
Using the Open Source ASN.1 Compiler

Documentation for asn1c version 0.9.29

Lev Walkin <vlm@lionet.info>

November 14, 2017

mailto:vlm@lionet.info?Subject=asn1c

Contents

1 Quick start examples 4
1.1 A “Rectangle” converter and debugger . 4
1.2 A “Rectangle” Encoder . 5
1.3 A “Rectangle” Decoder . 7
1.4 Adding constraints to a “Rectangle” . 8

2 ASN.1 Compiler 10
2.1 The asn1c compiler tool . 10
2.2 Compiler output . 12
2.3 Command line options . 13

3 API reference 16
3.1 ASN_STRUCT_FREE() macro . 17
3.2 ASN_STRUCT_RESET() macro . 17
3.3 asn_check_constraints() . 18
3.4 asn_decode() . 19
3.5 asn_encode() . 21
3.6 asn_encode_to_buffer . 21
3.7 asn_encode_to_new_buffer . 21
3.8 asn_fprint() . 22
3.9 asn_random_fill() . 22
3.10 ber_decode() . 24
3.11 der_encode . 25
3.12 der_encode_to_buffer . 25
3.13 oer_decode() . 26
3.14 oer_encode . 27
3.15 oer_encode_to_buffer . 27

1

CONTENTS asn1c-0.9.29

3.16 uper_decode() . 28
3.17 uper_decode_complete() . 29
3.18 uper_encode . 30
3.19 uper_encode_to_buffer . 30
3.20 uper_encode_to_new_buffer . 30
3.21 xer_decode() . 31
3.22 xer_encode . 32
3.23 xer_fprint() . 32

4 API usage examples 34
4.1 Generic encoders and decoders . 34
4.2 Decoding BER . 35
4.3 Encoding DER . 38
4.4 Encoding XER . 39
4.5 Decoding XER . 40
4.6 Validating the target structure . 40
4.7 Printing the target structure . 41
4.8 Freeing the target structure . 41

5 Abstract Syntax Notation: ASN.1 43
5.1 Some of the ASN.1 Basic Types . 44

5.1.1 The BOOLEAN type . 44
5.1.2 The INTEGER type . 44
5.1.3 The ENUMERATED type . 45
5.1.4 The OCTET STRING type . 45
5.1.5 The OBJECT IDENTIFIER type . 45
5.1.6 The RELATIVE-OID type . 46

5.2 Some of the ASN.1 String Types . 46
5.2.1 The IA5String type . 46
5.2.2 The UTF8String type . 46
5.2.3 The NumericString type . 47
5.2.4 The PrintableString type . 47
5.2.5 The VisibleString type . 47

5.3 ASN.1 Constructed Types . 47
5.3.1 The SEQUENCE type . 47
5.3.2 The SET type . 48

2

http://lionet.info/asn1c

CONTENTS asn1c-0.9.29

5.3.3 The CHOICE type . 48
5.3.4 The SEQUENCE OF type . 48
5.3.5 The SET OF type . 48

3

http://lionet.info/asn1c

Chapter 1

Quick start examples

1.1 A “Rectangle” converter and debugger

One of the most common need is to create some sort of analysis tool for the existing ASN.1
data files. Let’s build a converter for existing Rectangle binary files between BER, OER, PER,
and XER (XML).

1. Create a file named rectangle.asn with the following contents:

RectangleModule DEFINITIONS ::= BEGIN

Rectangle ::= SEQUENCE {
height INTEGER,
width INTEGER

}

END

2. Compile it into the set of .c and .h files using asn1c compiler:

asn1c no gen example rectangle.asn

3. Create the converter and dumper:

make f Makefile.am.example

4. Done. The binary file converter is ready:

./converter example h

4

CHAPTER 1. QUICK START EXAMPLES asn1c-0.9.29

1.2 A “Rectangle” Encoder

This example will help you create a simple BER and XER encoder of a “Rectangle” type used
throughout this document.

1. Create a file named rectangle.asn with the following contents:

RectangleModule DEFINITIONS ::= BEGIN

Rectangle ::= SEQUENCE {
height INTEGER,
width INTEGER

}

END

2. Compile it into the set of .c and .h files using asn1c compiler [ASN1C]:

asn1c no gen example rectangle.asn

3. Alternatively, use the Online ASN.1 compiler [AONL] by uploading the rectangle.asn file
into the Web form and unpacking the produced archive on your computer.

4. By this time, you should have gotten multiple files in the current directory, including
the Rectangle.c and Rectangle.h.

5. Create a main() routine which creates the Rectangle_t structure in memory and encodes
it using BER and XER encoding rules. Let’s name the file main.c:
#include <stdio.h>
#include <sys/types.h>
#include <Rectangle.h> /* Rectangle ASN.1 type */

/* Write the encoded output into some FILE stream. */
static int write_out(const void *buffer, size_t size, void *app_key) {

FILE *out_fp = app_key;
size_t wrote = fwrite(buffer, 1, size, out_fp);
return (wrote == size) ? 0 : 1;

}

int main(int ac, char **av) {
Rectangle_t *rectangle; /* Type to encode */
asn_enc_rval_t ec; /* Encoder return value */

/* Allocate the Rectangle_t */
rectangle = calloc(1, sizeof(Rectangle_t)); /* not malloc! */

5

http://lionet.info/asn1c

CHAPTER 1. QUICK START EXAMPLES asn1c-0.9.29

if(!rectangle) {
perror(”calloc() failed”);
exit(1);

}

/* Initialize the Rectangle members */
rectangle >height = 42; /* any random value */
rectangle >width = 23; /* any random value */

/* BER encode the data if filename is given */
if(ac < 2) {

fprintf(stderr, ”Specify filename for BER output\n”);
} else {

const char *filename = av[1];
FILE *fp = fopen(filename, ”wb”); /* for BER output */

if(!fp) {
perror(filename);
exit(1);

}

/* Encode the Rectangle type as BER (DER) */
ec = der_encode(&asn_DEF_Rectangle, rectangle, write_out, fp);
fclose(fp);
if(ec.encoded == 1) {

fprintf(stderr, ”Could not encode Rectangle (at %s)\n”,
ec.failed_type ? ec.failed_type >name : ”unknown”);

exit(1);
} else {
fprintf(stderr, ”Created %s with BER encoded Rectangle\n”, filename);

}
}

/* Also print the constructed Rectangle XER encoded (XML) */
xer_fprint(stdout, &asn_DEF_Rectangle, rectangle);

return 0; /* Encoding finished successfully */
}

6. Compile all files together using C compiler (varies by platform):

cc I. o rencode *.c

7. Done. You have just created the BER and XER encoder of a Rectangle type, named
rencode!

6

http://lionet.info/asn1c

CHAPTER 1. QUICK START EXAMPLES asn1c-0.9.29

1.3 A “Rectangle” Decoder

This example will help you to create a simple BER decoder of a simple “Rectangle” type used
throughout this document.

1. Create a file named rectangle.asn with the following contents:

RectangleModule DEFINITIONS ::= BEGIN

Rectangle ::= SEQUENCE {
height INTEGER,
width INTEGER

}

END

2. Compile it into the set of .c and .h files using asn1c compiler [ASN1C]:

asn1c no gen example rectangle.asn

3. Alternatively, use the Online ASN.1 compiler [AONL] by uploading the rectangle.asn file
into the Web form and unpacking the produced archive on your computer.

4. By this time, you should have gotten multiple files in the current directory, including
the Rectangle.c and Rectangle.h.

5. Create a main() routine which takes the binary input file, decodes it as it were a BER-
encoded Rectangle type, and prints out the text (XML) representation of the Rectangle
type. Let’s name the file main.c:
#include <stdio.h>
#include <sys/types.h>
#include <Rectangle.h> /* Rectangle ASN.1 type */

int main(int ac, char **av) {
char buf[1024]; /* Temporary buffer */
asn_dec_rval_t rval; /* Decoder return value */
Rectangle_t *rectangle = 0; /* Type to decode. Note this 01! */

FILE *fp; /* Input file handler */
size_t size; /* Number of bytes read */
char *filename; /* Input file name */

/* Require a single filename argument */

1Forgetting to properly initialize the pointer to a destination structure is a major source of support requests.

