aboutsummaryrefslogtreecommitdiffstats
path: root/packet-eth.c
blob: af24e3bb8873fdfa187b6be2c4a870bdd9bdec79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
/* packet-eth.c
 * Routines for ethernet packet disassembly
 *
 * $Id: packet-eth.c,v 1.12 1999/07/15 15:32:40 gram Exp $
 *
 * Ethereal - Network traffic analyzer
 * By Gerald Combs <gerald@zing.org>
 * Copyright 1998 Gerald Combs
 *
 * 
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 */

#ifdef HAVE_CONFIG_H
# include "config.h"
#endif

#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>
#endif

#include <glib.h>
#include "packet.h"
#include "etypes.h"
#include "resolv.h"

extern const value_string etype_vals[];

/* protocols and header fields */
int proto_eth = -1;
int hf_eth_dst = -1;
int hf_eth_dst_vendor = -1;
int hf_eth_src = -1;
int hf_eth_src_vendor = -1;
int hf_eth_len = -1;
int hf_eth_type = -1;

#define IEEE_802_3_MAX_LEN 1500

/* These are the Netware-ish names for the different Ethernet frame types.
	EthernetII: The ethernet with a Type field instead of a length field
	Ethernet802.2: An 802.3 header followed by an 802.3 header
	Ethernet802.3: A raw 802.3 packet. IPX/SPX can be the only payload.
			There's not 802.2 hdr in this.
	EthernetSNAP: Basically 802.2, just with 802.2SNAP. For our purposes,
		there's no difference between 802.2 and 802.2SNAP, since we just
		pass it down to dissect_llc(). -- Gilbert
*/
#define ETHERNET_II 	0
#define ETHERNET_802_2	1
#define ETHERNET_802_3	2
#define ETHERNET_SNAP	3

void
capture_eth(const u_char *pd, guint32 cap_len, packet_counts *ld) {
  guint16 etype;
  int        offset = 14;
  int   	ethhdr_type;	/* the type of ethernet frame */
  
  etype = (pd[12] << 8) | pd[13];

	/* either ethernet802.3 or ethernet802.2 */
  if (etype <= IEEE_802_3_MAX_LEN) {

  /* Is there an 802.2 layer? I can tell by looking at the first 2
     bytes after the 802.3 header. If they are 0xffff, then what
     follows the 802.3 header is an IPX payload, meaning no 802.2.
     (IPX/SPX is they only thing that can be contained inside a
     straight 802.3 packet). A non-0xffff value means that there's an
     802.2 layer inside the 802.3 layer */
    if (pd[14] == 0xff && pd[15] == 0xff) {
      ethhdr_type = ETHERNET_802_3;
    }
    else {
      ethhdr_type = ETHERNET_802_2;
    }
  } else {
    ethhdr_type = ETHERNET_II;
  }

  switch (ethhdr_type) {
    case ETHERNET_802_3:
      ld->other++;	/* IPX */
      break;
    case ETHERNET_802_2:
      capture_llc(pd, offset, cap_len, ld);
      break;
    case ETHERNET_II:
      capture_ethertype(etype, offset, pd, cap_len, ld);
      break;
  }
}

void
dissect_eth(const u_char *pd, frame_data *fd, proto_tree *tree) {
  guint16    etype, length;
  int        offset = 14;
  proto_tree *fh_tree = NULL;
  proto_item *ti;
  int   	ethhdr_type;	/* the type of ethernet frame */

  if (check_col(fd, COL_RES_DL_DST))
    col_add_str(fd, COL_RES_DL_DST, get_ether_name((u_char *)&pd[0]));
  if (check_col(fd, COL_RES_DL_SRC))
    col_add_str(fd, COL_RES_DL_SRC, get_ether_name((u_char *)&pd[6]));
  if (check_col(fd, COL_UNRES_DL_DST))
    col_add_str(fd, COL_UNRES_DL_DST, ether_to_str((u_char *)&pd[0]));
  if (check_col(fd, COL_UNRES_DL_SRC))
    col_add_str(fd, COL_UNRES_DL_SRC, ether_to_str((u_char *)&pd[6]));
  if (check_col(fd, COL_PROTOCOL))
    col_add_str(fd, COL_PROTOCOL, "N/A");
  if (check_col(fd, COL_INFO))
    col_add_str(fd, COL_INFO, "Ethernet II");

  etype = (pd[12] << 8) | pd[13];

