aboutsummaryrefslogtreecommitdiffstats
path: root/epan/dissectors/packet-gsm_abis_pgsl.c
blob: ecd52ce578bf5f61274275716061c7f7e355f2bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
/* packet-gsm_abis_pgsl.c
 * Routines for packet dissection of Ericsson GSM A-bis P-GSL
 * Copyright 2010-2016 by Harald Welte <laforge@gnumonks.org>
 *
 * P-GSL is an Ericsson-specific packetized version of replacing PCU-CCU
 * TRAU frames on 8k/16k E1 sub-slots with a paketized frame format
 * which can be transported over LAPD on a SuperChannel (E1 timeslot
 * bundle) or L2TP.
 *
 * Wireshark - Network traffic analyzer
 * By Gerald Combs <gerald@wireshark.org>
 * Copyright 1998 Gerald Combs
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include "config.h"

#include <epan/packet.h>
#include <epan/prefs.h>

#include "packet-gsm_rlcmac.h"
#include "packet-gsm_a_common.h"

void proto_register_abis_pgsl(void);
void proto_reg_handoff_abis_pgsl(void);

enum {
	SUB_RLCMAC_UL,
	SUB_RLCMAC_DL,

	SUB_MAX
};

static dissector_handle_t sub_handles[SUB_MAX];

/* initialize the protocol and registered fields */
static int proto_abis_pgsl = -1;

/* P-GSL header */
static int hf_pgsl_version = -1;
static int hf_pgsl_msg_disc = -1;
static int hf_pgsl_tn_bitmap = -1;
static int hf_pgsl_trx_seqno = -1;
static int hf_pgsl_afnd = -1;
static int hf_pgsl_afnu = -1;
static int hf_pgsl_ccu_ta = -1;
static int hf_pgsl_ack_req = -1;
static int hf_pgsl_tn_resource = -1;
static int hf_pgsl_tn_seqno = -1;
static int hf_pgsl_data_len = -1;
static int hf_pgsl_cause = -1;
static int hf_pgsl_addl_info = -1;
static int hf_pgsl_ack_ind = -1;
static int hf_pgsl_data_ind = -1;
static int hf_pgsl_ucm = -1;
static int hf_pgsl_cs = -1;
static int hf_pgsl_timing_offset = -1;
static int hf_pgsl_power_control = -1;
static int hf_pgsl_ir_tfi = -1;
static int hf_pgsl_ir_sign_type = -1;
static int hf_pgsl_codec_delay = -1;
static int hf_pgsl_codec_cs = -1;
static int hf_pgsl_codec_rxlev = -1;
static int hf_pgsl_codec_parity = -1;
static int hf_pgsl_codec_bqm = -1;
static int hf_pgsl_codec_mean_bep = -1;
static int hf_pgsl_codec_cv_bep = -1;
static int hf_pgsl_codec_q = -1;
static int hf_pgsl_codec_q1 = -1;
static int hf_pgsl_codec_q2 = -1;
static int hf_pgsl_pacch = -1;
static int hf_pgsl_ab_rxlev = -1;
static int hf_pgsl_ab_acc_delay = -1;
static int hf_pgsl_ab_abi = -1;
static int hf_pgsl_ab_ab_type = -1;

/* initialize the subtree pointers */
static int ett_pgsl = -1;
static int ett_pacch = -1;

static gboolean abis_pgsl_ir = FALSE;

#define PGSL_MSG_DLDATA_REQ	1
#define PGSL_MSG_DLDATA_IND	2
#define PGSL_MSG_ULDATA_IND	3
#define PGSL_MSG_STATUS_IND	4

static const value_string pgsl_msg_disc_vals[] = {
	{ PGSL_MSG_DLDATA_REQ,	"PGSL-DLDATA-REQ" },
	{ PGSL_MSG_DLDATA_IND,	"PGSL-DLDATA-IND" },
	{ PGSL_MSG_ULDATA_IND,	"PGSL-ULDATA-IND" },
	{ PGSL_MSG_STATUS_IND,	"PGSL-STATUS-IND" },
	{ 0, NULL }
};

static const true_false_string pgsl_q_vals = {
	"Bad",
	"Good"
};

