[0] = 0;
+ state_ptr->a[1] = 0;
+ state_ptr->b[0] = 0;
+ state_ptr->b[1] = 0;
+ state_ptr->b[2] = 0;
+ state_ptr->b[3] = 0;
+ state_ptr->b[4] = 0;
+ state_ptr->b[5] = 0;
+ } else { /* update a's and b's */
+ pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */
+
+ /* update predictor pole a[1] */
+ a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
+ if (dqsez != 0) {
+ fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
+ if (fa1 < -8191) /* a2p = function of fa1 */
+ a2p -= 0x100;
+ else if (fa1 > 8191)
+ a2p += 0xFF;
+ else
+ a2p += fa1 >> 5;
+
+ if (pk0 ^ state_ptr->pk[1])
+ /* LIMC */
+ if (a2p <= -12160)
+ a2p = -12288;
+ else if (a2p >= 12416)
+ a2p = 12288;
+ else
+ a2p -= 0x80;
+ else if (a2p <= -12416)
+ a2p = -12288;
+ else if (a2p >= 12160)
+ a2p = 12288;
+ else
+ a2p += 0x80;
+ }
+
+ /* TRIGB & DELAY */
+ state_ptr->a[1] = a2p;
+
+ /* UPA1 */
+ /* update predictor pole a[0] */
+ state_ptr->a[0] -= state_ptr->a[0] >> 8;
+ if (dqsez != 0) {
+ if (pks1 == 0)
+ state_ptr->a[0] += 192;
+ else
+ state_ptr->a[0] -= 192;
+ }
+ /* LIMD */
+ a1ul = 15360 - a2p;
+ if (state_ptr->a[0] < -a1ul)
+ state_ptr->a[0] = -a1ul;
+ else if (state_ptr->a[0] > a1ul)
+ state_ptr->a[0] = a1ul;
+
+ /* UPB : update predictor zeros b[6] */
+ for (cnt = 0; cnt < 6; cnt++) {
+ if (code_size == 5) /* for 40Kbps G.723 */
+ state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
+ else /* for G.721 and 24Kbps G.723 */
+ state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
+ if (dq & 0x7FFF) { /* XOR */
+ if ((dq ^ state_ptr->dq[cnt]) >= 0)
+ state_ptr->b[cnt] += 128;
+ else
+ state_ptr->b[cnt] -= 128;
+ }
+ }
+ }
+
+ for (cnt = 5; cnt > 0; cnt--)
+ state_ptr->dq[cnt] = state_ptr->dq[cnt-1];
+ /* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
+ if (mag == 0) {
+ state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20;
+ } else {
+ exp = quan(mag, power2, 15);
+ state_ptr->dq[0] = (dq >= 0) ?
+ (exp << 6) + ((mag << 6) >> exp) :
+ (exp << 6) + ((mag << 6) >> exp) - 0x400;
+ }
+
+ state_ptr->sr[1] = state_ptr->sr[0];
+ /* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
+ if (sr == 0) {
+ state_ptr->sr[0] = 0x20;
+ } else if (sr > 0) {
+ exp = quan(sr, power2, 15);
+ state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
+ } else if (sr > -32768) {
+ mag = -sr;
+ exp = quan(mag, power2, 15);
+ state_ptr->sr[0] = (exp << 6) + ((mag << 6) >> exp) - 0x400;
+ } else
+ state_ptr->sr[0] = 0xFC20;
+
+ /* DELAY A */
+ state_ptr->pk[1] = state_ptr->pk[0];
+ state_ptr->pk[0] = pk0;
+
+ /* TONE */
+ if (tr == 1) /* this sample has been treated as data */
+ state_ptr->td = 0; /* next one will be treated as voice */
+ else if (a2p < -11776) /* small sample-to-sample correlation */
+ state_ptr->td = 1; /* signal may be data */
+ else /* signal is voice */
+ state_ptr->td = 0;
+
+ /*
+ * Adaptation speed control.
+ */
+ state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */
+ state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */
+
+ if (tr == 1)
+ state_ptr->ap = 256;
+ else if (y < 1536) /* SUBTC */
+ state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
+ else if (state_ptr->td == 1)
+ state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
+ else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
+ (state_ptr->dml >> 3))
+ state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
+ else
+ state_ptr->ap += (-state_ptr->ap) >> 4;
+}
+
+/*
+ * g726_decode()
+ *
+ * Description:
+ *
+ * Decodes a 4-bit code of G.726-32 encoded data of i and
+ * returns the resulting linear PCM, A-law or u-law value.
