/*- * Copyright (c) 2003, 2004 Lev Walkin . All rights reserved. * Redistribution and modifications are permitted subject to BSD license. */ #include #include /* * Number of bytes left for this structure. * (ctx->left) indicates the number of bytes _transferred_ for the structure. * (size) contains the number of bytes in the buffer passed. */ #define LEFT ((size<(size_t)ctx->left)?size:ctx->left) /* * If the subprocessor function returns with an indication that it wants * more data, it may well be a fatal decoding problem, because the * size is constrained by the 's L, even if the buffer size allows * reading more data. * For example, consider the buffer containing the following TLVs: * ... * The TLV length clearly indicates that one byte is expected in V, but * if the V processor returns with "want more data" even if the buffer * contains way more data than the V processor have seen. */ #define SIZE_VIOLATION (ctx->left != -1 && (size_t)ctx->left <= size) /* * This macro "eats" the part of the buffer which is definitely "consumed", * i.e. was correctly converted into local representation or rightfully skipped. */ #define ADVANCE(num_bytes) do { \ size_t num = num_bytes; \ (char *)ptr += num; \ size -= num; \ if(ctx->left >= 0) \ ctx->left -= num; \ consumed_myself += num; \ } while(0) /* * Switch to the next phase of parsing. */ #define NEXT_PHASE(ctx) do { \ ctx->phase++; \ ctx->step = 0; \ } while(0) #define PHASE_OUT(ctx) do { ctx->phase = 10; } while(0) /* * Return a standardized complex structure. */ #define RETURN(_code) do { \ rval.code = _code; \ rval.consumed = consumed_myself;\ return rval; \ } while(0) /* * The decoder of the SET OF type. */ ber_dec_rval_t SET_OF_decode_ber(asn1_TYPE_descriptor_t *sd, void **struct_ptr, void *ptr, size_t size, int tag_mode) { /* * Bring closer parts of structure description. */ asn1_SET_OF_specifics_t *specs = (asn1_SET_OF_specifics_t *)sd->specifics; asn1_SET_OF_element_t *element = specs->element; /* * Parts of the structure being constructed. */ void *st = *struct_ptr; /* Target structure. */ ber_dec_ctx_t *ctx; /* Decoder context */ ber_tlv_tag_t tlv_tag; /* T from TLV */ //ber_tlv_len_t tlv_len; /* L from TLV */ ber_dec_rval_t rval; /* Return code from subparsers */ ssize_t consumed_myself = 0; /* Consumed bytes from ptr */ ASN_DEBUG("Decoding %s as SET OF", sd->name); /* * Create the target structure if it is not present already. */ if(st == 0) { st = *struct_ptr = CALLOC(1, specs->struct_size); if(st == 0) { RETURN(RC_FAIL); } } /* * Restore parsing context. */ ctx = (ber_dec_ctx_t *)((char *)st + specs->ctx_offset); /* * Start to parse where left previously */ switch(ctx->phase) { case 0: /* * PHASE 0. * Check that the set of tags associated with given structure * perfectly fits our expectations. */ rval = ber_check_tags(sd, ctx, ptr, size, tag_mode, &ctx->left, 0); if(rval.code != RC_OK) { ASN_DEBUG("%s tagging check failed: %d", sd->name, rval.code); consumed_myself += rval.consumed; RETURN(rval.code); } if(ctx->left >= 0) ctx->left += rval.consumed; /* ?Substracted below! */ ADVANCE(rval.consumed); ASN_DEBUG("Structure consumes %ld bytes, " "buffer %ld", (long)ctx->left, (long)size); NEXT_PHASE(ctx); /* Fall through */ case 1: /* * PHASE 1. * From the place where we've left it previously, * try to decode the next item. */ for(;; ctx->step = 0) { ssize_t tag_len; /* Length of TLV's T */ if(ctx->step & 1) goto microphase2; /* * MICROPHASE 1: Synchronize decoding. */ if(ctx->left == 0) { ASN_DEBUG("End of SET OF %s", sd->name); /* * No more things to decode. * Exit out of here. */ PHASE_OUT(ctx); RETURN(RC_OK); } /* * Fetch the T from TLV. */ tag_len = ber_fetch_tag(ptr, LEFT, &tlv_tag); switch(tag_len) { case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE); /* Fall through */ case -1: RETURN(RC_FAIL); } if(ctx->left < 0 && ((uint8_t *)ptr)[0] == 0) { if(LEFT < 2) { if(SIZE_VIOLATION) RETURN(RC_FAIL); else RETURN(RC_WMORE); } else