static const value_string pgsl_msg_cause_vals[] = {
	{ 0, "Frame discarded in CCU, too late" },
	{ 1, "Frame discarded in CCU, too late or OOM" },
	{ 2, "Frame(s) missing in sequence detected by CCU" },
	{ 3, "Frame Format Error" },
	{ 0, NULL }
};

static const value_string pgsl_cs_vals[] = {
	{ 0,	"AB" },
	{ 1,	"CS-1" },
	{ 2,	"CS-2" },
	{ 3,	"CS-3" },
	{ 4,	"CS-4" },
	{ 5,	"Header Type 1" },
	{ 6,	"Header Type 2" },
	{ 7,	"Header Type 3" },
	{ 0, NULL }
};

static const value_string pgsl_ucm_vals[] = {
	{ 1, "Normal Burst (GSMK CS1/CS2/CS3/CS4)" },
	{ 2, "Normal Burst (CS1 or MCS1 to MCS9)" },
	{ 3, "Access Burst (8 bit, Traning Sequence 0)" },
	{ 4, "Access Burst (8 bit or 11 bit, Training Sequence 0/1/2)" },
	{ 0, NULL }
};

static const value_string pgsl_ir_sign_type_vals[] = {
	{ 0, "IR Update Indication" },
	{ 1, "IR Start Indication" },
	{ 2, "IR Stop Indication" },
	{ 3, "No IR Information" },
	{ 0, NULL }
};

static const value_string pgsl_ab_type_vals[] = {
	{ 0, "8-bit RACH" },
	{ 1, "11-bit RACH (TS0)" },
	{ 2, "11-bit RACH (TS1)" },
	{ 3, "11-bit RACH (TS2)" },
	{ 0, NULL }
};

static const value_string pgsl_ab_abi_vals[] = {
	{ 0, "Not Valid" },
	{ 7, "Valid" },
	{ 0, NULL }
};

static RLCMAC_block_format_t pgsl_cs_to_rlcmac_cs(guint8 pgsl_cs)
{
	static const RLCMAC_block_format_t tbl[8] = {
		RLCMAC_PRACH,
		RLCMAC_CS1,
		RLCMAC_CS2,
		RLCMAC_CS3,
		RLCMAC_CS4,
		RLCMAC_HDR_TYPE_1,
		RLCMAC_HDR_TYPE_2,
		RLCMAC_HDR_TYPE_3,
	};

	if (pgsl_cs >= 8)
		return RLCMAC_CS1;
	else
		return tbl[pgsl_cs];
}

/* length of an EGPRS RLC data block for given MCS */
static const guint data_block_len_by_mcs[] = {
	0,	/* MCS0 */
	22,	/* MCS1 */
	28,
	37,
	44,
	56,
	74,
	56,
	68,
	74,	/* MCS9 */
	0,	/* MCS_INVALID */
};

/* determine the number of rlc data blocks and their size / offsets */
static void
setup_rlc_mac_priv(RlcMacPrivateData_t *rm, gboolean is_uplink,
	guint *n_calls, guint *data_block_bits, guint *data_block_offsets)
{
	guint nc, dbl = 0, dbo[2] = {0,0};

	dbl = data_block_len_by_mcs[rm->mcs];

	switch (rm->block_format) {
	case RLCMAC_HDR_TYPE_1:
		nc = 3;
		dbo[0] = is_uplink ? 5*8 + 6 : 5*8 + 0;
		dbo[1] = dbo[0] + dbl * 8 + 2;
		break;
	case RLCMAC_HDR_TYPE_2:
		nc = 2;
		dbo[0] = is_uplink ? 4*8 + 5 : 3*8 + 4;
		break;
	case RLCMAC_HDR_TYPE_3:
		nc = 2;
		dbo[0] = 3*8 + 7;
		break;
	default:
		nc = 1;
		break;
	}

	*n_calls = nc;
	*data_block_bits = dbl * 8 + 2;
	data_block_offsets[0] = dbo[0];
	data_block_offsets[1] = dbo[1];
}

