aboutsummaryrefslogtreecommitdiffstats
path: root/epan/dissectors/packet-autosar-nm.c
blob: b2cc2dd36ef1d630b6b75e421f9d26f580c2c6d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
/* packet-autosar-nm.c
 * AUTOSAR-NM Dissector
 * By Dr. Lars Voelker <lars.voelker@bmw.de>
 * Copyright 2014-2017 Dr. Lars Voelker, BMW
 * Copyright 2019 Maksim Salau <maksim.salau@gmail.com>
 *
 * Wireshark - Network traffic analyzer
 * By Gerald Combs <gerald@wireshark.org>
 * Copyright 1998 Gerald Combs
 *
 * SPDX-License-Identifier: GPL-2.0-or-later
 */

/*
 * AUTOSAR-NM is an automotive communication protocol as standardized by
 * AUTOSAR (www.autosar.org) and is specified in AUTOSAR_SWS_UDPNetworkManagement.pdf
 * and AUTOSAR_SWS_CANNetworkManagement.pdf which can be accessed on:
 * autosar.org -> Classic Platform -> Software Arch -> Comm Stack.
 */

#include <config.h>

#include <epan/packet.h>
#include <epan/prefs.h>
#include <epan/uat.h>
#include "packet-socketcan.h"

void proto_reg_handoff_autosar_nm(void);
void proto_register_autosar_nm(void);

typedef struct _user_data_field_t {
  gchar*  udf_name;
  gchar*  udf_desc;
  guint32 udf_offset;
  guint32 udf_length;
  guint32 udf_mask;
  gchar*  udf_value_desc;
} user_data_field_t;

static int proto_autosar_nm = -1;
static int proto_can = -1;
static int proto_canfd = -1;
static int proto_caneth = -1;
static int proto_udp = -1;

/*** header fields ***/
static int hf_autosar_nm_source_node_identifier = -1;
static int hf_autosar_nm_control_bit_vector = -1;
static int hf_autosar_nm_control_bit_vector_repeat_msg_req = -1;
static int hf_autosar_nm_control_bit_vector_reserved1 = -1;
static int hf_autosar_nm_control_bit_vector_reserved2 = -1;
static int hf_autosar_nm_control_bit_vector_nm_coord_id = -1;
static int hf_autosar_nm_control_bit_vector_nm_coord_sleep = -1;
static int hf_autosar_nm_control_bit_vector_active_wakeup = -1;
static int hf_autosar_nm_control_bit_vector_reserved5 = -1;
static int hf_autosar_nm_control_bit_vector_pni = -1;
static int hf_autosar_nm_control_bit_vector_reserved7 = -1;
static int hf_autosar_nm_user_data = -1;

/*** protocol tree items ***/
static gint ett_autosar_nm = -1;
static gint ett_autosar_nm_cbv = -1;
static gint ett_autosar_nm_user_data = -1;

/*** Bit meanings ***/
static const true_false_string tfs_autosar_nm_control_rep_msg_req = {
  "Repeat Message State requested", "Repeat Message State not requested" };

static const true_false_string tfs_autosar_nm_control_sleep_bit = {
  "Start of synchronized shutdown requested", "Start of synchronized shutdown not requested" };

static const true_false_string tfs_autosar_nm_control_active_wakeup = {
  "Node has woken up the network", "Node has not woken up the network" };

static const true_false_string tfs_autosar_nm_control_pni = {
  "NM message contains no Partial Network request information", "NM message contains Partial Network request information" };

/*** Configuration items ***/
/* Set the order of the first two fields (Source Node Identifier and Control Bit Vector */
static gboolean g_autosar_nm_swap_first_fields = TRUE;

/* Read bits 1 and 2 of Control Bit Vector as NM Coordinator Id */
static gboolean g_autosar_nm_interpret_coord_id = FALSE;

/* Id and mask of CAN frames to be dissected */
static guint32 g_autosar_nm_can_id = 0;
static guint32 g_autosar_nm_can_id_mask = 0;

