/* pcap-common.c * Code common to libpcap and pcap-NG file formats * * $Id$ * * Wiretap Library * Copyright (c) 1998 by Gilbert Ramirez * * File format support for pcap-ng file format * Copyright (c) 2007 by Ulf Lamping * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include "wtap-int.h" #include "file_wrappers.h" #include "erf.h" #include "pcap-encap.h" #include "pcap-common.h" /* * Map link-layer types (LINKTYPE_ values) to Wiretap encapsulations. */ /* * Either LBL NRG wasn't an adequate central registry (e.g., because of * the slow rate of releases from them), or nobody bothered using them * as a central registry, as many different groups have patched libpcap * (and BPF, on the BSDs) to add new encapsulation types, and have ended * up using the same DLT_ values for different encapsulation types. * * For those numerical encapsulation type values that everybody uses for * the same encapsulation type (which inclues those that some platforms * specify different DLT_ names for but don't appear to use), we map * those values to the appropriate Wiretap values. * * For those numerical encapsulation type values that different libpcap * variants use for different encapsulation types, we check what * defined to determine how to interpret them, so that we * interpret them the way the libpcap with which we're building * Wireshark/Wiretap interprets them (which, if it doesn't support * them at all, means we don't support them either - any capture files * using them are foreign, and we don't hazard a guess as to which * platform they came from; we could, I guess, choose the most likely * platform). * * Note: if you need a new encapsulation type for libpcap files, do * *N*O*T* use *ANY* of the values listed here! I.e., do *NOT* * add a new encapsulation type by changing an existing entry; * leave the existing entries alone. * * Instead, send mail to tcpdump-workers@lists.tcpdump.org, asking for * a new DLT_ value, and specifying the purpose of the new value. When * you get the new DLT_ value, use that numerical value in the "dlt_value" * field of "pcap_to_wtap_map[]". */ static const struct { int dlt_value; int wtap_encap_value; } pcap_to_wtap_map[] = { /* * These are the values that are almost certainly the same * in all libpcaps (I've yet to find one where the values * in question are used for some purpose other than the * one below, but...), and that Wiretap and Wireshark * currently support. */ { 0, WTAP_ENCAP_NULL }, /* null encapsulation */ { 1, WTAP_ENCAP_ETHERNET }, { 6, WTAP_ENCAP_TOKEN_RING }, /* IEEE 802 Networks - assume token ring */ { 7, WTAP_ENCAP_ARCNET }, { 8, WTAP_ENCAP_SLIP }, { 9, WTAP_ENCAP_PPP }, #ifdef BIT_SWAPPED_MAC_ADDRS { 10, WTAP_ENCAP_FDDI_BITSWAPPED }, #else { 10, WTAP_ENCAP_FDDI }, #endif { 32, WTAP_ENCAP_REDBACK }, /* * 50 is DLT_PPP_SERIAL in NetBSD; it appears that DLT_PPP * on BSD (at least according to standard tcpdump) has, as * the first octet, an indication of whether the packet was * transmitted or received (rather than having the standard * PPP address value of 0xff), but that DLT_PPP_SERIAL puts * a real live PPP header there, or perhaps a Cisco PPP header * as per section 4.3.1 of RFC 1547 (implementations of this * exist in various BSDs in "sys/net/if_spppsubr.c", and * I think also exist either in standard Linux or in * various Linux patches; the implementations show how to handle * Cisco keepalive packets). * * However, I don't see any obvious place in FreeBSD "if_ppp.c" * where anything other than the standard PPP header would be * passed up. I see some stuff that sets the first octet * to 0 for incoming and 1 for outgoing packets before applying * a BPF filter to see whether to drop packets whose protocol * field has the 0x8000 bit set, i.e. network control protocols - * those are handed up to userland - but that code puts the * address field back before passing the packet up. * * I also don't see anything immediately obvious that munges * the address field for sync PPP, either. * * Wireshark currently assumes that if the first octet of a * PPP frame is 0xFF, it's the address field and is followed * by a control field and a 2-byte protocol, otherwise the * address and control fields are absent and the frame begins * with a protocol field. If we ever see a BSD/OS PPP * capture, we'll have to handle it differently, and we may * have to handle standard BSD captures differently if, in fact, * they don't have 0xff 0x03 as the first two bytes - but, as per * the two paragraphs preceding this, it's not clear that * the address field *is* munged into an incoming/outgoing * field when the packet is handed to the BPF device. * * For now, we just map DLT_PPP_SERIAL to WTAP_ENCAP_PPP, as * we treat WTAP_ENCAP_PPP packets as if those beginning with * 0xff have the standard RFC 1662 "PPP in HDLC-like Framing" * 0xff 0x03 address/control header, and DLT_PPP_SERIAL frames * appear to contain that unless they're Cisco frames (if we * ever see a capture with them, we'd need to implement the * RFC 1547 stuff, and the keepalive protocol stuff). * * We may have to distinguish between "PPP where if it doesn't * begin with 0xff there's no HDLC encapsulation and the frame * begins with the protocol field" (which is how we handle * WTAP_ENCAP_PPP now) and "PPP where there's either HDLC * encapsulation or Cisco PPP" (which is what DLT_PPP_SERIAL * is) at some point. * * XXX - NetBSD has DLT_HDLC, which appears to be used for * Cisco HDLC. Ideally, they should use DLT_PPP_SERIAL * only for real live HDLC-encapsulated PPP, not for Cisco * HDLC. */ { 50, WTAP_ENCAP_PPP }, /* * Apparently used by the Axent Raptor firewall (now Symantec * Enterprise Firewall). * Thanks, Axent, for not reserving that type with tcpdump.org * and not telling anybody about it. */ { 99, WTAP_ENCAP_SYMANTEC }, /* * These are the values that libpcap 0.5 and later use in * capture file headers, in an attempt to work around the * confusion decried above, and that Wiretap and Wireshark * currently support. */ { 100, WTAP_ENCAP_ATM_RFC1483 }, { 101, WTAP_ENCAP_RAW_IP }, #if 0 /* * More values used by libpcap 0.5 as DLT_ values and used by the * current CVS version of libpcap in capture file headers. * They are not yet handled in Wireshark. * If we get a capture that contains them, we'll implement them. */ { 102, WTAP_ENCAP_SLIP_BSDOS }, { 103, WTAP_ENCAP_PPP_BSDOS }, #endif /* * These ones are handled in Wireshark, though. */ { 104, WTAP_ENCAP_CHDLC }, /* Cisco HDLC */ { 105, WTAP_ENCAP_IEEE_802_11 }, /* IEEE 802.11 */ { 106, WTAP_ENCAP_LINUX_ATM_CLIP }, { 107, WTAP_ENCAP_FRELAY }, /* Frame Relay */ { 108, WTAP_ENCAP_NULL }, /* OpenBSD loopback */ { 109, WTAP_ENCAP_ENC }, /* OpenBSD IPSEC enc */ #if 0 { 110, WTAP_ENCAP_LANE_802_3 },/* ATM LANE 802.3 */ { 111, WTAP_ENCAP_HIPPI }, /* NetBSD HIPPI */ #endif { 112, WTAP_ENCAP_CHDLC }, /* NetBSD HDLC framing */ /* * Linux "cooked mode" captures, used by the current CVS version * of libpcap * OR * it could be a packet in Cisco's ERSPAN encapsulation which uses * this number as well (why can't people stick to protocols when it * comes to allocating/using DLT types). */ { 113, WTAP_ENCAP_SLL }, /* Linux cooked capture */ { 114, WTAP_ENCAP_LOCALTALK }, /* Localtalk */ /* * The tcpdump.org version of libpcap uses 117, rather than 17, * for OpenBSD packet filter logging, so as to avoid conflicting * with DLT_LANE8023 in SuSE 6.3 libpcap. */ { 117, WTAP_ENCAP_PFLOG }, { 118, WTAP_ENCAP_CISCO_IOS }, { 119, WTAP_ENCAP_PRISM_HEADER }, /* Prism monitor mode hdr */ { 121, WTAP_ENCAP_HHDLC }, /* HiPath HDLC */ { 122, WTAP_ENCAP_IP_OVER_FC }, /* RFC 2625 IP-over-FC */ { 123, WTAP_ENCAP_ATM_PDUS }, /* SunATM */ { 127, WTAP_ENCAP_IEEE_802_11_WLAN_RADIOTAP }, /* 802.11 plus radiotap WLAN header */ { 128, WTAP_ENCAP_TZSP }, /* Tazmen Sniffer Protocol */ { 129, WTAP_ENCAP_ARCNET_LINUX }, { 130, WTAP_ENCAP_JUNIPER_MLPPP }, /* Juniper MLPPP on ML-, LS-, AS- PICs */ { 131, WTAP_ENCAP_JUNIPER_MLFR }, /* Juniper MLFR (FRF.15) on ML-, LS-, AS- PICs */ { 133, WTAP_ENCAP_JUNIPER_GGSN}, /* * Values 132-134, 136 not listed here are reserved for use * in Juniper hardware. */ { 135, WTAP_ENCAP_JUNIPER_ATM2 }, /* various encapsulations captured on the ATM2 PIC */ { 137, WTAP_ENCAP_JUNIPER_ATM1 }, /* various encapsulations captured on the ATM1 PIC */ { 138, WTAP_ENCAP_APPLE_IP_OVER_IEEE1394 }, /* Apple IP-over-IEEE 1394 */ { 139, WTAP_ENCAP_MTP2_WITH_PHDR }, { 140, WTAP_ENCAP_MTP2 }, { 141, WTAP_ENCAP_MTP3 }, { 142, WTAP_ENCAP_SCCP }, { 143, WTAP_ENCAP_DOCSIS }, { 144, WTAP_ENCAP_IRDA }, /* IrDA capture */ /* Reserved for private use. */ { 147, WTAP_ENCAP_USER0 }, { 148, WTAP_ENCAP_USER1 }, { 149, WTAP_ENCAP_USER2 }, { 150, WTAP_ENCAP_USER3 }, { 151, WTAP_ENCAP_USER4 }, { 152, WTAP_ENCAP_USER5 }, { 153, WTAP_ENCAP_USER6 }, { 154, WTAP_ENCAP_USER7 }, { 155, WTAP_ENCAP_USER8 }, { 156, WTAP_ENCAP_USER9 }, { 157, WTAP_ENCAP_USER10 }, { 158, WTAP_ENCAP_USER11 }, { 159, WTAP_ENCAP_USER12 }, { 160, WTAP_ENCAP_USER13 }, { 161, WTAP_ENCAP_USER14 }, { 162, WTAP_ENCAP_USER15 }, { 163, WTAP_ENCAP_IEEE_802_11_WLAN_AVS }, /* 802.11 plus AVS WLAN header */ /* * 164 is reserved for Juniper-private chassis-internal * meta-information such as QoS profiles, etc.. */ { 165, WTAP_ENCAP_BACNET_MS_TP }, /* * 166 is reserved for a PPP variant in which the first byte * of the 0xff03 header, the 0xff, is replaced by a direction * byte. I don't know whether any captures look like that, * but it is used for some Linux IP filtering (ipfilter?). */ /* Ethernet PPPoE frames captured on a service PIC */ { 167, WTAP_ENCAP_JUNIPER_PPPOE }, /* * 168 is reserved for more Juniper private-chassis- * internal meta-information. */ { 169, WTAP_ENCAP_GPRS_LLC }, /* * 170 and 171 are reserved for ITU-T G.7041/Y.1303 Generic * Framing Procedure. */ /* Registered by Gcom, Inc. */ { 172, WTAP_ENCAP_GCOM_TIE1 }, { 173, WTAP_ENCAP_GCOM_SERIAL }, { 177, WTAP_ENCAP_LINUX_LAPD }, /* Ethernet frames prepended with meta-information */ { 178, WTAP_ENCAP_JUNIPER_ETHER }, /* PPP frames prepended with meta-information */ { 179, WTAP_ENCAP_JUNIPER_PPP }, /* Frame-Relay frames prepended with meta-information */ { 180, WTAP_ENCAP_JUNIPER_FRELAY }, /* C-HDLC frames prepended with meta-information */ { 181, WTAP_ENCAP_JUNIPER_CHDLC }, /* VOIP Frames prepended with meta-information */ { 183, WTAP_ENCAP_JUNIPER_VP }, /* raw USB packets */ { 186, WTAP_ENCAP_USB }, /* Bluetooth HCI UART transport (part H:4) frames, like hcidump */ { 187, WTAP_ENCAP_BLUETOOTH_H4 }, /* IEEE 802.16 MAC Common Part Sublayer */ { 188, WTAP_ENCAP_IEEE802_16_MAC_CPS }, /* USB packets with Linux-specified header */ { 189, WTAP_ENCAP_USB_LINUX }, /* CAN 2.0b frame */ { 190, WTAP_ENCAP_CAN20B }, /* Per-Packet Information header */ { 192, WTAP_ENCAP_PPI }, /* IEEE 802.15.4 Wireless PAN */ { 195, WTAP_ENCAP_IEEE802_15_4 }, /* SITA File Encapsulation */ { 196, WTAP_ENCAP_SITA }, /* Endace Record File Encapsulation */ { 197, WTAP_ENCAP_ERF }, /* IPMB */ { 199, WTAP_ENCAP_IPMB }, /* Bluetooth HCI UART transport (part H:4) frames, like hcidump */ { 201, WTAP_ENCAP_BLUETOOTH_H4_WITH_PHDR }, /* LAPD frame */ { 203, WTAP_ENCAP_LAPD }, /* PPP with pseudoheader */ { 204, WTAP_ENCAP_PPP_WITH_PHDR }, /* IPMB/I2C */ { 209, WTAP_ENCAP_I2C }, /* FlexRay frame */ { 210, WTAP_ENCAP_FLEXRAY }, /* MOST frame */ { 211, WTAP_ENCAP_MOST }, /* LIN frame */ { 212, WTAP_ENCAP_LIN }, /* X2E Xoraya serial frame */ { 213, WTAP_ENCAP_X2E_SERIAL }, /* X2E Xoraya frame */ { 214, WTAP_ENCAP_X2E_XORAYA }, /* IEEE 802.15.4 Wireless PAN non-ASK PHY */ { 215, WTAP_ENCAP_IEEE802_15_4_NONASK_PHY }, /* USB packets with padded Linux-specified header */ { 220, WTAP_ENCAP_USB_LINUX_MMAPPED }, /* Fibre Channel FC-2 frame */ { 224, WTAP_ENCAP_FIBRE_CHANNEL_FC2 }, /* Fibre Channel FC-2 frame with Delimiter */ { 225, WTAP_ENCAP_FIBRE_CHANNEL_FC2_WITH_FRAME_DELIMS }, /* Solaris IPNET */ { 226, WTAP_ENCAP_IPNET }, /* SocketCAN frame */ { 227, WTAP_ENCAP_SOCKETCAN }, /* Raw IPv4 */ { 228, WTAP_ENCAP_RAW_IP4 }, /* Raw IPv6 */ { 229, WTAP_ENCAP_RAW_IP6 }, /* IEEE 802.15.4 Wireless PAN no fcs */ { 230, WTAP_ENCAP_IEEE802_15_4_NOFCS }, /* DVB-CI (Common Interface) */ { 235, WTAP_ENCAP_DVBCI }, /* MUX27010 */ { 236, WTAP_ENCAP_MUX27010 }, /* * To repeat: * * If you need a new encapsulation type for libpcap files, do * *N*O*T* use *ANY* of the values listed here! I.e., do *NOT* * add a new encapsulation type by changing an existing entry; * leave the existing entries alone. * * Instead, send mail to tcpdump-workers@lists.tcpdump.org, asking * for a new DLT_ value, and specifying the purpose of the new value. * When you get the new DLT_ value, use that numerical value in * the "dlt_value" field of "pcap_to_wtap_map[]". */ /* * The following are entries for libpcap type values that have * different meanings on different OSes. * * We put these *after* the entries for the platform-independent * libpcap type values for those Wiretap encapsulation types, so * that Wireshark chooses the platform-independent libpcap type * value for those encapsulatioin types, not the platform-dependent * one. */ /* * 11 is DLT_ATM_RFC1483 on most platforms; the only libpcaps I've * seen that define anything other than DLT_ATM_RFC1483 as 11 are * the BSD/OS one, which defines DLT_FR as 11, and libpcap 0.5, * which define it