7

http://lionet.info/asn1c

CHAPTER 1. QUICK START EXAMPLES asn1c-0.9.29

if(ac != 2) {
fprintf(stderr, ”Usage: %s <file.ber>\n”, av[0]);
exit(1);

} else {
filename = av[1];

}

/* Open input file as read only binary */
fp = fopen(filename, ”rb”);
if(!fp) {

perror(filename);
exit(1);

}

/* Read up to the buffer size */
size = fread(buf, 1, sizeof(buf), fp);
fclose(fp);
if(!size) {

fprintf(stderr, ”%s: Empty or broken\n”, filename);
exit(1);

}

/* Decode the input buffer as Rectangle type */
rval = ber_decode(0, &asn_DEF_Rectangle, (void **)&rectangle, buf, size);
if(rval.code != RC_OK) {

fprintf(stderr, ”%s: Broken Rectangle encoding at byte %ld\n”, filename,
(long)rval.consumed);

exit(1);
}

/* Print the decoded Rectangle type as XML */
xer_fprint(stdout, &asn_DEF_Rectangle, rectangle);

return 0; /* Decoding finished successfully */
}

6. Compile all files together using C compiler (varies by platform):

cc I. o rdecode *.c

7. Done. You have just created the BER decoder of a Rectangle type, named rdecode!

1.4 Adding constraints to a “Rectangle”

This example shows how to add basic constraints to the ASN.1 specification and how to invoke
the constraints validation code in your application.

1. Create a file named rectangle.asn with the following contents:

8

http://lionet.info/asn1c

CHAPTER 1. QUICK START EXAMPLES asn1c-0.9.29

RectangleModuleWithConstraints DEFINITIONS ::= BEGIN

Rectangle ::= SEQUENCE {
height INTEGER (0..100), Value range constraint
width INTEGER (0..MAX) Makes width non-negative

}

END

2. Compile the file according to procedures shown in section 1.3 on page 7.

3. Modify the Rectangle type processing routine (you can start with the main() routine
shown in the section 1.3 on page 7) by placing the following snippet of code before
encoding and/or after decoding the Rectangle type:
int ret; /* Return value */
char errbuf[128]; /* Buffer for error message */
size_t errlen = sizeof(errbuf); /* Size of the buffer */

/* ... here goes the Rectangle decoding code ... */

ret = asn_check_constraints(&asn_DEF_Rectangle, rectangle, errbuf, &errlen);
/* assert(errlen < sizeof(errbuf)); // you may rely on that */
if(ret) {

fprintf(stderr, ”Constraint validation failed: %s\n”, errbuf);
/* exit(...); // Replace with appropriate action */

}

/* ... here goes the Rectangle encoding code ... */

4. Compile the resulting C code as shown in the previous chapters.

5. Test the constraints checking code by assigning integer value 101 to the .heightmember
of the Rectangle structure, or a negative value to the .widthmember. The program will
fail with “Constraint validation failed” message.

6. Done.

9

http://lionet.info/asn1c

Chapter 2

ASN.1 Compiler

2.1 The asn1c compiler tool

The purpose of the ASN.1 compiler is to convert the specifications in ASN.1 notation into
some other language, such as C.

The compiler reads the specification and emits a series of target language structures (C
structs, unions, enums) describing the corresponding ASN.1 types. The compiler also creates
the code which allows automatic serialization and deserialization of these structures using
several standardized encoding rules (BER, DER, OER, PER, XER).

Let’s take the following ASN.1 example2:

RectangleModule DEFINITIONS ::= BEGIN

Rectangle ::= SEQUENCE {
height INTEGER, Height of the rectangle
width INTEGER Width of the rectangle

}

END

The asn1c compiler reads this ASN.1 definition and produce the following C type:

typedef struct Rectangle_s {
long height;
long width;

} Rectangle_t;

2Chapter 5 on page 43 provides a quick reference on the ASN.1 notation.

10

CHAPTER 2. ASN.1 COMPILER asn1c-0.9.29

The asn1c compiler also creates the code for converting this structure into platform-independent
wire representation and the decoder of such wire representation back into local, machine-
specific type. These encoders and decoders are also called serializers and deserializers, mar-
shallers and unmarshallers, or codecs.

Compiling ASN.1 modules into C codecs can be as simple as invoking asn1c: may be
used to compile the ASN.1 modules:

asn1c <modules.asn>

If several ASN.1 modules contain interdependencies, all of the files must be specified
altogether:

asn1c <module1.asn> <module2.asn> ...

The compiler -E and -EF options are used for testing the parser and the semantic fixer, re-
spectively. These options will instruct the compiler to dump out the parsed (and fixed, if -F
is involved) ASN.1 specification as it was understood by the compiler. It might be useful to
check whether a particular syntactic construct is properly supported by the compiler.

asn1c -EF <module-to-test.asn>

The -P option is used to dump the compiled output on the screen instead of creating a bunch
of .c and .h files on disk in the current directory. You would probably want to start with -P
option instead of creating a mess in your current directory. Another option, -R, asks compiler
to only generate the files which need to be generated, and supress linking in the numerous
support files.

Print the compiled output instead of creating multiple source files:

asn1c -P <module-to-compile-and-print.asn>

11

http://lionet.info/asn1c

CHAPTER 2. ASN.1 COMPILER asn1c-0.9.29

2.2 Compiler output

The asn1c compiler produces a number of files:

• A set of .c and .h files for each type defined in the ASN.1 specification. These files will
be named similarly to the ASN.1 types (Rectangle.c and Rectangle.h for the Rectangle-
Module ASN.1 module defined in the beginning of this document).

• A set of helper .c and .h files which contain the generic encoders, decoders and other
useful routines. Sometimes they are referred to by the term skeletons. There will be
quite a few of them, some of them are not even always necessary, but the overall amount
of code after compilation will be rather small anyway.

• AMakefile.am.libasncodecs file which explicitly lists all the generated files. This make-
file can be used on its own to build the just the codec library.

• A converter-example.c file containing the int main() function with a fully functioning
encoder and data format converter. It can convert a given PDU between BER, XER, OER
and PER. At some point you will want to replace this file with your own file containing
the int main() function.

• AMakefile.am.example filewhich binds togetherMakefile.am.libasncodecs and converter-
example.c to build a versatile converter and debugger for your data formats.

It is possible to compile everything with just a couple of instructions:

asn1c pdu=Rectangle *.asn
make f Makefile.am.example # If you use ‘make‘

or

asn1c *.asn
cc I. DPDU=Rectangle o rectangle.exe *.c # ... or like this

Refer to the chapter 1 on page 4 for a sample int main() function if you want some custom
logic and not satisfied with the supplied converter-example.c.

12

http://lionet.info/asn1c

CHAPTER 2. ASN.1 COMPILER asn1c-0.9.29

2.3 Command line options

The following table summarizes the asn1c command line options.

Stage Selection Options Description

-E Stop after the parsing stage and print the reconstructed ASN.1
specification code to the standard output.

-F Used together with -E, instructs the compiler to stop after
the ASN.1 syntax tree fixing stage and dump the reconstructed
ASN.1 specification to the standard output.

-P Dump the compiled output to the standard output instead of
creating the target language files on disk.

-R Restrict the compiler to generate only the ASN.1 tables, omit-
ting the usual support code.

-S <directory> Use the specified directory with ASN.1 skeleton files.

-X Generate the XML DTD for the specified ASN.1 modules.

Warning Options Description

-Werror Treat warnings as errors; abort if any warning is produced.

-Wdebug-parser Enable the parser debugging during the ASN.1 parsing stage.

-Wdebug-lexer Enable the lexer debugging during the ASN.1 parsing stage.

-Wdebug-fixer Enable the ASN.1 syntax tree fixer debugging during the fixing
stage.

-Wdebug-compiler Enable debugging during the actual compile time.