/*******************************
 ****** User data fields  ******
 *******************************/

/*** stolen from the HTTP disector ;-) ***/

static user_data_field_t* user_data_fields;
static guint num_user_data_fields;
static GHashTable* user_data_fields_hash_hf;
static hf_register_info* dynamic_hf;
static guint dynamic_hf_size;
static wmem_map_t* user_data_fields_hash_ett;

static gboolean
user_data_fields_update_cb(void *r, char **err)
{
  user_data_field_t *rec = (user_data_field_t *)r;
  char c;
  *err = NULL;

  if (rec->udf_length == 0) {
    *err = g_strdup_printf("length of user data field can't be 0 Bytes (name: %s offset: %i length: %i)", rec->udf_name, rec->udf_offset, rec->udf_length);
    return (*err == NULL);
  }

  if (rec->udf_length > 4) {
    *err = g_strdup_printf("length of user data field can't be greater 4 Bytes (name: %s offset: %i length: %i)", rec->udf_name, rec->udf_offset, rec->udf_length);
    return (*err == NULL);
  }

  if (rec->udf_offset < 2) {
    *err = g_strdup_printf("offset of user data field can't be short than 2 (name: %s offset: %i length: %i)", rec->udf_name, rec->udf_offset, rec->udf_length);
    return (*err == NULL);
  }

  if (rec->udf_mask >= G_MAXUINT32) {
    *err = g_strdup_printf("mask can only be up to 32bits (name: %s)", rec->udf_name);
    return (*err == NULL);
  }

  if (rec->udf_name == NULL) {
    *err = g_strdup_printf("Name of user data field can't be empty");
    return (*err == NULL);
  }

  g_strstrip(rec->udf_name);
  if (rec->udf_name[0] == 0) {
    *err = g_strdup_printf("Name of user data field can't be empty");
    return (*err == NULL);
  }

  /* Check for invalid characters (to avoid asserting out when
   * registering the field).
   */
  c = proto_check_field_name(rec->udf_name);
  if (c) {
    *err = g_strdup_printf("Name of user data field can't contain '%c'", c);
    return (*err == NULL);
  }

  return (*err == NULL);
}

static void *
user_data_fields_copy_cb(void* n, const void* o, size_t siz _U_)
{
  user_data_field_t* new_rec = (user_data_field_t*)n;
  const user_data_field_t* old_rec = (const user_data_field_t*)o;

  new_rec->udf_name       = g_strdup(old_rec->udf_name);
  new_rec->udf_desc       = g_strdup(old_rec->udf_desc);
  new_rec->udf_offset     = old_rec->udf_offset;
  new_rec->udf_length     = old_rec->udf_length;
  new_rec->udf_mask       = old_rec->udf_mask;
  new_rec->udf_value_desc = g_strdup(old_rec->udf_value_desc);

  return new_rec;
}

static void
user_data_fields_free_cb(void*r)
{
  user_data_field_t* rec = (user_data_field_t*)r;

  g_free(rec->udf_name);
  g_free(rec->udf_desc);
  g_free(rec->udf_value_desc);
}

UAT_CSTRING_CB_DEF(user_data_fields, udf_name, user_data_field_t)
UAT_CSTRING_CB_DEF(user_data_fields, udf_desc, user_data_field_t)
UAT_DEC_CB_DEF(user_data_fields, udf_offset, user_data_field_t)
UAT_DEC_CB_DEF(user_data_fields, udf_length, user_data_field_t)
UAT_HEX_CB_DEF(user_data_fields, udf_mask, user_data_field_t)
UAT_CSTRING_CB_DEF(user_data_fields, udf_value_desc, user_data_field_t)

static guint64
calc_ett_key(guint32 offset, guint32 length)
{
  guint64 ret = offset;
  return (ret * 0x100000000) ^ length;
}