/* bit-shift the entire 'src' of length 'length_bytes' by 'offset_bits'
 * and store the reuslt to caller-allocated 'buffer'.  The shifting is
 * done lsb-first, unlike tvb_new_octet_aligned() */
static void clone_aligned_buffer_lsbf(guint offset_bits, guint length_bytes,
	const guint8 *src, guint8 *buffer)
{
	guint hdr_bytes;
	guint extra_bits;
	guint i;

	guint8 c, last_c;
	guint8 *dst;

	hdr_bytes = offset_bits / 8;
	extra_bits = offset_bits % 8;

	if (extra_bits == 0) {
		/* It is aligned already */
		memmove(buffer, src + hdr_bytes, length_bytes);
		return;
	}

	dst = buffer;
	src = src + hdr_bytes;
	last_c = *(src++);

	for (i = 0; i < length_bytes; i++) {
		c = src[i];
		*(dst++) = (last_c >> extra_bits) | (c << (8 - extra_bits));
		last_c = c;
	}
}

/* obtain an (aligned) EGPRS data block with given bit-offset and
 * bit-length from the parent TVB */
static tvbuff_t *get_egprs_data_block(tvbuff_t *tvb, guint offset_bits,
	guint length_bits, packet_info *pinfo)
{
	tvbuff_t *aligned_tvb;
	const guint initial_spare_bits = 6;
	guint8 *aligned_buf;
	guint min_src_length_bytes = (offset_bits + length_bits + 7) / 8;
	guint length_bytes = (initial_spare_bits + length_bits + 7) / 8;

	tvb_ensure_bytes_exist(tvb, 0, min_src_length_bytes);

	aligned_buf = (guint8 *) wmem_alloc(pinfo->pool, length_bytes);

	/* Copy the data out of the tvb to an aligned buffer */
	clone_aligned_buffer_lsbf(
		offset_bits - initial_spare_bits, length_bytes,
		tvb_get_ptr(tvb, 0, min_src_length_bytes),
		aligned_buf);

	/* clear spare bits and move block header bits to the right */
	aligned_buf[0] = aligned_buf[0] >> initial_spare_bits;

	aligned_tvb = tvb_new_child_real_data(tvb, aligned_buf,
		length_bytes, length_bytes);
	add_new_data_source(pinfo, aligned_tvb, "Aligned EGPRS data bits");

	return aligned_tvb;
}

/* Dissect a P-GSL ACess Burst Message */
static void
dissect_pgsl_access_burst(tvbuff_t *tvb, gint offset, packet_info *pinfo, proto_tree *tree,
			  RlcMacPrivateData_t *rlcmac_data)
{
	proto_item *ti;
	proto_tree *pacch_tree;
	tvbuff_t *data_tvb;
	guint rxlev, abtype, abi;
	guint16 acc_delay;

	ti = proto_tree_add_item(tree, hf_pgsl_pacch, tvb, offset, 5, ENC_NA);
	pacch_tree = proto_item_add_subtree(ti, ett_pacch);

	proto_tree_add_item_ret_uint(pacch_tree, hf_pgsl_ab_rxlev, tvb, offset++, 1, ENC_NA, &rxlev);
	/* Access Delay is encoded as 10-bit field with the lowest 8
	 * bits in the first octet, with the two highest bits in the
	 * lowest bits of the second octet */
	acc_delay = tvb_get_guint8(tvb, offset);
	acc_delay |= tvb_get_bits8(tvb, (offset+1)*8+6, 2) << 8;
	proto_tree_add_uint(pacch_tree, hf_pgsl_ab_acc_delay, tvb, offset, 2, acc_delay);
	/* ABI and AB Type are in the same octet as the acc_dely msb's */
	offset++;
	proto_tree_add_item_ret_uint(pacch_tree, hf_pgsl_ab_abi, tvb, offset, 1, ENC_NA, &abi);
	proto_tree_add_item_ret_uint(pacch_tree, hf_pgsl_ab_ab_type, tvb, offset, 1, ENC_NA, &abtype);
	offset++;
	/* Update the 'master' item */
	if (abi) {
		proto_item_append_text(ti, " Valid, RxLev %u, Delay %u bits, Type %s", rxlev, acc_delay,
					val_to_str(abtype, pgsl_ab_type_vals, "0x%x"));
		/* decode actual access burst */
		data_tvb = tvb_new_subset_length(tvb, offset, 2);
		call_dissector_with_data(sub_handles[SUB_RLCMAC_UL], data_tvb, pinfo, pacch_tree,
					 (void *) rlcmac_data);
	} else
		proto_item_append_text(ti, " Invalid, RxLev %u", rxlev);
}