Language Options Description

-fbless-SIZE Allow SIZE() constraint for INTEGER, ENUMERATED, and other
types for which this constraint is normally prohibited by the
standard. This is a violation of an ASN.1 standard and compiler
may fail to produce the meaningful code.

13

http://lionet.info/asn1c

CHAPTER 2. ASN.1 COMPILER asn1c-0.9.29

-fcompound-names Use complex names for C structures. Using complex names
prevents name clashes in case the module reuses the same
identifiers in multiple contexts.

-findirect-choice When generating code for a CHOICE type, compile the CHOICE
members as indirect pointers instead of declaring them inline.
Consider using this option together with -fno-include-
deps to prevent circular references.

-fincludes-quoted Generate #include lines in ”double” instead of <angle> quotes.

-fknown-extern-type=<name> Pretend the specified type is known. The compiler will assume
the target language source files for the given type have been
provided manually.

-fline-refs Include ASN.1 module’s line numbers in generated code com-
ments.

-fno-constraints Do not generate the ASN.1 subtype constraint checking code.
This may produce a shorter executable.

-fno-include-deps Do not generate the courtesy #include lines for non-critical de-
pendencies.

-funnamed-unions Enable unnamed unions in the definitions of target language’s
structures.

-fwide-types Use the wide integer types (INTEGER_t, REAL_t) instead of ma-
chine’s native data types (long, double).

Codecs Generation Options Description

-no-gen-OER Do not generate the Octet Encoding Rules (OER, X.696) support
code.

-no-gen-PER Do not generate the Packed Encoding Rules (PER, X.691) sup-
port code.

-no-gen-example Do not generate the ASN.1 format converter example.

14

http://lionet.info/asn1c

CHAPTER 2. ASN.1 COMPILER asn1c-0.9.29

-pdu={all|auto|Type} Create a PDU table for specified types, or discover the Proto-
col Data Units automatically. In case of -pdu=all, all ASN.1
types defined in all modules wil form a PDU table. In case of
-pdu=auto, all types not referenced by any other type will
form a PDU table. If Type is an ASN.1 type identifier, it is
added to a PDU table. The last form may be specified multiple
times.

Output Options Description

-print-class-matrix When -EF options are given, this option instructs the compiler
to print out the collected Information Object Class matrix.

-print-constraints With -EF, this option instructs the compiler to explain its in-
ternal understanding of subtype constraints.

-print-lines Generate “-- #line” comments in -E output.

15

http://lionet.info/asn1c

Chapter 3

API reference

The functions desribed in this chapter are to be used by the application programmer. These
functions won’t likely change change or get removed until the next major release.

The API calls not listed here are not public and should not be used by the application
level code.

16

CHAPTER 3. API REFERENCE asn1c-0.9.29

3.1 ASN_STRUCT_FREE() macro

Synopsis

#define ASN_STRUCT_FREE(type_descriptor, struct_ptr)

Description

Recursively releasesmemory occupied by the structure described by thetype_descriptor
and referred to by the struct_ptr pointer.

Does nothing when struct_ptr is NULL.

Return values

Does not return a value.

Example

Rectangle_t *rect = ...;
ASN_STRUCT_FREE(asn_DEF_Rectangle, rect);

3.2 ASN_STRUCT_RESET() macro

Synopsis

#define ASN_STRUCT_RESET(type_descriptor, struct_ptr)

Description

Recursively releases memory occupied by the members of the structure described by the
type_descriptor and referred to by the struct_ptr pointer.

Does not release the memory pointed to by struct_ptr itself. Instead it clears the
memory block by filling it out with 0 bytes.

Does nothing when struct_ptr is NULL.

Return values

Does not return a value.

17

http://lionet.info/asn1c

CHAPTER 3. API REFERENCE asn1c-0.9.29

Example

struct my_figure { /* The custom structure */
int flags; /* <some custom member> */
/* The type is generated by the ASN.1 compiler */
Rectangle_t rect;
/* other members of the structure */

};

struct my_figure *fig = ...;
ASN_STRUCT_RESET(asn_DEF_Rectangle, &fig >rect);

3.3 asn_check_constraints()

Synopsis

int asn_check_constraints(
const asn_TYPE_descriptor_t *type_descriptor,
const void *struct_ptr, /* Target language’s structure */
char *errbuf, /* Returned error description */
size_t *errlen /* Length of the error description */

);

Description

Validate the structure according to the ASN.1 constraints. If errbuf and errlen are given, they
shall be pointing to the appropriate buffer space and its length before calling this function.
Alternatively, they could be passed as NULLs. If constraints validation fails, errlen will contain
the actual number of bytes used in errbuf to encode an error message, properly 0-terminated.

Return values

This function returns 0 in case all ASN.1 constraints are met and -1 if one or more ASN.1
constraints were violated.

Example

Rectangle_t *rect = ...;

char errbuf[128]; /* Buffer for error message */
size_t errlen = sizeof(errbuf); /* Size of the buffer */

18

http://lionet.info/asn1c

CHAPTER 3. API REFERENCE asn1c-0.9.29

int ret = asn_check_constraints(&asn_DEF_Rectangle, rectangle, errbuf, &errlen);
/* assert(errlen < sizeof(errbuf)); // Guaranteed: you may rely on that */
if(ret) {

fprintf(stderr, ”Constraint validation failed: %s\n”, errbuf);
}

3.4 asn_decode()

Synopsis

asn_dec_rval_t asn_decode(
const asn_codec_ctx_t *opt_codec_parameters,
enum asn_transfer_syntax syntax,
const asn_TYPE_descriptor_t *type_descriptor,
void **struct_ptr_ptr,/* Pointer to a target structure’s ptr */
const void *buffer, /* Data to be decoded */
size_t size /* Size of that buffer */

);

Description

The asn_decode() function parses the data given by the buffer and size arguments.
The encoding rules are specified in the syntax argument and the type to be decoded is
specified by the type_descriptor.

The struct_ptr_ptr must point to the memory location which contains the pointer
to the structure being decoded. Initially the *struct_ptr_ptr pointer is typically set
to 0. In that case, asn_decode() will dynamically allocate memory for the structure and
its members as needed during the parsing. If *struct_ptr_ptr already points to some
memory, the asn_decode() will allocate the subsequent members as needed during the
parsing.

Return values

Upon unsuccessful termination, the *struct_ptr_ptr may contain partially decoded
data. This data may be useful for debugging (such as by using asn_fprint()). Don’t
forget to discard the unused partially decoded data by calling ASN_STRUCT_FREE() or
ASN_STRUCT_RESET().

The return value is returned in a compound structure:

19

http://lionet.info/asn1c

CHAPTER 3. API REFERENCE asn1c-0.9.29

typedef struct {
enum {

RC_OK, /* Decoded successfully */
RC_WMORE, /* More data expected, call again */
RC_FAIL /* Failure to decode data */

} code; /* Result code */
size_t consumed; /* Number of bytes consumed */

} asn_dec_rval_t;

The .code member specifies the decoding outcome.
RC_OK Decoded successfully and completely
RC_WMORE More data expected, call again
RC_FAIL Failed for good
The .consumed member specifies the amount of buffer data that was used during

parsing, irrespectively of the .code.
The.consumed value is in bytes, even for PER decoding. For PER, useuper_decode()

in case you need to get the number of consumed bits.

Restartability

Some transfer syntax parsers (such as ATS_BER) support restartability.
That means that in case the buffer has less data than expected, the asn_decode()

will process whatever is available and ask for more data to be provided using the RC_WMORE
return .code.

Note that in the RC_WMORE case the decoder may have processed less data than it is
available in the buffer, which means that you must be able to arrange the next buffer to
contain the unprocessed part of the previous buffer.

The RC_WMORE code may still be returned by parser not supporting restartabilty. In such
cases, the partially decoded structure shall be discarded and the next invocation should use
the extended buffer to parse from the very beginning.

Example

Rectangle_t *rect = 0; /* Note this 01! */
asn_dec_rval_t rval;
rval = asn_decode(0, ATS_BER, &asn_DEF_Rectangle, (void **)&rect, buffer, buf_size);
switch(rval.code) {

1Forgetting to properly initialize the pointer to a destination structure is a major source of support requests.