	/* either ethernet802.3 or ethernet802.2 */
  if (etype <= IEEE_802_3_MAX_LEN) {
    length = etype;

  /* Is there an 802.2 layer? I can tell by looking at the first 2
     bytes after the 802.3 header. If they are 0xffff, then what
     follows the 802.3 header is an IPX payload, meaning no 802.2.
     (IPX/SPX is they only thing that can be contained inside a
     straight 802.3 packet). A non-0xffff value means that there's an
     802.2 layer inside the 802.3 layer */
    if (pd[14] == 0xff && pd[15] == 0xff) {
      ethhdr_type = ETHERNET_802_3;
    }
    else {
      ethhdr_type = ETHERNET_802_2;
    }

    if (check_col(fd, COL_INFO))
      col_add_str(fd, COL_INFO, "802.3");
    if (tree) {

	ti = proto_tree_add_item_format(tree, proto_eth, 0, offset,
		NULL, "IEEE 802.3 %s", (ethhdr_type == ETHERNET_802_3 ? "Raw " : ""));

	fh_tree = proto_item_add_subtree(ti, ETT_IEEE8023);

	proto_tree_add_item(fh_tree, hf_eth_dst, 0, 6, &pd[0]);
	proto_tree_add_item_hidden(fh_tree, hf_eth_dst_vendor, 0, 3, &pd[0]);
	proto_tree_add_item(fh_tree, hf_eth_src, 6, 6, &pd[6]);
	proto_tree_add_item_hidden(fh_tree, hf_eth_src_vendor, 6, 3, &pd[6]);
	proto_tree_add_item(fh_tree, hf_eth_len, 12, 2, length);
    }

  } else {
    ethhdr_type = ETHERNET_II;
    if (tree) {

	ti = proto_tree_add_item_format(tree, proto_eth, 0, 14, NULL,
		"Ethernet II");

	fh_tree = proto_item_add_subtree(ti, ETT_ETHER2);

	proto_tree_add_item_format(fh_tree, hf_eth_dst, 0, 6, &pd[0],
		"Destination: %s (%s)", ether_to_str((guint8 *) &pd[0]),
		get_ether_name((u_char *) &pd[0]));

	proto_tree_add_item_format(fh_tree, hf_eth_src, 6, 6, &pd[6],
		"Source: %s (%s)", ether_to_str((guint8 *) &pd[6]),
		get_ether_name((u_char *) &pd[6]));

    }
  }

  switch (ethhdr_type) {
    case ETHERNET_802_3:
      dissect_ipx(pd, offset, fd, tree);
      break;
    case ETHERNET_802_2:
      dissect_llc(pd, offset, fd, tree);
      break;
    case ETHERNET_II:
      ethertype(etype, offset, pd, fd, tree, fh_tree, hf_eth_type);
      break;
  }
}

void
proto_register_eth(void)
{
	static hf_register_info hf[] = {

		{ &hf_eth_dst,
		{ "Destination",	"eth.dst", FT_ETHER, NULL }},

		{ &hf_eth_src,
		{ "Source",		"eth.src", FT_ETHER, NULL }},

		{ &hf_eth_dst_vendor,
		{ "Destination Hardware Vendor", "eth.dst_vendor", FT_ETHER, NULL }},

		{ &hf_eth_src_vendor,
		{ "Source Hardware Vendor", "eth.src_vendor", FT_ETHER, NULL }},

		{ &hf_eth_len,
		{ "Length",		"eth.len", FT_UINT16, NULL }},

		/* registered here but handled in ethertype.c */
		{ &hf_eth_type,
		{ "Type",		"eth.type", FT_VALS_UINT16, VALS(etype_vals) }}
	};

	proto_eth = proto_register_protocol ("Ethernet", "eth" );
	proto_register_field_array(proto_eth, hf, array_length(hf));
}