/* Dissect a given (E)GPRS RLC/MAC block */
static void
dissect_gprs_data(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, gboolean uplink,
		  RlcMacPrivateData_t *rlcmac_data)
{
	dissector_handle_t rlcmac_dissector;
	tvbuff_t *data_tvb;
	guint data_block_bits, data_block_offsets[2];
	guint num_calls;

	if (uplink)
		rlcmac_dissector = sub_handles[SUB_RLCMAC_UL];
	else
		rlcmac_dissector = sub_handles[SUB_RLCMAC_DL];

	/* we need to call the dissector several times
	 * incase of EGPRS, once for each header, and
	 * once for the paylod */
	switch (rlcmac_data->block_format) {
	case RLCMAC_PRACH:
		/* contains information for four access bursts */
		dissect_pgsl_access_burst(tvb, 0, pinfo, tree, rlcmac_data);
		dissect_pgsl_access_burst(tvb, 5, pinfo, tree, rlcmac_data);
		dissect_pgsl_access_burst(tvb, 10, pinfo, tree, rlcmac_data);
		dissect_pgsl_access_burst(tvb, 15, pinfo, tree, rlcmac_data);
		break;
	case RLCMAC_HDR_TYPE_1:
	case RLCMAC_HDR_TYPE_2:
	case RLCMAC_HDR_TYPE_3:
		/* First call of RLC/MAC dissector for header */
		call_dissector_with_data(rlcmac_dissector, tvb,
					 pinfo, tree, (void *) rlcmac_data);

		/* now determine how to proceed for data */
		setup_rlc_mac_priv(rlcmac_data, uplink,
				   &num_calls, &data_block_bits, data_block_offsets);
		/* and call dissector one or two time for the data blocks */
		if (num_calls >= 2) {
			rlcmac_data->flags = GSM_RLC_MAC_EGPRS_BLOCK1;
			data_tvb = get_egprs_data_block(tvb, data_block_offsets[0],
							data_block_bits, pinfo);
			call_dissector_with_data(rlcmac_dissector, data_tvb, pinfo, tree,
						 (void *) rlcmac_data);
		}
		if (num_calls == 3) {
			rlcmac_data->flags = GSM_RLC_MAC_EGPRS_BLOCK2;
			data_tvb = get_egprs_data_block(tvb, data_block_offsets[1],
							data_block_bits, pinfo);
			call_dissector_with_data(rlcmac_dissector, data_tvb, pinfo, tree,
						 (void *) rlcmac_data);
		}
		break;
	default:
		/* regular GPRS CS doesn't need any
		 * shifting/re-alignment or even separate calls for
		 * header and data blocks.  We simply call the dissector
		 * as-is */
		call_dissector_with_data(rlcmac_dissector, tvb, pinfo, tree,
					 (void *) rlcmac_data);
	}
}

static int
dissect_abis_pgsl(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_)
{
	proto_item *ti;
	proto_tree *pgsl_tree;
	int offset = 0;
	tvbuff_t *next_tvb;
	guint32 msg_disc, len, ack_data_ind, cs, fn;
	RlcMacPrivateData_t rlcmac_data;

	col_set_str(pinfo->cinfo, COL_PROTOCOL, "P-GSL");

	ti = proto_tree_add_item(tree, proto_abis_pgsl, tvb, 0, -1, ENC_NA);
	pgsl_tree = proto_item_add_subtree(ti, ett_pgsl);

	proto_tree_add_item(pgsl_tree, hf_pgsl_version, tvb, offset, 1, ENC_NA);
	proto_tree_add_item_ret_uint(pgsl_tree, hf_pgsl_msg_disc, tvb, offset, 1, ENC_NA, &msg_disc);
	offset++;

	col_append_str(pinfo->cinfo, COL_INFO, val_to_str(msg_disc, pgsl_msg_disc_vals, "Unknown (%u)"));

	rlcmac_data.magic = GSM_RLC_MAC_MAGIC_NUMBER;