20

http://lionet.info/asn1c

CHAPTER 3. API REFERENCE asn1c-0.9.29

case RC_OK:
asn_fprint(stdout, &asn_DEF_Rectangle, rect);
ASN_STRUCT_FREE(&asn_DEF_Rectangle, rect);
break;

case RC_WMORE:
case RC_FAIL:
default:

ASN_STRUCT_FREE(&asn_DEF_Rectangle, rect);
break;

}

See also

asn_fprint() at page 22.

3.5 asn_encode()

3.6 asn_encode_to_buffer

Example

uint8_t buffer[128];
size_t buf_size = sizeof(buffer);
asn_enc_rval_t er;
er = asn_encode_to_buffer(0, ATS_DER, &asn_DEF_Rectangle, buffer, buf_size);
if(er.encoded > buf_size) {

fprintf(stderr, ”Buffer of size %zu is too small for %s, need %zu\n”,
buf_size, asn_DEF_Rectangle.name, er.encoded);

}

3.7 asn_encode_to_new_buffer

Example

asn_encode_to_new_buffer_result_t res;
res = asn_encode_to_new_buffer(0, ATS_DER, &asn_DEF_Rectangle, buffer, buf_size);
if(res.buffer) {

/* Encoded successfully. */
free(res.buffer);

} else {
fprintf(stderr, ”Failed to encode %s, estimated %zd bytes\n”,

asn_DEF_Rectangle.name, res.result.encoded);
}

21

http://lionet.info/asn1c

CHAPTER 3. API REFERENCE asn1c-0.9.29

3.8 asn_fprint()

Synopsis

int asn_fprint(FILE *stream, /* Destination file */
const asn_TYPE_descriptor_t *type_descriptor,
const void *struct_ptr /* Structure to be printed */

);

Description

The asn_fprint() function prints human readable description of the target language’s
structure into the file stream specified by stream pointer.

The output format does not conform to any standard.
The asn_fprint() function attempts to produce a valid output even for incomplete

and broken structures, which makes it more suitable for debugging complex cases than
xer_fprint().

Return values
0 Output was successfully made
-1 Error printing out the structure

Example

Rectangle_t *rect = ...;
asn_fprint(stdout, &asn_DEF_Rectangle, rect);

See also

xer_fprint() at page 32.

3.9 asn_random_fill()

Synopsis

22

http://lionet.info/asn1c

CHAPTER 3. API REFERENCE asn1c-0.9.29

int asn_random_fill(
const asn_TYPE_descriptor_t *type_descriptor,
void **struct_ptr_ptr,/* Pointer to a target structure’s ptr */
size_t approx_max_length_limit

);

Description

Create or initialize a structure with random contents, according to the type specification and
optional member constraints.

For best results the code should be generated without -no-gen-PER option to asn1c.
Making PER constraints code available in runtime will make asn_random_fill explore
the edges of PER-visible constraints and sometimes break out of extensible contstraints’
ranges.

The asn_random_fill() function has a bias to generate edge case values. This
property makes it useful for debugging the application level code and for security testing, as
random data can be a good seed to fuzzing.

The approx_max_length_limit specifies the approximate limit of the resulting
structure in units closely resembling bytes. The actual result might be several times larger
or smaller than the given length limit. A rule of thumb way to select the initial value for this
parameter is to take a typical structure and use twice its DER output size.

Return values
0 Structure was properly initialized with random data
-1 Failure to initialize the structure with random data

23

http://lionet.info/asn1c

CHAPTER 3. API REFERENCE asn1c-0.9.29

3.10 ber_decode()

Synopsis

asn_dec_rval_t ber_decode(
const asn_codec_ctx_t *opt_codec_ctx,
const asn_TYPE_descriptor_t *type_descriptor,
void **struct_ptr_ptr,/* Pointer to a target structure’s ptr */
const void *buffer, /* Data to be decoded */
size_t size /* Size of that buffer */

);

Description

Decode BER, DER and CER data (Basic Encoding Rules, Distinguished Encoding Rules, Canon-
ical Encoding Rules), as defined by ITU-T X.690.

DER and CER are different subsets of BER.
Consider using a more generic function asn_decode(ATS_BER).

Return values

Upon unsuccessful termination, the *struct_ptr_ptr may contain partially decoded
data. This data may be useful for debugging (such as by using asn_fprint()). Don’t
forget to discard the unused partially decoded data by calling ASN_STRUCT_FREE() or
ASN_STRUCT_RESET().

The return value is returned in a compound structure:

typedef struct {
enum {

RC_OK, /* Decoded successfully */
RC_WMORE, /* More data expected, call again */
RC_FAIL /* Failure to decode data */

} code; /* Result code */
size_t consumed; /* Number of bytes consumed */

} asn_dec_rval_t;

The .code member specifies the decoding outcome.
RC_OK Decoded successfully and completely
RC_WMORE More data expected, call again
RC_FAIL Failed for good

24

http://lionet.info/asn1c

CHAPTER 3. API REFERENCE asn1c-0.9.29

The .consumed member specifies the amount of buffer data that was used during
parsing, irrespectively of the .code.

The .consumed value is in bytes.

Restartability

The ber_decode() function is restartable (stream-oriented). That means that in case the
buffer has less data than expected, the decoder will process whatever is available and ask for
more data to be provided using the RC_WMORE return .code.

Note that in the RC_WMORE case the decoder may have processed less data than it is
available in the buffer, which means that you must be able to arrange the next buffer to
contain the unprocessed part of the previous buffer.

See also

der_encode() at page 25.

3.11 der_encode

See also

ber_decode() at page 24, asn_decode(ATS_BER) at page 19.

3.12 der_encode_to_buffer

25

http://lionet.info/asn1c

CHAPTER 3. API REFERENCE asn1c-0.9.29

3.13 oer_decode()

Synopsis

asn_dec_rval_t oer_decode(
const asn_codec_ctx_t *opt_codec_ctx,
const asn_TYPE_descriptor_t *type_descriptor,
void **struct_ptr_ptr,/* Pointer to a target structure’s ptr */
const void *buffer, /* Data to be decoded */
size_t size /* Size of that buffer */

);

Description

Decode the BASIC-OER and CANONICAL-OER (Octet Encoding Rules), as defined by ITU-T X.696.
Consider using a more generic function asn_decode(ATS_BASIC_OER).

Return values

Upon unsuccessful termination, the *struct_ptr_ptr may contain partially decoded
data. This data may be useful for debugging (such as by using asn_fprint()). Don’t
forget to discard the unused partially decoded data by calling ASN_STRUCT_FREE() or
ASN_STRUCT_RESET().

The return value is returned in a compound structure:

typedef struct {
enum {

RC_OK, /* Decoded successfully */
RC_WMORE, /* More data expected, call again */
RC_FAIL /* Failure to decode data */

} code; /* Result code */
size_t consumed; /* Number of bytes consumed */

} asn_dec_rval_t;

The .code member specifies the decoding outcome.
RC_OK Decoded successfully and completely
RC_WMORE More data expected, call again
RC_FAIL Failed for good
The .consumed member specifies the amount of buffer data that was used during

parsing, irrespectively of the .code.

26

http://lionet.info/asn1c

CHAPTER 3. API REFERENCE asn1c-0.9.29

The .consumed value is in bytes.

Restartability

The oer_decode() function is restartable (stream-oriented). That means that in case the
buffer has less data than expected, the decoder will process whatever is available and ask for
more data to be provided using the RC_WMORE return .code.

Note that in the RC_WMORE case the decoder may have processed less data than it is
available in the buffer, which means that you must be able to arrange the next buffer to
contain the unprocessed part of the previous buffer.