/*
 * This creates a string for you that can be used as key for the hash table.
 * YOU must g_free that string!
 */
static gchar*
calc_hf_key(user_data_field_t udf)
{
  gchar* ret = NULL;
  ret = g_strdup_printf("%i-%i-%i-%s", udf.udf_offset, udf.udf_length, udf.udf_mask, udf.udf_name);
  return ret;
}

/*
 *
 */
static gint*
get_hf_for_user_data(gchar* key)
{
  gint* hf_id = NULL;

  if (user_data_fields_hash_hf) {
    hf_id = (gint*)g_hash_table_lookup(user_data_fields_hash_hf, key);
  }
  else {
    hf_id = NULL;
  }

  return hf_id;
}

/*
 *
 */
static gint*
get_ett_for_user_data(guint32 offset, guint32 length)
{
  gint* ett_id = NULL;

  guint64 key = calc_ett_key(offset, length);

  if (user_data_fields_hash_ett) {
    ett_id = (gint*)wmem_map_lookup(user_data_fields_hash_ett, &key);
  }
  else {
    ett_id = NULL;
  }

  return ett_id;
}

/*
 *
 */
static void
deregister_user_data(void)
{
  if (dynamic_hf) {
    /* Unregister all fields */
    for (guint i = 0; i < dynamic_hf_size; i++) {
      proto_deregister_field(proto_autosar_nm, *(dynamic_hf[i].p_id));
      g_free(dynamic_hf[i].p_id);
    }

    proto_add_deregistered_data(dynamic_hf);
    dynamic_hf = NULL;
    dynamic_hf_size = 0;
  }

  if (user_data_fields_hash_hf) {
    g_hash_table_destroy(user_data_fields_hash_hf);
    user_data_fields_hash_hf = NULL;
  }
}

static void
user_data_post_update_cb(void)
{
  gint* hf_id;
  gint *ett_id;
  gchar* tmp = NULL;
  guint64* key = NULL;

  static gint ett_dummy = -1;
  static gint *ett[] = {
    &ett_dummy,
  };

  deregister_user_data();

  // we cannot unregister ETTs, so we should try to limit the damage of an update
  if (num_user_data_fields) {
    user_data_fields_hash_hf = g_hash_table_new_full(g_str_hash, g_str_equal, g_free, NULL);
    dynamic_hf = g_new0(hf_register_info, num_user_data_fields);
    dynamic_hf_size = num_user_data_fields;

    if (user_data_fields_hash_ett == NULL) {
      user_data_fields_hash_ett = wmem_map_new(wmem_epan_scope(), g_int64_hash, g_int64_equal);
    }

    for (guint i = 0; i < dynamic_hf_size; i++) {
      hf_id = g_new(gint, 1);
      *hf_id = -1;

      dynamic_hf[i].p_id = hf_id;
      dynamic_hf[i].hfinfo.strings = NULL;
      dynamic_hf[i].hfinfo.bitmask = user_data_fields[i].udf_mask;
      dynamic_hf[i].hfinfo.same_name_next = NULL;
      dynamic_hf[i].hfinfo.same_name_prev_id = -1;

      if (user_data_fields[i].udf_mask == 0 || user_data_fields[i].udf_length <= 0 || user_data_fields[i].udf_length>4) {
        dynamic_hf[i].hfinfo.name = g_strdup(user_data_fields[i].udf_name);
        dynamic_hf[i].hfinfo.abbrev = g_strdup_printf("nm.user_data.%s", user_data_fields[i].udf_name);
        dynamic_hf[i].hfinfo.type = FT_BYTES;
        dynamic_hf[i].hfinfo.display = BASE_NONE;
        dynamic_hf[i].hfinfo.bitmask = 0;
        dynamic_hf[i].hfinfo.blurb = g_strdup(user_data_fields[i].udf_desc);
      }
      else {
        dynamic_hf[i].hfinfo.name = g_strdup(user_data_fields[i].udf_value_desc);
        dynamic_hf[i].hfinfo.abbrev = g_strdup_printf("nm.user_data.%s.%s", user_data_fields[i].udf_name, user_data_fields[i].udf_value_desc);
        dynamic_hf[i].hfinfo.type = FT_BOOLEAN;
        dynamic_hf[i].hfinfo.display = 8 * (user_data_fields[i].udf_length);
        // dynamic_hf[i].hfinfo.bitmask = 0;
        dynamic_hf[i].hfinfo.blurb = g_strdup(user_data_fields[i].udf_value_desc);
      }

      tmp = calc_hf_key(user_data_fields[i]);
      g_hash_table_insert(user_data_fields_hash_hf, tmp, hf_id);

