/* packet-pn-rt.c * Routines for pn-rt (PROFINET Real-Time) packet dissection. * This is the base for other PROFINET protocols like IO, CBA, DCP, ... * (the "content subdissectors" will register themselves using a heuristic) * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1999 Gerald Combs * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "config.h" #include #include #include #include #include #include #include #include #include "packet-pn.h" void proto_register_pn_rt(void); void proto_reg_handoff_pn_rt(void); #define PROFINET_UDP_PORT 0x8892 /* Define the pn-rt proto */ static int proto_pn_rt = -1; static gboolean pnio_desegment = TRUE; /* Define many header fields for pn-rt */ static int hf_pn_rt_frame_id = -1; static int hf_pn_rt_cycle_counter = -1; static int hf_pn_rt_transfer_status = -1; static int hf_pn_rt_data_status = -1; static int hf_pn_rt_data_status_ignore = -1; static int hf_pn_rt_frame_info_type = -1; static int hf_pn_rt_frame_info_function_meaning_input_conv = -1; static int hf_pn_rt_frame_info_function_meaning_output_conv = -1; static int hf_pn_rt_data_status_Reserved_2 = -1; static int hf_pn_rt_data_status_ok = -1; static int hf_pn_rt_data_status_operate = -1; static int hf_pn_rt_data_status_res3 = -1; static int hf_pn_rt_data_status_valid = -1; static int hf_pn_rt_data_status_redundancy = -1; static int hf_pn_rt_data_status_redundancy_output_cr = -1; static int hf_pn_rt_data_status_redundancy_input_cr_state_is_backup = -1; static int hf_pn_rt_data_status_redundancy_input_cr_state_is_primary = -1; static int hf_pn_rt_data_status_primary = -1; static int hf_pn_rt_sf_crc16 = -1; static int hf_pn_rt_sf_crc16_status = -1; static int hf_pn_rt_sf = -1; static int hf_pn_rt_sf_position = -1; /* static int hf_pn_rt_sf_position_control = -1; */ static int hf_pn_rt_sf_data_length = -1; static int hf_pn_rt_sf_cycle_counter = -1; static int hf_pn_rt_frag = -1; static int hf_pn_rt_frag_data_length = -1; static int hf_pn_rt_frag_status = -1; static int hf_pn_rt_frag_status_more_follows = -1; static int hf_pn_rt_frag_status_error = -1; static int hf_pn_rt_frag_status_fragment_number = -1; static int hf_pn_rt_frag_data = -1; /* * Define the trees for pn-rt * We need one tree for pn-rt itself and one for the pn-rt data status subtree */ static int ett_pn_rt = -1; static int ett_pn_rt_data_status = -1; static int ett_pn_rt_sf = -1; static int ett_pn_rt_frag = -1; static int ett_pn_rt_frag_status = -1; static expert_field ei_pn_rt_sf_crc16 = EI_INIT; /* * Here are the global variables associated with * the various user definable characteristics of the dissection */ /* Place summary in proto tree */ static gboolean pn_rt_summary_in_tree = TRUE; /* heuristic to find the right pn-rt payload dissector */ static heur_dissector_list_t heur_subdissector_list; #if 0 static const value_string pn_rt_position_control[] = { { 0x00, "CRC16 and CycleCounter shall not be checked" }, { 0x80, "CRC16 and CycleCounter valid" }, { 0, NULL } }; #endif static const true_false_string tfs_pn_rt_ds_redundancy_output_cr = { "Unknown", "Redundancy has no meaning for OutputCRs, it is set to the fixed value of zero" }; static const true_false_string tfs_pn_rt_ds_redundancy_input_cr_state_is_backup = { "None primary AR of a given AR-set is present", "Default - One primary AR