3.14 oer_encode

3.15 oer_encode_to_buffer

27

http://lionet.info/asn1c

CHAPTER 3. API REFERENCE asn1c-0.9.29

3.16 uper_decode()

Synopsis

asn_dec_rval_t uper_decode(
const asn_codec_ctx_t *opt_codec_ctx,
const asn_TYPE_descriptor_t *type_descriptor,
void **struct_ptr_ptr,/* Pointer to a target structure’s ptr */
const void *buffer, /* Data to be decoded */
size_t size, /* Size of the input data buffer, bytes */
int skip_bits, /* Number of unused leading bits, 0..7 */
int unused_bits /* Number of unused tailing bits, 0..7 */

);

Description

Decode the Unaligned BASIC or CANONICAL PER (Packed Encoding Rules), as defined by ITU-
T X.691

Consider using amore generic functionasn_decode(ATS_UNALIGNED_BASIC_PER).

Return values

Upon unsuccessful termination, the *struct_ptr_ptr may contain partially decoded
data. This data may be useful for debugging (such as by using asn_fprint()). Don’t
forget to discard the unused partially decoded data by calling ASN_STRUCT_FREE() or
ASN_STRUCT_RESET().

The return value is returned in a compound structure:

typedef struct {
enum {

RC_OK, /* Decoded successfully */
RC_WMORE, /* More data expected, call again */
RC_FAIL /* Failure to decode data */

} code; /* Result code */
size_t consumed; /* Number of bytes consumed */

} asn_dec_rval_t;

The .code member specifies the decoding outcome.

28

http://lionet.info/asn1c

CHAPTER 3. API REFERENCE asn1c-0.9.29

RC_OK Decoded successfully and completely
RC_WMORE More data expected, call again
RC_FAIL Failed for good
The .consumed member specifies the amount of buffer data that was used during

parsing, irrespectively of the .code.
Note that the .consumed value is in bits. Use (.consumed+7)/8 to convert to bytes.

Restartability

The uper_decode() function is not restartable. Failures are final.

3.17 uper_decode_complete()

Synopsis

asn_dec_rval_t uper_decode_complete(
const asn_codec_ctx_t *opt_codec_ctx,
const asn_TYPE_descriptor_t *type_descriptor,
void **struct_ptr_ptr,/* Pointer to a target structure’s ptr */
const void *buffer, /* Data to be decoded */
size_t size /* Size of data buffer */

);

Description

Decode a “Production of a complete encoding”, according to ITU-T X.691 (08/2015) #11.1.
Consider using amore generic functionasn_decode(ATS_UNALIGNED_BASIC_PER).

Return values

Upon unsuccessful termination, the *struct_ptr_ptr may contain partially decoded
data. This data may be useful for debugging (such as by using asn_fprint()). Don’t
forget to discard the unused partially decoded data by calling ASN_STRUCT_FREE() or
ASN_STRUCT_RESET().

The return value is returned in a compound structure:

29

http://lionet.info/asn1c

CHAPTER 3. API REFERENCE asn1c-0.9.29

typedef struct {
enum {

RC_OK, /* Decoded successfully */
RC_WMORE, /* More data expected, call again */
RC_FAIL /* Failure to decode data */

} code; /* Result code */
size_t consumed; /* Number of bytes consumed */

} asn_dec_rval_t;

The .code member specifies the decoding outcome.
RC_OK Decoded successfully and completely
RC_WMORE More data expected, call again
RC_FAIL Failed for good
The .consumed member specifies the amount of buffer data that was used during

parsing, irrespectively of the .code.
The the .consumed value is returned in bytes.

Restartability

The uper_decode_complete() function is not restartable. Failures are final.
The complete encoding contains at least one byte, so on success .consumed will be

greater or equal to 1.

3.18 uper_encode

3.19 uper_encode_to_buffer

3.20 uper_encode_to_new_buffer

30

http://lionet.info/asn1c

CHAPTER 3. API REFERENCE asn1c-0.9.29

3.21 xer_decode()

Synopsis

asn_dec_rval_t xer_decode(
const asn_codec_ctx_t *opt_codec_ctx,
const asn_TYPE_descriptor_t *type_descriptor,
void **struct_ptr_ptr,/* Pointer to a target structure’s ptr */
const void *buffer, /* Data to be decoded */
size_t size /* Size of data buffer */

);

Description

Decode the BASIC-XER and CANONICAL-XER (XML Encoding Rules) encoding, as defined by
ITU-T X.693.

Consider using a more generic function asn_decode(ATS_BASIC_XER).

Return values

Upon unsuccessful termination, the *struct_ptr_ptr may contain partially decoded
data. This data may be useful for debugging (such as by using asn_fprint()). Don’t
forget to discard the unused partially decoded data by calling ASN_STRUCT_FREE() or
ASN_STRUCT_RESET().

The return value is returned in a compound structure:

typedef struct {
enum {

RC_OK, /* Decoded successfully */
RC_WMORE, /* More data expected, call again */
RC_FAIL /* Failure to decode data */

} code; /* Result code */
size_t consumed; /* Number of bytes consumed */

} asn_dec_rval_t;

The .code member specifies the decoding outcome.
RC_OK Decoded successfully and completely
RC_WMORE More data expected, call again
RC_FAIL Failed for good

31

http://lionet.info/asn1c

CHAPTER 3. API REFERENCE asn1c-0.9.29

The .consumed member specifies the amount of buffer data that was used during
parsing, irrespectively of the .code.

The .consumed value is in bytes.

Restartability

The xer_decode() function is restartable (stream-oriented). That means that in case the
buffer has less data than expected, the decoder will process whatever is available and ask for
more data to be provided using the RC_WMORE return .code.

Note that in the RC_WMORE case the decoder may have processed less data than it is
available in the buffer, which means that you must be able to arrange the next buffer to
contain the unprocessed part of the previous buffer.

3.22 xer_encode

3.23 xer_fprint()

Synopsis

int xer_fprint(FILE *stream, /* Destination file */
const asn_TYPE_descriptor_t *type_descriptor,
const void *struct_ptr /* Structure to be printed */

);

Description

The xer_fprint() function outputs XML-based serialization of the given structure into
the file stream specified by stream pointer.

The output conforms to BASIC-XER, as defined by ITU-T X.693.

Return values
0 XML output was successfully made
-1 Error printing out the structure
Since the xer_fprint() function attempts to produce a conforming output, it will likely
break on partial structures by writing incomplete data to the output stream and returning -1.
This makes it less suitable for debugging complex cases than asn_fprint().

32

http://lionet.info/asn1c

CHAPTER 3. API REFERENCE asn1c-0.9.29

Example

Rectangle_t *rect = ...;
xer_fprint(stdout, &asn_DEF_Rectangle, rect);

See also

asn_fprint() at page 22.

33

http://lionet.info/asn1c

Chapter 4

API usage examples

Let’s start with including the necessary header files into your application. Normally it is
enough to include the header file of the main PDU type. For our Rectangle module, including
the Rectangle.h file is sufficient:

#include <Rectangle.h>

The header files defines a C structure corresponding to the ASN.1 definition of a rectangle and
the declaration of the ASN.1 type descriptor. A type descriptor is a special globally accessible
object which is used as an argument to most of the API functions provided by the ASN.1
codec. A type descriptor starts with asn_DEF_…. For example, here is the code which frees
the Rectangle_t structure:

Rectangle_t *rect = ...;

ASN_STRUCT_FREE(asn_DEF_Rectangle, rect);

This code defines a rect pointer which points to the Rectangle_t structure which needs to
be freed. The second line uses a generic ASN_STRUCT_FREE() macro which invokes
the memory deallocation routine created specifically for this Rectangle_t structure. The
asn_DEF_Rectangle is the type descriptor which holds a collection of routines and operations
defined for the Rectangle_t structure.

4.1 Generic encoders and decoders

Before we start describing specific encoders and decoders, let’s step back a little and check
out a simple high level way.