as 100, mapping the kernel's value to 100, in * an attempt to hide the different values used on different * platforms. * * If this is a platform where DLT_FR is defined as 11, we * don't handle 11 at all; otherwise, we handle it as * DLT_ATM_RFC1483 (this means we'd misinterpret Frame Relay * captures from BSD/OS if running on platforms other than BSD/OS, * but * * 1) we don't yet support DLT_FR * * and * * 2) nothing short of a heuristic would let us interpret * them correctly). */ #if defined(DLT_FR) && (DLT_FR == 11) { 11, WTAP_ENCAP_FRELAY }, #else { 11, WTAP_ENCAP_ATM_RFC1483 }, #endif /* * 12 is DLT_RAW on most platforms, but it's DLT_C_HDLC on * BSD/OS, and DLT_LOOP on OpenBSD. * * We don't yet handle DLT_C_HDLC, but we can handle DLT_LOOP * (it's just like DLT_NULL, only with the AF_ value in network * rather than host byte order - Wireshark figures out the * byte order from the data, so we don't care what byte order * it's in), so if DLT_LOOP is defined as 12, interpret 12 * as WTAP_ENCAP_NULL, otherwise, unless DLT_C_HDLC is defined * as 12, interpret it as WTAP_ENCAP_RAW_IP. */ #if defined(DLT_LOOP) && (DLT_LOOP == 12) { 12, WTAP_ENCAP_NULL }, #elif defined(DLT_C_HDLC) && (DLT_C_HDLC == 12) /* * Put entry for Cisco HDLC here. * XXX - is this just WTAP_ENCAP_CHDLC, i.e. does the frame * start with a 4-byte Cisco HDLC header? */ #else { 12, WTAP_ENCAP_RAW_IP }, #endif /* * 13 is DLT_SLIP_BSDOS on FreeBSD and NetBSD, but those OSes * don't actually generate it. I infer that BSD/OS translates * DLT_SLIP from the kernel BPF code to DLT_SLIP_BSDOS in * libpcap, as the BSD/OS link-layer header is different; * however, in BSD/OS, DLT_SLIP_BSDOS is 15. * * From this, I infer that there's no point in handling 13 * as DLT_SLIP_BSDOS. * * 13 is DLT_ATM_RFC1483 on BSD/OS. * * 13 is DLT_ENC in OpenBSD, which is, I suspect, some kind * of decrypted IPsec traffic. * * We treat 13 as WTAP_ENCAP_ENC on all systems except those * that define DLT_ATM_RFC1483 as 13 - presumably only * BSD/OS does so - so that, on BSD/OS systems, we still * treate 13 as WTAP_ENCAP_ATM_RFC1483, but, on all other * systems, we can read OpenBSD DLT_ENC captures. */ #if defined(DLT_ATM_RFC1483) && (DLT_ATM_RFC1483 == 13) { 13, WTAP_ENCAP_ATM_RFC1483 }, #else { 13, WTAP_ENCAP_ENC }, #endif /* * 14 is DLT_PPP_BSDOS on FreeBSD and NetBSD, but those OSes * don't actually generate it. I infer that BSD/OS translates * DLT_PPP from the kernel BPF code to DLT_PPP_BSDOS in * libpcap, as the BSD/OS link-layer header is different; * however, in BSD/OS, DLT_PPP_BSDOS is 16. * * From this, I infer that there's no point in handling 14 * as DLT_PPP_BSDOS. * * 14 is DLT_RAW on BSD/OS and OpenBSD. */ { 14, WTAP_ENCAP_RAW_IP }, /* * 15 is: * * DLT_SLIP_BSDOS on BSD/OS; * * DLT_HIPPI on NetBSD; * * DLT_LANE8023 with Alexey Kuznetzov's patches for * Linux libpcap; * * DLT_I4L_RAWIP with the ISDN4Linux patches for libpcap * (and on SuSE 6.3); * * but we don't currently handle any of those. */ /* * 16 is: * * DLT_PPP_BSDOS on BSD/OS; * * DLT_HDLC on NetBSD (Cisco HDLC); * * DLT_CIP with Alexey Kuznetzov's patches for * Linux libpcap - this is WTAP_ENCAP_LINUX_ATM_CLIP; * * DLT_I4L_IP with the ISDN4Linux patches for libpcap * (and on SuSE 6.3). */ #if defined(DLT_CIP) && (DLT_CIP == 16) { 16, WTAP_ENCAP_LINUX_ATM_CLIP }, #endif #if defined(DLT_HDLC) && (DLT_HDLC == 16) { 16, WTAP_ENCAP_CHDLC }, #endif /* * 17 is DLT_LANE8023 in SuSE 6.3 libpcap; we don't currently * handle it. * It is also used as the PF (Packet Filter) logging format beginning * with OpenBSD 3.0; we use 17 for PF logs unless DLT_LANE8023 is * defined with the value 17. */ #if !defined(DLT_LANE8023) || (DLT_LANE8023 != 17) { 17, WTAP_ENCAP_OLD_PFLOG }, #endif /* * 18 is DLT_CIP in SuSE 6.3 libpcap; if it's the same as the * DLT_CIP of 16 that the Alexey Kuznetzov patches for * libpcap/tcpdump define, it's WTAP_ENCAP_LINUX_ATM_CLIP. * I've not found any libpcap that uses it for any other purpose - * hopefully nobody will do so in the future. */ { 18, WTAP_ENCAP_LINUX_ATM_CLIP }, /* * 19 is DLT_ATM_CLIP in the libpcap/tcpdump patches in the * recent versions I've seen of the Linux ATM distribution; * I've not yet found any libpcap that uses it for any other * purpose - hopefully nobody will do so in the future. */ { 19, WTAP_ENCAP_LINUX_ATM_CLIP }, /* * To repeat: * * If you need a new encapsulation type for libpcap files, do * *N*O*T* use *ANY* of the values listed here! I.e., do *NOT* * add a new encapsulation type by changing an existing entry; * leave the existing entries alone. * * Instead, send mail to tcpdump-workers@lists.tcpdump.org, asking * for a new DLT_ value, and specifying the purpose of the new value. * When you get the new DLT_ value, use that numerical value in * the "dlt_value" field of "pcap_to_wtap_map[]". */ }; #define NUM_PCAP_ENCAPS (sizeof pcap_to_wtap_map / sizeof pcap_to_wtap_map[0]) int wtap_pcap_encap_to_wtap_encap(int encap) { unsigned int i; for (i = 0; i < NUM_PCAP_ENCAPS; i++) { if (pcap_to_wtap_map[i].dlt_value == encap) return pcap_to_wtap_map[i].wtap_encap_value; } return WTAP_ENCAP_UNKNOWN; } int wtap_wtap_encap_to_pcap_encap(int encap) { unsigned int i; switch (encap) { case WTAP_ENCAP_FDDI: case WTAP_ENCAP_FDDI_BITSWAPPED: case WTAP_ENCAP_NETTL_FDDI: /* * Special-case WTAP_ENCAP_FDDI and * WTAP_ENCAP_FDDI_BITSWAPPED; both of them get mapped * to DLT_FDDI (even though that may mean that the bit * order in the FDDI MAC addresses is wrong; so it goes * - libpcap format doesn't record the byte order, * so that's not fixable). */ return 10; /* that's DLT_FDDI */ case WTAP_ENCAP_FRELAY_WITH_PHDR: /* * Do the same with Frame Relay. */ return 107; case WTAP_ENCAP_IEEE_802_11_WITH_RADIO: /* * Map this to DLT_IEEE802_11, for now, even though * that means the radio information will be lost. * Once tcpdump support for the BSD radiotap header * is sufficiently widespread, we should probably * use that, instead - although we should probably * ultimately just have WTAP_ENCAP_IEEE_802_11 * as the only Wiretap encapsulation for 802.11, * and have the pseudo-header include a radiotap-style * list of attributes. If we do that, though, we * should probably bypass the regular Wiretap code * when writing out packets during a capture, and just * do the equivalent of a libpcap write (unfortunately, * libpcap doesn't have an "open dump by file descriptor" * function, so we can't just use "pcap_dump()"), so * that we don't spend cycles mapping from libpcap to * Wiretap and then back to libpcap. (There are other * reasons to do that, e.g. to handle AIX libpcap better.) */ return 105; } for (i = 0; i < NUM_PCAP_ENCAPS; i++) { if (pcap_to_wtap_map[i].wtap_encap_value == encap) return pcap_to_wtap_map[i].dlt_value; } return -1; } /* * Various pseudo-headers that appear at the beginning of packet data. * * We represent them as sets of offsets, as they might not be aligned on * an appropriate structure boundary in the buffer, and as that makes them * independent of the way the compiler might align fields. */ /* * The link-layer header on SunATM packets. */ #define SUNATM_FLAGS 0 /* destination and traffic type - 1 byte */ #define SUNATM_VPI 1 /* VPI - 1 byte */ #define SUNATM_VCI 2 /* VCI - 2 bytes */ #define SUNATM_LEN 4 /* length of the header */ /* * The link-layer header on Nokia IPSO ATM packets. */ #define NOKIAATM_FLAGS 0 /* destination - 1 byte */ #define NOKIAATM_VPI 1 /* VPI - 1 byte */ #define NOKIAATM_VCI 2 /* VCI - 2 bytes */ #define NOKIAATM_LEN 4 /* length of the header */ /* * The fake link-layer header of IrDA packets as introduced by Jean Tourrilhes * to libpcap. */ #define IRDA_SLL_PKTTYPE_OFFSET 0 /* packet type - 2 bytes */ /* 12 unused bytes */ #define IRDA_SLL_PROTOCOL_OFFSET 14 /* protocol, should be ETH_P_LAPD - 2 bytes */ #define IRDA_SLL_LEN 16 /* length of the header */ /* * A header containing additional MTP information. */ #define MTP2_SENT_OFFSET 0 /* 1 byte */ #define MTP2_ANNEX_A_USED_OFFSET 1 /* 1 byte */ #define MTP2_LINK_NUMBER_OFFSET 2 /* 2 bytes */ #define MTP2_HDR_LEN 4 /* length of the header */ /* * A header containing additional SITA WAN information. */ #define SITA_FLAGS_OFFSET 0 /* 1 byte */ #define SITA_SIGNALS_OFFSET 1 /* 1 byte */ #define SITA_ERRORS1_OFFSET 2 /* 1 byte */ #define SITA_ERRORS2_OFFSET 3 /* 1 byte */ #define SITA_PROTO_OFFSET 4 /* 1 byte */ #define SITA_HDR_LEN 5 /* length of the header */ /* * The fake link-layer header of LAPD packets. */ #ifndef ETH_P_LAPD #define ETH_P_LAPD 0x0030 #endif #define LAPD_SLL_PKTTYPE_OFFSET 0 /* packet type - 2 bytes */ #define LAPD_SLL_HATYPE_OFFSET 2 /* hardware address type - 2 bytes */ #define LAPD_SLL_HALEN_OFFSET 4 /* hardware address length - 2 bytes */ #define LAPD_SLL_ADDR_OFFSET 6 /* address - 8 bytes */ #define LAPD_SLL_PROTOCOL_OFFSET 14 /* protocol, should be ETH_P_LAPD - 2 bytes */ #define LAPD_SLL_LEN 16 /* length of the header */ /* * I2C link-layer on-disk format */ struct i2c_file_hdr { guint8 bus; guint8 flags[4]; }; static gboolean pcap_read_sunatm_pseudoheader(FILE_T fh, union wtap_pseudo_header *pseudo_header, int *err, gchar **err_info) { guint8 atm_phdr[SUNATM_LEN]; int bytes_read; guint8 vpi; guint16 vci; errno = WTAP_ERR_CANT_READ; bytes_read = file_read(atm_phdr, SUNATM_LEN, fh); if (bytes_read != SUNATM_LEN) { *err = file_error(fh, err_info); if (*err == 0) *err = WTAP_ERR_SHORT_READ; return FALSE; } vpi = atm_phdr[SUNATM_VPI]; vci = pntohs(&atm_phdr[SUNATM_VCI]); switch (atm_phdr[SUNATM_FLAGS] & 0x0F) { case 0x01: /* LANE */ pseudo_header->atm.aal = AAL_5; pseudo_header->atm.type = TRAF_LANE; break; case 0x02: /* RFC 1483 LLC multiplexed traffic */ pseudo_header->atm.aal = AAL_5; pseudo_header->atm.type = TRAF_LLCMX; break; case 0x05: /* ILMI */ pseudo_header->atm.aal = AAL_5; pseudo_header->atm.type = TRAF_ILMI; break; case 0x06: /* Q.2931 */ pseudo_header->atm.aal = AAL_SIGNALLING; pseudo_header->atm.type = TRAF_UNKNOWN; break; case 0x03: /* MARS (RFC 2022) */ pseudo_header->atm.aal = AAL_5; pseudo_header->atm.type = TRAF_UNKNOWN; break; case 0x04: /* IFMP (Ipsilon Flow Management Protocol; see RFC 1954) */ pseudo_header->atm.aal = AAL_5; pseudo_header->atm.type = TRAF_UNKNOWN; /* XXX - TRAF_IPSILON? */ break; default: /* * Assume it's AAL5, unless it's VPI 0 and VCI 5, in which * case assume it's AAL_SIGNALLING; we know nothing more * about it. * * XXX - is this necessary? Or are we guaranteed that * all signalling traffic has a type of 0x06? * * XXX - is this guaranteed to be AAL5? Or, if the type is * 0x00 ("raw"), might it be non-AAL5 traffic? */ if (vpi == 0 && vci == 5) pseudo_header->atm.aal = AAL_SIGNALLING; else pseudo_header->atm.aal = AAL_5; pseudo_header->atm.type = TRAF_UNKNOWN; break; } pseudo_header->atm.subtype = TRAF_ST_UNKNOWN; pseudo_header->atm.vpi = vpi; pseudo_header->atm.vci = vci; pseudo_header->atm.channel = (atm_phdr[SUNATM_FLAGS] & 0x80) ? 0 : 1; /* We don't have this information */ pseudo_header->atm.flags = 0; pseudo_header->atm.cells = 0; pseudo_header->atm.aal5t_u2u = 0; pseudo_header->atm.aal5t_len = 0; pseudo_header->atm.aal5t_chksum = 0; return TRUE; } static gboolean pcap_read_nokiaatm_pseudoheader(FILE_T fh, union wtap_pseudo_header *pseudo_header, int *err, gchar **err_info) { guint8 atm_phdr[NOKIAATM_LEN]; int bytes_read; guint8 vpi; guint16 vci; errno = WTAP_ERR_CANT_READ; bytes_read = file_read(atm_phdr, NOKIAATM_LEN, fh); if (bytes_read != NOKIAATM_LEN) { *err = file_error(fh, err_info); if (*err == 0) *err = WTAP_ERR_SHORT_READ; return FALSE; } vpi = atm_phdr[NOKIAATM_VPI]; vci = pntohs(&atm_phdr[NOKIAATM_VCI]); pseudo_header->atm.vpi = vpi; pseudo_header->atm.vci = vci; pseudo_header->atm.channel = (atm_phdr[NOKIAATM_FLAGS] & 0x80) ? 0 : 1; /* We don't have this information */ pseudo_header->atm.flags = 0; pseudo_header->atm.cells = 0; pseudo_header->atm.aal5t_u2u = 0; pseudo_header->atm.aal5t_len = 0; pseudo_header->atm.aal5t_chksum = 0; return TRUE; } static gboolean pcap_read_irda_pseudoheader(FILE_T fh, union wtap_pseudo_header *pseudo_header, int *err, gchar **err_info) { guint8 irda_phdr[IRDA_SLL_LEN]; int bytes_read; errno = WTAP_ERR_CANT_READ; bytes_read = file_read(irda_phdr, IRDA_SLL_LEN, fh); if (bytes_read != IRDA_SLL_LEN) { *err = file_error(fh, err_info); if (*err == 0) *err = WTAP_ERR_SHORT_READ; return FALSE; } if (pntohs(&irda_phdr[IRDA_SLL_PROTOCOL_OFFSET]) != 0x0017) { *err = WTAP_ERR_BAD_RECORD; if (err_info != NULL) *err_info = g_strdup("libpcap: IrDA capture has a packet with an invalid sll_protocol field"); return FALSE; } pseudo_header->irda.pkttype = pntohs(&irda_phdr[IRDA_SLL_PKTTYPE_OFFSET]); return TRUE; } static gboolean pcap_read_mtp2_pseudoheader(FILE_T fh, union wtap_pseudo_header *pseudo_header, int *err, gchar **err_info) { guint8 mtp2_hdr[MTP2_HDR_LEN]; int bytes_read; errno = WTAP_ERR_CANT_READ; bytes_read = file_read(mtp2_hdr, MTP2_HDR_LEN, fh); if (bytes_read != MTP2_HDR_LEN) { *err = file_error(fh, err_info); if (*err == 0) *err = WTAP_ERR_SHORT_READ; return FALSE; } pseudo_header->mtp2.sent = mtp2_hdr[MTP2_SENT_OFFSET]; pseudo_header->mtp2.annex_a_used = mtp2_hdr[MTP2_ANNEX_A_USED_OFFSET]; pseudo_header->mtp2.link_number = pntohs(&mtp2_hdr[MTP2_LINK_NUMBER_OFFSET]); return TRUE; } static gboolean pcap_read_lapd_pseudoheader(FILE_T