+ * return -1 for unknown out_coding value.
+ */
+static int g726_decode(int i, struct g726_state *state_ptr)
+{
+ short sezi, sei, sez, se; /* ACCUM */
+ short y; /* MIX */
+ short sr; /* ADDB */
+ short dq;
+ short dqsez;
+
+ i &= 0x0f; /* mask to get proper bits */
+ sezi = predictor_zero(state_ptr);
+ sez = sezi >> 1;
+ sei = sezi + predictor_pole(state_ptr);
+ se = sei >> 1; /* se = estimated signal */
+
+ y = step_size(state_ptr); /* dynamic quantizer step size */
+
+ dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */
+
+ sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq; /* reconst. signal */
+
+ dqsez = sr - se + sez; /* pole prediction diff. */
+
+ update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
+
+ return (sr << 2); /* sr was 14-bit dynamic range */
+}
+/*
+ * g726_encode()
+ *
+ * Encodes the input vale of linear PCM, A-law or u-law data sl and returns
+ * the resulting code. -1 is returned for unknown input coding value.
+ */
+static int g726_encode(int sl, struct g726_state *state_ptr)
+{
+ short sezi, se, sez; /* ACCUM */
+ short d; /* SUBTA */
+ short sr; /* ADDB */
+ short y; /* MIX */
+ short dqsez; /* ADDC */
+ short dq, i;
+
+ sl >>= 2; /* 14-bit dynamic range */
+
+ sezi = predictor_zero(state_ptr);
+ sez = sezi >> 1;
+ se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
+
+ d = sl - se; /* estimation difference */
+
+ /* quantize the prediction difference */
+ y = step_size(state_ptr); /* quantizer step size */
+ i = quantize(d, y, qtab_721, 7); /* i = G726 code */
+
+ dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */
+
+ sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
+
+ dqsez = sr + sez - se; /* pole prediction diff. */
+
+ update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
+
+ return (i);
+}
+
+/*
+ * Private workspace for translating signed linear signals to G726.
+ */
+
+struct g726_encoder_pvt
+{
+ struct ast_frame f;
+ char offset[AST_FRIENDLY_OFFSET]; /* Space to build offset */
+ unsigned char outbuf[BUFFER_SIZE]; /* Encoded G726, two nibbles to a word */
+ unsigned char next_flag;
+ struct g726_state g726;
+ int tail;
+};
+
+/*
+ * Private workspace for translating G726 signals to signed linear.
+ */
+
+struct g726_decoder_pvt
+{
+ struct ast_frame f;
+ char offset[AST_FRIENDLY_OFFSET]; /* Space to build offset */
+ short outbuf[BUFFER_SIZE]; /* Decoded signed linear values */
+ struct g726_state g726;
+ int tail;
+};
+
+/*
+ * G726ToLin_New
+ * Create a new instance of g726_decoder_pvt.
+ *
+ * Results:
+ * Returns a pointer to the new instance.
+ *
+ * Side effects:
+ * None.
+ */
+
+static struct ast_translator_pvt *
+g726tolin_new (void)
+{
+ struct g726_decoder_pvt *tmp;
+ tmp = malloc (sizeof (struct g726_decoder_pvt));
+ if (tmp)
+ {
+ memset(tmp, 0, sizeof(*tmp));
+ tmp->tail = 0;
+ localusecnt++;
+ g726_init_state(&tmp->g726);
+ ast_update_use_count ();
+ }
+ return (struct ast_translator_pvt *) tmp;
+}
+
+/*
+ * LinToG726_New
+ * Create a new instance of g726_encoder_pvt.
+ *
+ * Results:
+ * Returns a pointer to the new instance.
+ *
+ * Side effects:
+ * None.
+ */
+
+static struct ast_translator_pvt *
+lintog726_new (void)
+{
+ struct g726_encoder_pvt *tmp;
+ tmp = malloc (sizeof (struct g726_encoder_pvt));
+ if (tmp)
+ {
+ memset(tmp, 0, sizeof(*tmp));
+ localusecnt++;
+ tmp->tail = 0;
+ g726_init_state(&tmp->g726);
+ ast_update_use_count ();
+ }
+ return (struct ast_translator_pvt *) tmp;
+}
+
+/*
+ * G726ToLin_FrameIn
+ * Fill an input buffer with packed 4-bit G726 values if there is room
+ * left.
+ *
+ * Results:
+ * Foo
+ *
+ * Side effects:
+ * tmp->tail is the number of packed values in the buffer.