34

CHAPTER 4. API USAGE EXAMPLES asn1c-0.9.29

The asn1c runtime supplies (see asn_application.h) two sets of high level functions, asn_encode*
and asn_decode*, which take a transfer syntax selector as an argument. The transfer syn-
tax selector is defined as this:

/*
* A selection of ASN.1 Transfer Syntaxes to use with generalized encoders and decoders.
*/

enum asn_transfer_syntax {
ATS_INVALID,
ATS_NONSTANDARD_PLAINTEXT,
ATS_BER,
ATS_DER,
ATS_CER,
ATS_BASIC_OER,
ATS_CANONICAL_OER,
ATS_UNALIGNED_BASIC_PER,
ATS_UNALIGNED_CANONICAL_PER,
ATS_BASIC_XER,
ATS_CANONICAL_XER,

};

Using this encoding selector, encoding and decoding becomes very generic:
Encoding:

uint8_t buffer[128];
size_t buf_size = sizeof(buffer);
asn_enc_rval_t er;

er = asn_encode_to_buffer(0, ATS_DER, &asn_DEF_Rectangle, buffer, buf_size);

if(er.encoded > buf_size) {
fprintf(stderr, ”Buffer of size %zu is too small for %s, need %zu\n”,

buf_size, asn_DEF_Rectangle.name, er.encoded);
}

Decoding:
Rectangle_t *rect = 0; /* Note this 01! */

... = asn_decode(0, ATS_BER, &asn_DEF_Rectangle, (void **)&rect, buffer, buf_size);

4.2 Decoding BER

The Basic Encoding Rules describe the most widely used (by the ASN.1 community) way to
encode and decode a given structure in a machine-independent way. Several other encoding
rules (CER, DER) define a more restrictive versions of BER, so the generic BER parser is also

1Forgetting to properly initialize the pointer to a destination structure is a major source of support requests.

35

http://lionet.info/asn1c

CHAPTER 4. API USAGE EXAMPLES asn1c-0.9.29

capable of decoding the data encoded by the CER and DER encoders. The opposite is not
true.

The ASN.1 compiler provides the generic BER decoder which is capable of decoding BER, CER
and DER encoded data.

The decoder is restartable (stream-oriented). That means that in case the buffer has less
data than expected, the decoder will process whatever is available and ask for more data to
be provided using the RC_WMORE return .code.

Note that in the RC_WMORE case the decoder may have processed less data than it is
available in the buffer, which means that you must be able to arrange the next buffer to
contain the unprocessed part of the previous buffer.

Suppose, you have two buffers of encoded data: 100 bytes and 200 bytes.

• You can concatenate these buffers and feed the BER decoder with 300 bytes of data, or

• You can feed it the first buffer of 100 bytes of data, realize that the ber_decoder con-
sumed only 95 bytes from it and later feed the decoder with 205 bytes buffer which
consists of 5 unprocessed bytes from the first buffer and the additional 200 bytes from
the second buffer.

This is not as convenient as it could be (the BER encoder could consume the whole 100 bytes
and keep these 5 bytes in some temporary storage), but in case of existing stream based
processing it might actually fit well into existing algorithm. Suggestions are welcome.

Here is the example of BER decoding of a simple structure:

Rectangle_t *
simple_deserializer(const void *buffer, size_t buf_size) {

asn_dec_rval_t rval;
Rectangle_t *rect = 0; /* Note this 01! */

rval = asn_DEF_Rectangle.op->ber_decoder(0,
&asn_DEF_Rectangle,
(void **)&rect, /* Decoder changes the pointer */
buffer, buf_size, 0);

if(rval.code == RC_OK) {
return rect; /* Decoding succeeded */

} else {

1Forgetting to properly initialize the pointer to a destination structure is a major source of support requests.

36

http://lionet.info/asn1c

CHAPTER 4. API USAGE EXAMPLES asn1c-0.9.29

/* Free the partially decoded rectangle */
ASN_STRUCT_FREE(asn_DEF_Rectangle, rect);
return 0;

}
}

The code above defines a function, simple_deserializer, which takes a buffer and its length
and is expected to return a pointer to the Rectangle_t structure. Inside, it tries to convert
the bytes passed into the target structure (rect) using the BER decoder and returns the rect
pointer afterwards. If the structure cannot be deserialized, it frees the memory which might
be left allocated by the unfinished ber_decoder routine and returns 0 (no data). (This freeing
is necessary because the ber_decoder is a restartable procedure, and may fail just because
there is more data needs to be provided before decoding could be finalized). The code above
obviously does not take into account the way the ber_decoder() failed, so the freeing is nec-
essary because the part of the buffer may already be decoded into the structure by the time
something goes wrong.

A little less wordy would be to invoke a globally available ber_decode() function instead
of dereferencing the asn_DEF_Rectangle type descriptor:

rval = ber_decode(0, &asn_DEF_Rectangle, (void **)&rect, buffer,
buf_size);

Note that the initial (asn_DEF_Rectangle.op->ber_decoder) reference is gone, and also the
last argument (0) is no longer necessary.

These two ways of BER decoder invocations are fully equivalent.
The BER decoder may fail because of (the following RC_… codes are defined in ber_decoder.h):

• RC_WMORE: There is more data expected than it is provided (streammode continuation
feature);

• RC_FAIL: General failure to decode the buffer;

• … other codes may be defined as well.

Together with the return code (.code) the asn_dec_rval_t type contains the number of bytes
which is consumed from the buffer. In the previous hypothetical example of two buffers (of
100 and 200 bytes), the first call to ber_decode() would return with .code = RC_WMORE and
.consumed = 95. The .consumed field of the BER decoder return value is always valid, even if
the decoder succeeds or fails with any other return code.

Look into ber_decoder.h for the precise definition of ber_decode() and related types.

37

http://lionet.info/asn1c

CHAPTER 4. API USAGE EXAMPLES asn1c-0.9.29

4.3 Encoding DER

The Distinguished Encoding Rules is the canonical variant of BER encoding rules. The DER
is best suited to encode the structures where all the lengths are known beforehand. This
is probably exactly how you want to encode: either after a BER decoding or after a manual
fill-up, the target structure contains the data which size is implicitly known before encoding.
Among other uses, the DER encoding is used to encode X.509 certificates.

As with BER decoder, the DER encoder may be invoked either directly from the ASN.1 type
descriptor (asn_DEF_Rectangle) or from the stand-alone function, which is somewhat simpler:

/*
* This is the serializer itself.
* It supplies the DER encoder with the
* pointer to the custom output function.
*/

ssize_t
simple_serializer(FILE *ostream, Rectangle_t *rect) {

asn_enc_rval_t er; /* Encoder return value */

er = der_encode(&asn_DEF_Rect, rect, write_stream, ostream);
if(er.encoded == 1) {

fprintf(stderr, ”Cannot encode %s: %s\n”,
er.failed_type >name, strerror(errno));

return 1;
} else {

/* Return the number of bytes */
return er.encoded;

}
}

As you see, the DER encoder does not write into some sort of buffer. It just invokes the
custom function (possible, multiple times) which would save the data into appropriate stor-
age. The optional argument app_key is opaque for the DER encoder code and just used by
_write_stream() as the pointer to the appropriate output stream to be used.

If the custom write function is not given (passed as 0), then the DER encoder will essen-
tially do the same thing (i. e., encode the data) but no callbacks will be invoked (so the data
goes nowhere). It may prove useful to determine the size of the structure’s encoding before
actually doing the encoding1.

1It is actually faster too: the encoder might skip over some computations which aren’t important for the size

38

http://lionet.info/asn1c

CHAPTER 4. API USAGE EXAMPLES asn1c-0.9.29

Look into der_encoder.h for the precise definition of der_encode() and related types.

4.4 Encoding XER

The XER stands for XML Encoding Rules, where XML, in turn, is eXtensible Markup Language,
a text-based format for information exchange. The encoder routine API comes in two flavors:
stdio-based and callback-based. With the callback-based encoder, the encoding process is
very similar to the DER one, described in section 4.3 on the preceding page. The following
example uses the definition of write_stream() from up there.

/*
* This procedure generates an XML document
* by invoking the XER encoder.
* NOTE: Do not copy this code verbatim!
* If the stdio output is necessary,
* use the xer_fprint() procedure instead.
* See section 4.7 on page 41.
*/

int
print_as_XML(FILE *ostream, Rectangle_t *rect) {

asn_enc_rval_t er; /* Encoder return value */

er = xer_encode(&asn_DEF_Rectangle, rect,
XER_F_BASIC, /* BASIC XER or CANONICAL XER */
write_stream, ostream);

return (er.encoded == 1) ? 1 : 0;
}

Look into xer_encoder.h for the precise definition of xer_encode() and related types.
See section 4.7 on page 41 for the example of stdio-based XML encoder and other pretty-

printing suggestions.

determination.