fh, union wtap_pseudo_header *pseudo_header, int *err, gchar **err_info) { guint8 lapd_phdr[LAPD_SLL_LEN]; int bytes_read; errno = WTAP_ERR_CANT_READ; bytes_read = file_read(lapd_phdr, LAPD_SLL_LEN, fh); if (bytes_read != LAPD_SLL_LEN) { *err = file_error(fh, err_info); if (*err == 0) *err = WTAP_ERR_SHORT_READ; return FALSE; } if (pntohs(&lapd_phdr[LAPD_SLL_PROTOCOL_OFFSET]) != ETH_P_LAPD) { *err = WTAP_ERR_BAD_RECORD; if (err_info != NULL) *err_info = g_strdup("libpcap: LAPD capture has a packet with an invalid sll_protocol field"); return FALSE; } pseudo_header->lapd.pkttype = pntohs(&lapd_phdr[LAPD_SLL_PKTTYPE_OFFSET]); pseudo_header->lapd.we_network = !!lapd_phdr[LAPD_SLL_ADDR_OFFSET+0]; return TRUE; } static gboolean pcap_read_sita_pseudoheader(FILE_T fh, union wtap_pseudo_header *pseudo_header, int *err, gchar **err_info) { guint8 sita_phdr[SITA_HDR_LEN]; int bytes_read; errno = WTAP_ERR_CANT_READ; bytes_read = file_read(sita_phdr, SITA_HDR_LEN, fh); if (bytes_read != SITA_HDR_LEN) { *err = file_error(fh, err_info); if (*err == 0) *err = WTAP_ERR_SHORT_READ; return FALSE; } pseudo_header->sita.flags = sita_phdr[SITA_FLAGS_OFFSET]; pseudo_header->sita.signals = sita_phdr[SITA_SIGNALS_OFFSET]; pseudo_header->sita.errors1 = sita_phdr[SITA_ERRORS1_OFFSET]; pseudo_header->sita.errors2 = sita_phdr[SITA_ERRORS2_OFFSET]; pseudo_header->sita.proto = sita_phdr[SITA_PROTO_OFFSET]; return TRUE; } /* * When not using the memory-mapped interface to capture USB events, * code that reads those events can use the MON_IOCX_GET ioctl to * read a 48-byte header consisting of a "struct linux_usb_phdr", as * defined below, followed immediately by one of: * * 8 bytes of a "struct usb_device_setup_hdr", if "setup_flag" * in the preceding "struct linux_usb_phdr" is 0; * * in Linux 2.6.30 or later, 8 bytes of a "struct iso_rec", if * this is an isochronous transfer; * * 8 bytes of junk, otherwise. * * In Linux 2.6.31 and later, it can also use the MON_IOCX_GETX ioctl * to read a 64-byte header; that header consists of the 48 bytes * above, followed immediately by 16 bytes of a "struct linux_usb_phdr_ext", * as defined below. * * In Linux 2.6.21 and later, there's a memory-mapped interface to * capture USB events. In that interface, the events in the memory-mapped * buffer have a 64-byte header, followed immediately by the data. * In Linux 2.6.21 through 2.6.30.x, the 64-byte header is the 48-byte * header described above, followed by 16 bytes of zeroes; in Linux * 2.6.31 and later, the 64-byte header is the 64-byte header described * above. * * See linux/Documentation/usb/usbmon.txt and libpcap/pcap/usb.h for details. * * With WTAP_ENCAP_USB_LINUX, packets have the 48-byte header; with * WTAP_ENCAP_USB_LINUX_MMAPPED, they have the 64-byte header. There * is no indication of whether the header has the "struct iso_rec", or * whether the last 16 bytes of a 64-byte header are all zeros or are * a "struct linux_usb_phdr_ext". */ /* * URB transfer_type values */ #define URB_ISOCHRONOUS 0x0 #define URB_INTERRUPT 0x1 #define URB_CONTROL 0x2 #define URB_BULK 0x3 /* * Information from the URB for Isochronous transfers. * * This structure is 8 bytes long. */ struct iso_rec { gint32 error_count; gint32 numdesc; }; /* * Header prepended by Linux kernel to each USB event. * * (Setup flag is '-', 'D', 'Z', or 0. Data flag is '<', '>', 'Z', or 0.) * * The values are in *host* byte order. */ struct linux_usb_phdr { guint64 id; /* urb id, to link submission and completion events */ guint8 event_type; /* Submit ('S'), Completed ('C'), Error ('E') */ guint8 transfer_type; /* ISO (0), Intr, Control, Bulk (3) */ guint8 endpoint_number; /* Endpoint number (0-15) and transfer direction */ guint8 device_address; /* 0-127 */ guint16 bus_id; gint8 setup_flag; /* 0, if the urb setup header is meaningful */ gint8 data_flag; /* 0, if urb data is present */ gint64 ts_sec; gint32 ts_usec; gint32 status; guint32 urb_len; /* whole len of urb this event refers to */ guint32 data_len; /* amount of urb data really present in this event */ /* * Packet-type-dependent data. * USB setup information of setup_flag is true. * Otherwise, some isochronous transfer information. */ union { guint8 data[8]; struct iso_rec iso; } s; /* * This data is provided by Linux 2.6.31 and later kernels. * * For WTAP_ENCAP_USB_LINUX, it's not in the pseudo-header, so * the pseudo-header is always 48 bytes long, including the * packet-type-dependent data. * * For WTAP_ENCAP_USB_LINUX_MMAPPED, the pseudo-header is always * 64 bytes long, with the packet-type-dependent data preceding * these last 16 bytes. In pre-2.6.31 kernels, it's zero padding; * in 2.6.31 and later, it's the following data. */ gint32 interval; /* only for Interrupt and Isochronous events */ gint32 start_frame; /* for Isochronous */ guint32 xfer_flags; /* copy of URB's transfer_flags */ guint32 ndesc; /* actual number of isochronous descriptors */ }; struct linux_usb_isodesc { gint32 iso_status; guint32 iso_off; guint32 iso_len; guint32 _pad; }; /* * USB setup header as defined in USB specification * See usb_20.pdf, Chapter 9.3 'USB Device Requests' for details. * http://www.usb.org/developers/docs/usb_20_122909-2.zip * * This structure is 8 bytes long. */ struct usb_device_setup_hdr { gint8 bmRequestType; guint8 bRequest; guint16 wValue; guint16 wIndex; guint16 wLength; }; /* * Offset of the *end* of a field within a particular structure. */ #define END_OFFSETOF(basep, fieldp) \ (((char *)(void *)(fieldp)) - ((char *)(void *)(basep)) + \ sizeof(*fieldp)) static void pcap_process_linux_usb_pseudoheader(guint packet_size, gboolean byte_swapped, gboolean header_len_64_bytes, guint8 *pd) { struct linux_usb_phdr *phdr; struct linux_usb_isodesc *pisodesc; gint32 iso_numdesc, i; if (byte_swapped) { /* * Greasy hack, but we never directly direference any of * the fields in *phdr, we just get offsets of and * addresses of its members, so it's safe. */ phdr = (struct linux_usb_phdr *)(void *)pd; if (packet_size < END_OFFSETOF(phdr, &phdr->id)) return; PBSWAP64((guint8 *)&phdr->id); if (packet_size < END_OFFSETOF(phdr, &phdr->bus_id)) return; PBSWAP16((guint8 *)&phdr->bus_id); if (packet_size < END_OFFSETOF(phdr, &phdr->ts_sec)) return; PBSWAP64((guint8 *)&phdr->ts_sec); if (packet_size < END_OFFSETOF(phdr, &phdr->ts_usec)) return; PBSWAP32((guint8 *)&phdr->ts_usec); if (packet_size < END_OFFSETOF(phdr, &phdr->status)) return; PBSWAP32((guint8 *)&phdr->status); if (packet_size < END_OFFSETOF(phdr, &phdr->urb_len)) return; PBSWAP32((guint8 *)&phdr->urb_len); if (packet_size < END_OFFSETOF(phdr, &phdr->data_len)) return; PBSWAP32((guint8 *)&phdr->data_len); if (phdr->transfer_type == URB_ISOCHRONOUS) { if (packet_size < END_OFFSETOF(phdr, &phdr->s.iso.error_count)) return; PBSWAP32((guint8 *)&phdr->s.iso.error_count); if (packet_size < END_OFFSETOF(phdr, &phdr->s.iso.numdesc)) return; PBSWAP32((guint8 *)&phdr->s.iso.numdesc); } if (header_len_64_bytes) { /* * This is either the "version 1" header, with * 16 bytes of additional fields at the end, or * a "version 0" header from a memory-mapped * capture, with 16 bytes of zeroed-out padding * at the end. Byte swap them as if this were * a "version 1" header. * * Yes, the first argument to END_OFFSETOF() should * be phdr, not phdr_ext; we want the offset of * the additional fields from the beginning of * the packet. */ if (packet_size < END_OFFSETOF(phdr, &phdr->interval)) return; PBSWAP32((guint8 *)&phdr->interval); if (packet_size < END_OFFSETOF(phdr, &phdr->start_frame)) return; PBSWAP32((guint8 *)&phdr->start_frame); if (packet_size < END_OFFSETOF(phdr, &phdr->xfer_flags)) return; PBSWAP32((guint8 *)&phdr->xfer_flags); if (packet_size < END_OFFSETOF(phdr, &phdr->ndesc)) return; PBSWAP32((guint8 *)&phdr->ndesc); } if (phdr->transfer_type == URB_ISOCHRONOUS) { /* swap the values in struct linux_usb_isodesc */ /* * See previous "Greasy hack" comment. */ if (header_len_64_bytes) { pisodesc = (struct linux_usb_isodesc*)(void *)(pd + 64); } else { pisodesc = (struct linux_usb_isodesc*)(void *)(pd + 48); } iso_numdesc = phdr->s.iso.numdesc; for (i = 0; i < iso_numdesc; i++) { /* always check if we have enough data from the * beginnig of the packet (phdr) */ if (packet_size < END_OFFSETOF(phdr, &pisodesc->iso_status)) return; PBSWAP32((guint8 *)&pisodesc->iso_status); if (packet_size < END_OFFSETOF(phdr, &pisodesc->iso_off)) return; PBSWAP32((guint8 *)&pisodesc->iso_off); if (packet_size < END_OFFSETOF(phdr, &pisodesc->iso_len)) return; PBSWAP32((guint8 *)&pisodesc->iso_len); if (packet_size < END_OFFSETOF(phdr, &pisodesc->_pad)) return; PBSWAP32((guint8 *)&pisodesc->_pad); pisodesc++; } } } } static gboolean pcap_read_bt_pseudoheader(FILE_T fh, union wtap_pseudo_header *pseudo_header, int *err, gchar **err_info) { int bytes_read; struct libpcap_bt_phdr phdr; errno = WTAP_ERR_CANT_READ; bytes_read = file_read(&phdr, sizeof (struct libpcap_bt_phdr), fh); if (bytes_read != sizeof (struct libpcap_bt_phdr)) { *err = file_error(fh, err_info); if (*err == 0) *err = WTAP_ERR_SHORT_READ; return FALSE; } pseudo_header->p2p.sent = ((g_ntohl(phdr.direction) & LIBPCAP_BT_PHDR_RECV) == 0)? TRUE: FALSE; return TRUE; } static gboolean pcap_read_ppp_pseudoheader(FILE_T fh, union wtap_pseudo_header *pseudo_header, int *err, gchar **err_info) { int bytes_read; struct libpcap_ppp_phdr phdr; errno = WTAP_ERR_CANT_READ; bytes_read = file_read(&phdr, sizeof (struct libpcap_ppp_phdr), fh); if (bytes_read != sizeof (struct libpcap_ppp_phdr)) { *err = file_error(fh, err_info); if (*err == 0) *err = WTAP_ERR_SHORT_READ; return FALSE; } pseudo_header->p2p.sent = (phdr.direction == LIBPCAP_PPP_PHDR_SENT) ? TRUE: FALSE; return TRUE; } static gboolean pcap_read_erf_pseudoheader(FILE_T fh, struct wtap_pkthdr *whdr, union wtap_pseudo_header *pseudo_header, int *err, gchar **err_info) { guint8 erf_hdr[sizeof(struct erf_phdr)]; int bytes_read; errno = WTAP_ERR_CANT_READ; bytes_read = file_read(erf_hdr, sizeof(struct erf_phdr), fh); if (bytes_read != sizeof(struct erf_phdr)) { *err = file_error(fh, err_info); if (*err == 0) *err = WTAP_ERR_SHORT_READ; return FALSE; } pseudo_header->erf.phdr.ts = pletohll(&erf_hdr[0]); /* timestamp */ pseudo_header->erf.phdr.type = erf_hdr[8]; pseudo_header->erf.phdr.flags = erf_hdr[9]; pseudo_header->erf.phdr.rlen = pntohs(&erf_hdr[10]); pseudo_header->erf.phdr.lctr = pntohs(&erf_hdr[12]); pseudo_header->erf.phdr.wlen = pntohs(&erf_hdr[14]); /* The high 32 bits of the timestamp contain the integer number of seconds * while the lower 32 bits contain the binary fraction of the second. * This allows an ultimate resolution of 1/(2^32) seconds, or approximately 233 picoseconds */ if (whdr) { guint64 ts = pseudo_header->erf.phdr.ts; whdr->ts.secs = (guint32) (ts >> 32); ts = ((ts & 0xffffffff) * 1000 * 1000 * 1000); ts += (ts & 0x80000000) << 1; /* rounding */ whdr->ts.nsecs = ((guint32) (ts >> 32)); if ( whdr->ts.nsecs >= 1000000000) { whdr->ts.nsecs -= 1000000000; whdr->ts.secs += 1; } } return TRUE; } /* * If the type of record given in the pseudo header indicate the presence of an extension * header then, read all the extension headers */ static gboolean pcap_read_erf_exheader(FILE_T fh, union wtap_pseudo_header *pseudo_header, int *err, gchar **err_info, guint * psize) { int bytes_read = 0; guint8 erf_exhdr[8]; guint64 erf_exhdr_sw; int i = 0, max = sizeof(pseudo_header->erf.ehdr_list)/sizeof(struct erf_ehdr); guint8 type; *psize = 0; if (pseudo_header->erf.phdr.type & 0x80){ do{ errno = WTAP_ERR_CANT_READ; bytes_read = file_read(erf_exhdr, 8, fh); if (bytes_read != 8 ) { *err = file_error(fh, err_info); if (*err == 0) *err = WTAP_ERR_SHORT_READ; return FALSE; } type = erf_exhdr[0]; erf_exhdr_sw = pntohll(erf_exhdr); if (i < max) memcpy(&pseudo_header->erf.ehdr_list[i].ehdr, &erf_exhdr_sw, sizeof(erf_exhdr_sw)); *psize += 8; i++; } while (type & 0x80); } return TRUE; } /* * If the type of record given in the pseudo header indicate the precense of a subheader * then, read this optional subheader */ static gboolean pcap_read_erf_subheader(FILE_T fh, union wtap_pseudo_header *pseudo_header, int *err, gchar **err_info, guint * psize) { guint8 erf_subhdr[sizeof(union erf_subhdr)]; int bytes_read; *psize=0; switch(pseudo_header->erf.phdr.type & 0x7F) { case ERF_TYPE_MC_HDLC: case ERF_TYPE_MC_RAW: case ERF_TYPE_MC_ATM: case ERF_TYPE_MC_RAW_CHANNEL: case ERF_TYPE_MC_AAL5: case ERF_TYPE_MC_AAL2: case ERF_TYPE_COLOR_MC_HDLC_POS: /* Extract the Multi Channel header to include it in the pseudo header part */ errno = WTAP_ERR_CANT_READ; bytes_read = file_read(erf_subhdr, sizeof(erf_mc_header_t), fh); if (bytes_read != sizeof(erf_mc_header_t) ) { *err = file_error(fh, err_info); if (*err == 0) *err = WTAP_ERR_SHORT_READ; return FALSE; } pseudo_header->erf.subhdr.mc_hdr = pntohl(&erf_subhdr[0]); *psize = sizeof(erf_mc_header_t); break; case ERF_TYPE_ETH: case ERF_TYPE_COLOR_ETH: case ERF_TYPE_DSM_COLOR_ETH: /* Extract the Ethernet additional header to include it in the pseudo header part */ errno = WTAP_ERR_CANT_READ; bytes_read = file_read(erf_subhdr, sizeof(erf_eth_header_t), fh); if (bytes_read != sizeof(erf_eth_header_t) ) { *err = file_error(fh, err_info); if (*err == 0) *err = WTAP_ERR_SHORT_READ; return FALSE; } pseudo_header->erf.subhdr.eth_hdr = pntohs(&erf_subhdr[0]); *psize = sizeof(erf_eth_header_t); break; default: /* No optional pseudo header for this ERF type */ break; } return TRUE; } static gboolean pcap_read_i2c_pseudoheader(FILE_T fh, union wtap_pseudo_header *pseudo_header, int *err, gchar **err_info) { struct i2c_file_hdr i2c_hdr; int bytes_read; errno = WTAP_ERR_CANT_READ; bytes_read = file_read(&i2c_hdr, sizeof (i2c_hdr), fh); if (bytes_read != sizeof (i2c_hdr)) { *err = file_error(fh, err_info); if (*err == 0) *err = WTAP_ERR_SHORT_READ; return FALSE; } pseudo_header->i2c.is_event = i2c_hdr.bus & 0x80 ? 