+ */
+
+static int
+g726tolin_framein (struct ast_translator_pvt *pvt, struct ast_frame *f)
+{
+ struct g726_decoder_pvt *tmp = (struct g726_decoder_pvt *) pvt;
+ unsigned char *b;
+ int x;
+
+ b = f->data;
+ for (x=0;x<f->datalen;x++) {
+ if (tmp->tail >= BUFFER_SIZE) {
+ ast_log(LOG_WARNING, "Out of buffer space!\n");
+ return -1;
+ }
+ tmp->outbuf[tmp->tail++] = g726_decode((b[x] >> 4) & 0xf, &tmp->g726);
+ if (tmp->tail >= BUFFER_SIZE) {
+ ast_log(LOG_WARNING, "Out of buffer space!\n");
+ return -1;
+ }
+ tmp->outbuf[tmp->tail++] = g726_decode(b[x] & 0x0f, &tmp->g726);
+ }
+
+ return 0;
+}
+
+/*
+ * G726ToLin_FrameOut
+ * Convert 4-bit G726 encoded signals to 16-bit signed linear.
+ *
+ * Results:
+ * Converted signals are placed in tmp->f.data, tmp->f.datalen
+ * and tmp->f.samples are calculated.
+ *
+ * Side effects:
+ * None.
+ */
+
+static struct ast_frame *
+g726tolin_frameout (struct ast_translator_pvt *pvt)
+{
+ struct g726_decoder_pvt *tmp = (struct g726_decoder_pvt *) pvt;
+
+ if (!tmp->tail)
+ return NULL;
+
+ tmp->f.frametype = AST_FRAME_VOICE;
+ tmp->f.subclass = AST_FORMAT_SLINEAR;
+ tmp->f.datalen = tmp->tail * 2;
+ tmp->f.samples = tmp->tail;
+ tmp->f.mallocd = 0;
+ tmp->f.offset = AST_FRIENDLY_OFFSET;
+ tmp->f.src = __PRETTY_FUNCTION__;
+ tmp->f.data = tmp->outbuf;
+ tmp->tail = 0;
+ return &tmp->f;
+}
+
+/*
+ * LinToG726_FrameIn
+ * Fill an input buffer with 16-bit signed linear PCM values.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * tmp->tail is number of signal values in the input buffer.
+ */
+
+static int
+lintog726_framein (struct ast_translator_pvt *pvt, struct ast_frame *f)
+{
+ struct g726_encoder_pvt *tmp = (struct g726_encoder_pvt *) pvt;
+ short *s = f->data;
+ int samples = f->datalen / 2;
+ int x;
+ for (x=0;x<samples;x++) {
+ if (tmp->next_flag & 0x80) {
+ if (tmp->tail >= BUFFER_SIZE) {
+ ast_log(LOG_WARNING, "Out of buffer space\n");
+ return -1;
+ }
+ tmp->outbuf[tmp->tail++] = ((tmp->next_flag & 0xf)<< 4) | g726_encode(s[x], &tmp->g726);
+ tmp->next_flag = 0;
+ } else {
+ tmp->next_flag = 0x80 | g726_encode(s[x], &tmp->g726);
+ }
+ }
+ return 0;
+}
+
+/*
+ * LinToG726_FrameOut
+ * Convert a buffer of raw 16-bit signed linear PCM to a buffer
+ * of 4-bit G726 packed two to a byte (Big Endian).
+ *
+ * Results:
+ * Foo
+ *
+ * Side effects:
+ * Leftover inbuf data gets packed, tail gets updated.