39

http://lionet.info/asn1c

CHAPTER 4. API USAGE EXAMPLES asn1c-0.9.29

4.5 Decoding XER

The data encoded using the XER rules can be subsequently decoded using the xer_decode()
API call:

Rectangle_t *
XML_to_Rectangle(const void *buffer, size_t buf_size) {

asn_dec_rval_t rval;
Rectangle_t *rect = 0; /* Note this 01! */

rval = xer_decode(0, &asn_DEF_Rectangle, (void **)&rect,
buffer, buf_size);

if(rval.code == RC_OK) {
return rect; /* Decoding succeeded */

} else {
/* Free partially decoded rect */
ASN_STRUCT_FREE(asn_DEF_Rectangle, rect);
return 0;

}
}

The decoder takes both BASIC-XER and CANONICAL-XER encodings.
The decoder shares its data consumption properties with BER decoder; please read the

section 4.2 on page 35 to know more.
Look into xer_decoder.h for the precise definition of xer_decode() and related types.

4.6 Validating the target structure

Sometimes the target structure needs to be validated. For example, if the structure was
created by the application (as opposed to being decoded from some external source), some
important information required by the ASN.1 specification might be missing. On the other
hand, the successful decoding of the data from some external source does not necessarily
mean that the data is fully valid either. It might well be the case that the specification
describes some subtype constraints that were not taken into account during decoding, and it
would actually be useful to perform the last check when the data is ready to be encoded or
when the data has just been decoded to ensure its validity according to some stricter rules.

1Forgetting to properly initialize the pointer to a destination structure is a major source of support requests.

40

http://lionet.info/asn1c

CHAPTER 4. API USAGE EXAMPLES asn1c-0.9.29

The asn_check_constraints() function checks the type for various implicit and explicit con-
straints. It is recommended to use asn_check_constraints() function after each decoding and
before each encoding.

Look into constraints.h for the precise definition of asn_check_constraints() and related
types.

4.7 Printing the target structure

There are two ways to print the target structure: either invoke the print_struct member of
the ASN.1 type descriptor, or using the asn_fprint() function, which is a simpler wrapper of
the former:

asn_fprint(stdout, &asn_DEF_Rectangle, rect);

Look into constr_TYPE.h for the precise definition of asn_fprint() and related types.
Another practical alternative to this custom format printing would be to invoke XER en-

coder. The default BASIC-XER encoder performs reasonable formatting for the output to be
useful and human readable. To invoke the XER decoder in a manner similar to asn_fprint(),
use the xer_fprint() call:

xer_fprint(stdout, &asn_DEF_Rectangle, rect);

See section 4.4 on page 39 for XML-related details.

4.8 Freeing the target structure

Freeing the structure is slightly more complex than it may seem to. When the ASN.1 structure
is freed, all the members of the structure and their submembers are recursively freed as well.
The ASN_STRUCT_FREE() macro helps with that.

But it might not always be feasible to free the whole structure. In the following exam-
ple, the application programmer defines a custom structure with one ASN.1-derived member
(rect).

struct my_figure { /* The custom structure */
int flags; /* <some custom member> */
/* The type is generated by the ASN.1 compiler */
Rectangle_t rect;
/* other members of the structure */

};

41

http://lionet.info/asn1c

CHAPTER 4. API USAGE EXAMPLES asn1c-0.9.29

This member is not a reference to the Rectangle_t, but an in-place inclusion of the Rectan-
gle_t structure. If there’s a need to free the rect member, the usual procedure of freeing
everything must not be applied to the &rect pointer itself, because it does not point to
the beginning of memory block allocated by the memory allocation routine, but instead lies
within a block allocated for the my_figure structure.

To solve this problem, in addition to ASN_STRUCT_FREE() macro, the asn1c skeletons
define the ASN_STRUCT_RESET() macro which doesn’t free the passed pointer and instead
resets the structure into the clean and safe state.

/* 1. Rectangle_t is defined within my_figure */
struct my_figure {

Rectangle_t rect;
} *mf = ...;
/*
* Freeing the Rectangle_t
* without freeing the mf >rect area.
*/

ASN_STRUCT_RESET(asn_DEF_Rectangle, &mf >rect);

/* 2. Rectangle_t is a stand-alone pointer */
Rectangle_t *rect = ...;
/*
* Freeing the Rectangle_t
* and freeing the rect pointer.
*/

ASN_STRUCT_FREE(asn_DEF_Rectangle, rect);

It is safe to invoke both macros with the target structure pointer set to 0 (NULL). In this case,
the function will do nothing.

42

http://lionet.info/asn1c

Chapter 5

Abstract Syntax Notation: ASN.1

This chapter defines some basic ASN.1 concepts and describes several most widely used types. It is
by no means an authoritative or complete reference. For more complete ASN.1 description, please
refer to Olivier Dubuisson’s book [Dub00] or the ASN.1 body of standards itself [ITU-T/ASN.1].

The Abstract Syntax Notation One is used to formally describe the data transmitted across
the network. Two communicating parties may employ different formats of their native data
types (e. g., different number of bits for the native integer type), thus it is important to have
a way to describe the data in a manner which is independent from the particular machine’s
representation. The ASN.1 specifications are used to achieve the following:

• The specification expressed in the ASN.1 notation is a formal and precise way to com-
municate the structure of data to human readers;

• The ASN.1 specifications may be used as input for automatic compilers which produce
the code for some target language (C, C++, Java, etc) to encode and decode the data
according to some encoding formats. Several such encoding formats (called Transfer
Encoding Rules) have been defined by the ASN.1 standard.

Consider the following example:

Rectangle ::= SEQUENCE {
height INTEGER,
width INTEGER

}

This ASN.1 specification describes a constructed type, Rectangle, containing two integer fields.
This specification may tell the reader that there exists this kind of data structure and that
some entity may be prepared to send or receive it. The question on how that entity is going

43

CHAPTER 5. ABSTRACT SYNTAX NOTATION: ASN.1 asn1c-0.9.29

to send or receive the encoded data is outside the scope of ASN.1. For example, this data
structure may be encoded according to some encoding rules and sent to the destination
using the TCP protocol. The ASN.1 specifies several ways of encoding (or “serializing”, or
“marshaling”) the data: BER, PER, XER and others, including CER and DER derivatives from
BER.

The complete specification must be wrapped in a module, which looks like this:

RectangleModule1
{ iso org(3) dod(6) internet(1) private(4)
enterprise(1) spelio(9363) software(1)
asn1c(5) docs(2) rectangle(1) 1 }

DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

This is a comment which describes nothing.
Rectangle ::= SEQUENCE {

height INTEGER, Height of the rectangle
width INTEGER Width of the rectangle

}

END

The module header consists of module name (RectangleModule1), the module object identi-
fier ({...}), a keyword “DEFINITIONS”, a set of module flags (AUTOMATIC TAGS) and “::= BEGIN”.
The module ends with an “END” statement.

5.1 Some of the ASN.1 Basic Types

5.1.1 The BOOLEAN type

The BOOLEAN type models the simple binary TRUE/FALSE, YES/NO, ON/OFF or a similar kind
of two-way choice.

5.1.2 The INTEGER type

The INTEGER type is a signed natural number type without any restrictions on its size. If the
automatic checking on INTEGER value bounds are necessary, the subtype constraints must
be used.

44

http://lionet.info/asn1c

CHAPTER 5. ABSTRACT SYNTAX NOTATION: ASN.1 asn1c-0.9.29

SimpleInteger ::= INTEGER

An integer with a very limited range
SmallPositiveInt ::= INTEGER (0..127)

Integer, negative
NegativeInt ::= INTEGER (MIN..0)

5.1.3 The ENUMERATED type

The ENUMERATED type is semantically equivalent to the INTEGER type with some integer
values explicitly named.