of a given AR-set is present" }; static const true_false_string tfs_pn_rt_ds_redundancy_input_cr_state_is_primary = { "The ARState from the IO device point of view is Backup", "Default - The ARState from the IO device point of view is Primary" }; static const value_string pn_rt_frame_info_function_meaning_input_conv[] = { {0x00, "Backup Acknowledge without actual data" }, {0x02, "Primary Missing without actual data" }, {0x04, "Backup Acknowledge with actual data independent from the Arstate" }, {0x05, "Primary Acknowledge"}, {0x06, "Primary Missing with actual data independent from the Arstate" }, {0x07, "Primary Fault" }, {0, NULL} }; static const value_string pn_rt_frame_info_function_meaning_output_conv[] = { { 0x04, "Backup Request" }, { 0x05, "Primary Request" }, { 0, NULL } }; static const true_false_string tfs_pn_rt_ds_redundancy = {"Redundancy has no meaning for OutputCRs / One primary AR of a given AR-set is present" , "None primary AR of a given AR-set is present" }; static const value_string pn_rt_frag_status_error[] = { { 0x00, "reserved" }, { 0x01, "reserved: invalid should be zero" }, { 0, NULL } }; static const value_string pn_rt_frag_status_more_follows[] = { { 0x00, "Last fragment" }, { 0x01, "More fragments follow" }, { 0, NULL } }; /* Copied and renamed from proto.c because global value_strings don't work for plugins */ static const value_string plugin_proto_checksum_vals[] = { { PROTO_CHECKSUM_E_BAD, "Bad" }, { PROTO_CHECKSUM_E_GOOD, "Good" }, { PROTO_CHECKSUM_E_UNVERIFIED, "Unverified" }, { PROTO_CHECKSUM_E_NOT_PRESENT, "Not present" }, { 0, NULL } }; static void dissect_DataStatus(tvbuff_t *tvb, int offset, proto_tree *tree, packet_info *pinfo, guint8 u8DataStatus) { proto_item *sub_item; proto_tree *sub_tree; guint8 u8DataValid; guint8 u8Redundancy; guint8 u8State; conversation_t *conversation; gboolean inputFlag = FALSE; gboolean outputFlag = FALSE; apduStatusSwitch *apdu_status_switch; u8State = (u8DataStatus & 0x01); u8Redundancy = (u8DataStatus >> 1) & 0x01; u8DataValid = (u8DataStatus >> 2) & 0x01; /* if PN Connect Request has been read, IOC mac is dl_src and IOD mac is dl_dst */ conversation = find_conversation(pinfo->num, &pinfo->dl_src, &pinfo->dl_dst, PT_UDP, 0, 0, 0); if (conversation != NULL) { apdu_status_switch = (apduStatusSwitch*)conversation_get_proto_data(conversation, proto_pn_io_apdu_status); if (apdu_status_switch != NULL && apdu_status_switch->isRedundancyActive) { /* IOC -> IOD: OutputCR */ if (addresses_equal(&(pinfo->src), &(conversation->key_ptr->addr1)) && addresses_equal(&(pinfo->dst), &(conversation->key_ptr->addr2))) { outputFlag = TRUE; inputFlag = FALSE; } /* IOD -> IOC: InputCR */ if (addresses_equal(&(pinfo->dst), &(conversation->key_ptr->addr1)) && addresses_equal(&(pinfo->src), &(conversation->key_ptr->addr2))) { inputFlag = TRUE; outputFlag = FALSE; } } } /* input conversation is found */ if (inputFlag) { proto_tree_add_string_format_value(tree, hf_pn_rt_frame_info_type, tvb, offset, 0, "Input", "Input Frame (IO_Device -> IO_Controller)"); } /* output conversation is found. */ else if (outputFlag) { proto_tree_add_string_format_value(tree, hf_pn_rt_frame_info_type, tvb, offset, 0, "Output", "Output Frame (IO_Controller -> IO_Device)"); } sub_item = proto_tree_add_uint_format(tree, hf_pn_rt_data_status, tvb, offset, 