      // generate etts for new fields only
      if (get_ett_for_user_data(user_data_fields[i].udf_offset, user_data_fields[i].udf_length) == NULL) {
        ett_dummy = -1;
        proto_register_subtree_array(ett, array_length(ett));

        ett_id = wmem_new(wmem_epan_scope(), gint);
        *ett_id = ett_dummy;

        key = wmem_new(wmem_epan_scope(), guint64);
        *key = calc_ett_key(user_data_fields[i].udf_offset, user_data_fields[i].udf_length);

        wmem_map_insert(user_data_fields_hash_ett, key, ett_id);
      }
    }

    proto_register_field_array(proto_autosar_nm, dynamic_hf, dynamic_hf_size);
  }
}

static void
user_data_reset_cb(void)
{
  deregister_user_data();
}


/**********************************
 ****** The dissector itself ******
 **********************************/

static int
dissect_autosar_nm(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data)
{
  wmem_list_frame_t *prev_layer;
  proto_item *ti;
  proto_tree *autosar_nm_tree;
  proto_tree *autosar_nm_subtree = NULL;
  gchar* tmp = NULL;
  guint32 offset = 0;
  guint32 length = 0;
  guint32 msg_length = 0;
  guint32 ctrl_bit_vector;
  guint32 src_node_id = 0;
  guint i = 0;
  int* hf_id;
  int ett_id;

  // AUTOSAR says default is Source Node ID first and Ctrl Bit Vector second but this can be also swapped
  guint32 offset_ctrl_bit_vector = 1;
  guint32 offset_src_node_id = 0;

  static int * const control_bits_legacy[] = {
    &hf_autosar_nm_control_bit_vector_repeat_msg_req,
    &hf_autosar_nm_control_bit_vector_nm_coord_id,
    &hf_autosar_nm_control_bit_vector_nm_coord_sleep,
    &hf_autosar_nm_control_bit_vector_active_wakeup,
    &hf_autosar_nm_control_bit_vector_reserved5,
    &hf_autosar_nm_control_bit_vector_pni,
    &hf_autosar_nm_control_bit_vector_reserved7,
    NULL
  };

  static int * const control_bits[] = {
    &hf_autosar_nm_control_bit_vector_repeat_msg_req,
    &hf_autosar_nm_control_bit_vector_reserved1,
    &hf_autosar_nm_control_bit_vector_reserved2,
    &hf_autosar_nm_control_bit_vector_nm_coord_sleep,
    &hf_autosar_nm_control_bit_vector_active_wakeup,
    &hf_autosar_nm_control_bit_vector_reserved5,
    &hf_autosar_nm_control_bit_vector_pni,
    &hf_autosar_nm_control_bit_vector_reserved7,
    NULL
  };

  prev_layer = wmem_list_frame_prev(wmem_list_tail(pinfo->layers));

  if (prev_layer) {
    const int prev_proto = GPOINTER_TO_INT(wmem_list_frame_data(prev_layer));

    if (prev_proto != proto_udp) {
      const struct can_info *can_info       = (struct can_info *)data;
      const gboolean          is_can_frame =
        (prev_proto == proto_can) ||
        (prev_proto == proto_canfd) ||
        (wmem_list_find(pinfo->layers, GINT_TO_POINTER(proto_caneth)) != NULL);

      if (!is_can_frame) {
        /* Only UDP and CAN transports are supported. */
        return 0;
      }