	switch (msg_disc) {
	case PGSL_MSG_DLDATA_REQ:
		proto_tree_add_item(pgsl_tree, hf_pgsl_tn_bitmap, tvb, offset++, 1, ENC_NA);
		proto_tree_add_item(pgsl_tree, hf_pgsl_trx_seqno, tvb, offset++, 1, ENC_NA);
		proto_tree_add_item(pgsl_tree, hf_pgsl_afnd, tvb, offset, 3, ENC_LITTLE_ENDIAN);
		offset += 3;
		proto_tree_add_item(pgsl_tree, hf_pgsl_ccu_ta, tvb, offset++, 1, ENC_NA);
		proto_tree_add_item(pgsl_tree, hf_pgsl_ack_req, tvb, offset++, 1, ENC_NA);
		break;
	case PGSL_MSG_DLDATA_IND:
		proto_tree_add_item(pgsl_tree, hf_pgsl_tn_resource, tvb, offset++, 1, ENC_NA);
		proto_tree_add_item(pgsl_tree, hf_pgsl_tn_seqno, tvb, offset++, 1, ENC_NA);
		proto_tree_add_item_ret_uint(pgsl_tree, hf_pgsl_afnd, tvb, offset, 3, ENC_LITTLE_ENDIAN, &fn);
		rlcmac_data.frame_number = fn;
		offset += 3;
		ack_data_ind = tvb_get_guint8(tvb, offset);
		proto_tree_add_item(pgsl_tree, hf_pgsl_ack_ind, tvb, offset, 1, ENC_NA);
		proto_tree_add_item(pgsl_tree, hf_pgsl_data_ind, tvb, offset++, 1, ENC_NA);
		if (ack_data_ind & 1) {
			/* Codec Control */
			proto_tree_add_item(pgsl_tree, hf_pgsl_ucm, tvb, offset, 1, ENC_NA);
			proto_tree_add_item_ret_uint(pgsl_tree, hf_pgsl_cs, tvb, offset, 1, ENC_NA, &cs);
			proto_tree_add_item(pgsl_tree, hf_pgsl_timing_offset, tvb, offset+1, 1, ENC_NA);
			offset += 2;
			/* Power Control */
			proto_tree_add_item(pgsl_tree, hf_pgsl_power_control, tvb, offset++, 1, ENC_NA);
			if (abis_pgsl_ir) {
				/* Incremental Redundancy */
				proto_tree_add_item(pgsl_tree, hf_pgsl_ir_tfi, tvb, offset, 1, ENC_NA);
				proto_tree_add_item(pgsl_tree, hf_pgsl_ir_sign_type, tvb, offset, 1, ENC_NA);
				proto_tree_add_item(pgsl_tree, hf_pgsl_tn_bitmap, tvb, offset+1, 1, ENC_NA);
				offset += 2;
			}
			/* Data length */
			proto_tree_add_item_ret_uint(pgsl_tree, hf_pgsl_data_len, tvb, offset++, 1, ENC_NA, &len);
			rlcmac_data.block_format = pgsl_cs_to_rlcmac_cs(cs);
			/* Generate tvb containing only the RLC/MAC data */
			next_tvb = tvb_new_subset_length(tvb, offset, len);
			dissect_gprs_data(next_tvb, pinfo, tree, 0, &rlcmac_data);
		}
		break;
	case PGSL_MSG_ULDATA_IND:
		proto_tree_add_item(pgsl_tree, hf_pgsl_tn_resource, tvb, offset++, 1, ENC_NA);
		proto_tree_add_item(pgsl_tree, hf_pgsl_tn_seqno, tvb, offset++, 1, ENC_NA);
		proto_tree_add_item_ret_uint(pgsl_tree, hf_pgsl_afnu, tvb, offset, 3, ENC_LITTLE_ENDIAN, &fn);
		rlcmac_data.frame_number = fn;
		offset += 3;
		/* Codec Status */
		proto_tree_add_item(pgsl_tree, hf_pgsl_codec_delay, tvb, offset, 1, ENC_NA);
		proto_tree_add_item_ret_uint(pgsl_tree, hf_pgsl_codec_cs, tvb, offset, 1, ENC_NA, &cs);
		proto_tree_add_item(pgsl_tree, hf_pgsl_codec_rxlev, tvb, offset+1, 1, ENC_NA);
		if (cs <= 4) {
			/* GPRS */
			proto_tree_add_item(pgsl_tree, hf_pgsl_codec_parity, tvb, offset+2, 1, ENC_NA);
			proto_tree_add_item(pgsl_tree, hf_pgsl_codec_bqm, tvb, offset+2, 1, ENC_NA);
		} else {
			/* EGPRS */
			proto_tree_add_item(pgsl_tree, hf_pgsl_codec_mean_bep, tvb, offset+2, 1, ENC_NA);
			proto_tree_add_item(pgsl_tree, hf_pgsl_codec_cv_bep, tvb, offset+3, 1, ENC_NA);
			proto_tree_add_item(pgsl_tree, hf_pgsl_codec_q, tvb, offset+3, 1, ENC_NA);
			proto_tree_add_item(pgsl_tree, hf_pgsl_codec_q1, tvb, offset+3, 1, ENC_NA);
			proto_tree_add_item(pgsl_tree, hf_pgsl_codec_q2, tvb, offset+3, 1, ENC_NA);
		}
		offset += 4;
		/* Data Length */
		proto_tree_add_item_ret_uint(pgsl_tree, hf_pgsl_data_len, tvb, offset++, 1, ENC_NA, &len);
		rlcmac_data.block_format = pgsl_cs_to_rlcmac_cs(cs);
		/* Generate tvb containing only the RLC/MAC data */
		next_tvb = tvb_new_subset_length(tvb, offset, len);
		dissect_gprs_data(next_tvb, pinfo, tree, 1, &rlcmac_data);
		break;
	case PGSL_MSG_STATUS_IND:
		proto_tree_add_item(pgsl_tree, hf_pgsl_tn_resource, tvb, offset++, 1, ENC_NA);
		proto_tree_add_item(pgsl_tree, hf_pgsl_tn_seqno, tvb, offset++, 1, ENC_NA);
		proto_tree_add_item(pgsl_tree, hf_pgsl_afnu, tvb, offset, 3, ENC_NA);
		offset += 3;
		proto_tree_add_item(pgsl_tree, hf_pgsl_cause, tvb, offset++, 1, ENC_NA);
		proto_tree_add_item(pgsl_tree, hf_pgsl_addl_info, tvb, offset++, 1, ENC_NA);
		break;
	}