FruitId ::= ENUMERATED { apple(1), orange(2) }

The numbers in braces are optional,
the enumeration can be performed
automatically by the compiler

ComputerOSType ::= ENUMERATED {
FreeBSD, acquires value 0
Windows, acquires value 1
Solaris(5), remains 5
Linux, becomes 6
MacOS becomes 7

}

5.1.4 The OCTET STRING type

This type models the sequence of 8-bit bytes. This may be used to transmit some opaque
data or data serialized by other types of encoders (e. g., video file, photo picture, etc).

5.1.5 The OBJECT IDENTIFIER type

The OBJECT IDENTIFIER is used to represent the unique identifier of any object, starting
from the very root of the registration tree. If your organization needs to uniquely identify
something (a router, a room, a person, a standard, or whatever), you are encouraged to get
your own identification subtree athttp://www.iana.org/protocols/forms.htm.

45

http://lionet.info/asn1c
http://www.iana.org/protocols/forms.htm

CHAPTER 5. ABSTRACT SYNTAX NOTATION: ASN.1 asn1c-0.9.29

For example, the very first ASN.1 module in this Chapter (RectangleModule1) has the
following OBJECT IDENTIFIER: 1 3 6 1 4 1 9363 1 5 2 1 1.

ExampleOID ::= OBJECT IDENTIFIER

rectangleModule1 oid ExampleOID
::= { 1 3 6 1 4 1 9363 1 5 2 1 1 }

An identifier of the Internet.
internet id OBJECT IDENTIFIER

::= { iso(1) identified organization(3)
dod(6) internet(1) }

As you see, names are optional.

5.1.6 The RELATIVE-OID type

The RELATIVE-OID type has the semantics of a subtree of an OBJECT IDENTIFIER. There may
be no need to repeat the whole sequence of numbers from the root of the registration tree
where the only thing of interest is some of the tree’s subsequence.

this document RELATIVE OID ::= { docs(2) usage(1) }

this example RELATIVE OID ::= {
this document assorted examples(0) this example(1) }

5.2 Some of the ASN.1 String Types

5.2.1 The IA5String type

This is essentially the ASCII, with 128 character codes available (7 lower bits of an 8-bit byte).

5.2.2 The UTF8String type

This is the character string which encodes the full Unicode range (4 bytes) using multibyte
character sequences.

46

http://lionet.info/asn1c

CHAPTER 5. ABSTRACT SYNTAX NOTATION: ASN.1 asn1c-0.9.29

5.2.3 The NumericString type

This type represents the character string with the alphabet consisting of numbers (“0” to “9”)
and a space.

5.2.4 The PrintableString type

The character string with the following alphabet: space, “’” (single quote), “(”, “)”, “+”, “,”
(comma), “-”, “.”, “/”, digits (“0” to “9”), “:”, “=”, “?”, upper-case and lower-case letters (“A” to
“Z” and “a” to “z”).

5.2.5 The VisibleString type

The character string with the alphabet which is more or less a subset of ASCII between the
space and the “~” symbol (tilde).

Alternatively, the alphabet may be described as the PrintableString alphabet presented
earlier, plus the following characters: “!”, ““”, “#”, “$”, “%”, “&”, “*”, “;”, “<”, “>”, “[”, “\”, “]”, “^”, “_”,
“‘“ (single left quote), “{”, “|”, “}”, “~”.

5.3 ASN.1 Constructed Types

5.3.1 The SEQUENCE type

This is an ordered collection of other simple or constructed types. The SEQUENCE constructed
type resembles the C “struct” statement.

Address ::= SEQUENCE {
The apartment number may be omitted

apartmentNumber NumericString OPTIONAL,
streetName PrintableString,
cityName PrintableString,
stateName PrintableString,

This one may be omitted too
zipNo NumericString OPTIONAL

}

47

http://lionet.info/asn1c

CHAPTER 5. ABSTRACT SYNTAX NOTATION: ASN.1 asn1c-0.9.29

5.3.2 The SET type

This is a collection of other simple or constructed types. Ordering is not important. The data
may arrive in the order which is different from the order of specification. Data is encoded in
the order not necessarily corresponding to the order of specification.

5.3.3 The CHOICE type

This type is just a choice between the subtypes specified in it. The CHOICE type contains at
most one of the subtypes specified, and it is always implicitly known which choice is being
decoded or encoded. This one resembles the C “union” statement.

The following type defines a response code, which may be either an integer code or a
boolean “true”/“false” code.

ResponseCode ::= CHOICE {
intCode INTEGER,
boolCode BOOLEAN

}

5.3.4 The SEQUENCE OF type

This one is the list (array) of simple or constructed types:

Example 1
ManyIntegers ::= SEQUENCE OF INTEGER

Example 2
ManyRectangles ::= SEQUENCE OF Rectangle

More complex example:
an array of structures defined in place.

ManyCircles ::= SEQUENCE OF SEQUENCE {
radius INTEGER
}

5.3.5 The SET OF type

The SET OF type models the bag of structures. It resembles the SEQUENCE OF type, but the
order is not important. The elements may arrive in the order which is not necessarily the

48

http://lionet.info/asn1c

CHAPTER 5. ABSTRACT SYNTAX NOTATION: ASN.1 asn1c-0.9.29

same as the in-memory order on the remote machines.

A set of structures defined elsewhere
SetOfApples :: SET OF Apple

Set of integers encoding the kind of a fruit
FruitBag ::= SET OF ENUMERATED { apple, orange }

49

http://lionet.info/asn1c

Bibliography

[ASN1C] The Open Source ASN.1 Compiler. http://lionet.info/asn1c

[AONL] Online ASN.1 Compiler. http://lionet.info/asn1c/asn1c.cgi

[Dub00] Olivier Dubuisson — ASN.1 Communication between heterogeneous systems
— Morgan Kaufmann Publishers, 2000. http://asn1.elibel.tm.fr/
en/book/. ISBN:0-12-6333361-0.

[ITU-T/ASN.1] ITU-T Study Group 17 — Languages for Telecommunication Systems http:
//www.itu.int/ITU-T/studygroups/com17/languages/

50

http://lionet.info/asn1c
http://lionet.info/asn1c/asn1c.cgi
http://asn1.elibel.tm.fr/en/book/
http://asn1.elibel.tm.fr/en/book/
http://www.itu.int/ITU-T/studygroups/com17/languages/
http://www.itu.int/ITU-T/studygroups/com17/languages/

	Quick start examples
	A “Rectangle” converter and debugger
	A “Rectangle” Encoder
	A “Rectangle” Decoder
	Adding constraints to a “Rectangle”

	ASN.1 Compiler
	The asn1c compiler tool
	Compiler output
	Command line options

	API reference
	ASN_STRUCT_FREE() macro
	ASN_STRUCT_RESET() macro
	asn_check_constraints()
	asn_decode()
	asn_encode()
	asn_encode_to_buffer
	asn_encode_to_new_buffer
	asn_fprint()
	asn_random_fill()
	ber_decode()
	der_encode
	der_encode_to_buffer
	oer_decode()
	oer_encode
	oer_encode_to_buffer
	uper_decode()
	uper_decode_complete()
	uper_encode
	uper_encode_to_buffer
	uper_encode_to_new_buffer
	xer_decode()
	xer_encode
	xer_fprint()

	API usage examples
	Generic encoders and decoders
	Decoding BER
	Encoding DER
	Encoding XER
	Decoding XER
	Validating the target structure
	Printing the target structure
	Freeing the target structure

	Abstract Syntax Notation: ASN.1
	Some of the ASN.1 Basic Types
	The BOOLEAN type
	The INTEGER type
	The ENUMERATED type
	The OCTET STRING type
	The OBJECT IDENTIFIER type
	The RELATIVE-OID type

	Some of the ASN.1 String Types
	The IA5String type
	The UTF8String type
	The NumericString type
	The PrintableString type
	The VisibleString type

	ASN.1 Constructed Types
	The SEQUENCE type
	The SET type
	The CHOICE type
	The SEQUENCE OF type
	The SET OF type