if(((uint8_t *)ptr)[1] == 0) { /* * Found the terminator of the * indefinite length structure. */ break; } } /* Outmost tag may be unknown and cannot be fetched/compared */ if(element->tag != (ber_tlv_tag_t)-1) { if(BER_TAGS_EQUAL(tlv_tag, element->tag)) { /* * The new list member of expected type has arrived. */ } else { ASN_DEBUG("Unexpected tag %s fixed SET OF %s", ber_tlv_tag_string(tlv_tag), sd->name); ASN_DEBUG("%s SET OF has tag %s", sd->name, ber_tlv_tag_string(element->tag)); RETURN(RC_FAIL); } } /* * MICROPHASE 2: Invoke the member-specific decoder. */ ctx->step |= 1; /* Confirm entering next microphase */ microphase2: /* * Invoke the member fetch routine according to member's type */ rval = element->type->ber_decoder(element->type, &ctx->ptr, ptr, LEFT, 0); ASN_DEBUG("In %s SET OF %s code %d consumed %d", sd->name, element->type->name, rval.code, (int)rval.consumed); switch(rval.code) { case RC_OK: { A_SET_OF(void) *list; (void *)list = st; if(ASN_SET_ADD(list, ctx->ptr) != 0) RETURN(RC_FAIL); else ctx->ptr = 0; } break; case RC_WMORE: /* More data expected */ if(!SIZE_VIOLATION) { ADVANCE(rval.consumed); RETURN(RC_WMORE); } /* Fall through */ case RC_FAIL: /* Fatal error */ RETURN(RC_FAIL); } /* switch(rval) */ ADVANCE(rval.consumed); } /* for(all list members) */ NEXT_PHASE(ctx); case 2: /* * Read in all "end of content" TLVs. */ while(ctx->left < 0) { if(LEFT < 2) { if(LEFT > 0 && ((char *)ptr)[0] != 0) { /* Unexpected tag */ RETURN(RC_FAIL); } else { RETURN(RC_WMORE); } } if(((char *)ptr)[0] == 0 && ((char *)ptr)[1] == 0) { ADVANCE(2); ctx->left++; } else { RETURN(RC_FAIL); } } PHASE_OUT(ctx); } RETURN(RC_OK); } /* * Internally visible buffer holding a single encoded element. */ struct _el_buffer { uint8_t *buf; size_t length; size_t size; }; /* Append bytes to the above structure */ static int _el_addbytes(const void *buffer, size_t size, void *el_buf_ptr) { struct _el_buffer *el_buf = (struct _el_buffer *)el_buf_ptr; if(el_buf->length + size > el_buf->size) return -1; memcpy(el_buf->buf + el_buf->length, buffer, size); el_buf->length += size; return 0; } static int _el_buf_cmp(const void *ap, const void *bp) { const struct _el_buffer *a = (const struct _el_buffer *)ap; const struct _el_buffer *b = (const struct _el_buffer *)bp; int ret; size_t common_len; if(a->length < b->length) common_len = a->length; else common_len = b->length; ret = memcmp(a->buf, b->buf, common_len); if(ret == 0) { if(a->length < b->length) ret = -1; else if(a->length > b->length) ret = 1; } return ret; } /* * The DER encoder of the SET OF type. */ der_enc_rval_t SET_OF_encode_der(asn1_TYPE_descriptor_t *sd, void *ptr, int tag_mode, ber_tlv_tag_t tag, asn_app_consume_bytes_f *cb, void *app_key) { asn1_SET_OF_specifics_t *specs = (asn1_SET_OF_specifics_t *)sd->specifics; asn1_SET_OF_element_t *elm = specs->element; asn1_TYPE_descriptor_t *elm_type = elm->type; der_type_encoder_f *der_encoder = elm_type->der_encoder; A_SET_OF(void) *list; size_t computed_size = 0; ssize_t encoding_size = 0; struct _el_buffer *encoded_els; size_t max_encoded_len = 1; der_enc_rval_t erval; int ret; int edx; ASN_DEBUG("Estimating size for SET OF %s", sd->name); /* * Gather the length of the underlying members sequence. */ (void *)list = ptr; for(edx = 0; edx < list->count; edx++) { void *memb_ptr = list->array[edx]; erval = der_encoder(elm_type, memb_ptr, 0, elm->tag, 0, 0); if(erval.encoded == -1) return erval; computed_size += erval.encoded; /* Compute maximum encoding's size */ if(max_encoded_len < (size_t)erval.encoded) max_encoded_len = erval.encoded; } /* * Encode the TLV for the sequence itself. */ encoding_size = der_write_tags(sd, computed_size, tag_mode, tag, cb, app_key); if(encoding_size == -1) { erval.encoded = -1; erval.failed_type = sd; erval.structure_ptr = ptr; return erval; } computed_size += encoding_size; if(!cb) { erval.encoded = computed_size; return erval; } /* * DER mandates dynamic sorting of the SET OF