      DISSECTOR_ASSERT(can_info);

      if (can_info->id & (CAN_ERR_FLAG | CAN_RTR_FLAG)) {
        /* Error and RTR frames are not for us. */
        return 0;
      }

      if ((can_info->id & g_autosar_nm_can_id_mask) != (g_autosar_nm_can_id & g_autosar_nm_can_id_mask)) {
        /* Id doesn't match. The frame is not for us. */
        return 0;
      }
    }
  }

  if (g_autosar_nm_swap_first_fields == TRUE) {
    offset_ctrl_bit_vector = 0;
    offset_src_node_id = 1;
  }

  col_set_str(pinfo->cinfo, COL_PROTOCOL, "AUTOSAR NM");
  col_clear(pinfo->cinfo, COL_INFO);

  msg_length = tvb_reported_length(tvb);

  ti = proto_tree_add_item(tree, proto_autosar_nm, tvb, 0, -1, ENC_NA);
  autosar_nm_tree = proto_item_add_subtree(ti, ett_autosar_nm);

  if (g_autosar_nm_swap_first_fields == FALSE) {
    proto_tree_add_item_ret_uint(autosar_nm_tree, hf_autosar_nm_source_node_identifier, tvb, offset_src_node_id, 1, ENC_BIG_ENDIAN, &src_node_id);
  }

  proto_tree_add_bitmask(autosar_nm_tree, tvb, offset_ctrl_bit_vector, hf_autosar_nm_control_bit_vector, ett_autosar_nm_cbv,
                         (g_autosar_nm_interpret_coord_id ? control_bits_legacy : control_bits), ENC_BIG_ENDIAN);
  ctrl_bit_vector = tvb_get_guint8(tvb, offset_ctrl_bit_vector);

  if (g_autosar_nm_swap_first_fields == TRUE) {
    proto_tree_add_item_ret_uint(autosar_nm_tree, hf_autosar_nm_source_node_identifier, tvb, offset_src_node_id, 1, ENC_BIG_ENDIAN, &src_node_id);
  }

  col_add_fstr(pinfo->cinfo, COL_INFO, "Control Bit Vector: 0x%02x, Source Node: 0x%02x", ctrl_bit_vector, src_node_id);
  proto_item_append_text(ti, ", Control Bit Vector: 0x%02x, Source Node: %i", ctrl_bit_vector, src_node_id);

  offset = 2;

  /* now we need to process the user defined fields ... */
  ti = proto_tree_add_item(autosar_nm_tree, hf_autosar_nm_user_data, tvb, offset, msg_length - offset, ENC_NA);
  autosar_nm_tree = proto_item_add_subtree(ti, ett_autosar_nm_user_data);

  for (i = 0; i < num_user_data_fields; i++) {
    tmp = calc_hf_key(user_data_fields[i]);
    hf_id = get_hf_for_user_data(tmp);

    offset = user_data_fields[i].udf_offset;
    length = user_data_fields[i].udf_length;
    ett_id = *(get_ett_for_user_data(offset, length));

    if (hf_id && msg_length >= length + offset) {
      if (user_data_fields[i].udf_mask == 0) {
        ti = proto_tree_add_item(autosar_nm_tree, *hf_id, tvb, offset, length, ENC_BIG_ENDIAN);
        autosar_nm_subtree = proto_item_add_subtree(ti, ett_id);
      }
      else {
        if (autosar_nm_subtree != NULL) {
          proto_tree_add_item(autosar_nm_subtree, *hf_id, tvb, offset, length, ENC_BIG_ENDIAN);
        }
      }
    }
    else {
      /* should we warn? */
    }

    g_free(tmp);
  }

  return 8;
}

void proto_register_autosar_nm(void)
{
  module_t *autosar_nm_module;
  uat_t* user_data_fields_uat;