1 : 0; pseudo_header->i2c.bus = i2c_hdr.bus & 0x7f; pseudo_header->i2c.flags = pntohl(&i2c_hdr.flags); return TRUE; } int pcap_process_pseudo_header(FILE_T fh, int file_type, int wtap_encap, guint packet_size, gboolean check_packet_size, struct wtap_pkthdr *phdr, union wtap_pseudo_header *pseudo_header, int *err, gchar **err_info) { int phdr_len = 0; guint size; switch (wtap_encap) { case WTAP_ENCAP_ATM_PDUS: if (file_type == WTAP_FILE_PCAP_NOKIA) { /* * Nokia IPSO ATM. */ if (check_packet_size && packet_size < NOKIAATM_LEN) { /* * Uh-oh, the packet isn't big enough to even * have a pseudo-header. */ *err = WTAP_ERR_BAD_RECORD; *err_info = g_strdup_printf("pcap: Nokia IPSO ATM file has a %u-byte packet, too small to have even an ATM pseudo-header", packet_size); return -1; } if (!pcap_read_nokiaatm_pseudoheader(fh, pseudo_header, err, err_info)) return -1; /* Read error */ phdr_len = NOKIAATM_LEN; } else { /* * SunATM. */ if (check_packet_size && packet_size < SUNATM_LEN) { /* * Uh-oh, the packet isn't big enough to even * have a pseudo-header. */ *err = WTAP_ERR_BAD_RECORD; *err_info = g_strdup_printf("pcap: SunATM file has a %u-byte packet, too small to have even an ATM pseudo-header", packet_size); return -1; } if (!pcap_read_sunatm_pseudoheader(fh, pseudo_header, err, err_info)) return -1; /* Read error */ phdr_len = SUNATM_LEN; } break; case WTAP_ENCAP_ETHERNET: /* * We don't know whether there's an FCS in this frame or not. */ pseudo_header->eth.fcs_len = -1; break; case WTAP_ENCAP_IEEE_802_11: case WTAP_ENCAP_PRISM_HEADER: case WTAP_ENCAP_IEEE_802_11_WLAN_RADIOTAP: case WTAP_ENCAP_IEEE_802_11_WLAN_AVS: /* * We don't know whether there's an FCS in this frame or not. * XXX - are there any OSes where the capture mechanism * supplies an FCS? */ pseudo_header->ieee_802_11.fcs_len = -1; pseudo_header->ieee_802_11.channel = 0; pseudo_header->ieee_802_11.data_rate = 0; pseudo_header->ieee_802_11.signal_level = 0; break; case WTAP_ENCAP_IRDA: if (check_packet_size && packet_size < IRDA_SLL_LEN) { /* * Uh-oh, the packet isn't big enough to even * have a pseudo-header. */ *err = WTAP_ERR_BAD_RECORD; *err_info = g_strdup_printf("pcap: IrDA file has a %u-byte packet, too small to have even an IrDA pseudo-header", packet_size); return -1; } if (!pcap_read_irda_pseudoheader(fh, pseudo_header, err, err_info)) return -1; /* Read error */ phdr_len = IRDA_SLL_LEN; break; case WTAP_ENCAP_MTP2_WITH_PHDR: if (check_packet_size && packet_size < MTP2_HDR_LEN) { /* * Uh-oh, the packet isn't big enough to even * have a pseudo-header. */ *err = WTAP_ERR_BAD_RECORD; *err_info = g_strdup_printf("pcap: MTP2 file has a %u-byte packet, too small to have even an MTP2 pseudo-header", packet_size); return -1; } if (!pcap_read_mtp2_pseudoheader(fh, pseudo_header, err, err_info)) return -1; /* Read error */ phdr_len = MTP2_HDR_LEN; break; case WTAP_ENCAP_LINUX_LAPD: if (check_packet_size && packet_size < LAPD_SLL_LEN) { /* * Uh-oh, the packet isn't big enough to even * have a pseudo-header. */ *err = WTAP_ERR_BAD_RECORD; *err_info = g_strdup_printf("pcap: LAPD file has a %u-byte packet, too small to have even a LAPD pseudo-header", packet_size); return -1; } if (!pcap_read_lapd_pseudoheader(fh, pseudo_header, err, err_info)) return -1; /* Read error */ phdr_len = LAPD_SLL_LEN; break; case WTAP_ENCAP_SITA: if (check_packet_size && packet_size < SITA_HDR_LEN) { /* * Uh-oh, the packet isn't big enough to even * have a pseudo-header. */ *err = WTAP_ERR_BAD_RECORD; *err_info = g_strdup_printf("pcap: SITA file has a %u-byte packet, too small to have even a SITA pseudo-header", packet_size); return -1; } if (!pcap_read_sita_pseudoheader(fh, pseudo_header, err, err_info)) return -1; /* Read error */ phdr_len = SITA_HDR_LEN; break; case WTAP_ENCAP_BLUETOOTH_H4: /* We don't have pseudoheader, so just pretend we received everything. */ pseudo_header->p2p.sent = FALSE; break; case WTAP_ENCAP_BLUETOOTH_H4_WITH_PHDR: if (check_packet_size && packet_size < sizeof (struct libpcap_bt_phdr)) { /* * Uh-oh, the packet isn't big enough to even * have a pseudo-header. */ *err = WTAP_ERR_BAD_RECORD; *err_info = g_strdup_printf("pcap: libpcap bluetooth file has a %u-byte packet, too small to have even a pseudo-header", packet_size); return -1; } if (!pcap_read_bt_pseudoheader(fh, pseudo_header, err, err_info)) return -1; /* Read error */ phdr_len = (int)sizeof (struct libpcap_bt_phdr); break; case WTAP_ENCAP_PPP_WITH_PHDR: if (check_packet_size && packet_size < sizeof (struct libpcap_ppp_phdr)) { /* * Uh-oh, the packet isn't big enough to even * have a pseudo-header. */ *err = WTAP_ERR_BAD_RECORD; *err_info = g_strdup_printf("pcap: libpcap ppp file has a %u-byte packet, too small to have even a pseudo-header", packet_size); return -1; } if (!pcap_read_ppp_pseudoheader(fh, pseudo_header, err, err_info)) return -1; /* Read error */ phdr_len = (int)sizeof (struct libpcap_ppp_phdr); break; case WTAP_ENCAP_ERF: if (check_packet_size && packet_size < sizeof(struct erf_phdr) ) { /* * Uh-oh, the packet isn't big enough to even * have a pseudo-header. */ *err = WTAP_ERR_BAD_RECORD; *err_info = g_strdup_printf("pcap: ERF file has a %u-byte packet, too small to have even an ERF pseudo-header", packet_size); return -1; } if (!pcap_read_erf_pseudoheader(fh, phdr, pseudo_header, err, err_info)) return -1; /* Read error */ phdr_len = (int)sizeof(struct erf_phdr); /* check the optional Extension header */ if (!pcap_read_erf_exheader(fh, pseudo_header, err, err_info, &size)) return -1; /* Read error */ phdr_len += size; /* check the optional Multi Channel header */ if (!pcap_read_erf_subheader(fh, pseudo_header, err, err_info, &size)) return -1; /* Read error */ phdr_len += size; break; case WTAP_ENCAP_I2C: if (check_packet_size && packet_size < sizeof (struct i2c_file_hdr)) { /* * Uh-oh, the packet isn't big enough to even * have a pseudo-header. */ *err = WTAP_ERR_BAD_RECORD; *err_info = g_strdup_printf("pcap: I2C file has a %u-byte packet, too small to have even a I2C pseudo-header", packet_size); return -1; } if (!pcap_read_i2c_pseudoheader(fh, pseudo_header, err, err_info)) return -1; /* Read error */ /* * Don't count the pseudo-header as part of the packet. */ phdr_len = (int)sizeof (struct i2c_file_hdr); break; } return phdr_len; } void pcap_read_post_process(int wtap_encap, guint packet_size, gboolean bytes_swapped, guchar *pd) { switch (wtap_encap) { case WTAP_ENCAP_USB_LINUX: pcap_process_linux_usb_pseudoheader(packet_size, bytes_swapped, FALSE, pd); break; case WTAP_ENCAP_USB_LINUX_MMAPPED: pcap_process_linux_usb_pseudoheader(packet_size, bytes_swapped, TRUE, pd); break; default: break; } } int pcap_get_phdr_size(int encap, const union wtap_pseudo_header *pseudo_header) { int hdrsize; switch (encap) { case WTAP_ENCAP_ATM_PDUS: hdrsize = SUNATM_LEN; break; case WTAP_ENCAP_IRDA: hdrsize = IRDA_SLL_LEN; break; case WTAP_ENCAP_MTP2_WITH_PHDR: hdrsize = MTP2_HDR_LEN; break; case WTAP_ENCAP_LINUX_LAPD: hdrsize = LAPD_SLL_LEN; break; case WTAP_ENCAP_SITA: hdrsize = SITA_HDR_LEN; break; case WTAP_ENCAP_ERF: hdrsize = (int)sizeof (struct erf_phdr); if (pseudo_header->erf.phdr.type & 0x80) hdrsize += 8; switch (pseudo_header->erf.phdr.type & 0x7F) { case ERF_TYPE_MC_HDLC: case ERF_TYPE_MC_RAW: case ERF_TYPE_MC_ATM: case ERF_TYPE_MC_RAW_CHANNEL: case ERF_TYPE_MC_AAL5: case ERF_TYPE_MC_AAL2: case ERF_TYPE_COLOR_MC_HDLC_POS: hdrsize += (int)sizeof(struct erf_mc_hdr); break; case ERF_TYPE_ETH: case ERF_TYPE_COLOR_ETH: case ERF_TYPE_DSM_COLOR_ETH: hdrsize += (int)sizeof(struct erf_eth_hdr); break; default: break; } break; case WTAP_ENCAP_I2C: hdrsize = (int)sizeof (struct i2c_file_hdr); break; case WTAP_ENCAP_BLUETOOTH_H4_WITH_PHDR: hdrsize = (int)sizeof (struct libpcap_bt_phdr); break; case WTAP_ENCAP_PPP_WITH_PHDR: hdrsize = (int)sizeof (struct libpcap_ppp_phdr); break; default: hdrsize = 0; break; } return hdrsize; } gboolean pcap_write_phdr(wtap_dumper *wdh, int encap, const union wtap_pseudo_header *pseudo_header, int *err) { guint8 atm_hdr[SUNATM_LEN]; guint8 irda_hdr[IRDA_SLL_LEN]; guint8 lapd_hdr[LAPD_SLL_LEN]; guint8 mtp2_hdr[MTP2_HDR_LEN]; guint8 sita_hdr[SITA_HDR_LEN]; guint8 erf_hdr[ sizeof(struct erf_mc_phdr)]; struct i2c_file_hdr i2c_hdr; struct libpcap_bt_phdr bt_hdr; struct libpcap_ppp_phdr ppp_hdr; size_t size; switch (encap) { case WTAP_ENCAP_ATM_PDUS: /* * Write the ATM header. */ atm_hdr[SUNATM_FLAGS] = (pseudo_header->atm.channel == 0) ? 0x80 : 0x00; switch (pseudo_header->atm.aal) { case AAL_SIGNALLING: /* Q.2931 */ atm_hdr[SUNATM_FLAGS] |= 0x06; break; case AAL_5: switch (pseudo_header->atm.type) { case TRAF_LANE: /* LANE */ atm_hdr[SUNATM_FLAGS] |= 0x01; break; case TRAF_LLCMX: /* RFC 1483 LLC multiplexed traffic */ atm_hdr[SUNATM_FLAGS] |= 0x02; break; case TRAF_ILMI: /* ILMI */ atm_hdr[SUNATM_FLAGS] |= 0x05; break; } break; } atm_hdr[SUNATM_VPI] = (guint8)pseudo_header->atm.vpi; phtons(&atm_hdr[SUNATM_VCI], pseudo_header->atm.vci); if (!wtap_dump_file_write(wdh, atm_hdr, sizeof(atm_hdr), err)) return FALSE; wdh->bytes_dumped += sizeof(atm_hdr); break; case WTAP_ENCAP_IRDA: /* * Write the IrDA header. */ memset(irda_hdr, 0, sizeof(irda_hdr)); phtons(&irda_hdr[IRDA_SLL_PKTTYPE_OFFSET], pseudo_header->irda.pkttype); phtons(&irda_hdr[IRDA_SLL_PROTOCOL_OFFSET], 0x0017); if (!wtap_dump_file_write(wdh, irda_hdr, sizeof(irda_hdr), err)) return FALSE; wdh->bytes_dumped += sizeof(irda_hdr); break; case WTAP_ENCAP_MTP2_WITH_PHDR: /* * Write the MTP2 header. */ memset(&mtp2_hdr, 0, sizeof(mtp2_hdr)); mtp2_hdr[MTP2_SENT_OFFSET] = pseudo_header->mtp2.sent; mtp2_hdr[MTP2_ANNEX_A_USED_OFFSET] = pseudo_header->mtp2.annex_a_used; phtons(&mtp2_hdr[MTP2_LINK_NUMBER_OFFSET], pseudo_header->mtp2.link_number); if (!wtap_dump_file_write(wdh, mtp2_hdr, sizeof(mtp2_hdr), err)) return FALSE; wdh->bytes_dumped += sizeof(mtp2_hdr); break; case WTAP_ENCAP_LINUX_LAPD: /* * Write the LAPD header. */ memset(&lapd_hdr, 0, sizeof(lapd_hdr)); phtons(&lapd_hdr[LAPD_SLL_PKTTYPE_OFFSET], pseudo_header->lapd.pkttype); phtons(&lapd_hdr[LAPD_SLL_PROTOCOL_OFFSET], ETH_P_LAPD); lapd_hdr[LAPD_SLL_ADDR_OFFSET + 0] = pseudo_header->lapd.we_network?0x01:0x00; if (!wtap_dump_file_write(wdh, lapd_hdr, sizeof(lapd_hdr), err)) return FALSE; wdh->bytes_dumped += sizeof(lapd_hdr); break; case WTAP_ENCAP_SITA: /* * Write the SITA header. */ memset(&sita_hdr, 0, sizeof(sita_hdr)); sita_hdr[SITA_FLAGS_OFFSET] = pseudo_header->sita.flags; sita_hdr[SITA_SIGNALS_OFFSET] = pseudo_header->sita.signals; sita_hdr[SITA_ERRORS1_OFFSET] = pseudo_header->sita.errors1; sita_hdr[SITA_ERRORS2_OFFSET] = pseudo_header->sita.errors2; sita_hdr[SITA_PROTO_OFFSET] = pseudo_header->sita.proto; if (!wtap_dump_file_write(wdh, sita_hdr, sizeof(sita_hdr), err)) return FALSE; wdh->bytes_dumped += sizeof(sita_hdr); break; case WTAP_ENCAP_ERF: /* * Write the ERF header. */ memset(&erf_hdr, 0, sizeof(erf_hdr)); pletonll(&erf_hdr[0], pseudo_header->erf.phdr.ts); erf_hdr[8] = pseudo_header->erf.phdr.type; erf_hdr[9] = pseudo_header->erf.phdr.flags; phtons(&erf_hdr[10], pseudo_header->erf.phdr.rlen); phtons(&erf_hdr[12], pseudo_header->erf.phdr.lctr); phtons(&erf_hdr[14], pseudo_header->erf.phdr.wlen); size = sizeof(struct erf_phdr); switch(pseudo_header->erf.phdr.type & 0x7F) { case ERF_TYPE_MC_HDLC: case ERF_TYPE_MC_RAW: case ERF_TYPE_MC_ATM: case ERF_TYPE_MC_RAW_CHANNEL: case ERF_TYPE_MC_AAL5: case ERF_TYPE_MC_AAL2: case ERF_TYPE_COLOR_MC_HDLC_POS: phtonl(&erf_hdr[16], pseudo_header->erf.subhdr.mc_hdr); size += (int)sizeof(struct erf_mc_hdr); break; case ERF_TYPE_ETH: case ERF_TYPE_COLOR_ETH: case ERF_TYPE_DSM_COLOR_ETH: phtons(&erf_hdr[16], pseudo_header->erf.subhdr.eth_hdr); size += (int)sizeof(struct erf_eth_hdr); break; default: break; } if (!wtap_dump_file_write(wdh, erf_hdr, size, err)) return FALSE; wdh->bytes_dumped += size; break; case WTAP_ENCAP_I2C: /* * Write the I2C header. */ memset(&i2c_hdr, 0, sizeof(i2c_hdr)); i2c_hdr.bus = pseudo_header->i2c.bus | (pseudo_header->i2c.is_event ? 0x80 : 0x00); phtonl((guint8 *)&i2c_hdr.flags, pseudo_header->i2c.flags); if (!wtap_dump_file_write(wdh, &i2c_hdr, sizeof(i2c_hdr), err)) return FALSE; wdh->bytes_dumped += sizeof(i2c_hdr); break; case WTAP_ENCAP_BLUETOOTH_H4_WITH_PHDR: bt_hdr.direction = GUINT32_TO_BE(pseudo_header->p2p.sent ? LIBPCAP_BT_PHDR_SENT : LIBPCAP_BT_PHDR_RECV); if (!wtap_dump_file_write(wdh, &bt_hdr, sizeof bt_hdr, err)) return FALSE; wdh->bytes_dumped += sizeof bt_hdr; break; case WTAP_ENCAP_PPP_WITH_PHDR: ppp_hdr.direction = (pseudo_header->p2p.sent ? LIBPCAP_PPP_PHDR_SENT : LIBPCAP_PPP_PHDR_RECV); if (!wtap_dump_file_write(wdh, &ppp_hdr, sizeof ppp_hdr, err)) return FALSE; wdh->bytes_dumped += sizeof ppp_hdr; break; } return TRUE; }