elements * according to their encodings. Build an array of the * encoded elements. */ (void *)encoded_els = MALLOC(list->count * sizeof(encoded_els[0])); if(encoded_els == NULL) { erval.encoded = -1; erval.failed_type = sd; erval.structure_ptr = ptr; return erval; } ASN_DEBUG("Encoding members of %s SET OF", sd->name); /* * Encode all members. */ for(edx = 0; edx < list->count; edx++) { void *memb_ptr = list->array[edx]; struct _el_buffer *encoded_el = &encoded_els[edx]; /* * Prepare space for encoding. */ encoded_el->buf = (uint8_t *)MALLOC(max_encoded_len); if(encoded_el->buf) { encoded_el->length = 0; encoded_el->size = max_encoded_len; } else { for(edx--; edx >= 0; edx--) FREEMEM(encoded_els[edx].buf); FREEMEM(encoded_els); erval.encoded = -1; erval.failed_type = sd; erval.structure_ptr = ptr; return erval; } /* * Encode the member into the prepared space. */ erval = der_encoder(elm_type, memb_ptr, 0, elm->tag, _el_addbytes, encoded_el); if(erval.encoded == -1) { for(; edx >= 0; edx--) FREEMEM(encoded_els[edx].buf); FREEMEM(encoded_els); return erval; } encoding_size += erval.encoded; } /* * Sort the encoded elements according to their encoding. */ qsort(encoded_els, list->count, sizeof(encoded_els[0]), _el_buf_cmp); /* * Report encoded elements to the application. * Dispose of temporary sorted members table. */ ret = 0; for(edx = 0; edx < list->count; edx++) { struct _el_buffer *encoded_el = &encoded_els[edx]; /* Report encoded chunks to the application */ if(ret == 0 && cb(encoded_el->buf, encoded_el->length, app_key) == -1) ret = -1; FREEMEM(encoded_el->buf); } FREEMEM(encoded_els); if(ret || computed_size != (size_t)encoding_size) { /* * Standard callback failed, or * encoded size is not equal to the computed size. */ erval.encoded = -1; erval.failed_type = sd; erval.structure_ptr = ptr; } else { erval.encoded = computed_size; } return erval; } int SET_OF_print(asn1_TYPE_descriptor_t *td, const void *sptr, int ilevel, asn_app_consume_bytes_f *cb, void *app_key) { asn1_SET_OF_specifics_t *specs = (asn1_SET_OF_specifics_t *)td->specifics; asn1_SET_OF_element_t *element = specs->element; const A_SET_OF(void) *list; int ret; int i; if(!sptr) return cb("", 8, app_key); /* Dump preamble */ if(cb(td->name, strlen(td->name), app_key) || cb(" ::= {\n", 7, app_key)) return -1; (const void *)list = sptr; for(i = 0; i < list->count; i++) { const void *memb_ptr = list->array[i]; if(!memb_ptr) continue; /* Indentation */ for(ret = 0; ret < ilevel; ret++) cb(" ", 1, app_key); ret = element->type->print_struct(element->type, memb_ptr, ilevel + 4, cb, app_key); if(ret) return ret; ret = cb("\n", 1, app_key); if(ret) return ret; } /* Indentation */ for(ret = 0; ret < ilevel - 4; ret++) cb(" ", 1, app_key); return cb("}", 1, app_key); } void SET_OF_free(asn1_TYPE_descriptor_t *td, void *ptr, int contents_only) { if(td && ptr) { asn1_SET_OF_specifics_t *specs = (asn1_SET_OF_specifics_t *)td->specifics; asn1_SET_OF_element_t *element = specs->element; A_SET_OF(void) *list; int i; /* * Could not use set_of_empty() because of (*free) * incompatibility. */ (void *)list = ptr; for(i = 0; i < list->count; i++) { void *memb_ptr = list->array[i]; if(memb_ptr) element->type->free_struct(element->type, memb_ptr, 0); } list->count = 0; /* No meaningful elements left */ asn_set_empty(list); /* Remove (list->array) */ if(!contents_only) { FREEMEM(ptr); } } } int SET_OF_constraint(asn1_TYPE_descriptor_t *td, const void *sptr, asn_app_consume_bytes_f *app_errlog, void *app_key) { asn1_SET_OF_specifics_t *specs = (asn1_SET_OF_specifics_t *)td->specifics; asn1_SET_OF_element_t *element = specs->element; const A_SET_OF(void) *list; int i; if(!sptr) { _ASN_ERRLOG("%s: value not given", td->name); return -1; } (const void *)list = sptr; for(i = 0; i < list->count; i++) { const void *memb_ptr = list->array[i]; if(!memb_ptr) continue; return element->type->check_constraints(element->type, memb_ptr, app_errlog, app_key); } return 0; }