  static hf_register_info hf_autosar_nm[] = {
    { &hf_autosar_nm_control_bit_vector,
    { "Control Bit Vector", "autosar-nm.ctrl", FT_UINT8, BASE_HEX, NULL, 0x0, "The Control Bit Vector", HFILL } },
    { &hf_autosar_nm_control_bit_vector_repeat_msg_req,
    { "Repeat Message Request", "autosar-nm.ctrl.repeat_msg_req", FT_BOOLEAN, 8, TFS(&tfs_autosar_nm_control_rep_msg_req), 0x01, "The Repeat Message Request Bit", HFILL } },
    { &hf_autosar_nm_control_bit_vector_reserved1,
    { "Reserved Bit 1", "autosar-nm.ctrl.reserved1", FT_UINT8, BASE_DEC, NULL, 0x02, "The Reserved Bit 1", HFILL } },
    { &hf_autosar_nm_control_bit_vector_reserved2,
    { "Reserved Bit 2", "autosar-nm.ctrl.reserved2", FT_UINT8, BASE_DEC, NULL, 0x04, "The Reserved Bit 2", HFILL } },
    { &hf_autosar_nm_control_bit_vector_nm_coord_id,
    { "NM Coordinator Id", "autosar-nm.ctrl.nm_coord_id", FT_UINT8, BASE_DEC, NULL, 0x06, "The NM Coordinator Identifier", HFILL } },
    { &hf_autosar_nm_control_bit_vector_nm_coord_sleep,
    { "NM Coordinator Sleep", "autosar-nm.ctrl.nm_coord_sleep", FT_BOOLEAN, 8, TFS(&tfs_autosar_nm_control_sleep_bit), 0x08, "NM Coordinator Sleep Bit", HFILL } },
    { &hf_autosar_nm_control_bit_vector_active_wakeup,
    { "Active Wakeup", "autosar-nm.ctrl.active_wakeup", FT_BOOLEAN, 8, TFS(&tfs_autosar_nm_control_active_wakeup), 0x10, "Active Wakeup Bit", HFILL } },
    { &hf_autosar_nm_control_bit_vector_reserved5,
    { "Reserved Bit 5", "autosar-nm.ctrl.reserved5", FT_UINT8, BASE_DEC, NULL, 0x20, "The Reserved Bit 5", HFILL } },
    { &hf_autosar_nm_control_bit_vector_pni,
    { "Partial Network Information", "autosar-nm.ctrl.pni", FT_BOOLEAN, 8, TFS(&tfs_autosar_nm_control_pni), 0x40, "Partial Network Information Bit", HFILL } },
    { &hf_autosar_nm_control_bit_vector_reserved7,
    { "Reserved Bit 7", "autosar-nm.ctrl.reserved7", FT_UINT8, BASE_DEC, NULL, 0x80, "The Reserved Bit 7", HFILL } },

    { &hf_autosar_nm_source_node_identifier,
    { "Source Node Identifier", "autosar-nm.src", FT_UINT8, BASE_DEC, NULL, 0x0, "The identification of the sending node", HFILL } },

    { &hf_autosar_nm_user_data,
    { "User Data", "autosar-nm.user_data", FT_BYTES, BASE_NONE, NULL, 0x0, "The User Data", HFILL } },
  };

  static gint *ett[] = {
    &ett_autosar_nm,
    &ett_autosar_nm_cbv,
    &ett_autosar_nm_user_data,
  };

  /* UAT for user_data fields */
  static uat_field_t user_data_uat_fields[] = {
    UAT_FLD_CSTRING(user_data_fields, udf_name, "User data name", "Name of user data field"),
    UAT_FLD_CSTRING(user_data_fields, udf_desc, "User data desc", "Description of user data field"),
    UAT_FLD_DEC(user_data_fields, udf_offset, "User data offset", "Offset of the user data field in the AUTOSAR-NM message (uint32)"),
    UAT_FLD_DEC(user_data_fields, udf_length, "User data length", "Length of the user data field in the AUTOSAR-NM message (uint32)"),
    UAT_FLD_DEC(user_data_fields, udf_mask, "User data mask", "Relevant bits of the user data field in the AUTOSAR-NM message (uint32)"),
    UAT_FLD_CSTRING(user_data_fields, udf_value_desc, "User data value", "Description what the masked bits mean"),
    UAT_END_FIELDS
  };