	return offset;
}

void
proto_register_abis_pgsl(void)
{
	static hf_register_info hf[] = {
		{ &hf_pgsl_version,
			{ "Version", "gsm_abis_pgsl.version",
			  FT_UINT8, BASE_DEC, NULL, 0xf0,
			  NULL, HFILL }
		},
		{ &hf_pgsl_msg_disc,
			{ "Message Discriminator", "gsm_abis_pgsl.msg_disc",
			  FT_UINT8, BASE_DEC, VALS(pgsl_msg_disc_vals), 0x0f,
			  NULL, HFILL }
		},
		{ &hf_pgsl_tn_bitmap,
			{ "TN Bitmap", "gsm_abis_pgsl.tn_bitmap",
			  FT_UINT8, BASE_HEX, NULL, 0,
			  NULL, HFILL }
		},
		{ &hf_pgsl_trx_seqno,
			{ "TRX Sequence Number", "gsm_abis_pgsl.trx_seqno",
			  FT_UINT8, BASE_DEC, NULL, 0,
			  "Per-TRX Sequence Number", HFILL }
		},
		{ &hf_pgsl_afnd,
			{ "aFNd", "gsm_abis_pgsl.a_fn_d",
			  FT_UINT24, BASE_DEC, NULL, 0,
			  "Frame Number (Downlink)", HFILL }
		},
		{ &hf_pgsl_afnu,
			{ "aFNu", "gsm_abis_pgsl.a_fn_u",
			  FT_UINT24, BASE_DEC, NULL, 0,
			  "Frame Number (Uplink)", HFILL }
		},
		{ &hf_pgsl_ccu_ta,
			{ "CCU TA Value", "gsm_abis_pgsl.ccu_ta",
			  FT_UINT8, BASE_DEC, NULL, 0x3f,
			  NULL, HFILL }
		},
		{ &hf_pgsl_ack_req,
			{ "ACK Requested", "gsm_abis_pgsl.ack_req",
			  FT_BOOLEAN, 8, NULL, 0x01,
			  NULL, HFILL }
		},
		{ &hf_pgsl_tn_resource,
			{ "TN Resource", "gsm_abis_pgsl.tn_resource",
			  FT_UINT8, BASE_DEC, NULL, 0x07,
			  "Timeslot Number", HFILL }
		},
		{ &hf_pgsl_tn_seqno,
			{ "TN Sequence Number", "gsm_abis_pgsl.tn_seqno",
			  FT_UINT8, BASE_DEC, NULL, 0,
			  "Per-TN Sequence Number", HFILL }
		},
		{ &hf_pgsl_data_len,
			{ "Data Length", "gsm_abis_pgsl.data_len",
			  FT_UINT8, BASE_DEC, NULL, 0,
			  NULL, HFILL }
		},
		{ &hf_pgsl_cause,
			{ "Cause", "gsm_abis_pgsl.cause",
			  FT_UINT8, BASE_DEC, VALS(pgsl_msg_cause_vals), 0,
			  NULL, HFILL }
		},
		{ &hf_pgsl_addl_info,
			{ "Additional Info", "gsm_abis_pgsl.addl_info",
			  FT_UINT8, BASE_HEX, NULL, 0,
			  NULL, HFILL }
		},
		{ &hf_pgsl_ack_ind,
			{ "ACK Indicator", "gsm_abis_pgsl.ack_ind",
			  FT_BOOLEAN, 8, NULL, 0x02,
			  NULL, HFILL }
		},
		{ &hf_pgsl_data_ind,
			{ "Data Indicator", "gsm_abis_pgsl.data_ind",
			  FT_BOOLEAN, 8, NULL, 0x01,
			  NULL, HFILL }
		},
		{ &hf_pgsl_ucm,
			{ "Uplink Channel Mode", "gsm_abis_pgsl.ucm",
			  FT_UINT8, BASE_DEC, VALS(pgsl_ucm_vals), 0xe0,
			  NULL, HFILL }
		},
		{ &hf_pgsl_cs,
			{ "Coding Scheme", "gsm_abis_pgsl.cs",
			  FT_UINT8, BASE_DEC, VALS(pgsl_cs_vals), 0x1f,
			  NULL, HFILL }
		},
		{ &hf_pgsl_timing_offset,
			{ "Timing Offset", "gsm_abis_pgsl.timing_offset",
			  FT_UINT8, BASE_DEC, NULL, 0,
			  NULL, HFILL }
		},
		{ &hf_pgsl_power_control,
			{ "Power Control", "gsm_abis_pgsl.power_control",
			  FT_UINT8, BASE_DEC, NULL, 0x0f,
			  NULL, HFILL }
		},
		{ &hf_pgsl_ir_tfi,