+ */
+
+static struct ast_frame *
+lintog726_frameout (struct ast_translator_pvt *pvt)
+{
+ struct g726_encoder_pvt *tmp = (struct g726_encoder_pvt *) pvt;
+
+ if (!tmp->tail)
+ return NULL;
+ tmp->f.frametype = AST_FRAME_VOICE;
+ tmp->f.subclass = AST_FORMAT_G726;
+ tmp->f.samples = tmp->tail * 2;
+ tmp->f.mallocd = 0;
+ tmp->f.offset = AST_FRIENDLY_OFFSET;
+ tmp->f.src = __PRETTY_FUNCTION__;
+ tmp->f.data = tmp->outbuf;
+ tmp->f.datalen = tmp->tail;
+
+ tmp->tail = 0;
+ return &tmp->f;
+}
+
+
+/*
+ * G726ToLin_Sample
+ */
+
+static struct ast_frame *
+g726tolin_sample (void)
+{
+ static struct ast_frame f;
+ f.frametype = AST_FRAME_VOICE;
+ f.subclass = AST_FORMAT_G726;
+ f.datalen = sizeof (g726_slin_ex);
+ f.samples = sizeof(g726_slin_ex) * 2;
+ f.mallocd = 0;
+ f.offset = 0;
+ f.src = __PRETTY_FUNCTION__;
+ f.data = g726_slin_ex;
+ return &f;
+}
+
+/*
+ * LinToG726_Sample
+ */
+
+static struct ast_frame *
+lintog726_sample (void)
+{
+ static struct ast_frame f;
+ f.frametype = AST_FRAME_VOICE;
+ f.subclass = AST_FORMAT_SLINEAR;
+ f.datalen = sizeof (slin_g726_ex);
+ /* Assume 8000 Hz */
+ f.samples = sizeof (slin_g726_ex) / 2;
+ f.mallocd = 0;
+ f.offset = 0;
+ f.src = __PRETTY_FUNCTION__;
+ f.data = slin_g726_ex;
+ return &f;
+}
+
+/*
+ * G726_Destroy
+ * Destroys a private workspace.
+ *
+ * Results:
+ * It's gone!
+ *
+ * Side effects:
+ * None.
+ */
+
+static void
+g726_destroy (struct ast_translator_pvt *pvt)
+{
+ free (pvt);
+ localusecnt--;
+ ast_update_use_count ();
+}
+
+/*
+ * The complete translator for G726ToLin.
+ */
+
+static struct ast_translator g726tolin = {
+ "g726tolin",
+ AST_FORMAT_G726,
+ AST_FORMAT_SLINEAR,
+ g726tolin_new,
+ g726tolin_framein,
+ g726tolin_frameout,
+ g726_destroy,
+ /* NULL */
+ g726tolin_sample
+};
+
+/*
+ * The complete translator for LinToG726.
+ */
+
+static struct ast_translator lintog726 = {
+ "lintog726",
+ AST_FORMAT_SLINEAR,
+ AST_FORMAT_G726,
+ lintog726_new,
+ lintog726_framein,
+ lintog726_frameout,
+ g726_destroy,
+ /* NULL */
+ lintog726_sample
+};
+
+int
+unload_module (void)
+{
+ int res;
+ ast_mutex_lock (&localuser_lock);
+ res = ast_unregister_translator (&lintog726);
+ if (!res)
+ res = ast_unregister_translator (&g726tolin);
+ if (localusecnt)
+ res = -1;
+ ast_mutex_unlock (&localuser_lock);
+ return res;
+}
+
+int
+load_module (void)
+{
+ int res;
+ res = ast_register_translator (&g726tolin);
+ if (!res)
+ res = ast_register_translator (&lintog726);
+ else
+ ast_unregister_translator (&g726tolin);
+ return res;
+}
+
+/*
+ * Return a description of this module.
+ */
+
+char *
+description (void)
+{
+ return tdesc;
+}
+
+int
+usecount (void)
+{
+ int res;
+ STANDARD_USECOUNT (res);
+ return res;
+}
+
+char *
+key ()
+{
+ return ASTERISK_GPL_KEY;
+}
diff --git a/codecs/g726_slin_ex.h b/codecs/g726_slin_ex.h
new file mode 100755
index 000000000..b5bff5f80
--- /dev/null
+++ b/codecs/g726_slin_ex.h
@@ -0,0 +1,25 @@
+/*
+ * adpcm_slin_ex.h --
+ *
+ * 4-bit G.726 data, 20 milliseconds worth at 8 kHz.
+ *
+ * Source: g726.example
+ *
+ * Copyright (C) 2001, Linux Support Services, Inc.
+ *
+ * Distributed under the terms of the GNU General Public License
+ *
+ */
+
+static unsigned char g726_slin_ex[] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
+};
diff --git a/codecs/slin_g726_ex.h b/codecs/slin_g726_ex.h
new file mode 100755
index 000000000..efd516a11
--- /dev/null
+++ b/codecs/slin_g726_ex.h
@@ -0,0 +1,25 @@
+/*
+ * slin_adpcm_ex.h --
+ *
+ * Signed 16-bit audio data, 10 milliseconds worth at 8 kHz.
+ *
+ * Source: g726.example
+ *
+ * Copyright (C) 2001, Linux Support Services, Inc.
+ *
+ * Distributed under the terms of the GNU General Public License
+ *
+ */
+
+static signed short slin_g726_ex[] = {
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000
+};