  /* Register the protocol name and description */
  proto_autosar_nm = proto_register_protocol("AUTOSAR Network Management", "AUTOSAR NM", "autosar-nm");
  proto_register_field_array(proto_autosar_nm, hf_autosar_nm, array_length(hf_autosar_nm));
  proto_register_alias(proto_autosar_nm, "nm");
  proto_register_subtree_array(ett, array_length(ett));

  /* Register configuration options */
  autosar_nm_module = prefs_register_protocol(proto_autosar_nm, NULL);

  prefs_register_bool_preference(autosar_nm_module, "swap_ctrl_and_src",
    "Swap Source Node Identifier and Control Bit Vector",
    "In the standard the Source Node Identifier is the first byte "
    "and the Control Bit Vector is the second byte. "
    "Using this parameter they can be swapped",
    &g_autosar_nm_swap_first_fields);

  prefs_register_bool_preference(autosar_nm_module, "interpret_coord_id",
    "Interpret bits 1 and 2 of Control Bit Vector as 'NM Coordinator Id'",
    "Revision 4.3.1 of the specification doesn't have 'NM Coordinator Id' in Control Bit Vector. "
    "Using this parameter one may switch to a mode compatible with revision 3.2 of the specification.",
    &g_autosar_nm_interpret_coord_id);

  prefs_register_uint_preference(
    autosar_nm_module, "can_id",
    "CAN id",
    "Identifier that is used to filter packets that should be dissected. "
    "Set bit 31 when defining an extended id. "
    "(works with the mask defined below)",
    16, &g_autosar_nm_can_id);

  prefs_register_uint_preference(
    autosar_nm_module, "can_id_mask",
    "CAN id mask",
    "Mask applied to CAN identifiers when decoding whether a packet should dissected. "
    "Use 0xFFFFFFFF mask to require exact match.",
    16, &g_autosar_nm_can_id_mask);

  /* UAT */
  user_data_fields_uat = uat_new("NM User Data Fields Table",
    sizeof(user_data_field_t),       /* record size            */
    "NM_user_data_fields",        /* filename              */
    TRUE,                             /* from_profile          */
    &user_data_fields,                /* data_ptr              */
    &num_user_data_fields,            /* numitems_ptr          */
    UAT_AFFECTS_DISSECTION | UAT_AFFECTS_FIELDS,  /* specifies named fields, so affects dissection and the set of named fields */
    NULL,                             /* help                  */
    user_data_fields_copy_cb,         /* copy callback         */
    user_data_fields_update_cb,       /* update callback       */
    user_data_fields_free_cb,         /* free callback         */
    user_data_post_update_cb,         /* post update callback  */
    user_data_reset_cb,               /* reset callback        */
    user_data_uat_fields);            /* UAT field definitions */

  prefs_register_uat_preference(autosar_nm_module, "autosar_nm_user_data_fields", "User Data Field Configuration",
    "A table to define user defined fields in the NM payload",
    user_data_fields_uat);
}

void proto_reg_handoff_autosar_nm(void)
{
  dissector_handle_t nm_handle = create_dissector_handle(dissect_autosar_nm, proto_autosar_nm);

  dissector_add_for_decode_as_with_preference("udp.port", nm_handle);
  dissector_add_for_decode_as("can.subdissector", nm_handle);

  proto_can    = proto_get_id_by_filter_name("can");
  proto_canfd  = proto_get_id_by_filter_name("canfd");
  proto_caneth = proto_get_id_by_filter_name("caneth");
  proto_udp    = proto_get_id_by_filter_name("udp");
}

/*
 * Editor modelines
 *
 * Local Variables:
 * c-basic-offset: 2
 * tab-width: 8
 * indent-tabs-mode: nil
 * End:
 *
 * ex: set shiftwidth=2 tabstop=8 expandtab:
 * :indentSize=2:tabSize=8:noTabs=true:
 */