			{ "TFI", "gsm_abis_pgsl.ir_tfi",
			  FT_UINT8, BASE_DEC, NULL, 0x7c,
			  "TBF Identifier", HFILL }
		},
		{ &hf_pgsl_ir_sign_type,
			{ "IR Signalling Type", "gsm_abis_pgsl.ir_sign_type",
			  FT_UINT8, BASE_DEC, VALS(pgsl_ir_sign_type_vals), 0x03,
			  NULL, HFILL }
		},
		{ &hf_pgsl_codec_delay,
			{ "Codec Delay", "gsm_abis_pgsl.codec_delay",
			  FT_UINT8, BASE_DEC, NULL, 0xe0,
			  "Estimated Accss Delay Deviation", HFILL }
		},
		{ &hf_pgsl_codec_cs,
			{ "Codec CS", "gsm_abis_pgsl.codec_csy",
			  FT_UINT8, BASE_DEC, VALS(pgsl_cs_vals), 0x1f,
			  "Coding Scheme Status", HFILL }
		},
		{ &hf_pgsl_codec_rxlev,
			{ "RxLev", "gsm_abis_pgsl.codec_rxlev",
			  FT_UINT8, BASE_DEC|BASE_EXT_STRING, &gsm_a_rr_rxlev_vals_ext, 0x3f,
			  "Receiver Level Measurement", HFILL }
		},
		{ &hf_pgsl_codec_parity,
			{ "GPRS Parity", "gsm_abis_pgsl.gprs_parity",
			  FT_BOOLEAN, 8, NULL, 0x08,
			  "GPRS Block Status Parity", HFILL }
		},
		{ &hf_pgsl_codec_bqm,
			{ "GPRS BQM", "gsm_abis_pgsl.gprs_bqm",
			  FT_UINT8, BASE_DEC, NULL, 0x07,
			  "GPRS Block Quality Measurement", HFILL }
		},
		{ &hf_pgsl_codec_mean_bep,
			{ "EGPRS MEAN_BEP", "gsm_abis_pgsl.egprs_mean_bep",
			  FT_UINT8, BASE_DEC, NULL, 0x7f,
			  "Mean Value of BEP", HFILL }
		},
		{ &hf_pgsl_codec_cv_bep,
			{ "EGPRS CV_BEP", "gsm_abis_pgsl.egprs_cv_bep",
			  FT_UINT8, BASE_DEC, NULL, 0x07,
			  "Variation Co-Efficient of BEP", HFILL }
		},
		{ &hf_pgsl_codec_q,
			{ "EGPRS Header Quality", "gsm_abis_pgsl.egprs_q",
			  FT_BOOLEAN, 8, TFS(&pgsl_q_vals), 0x08,
			  "EGPRS RLC/MAC Header Quality", HFILL }
		},
		{ &hf_pgsl_codec_q1,
			{ "EGPRS Data Block 1 Quality", "gsm_abis_pgsl.egprs_q1",
			  FT_BOOLEAN, 8, TFS(&pgsl_q_vals), 0x10,
			  NULL, HFILL }
		},
		{ &hf_pgsl_codec_q2,
			{ "EGPRS Data Block 2 Quality", "gsm_abis_pgsl.egprs_q2",
			  FT_BOOLEAN, 8, TFS(&pgsl_q_vals), 0x20,
			  NULL, HFILL }
		},
		{ &hf_pgsl_pacch,
			{ "PACCH", "gsm_abis_pgsl.pacch",
			  FT_NONE, BASE_NONE, NULL, 0,
			  NULL, HFILL }
		},
		{ &hf_pgsl_ab_rxlev,
			{ "Access Burst Rx Level", "gsm_abis_pgsl.ab.rxlev",
			  FT_UINT8, BASE_DEC|BASE_EXT_STRING, &gsm_a_rr_rxlev_vals_ext, 0,
			  NULL, HFILL }
		},
		{ &hf_pgsl_ab_acc_delay,
			{ "Access Burst Access Delay", "gsm_abis_pgsl.ab.acc_delay",
			  FT_UINT16, BASE_DEC, NULL, 0,
			  NULL, HFILL }
		},
		{ &hf_pgsl_ab_abi,
			{ "Access Burst Indicator", "gsm_abis_pgsl.ab.abi",
			  FT_UINT8, BASE_DEC, VALS(pgsl_ab_abi_vals), 0x70,
			  NULL, HFILL }
		},
		{ &hf_pgsl_ab_ab_type,
			{ "Access Burst Type", "gsm_abis_pgsl.ab.type",
			  FT_UINT8, BASE_DEC, VALS(pgsl_ab_type_vals), 0x0c,
			  NULL, HFILL }
		},
	};
	static gint *ett[] = {
		&ett_pgsl,
		&ett_pacch,
	};
	module_t *pgsl_module;

	/* assign our custom match functions */
	proto_abis_pgsl = proto_register_protocol("GSM A-bis P-GSL", "Ericsson GSM A-bis P-GSL",
						 "gsm_abis_pgsl");
	pgsl_module = prefs_register_protocol(proto_abis_pgsl, NULL);
	prefs_register_bool_preference(pgsl_module, "ir",
					"Incremental Redundancy",
					"The packets contain the optional Incremental Redundancy (IR) fields",
					&abis_pgsl_ir);

	proto_register_field_array(proto_abis_pgsl, hf, array_length(hf));
	proto_register_subtree_array(ett, array_length(ett));
	register_dissector("gsm_abis_pgsl", dissect_abis_pgsl, proto_abis_pgsl);
}

/* This function is called once at startup and every time the user hits
 * 'apply' in the preferences dialogue */
void
proto_reg_handoff_abis_pgsl(void)
{
	sub_handles[SUB_RLCMAC_UL] = find_dissector("gsm_rlcmac_ul");
	sub_handles[SUB_RLCMAC_DL] = find_dissector("gsm_rlcmac_dl");
}

/*
 * Editor modelines  -  http://www.wireshark.org/tools/modelines.html
 *
 * Local variables:
 * c-basic-offset: 8
 * tab-width: 8
 * indent-tabs-mode: t
 * End:
 *
 * vi: set shiftwidth=8 tabstop=8 noexpandtab:
 * :indentSize=8:tabSize=8:noTabs=false:
 */