1, u8DataStatus, "DataStatus: 0x%02x (Frame: %s and %s, Provider: %s and %s)", u8DataStatus, (u8DataStatus & 0x04) ? "Valid" : "Invalid", (u8DataStatus & 0x01) ? "Primary" : "Backup", (u8DataStatus & 0x20) ? "Ok" : "Problem", (u8DataStatus & 0x10) ? "Run" : "Stop"); sub_tree = proto_item_add_subtree(sub_item, ett_pn_rt_data_status); proto_tree_add_uint(sub_tree, hf_pn_rt_data_status_ignore, tvb, offset, 1, u8DataStatus); proto_tree_add_uint(sub_tree, hf_pn_rt_data_status_Reserved_2, tvb, offset, 1, u8DataStatus); proto_tree_add_uint(sub_tree, hf_pn_rt_data_status_ok, tvb, offset, 1, u8DataStatus); proto_tree_add_uint(sub_tree, hf_pn_rt_data_status_operate, tvb, offset, 1, u8DataStatus); proto_tree_add_uint(sub_tree, hf_pn_rt_data_status_res3, tvb, offset, 1, u8DataStatus); /* input conversation is found */ if (inputFlag) { proto_tree_add_uint(sub_tree, hf_pn_rt_data_status_valid, tvb, offset, 1, u8DataStatus); proto_tree_add_item(tree, hf_pn_rt_frame_info_function_meaning_input_conv, tvb, offset, 1, u8DataStatus); if (u8State == 0 && u8Redundancy == 0 && u8DataValid == 1) { proto_tree_add_boolean(sub_tree, hf_pn_rt_data_status_redundancy_input_cr_state_is_backup, tvb, offset, 1, u8DataStatus); } else if (u8State == 0 && u8Redundancy == 0 && u8DataValid == 0) { proto_tree_add_boolean(sub_tree, hf_pn_rt_data_status_redundancy_input_cr_state_is_backup, tvb, offset, 1, u8DataStatus); } else if (u8State == 0 && u8Redundancy == 1 && u8DataValid == 1) { proto_tree_add_boolean(sub_tree, hf_pn_rt_data_status_redundancy_input_cr_state_is_backup, tvb, offset, 1, u8DataStatus); } else if (u8State == 0 && u8Redundancy == 1 && u8DataValid == 0) { proto_tree_add_boolean(sub_tree, hf_pn_rt_data_status_redundancy_input_cr_state_is_backup, tvb, offset, 1, u8DataStatus); } else if (u8State == 1 && u8Redundancy == 0 && u8DataValid == 1) { proto_tree_add_boolean(sub_tree, hf_pn_rt_data_status_redundancy_input_cr_state_is_primary, tvb, offset, 1, u8DataStatus); } else if (u8State == 1 && u8Redundancy == 1 && u8DataValid == 1) { proto_tree_add_boolean(sub_tree, hf_pn_rt_data_status_redundancy_input_cr_state_is_primary, tvb, offset, 1, u8DataStatus); } proto_tree_add_uint(sub_tree, hf_pn_rt_data_status_primary, tvb, offset, 1, u8DataStatus); return; } // output conversation is found. else if (outputFlag) { proto_tree_add_item(tree, hf_pn_rt_frame_info_function_meaning_output_conv, tvb, offset, 1, u8DataStatus); proto_tree_add_uint(sub_tree, hf_pn_rt_data_status_valid, tvb, offset, 1, u8DataStatus); proto_tree_add_boolean(sub_tree, hf_pn_rt_data_status_redundancy_output_cr, tvb, offset, 1, u8DataStatus); proto_tree_add_uint(sub_tree, hf_pn_rt_data_status_primary, tvb, offset, 1, u8DataStatus); return; } // If no conversation is found proto_tree_add_uint(sub_tree, hf_pn_rt_data_status_valid, tvb, offset, 1, u8DataStatus); proto_tree_add_boolean(sub_tree, hf_pn_rt_data_status_redundancy, tvb, offset, 1, u8DataStatus); proto_tree_add_uint(sub_tree, hf_pn_rt_data_status_primary, tvb, offset, 1, u8DataStatus); } static gboolean IsDFP_Frame(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, guint16 u16FrameID) { guint16 u16SFCRC16; guint8 u8SFPosition; guint8 u8SFDataLength = 255; int offset = 0; guint32 u32SubStart; guint16 crc; gint tvb_len = 0; unsigned char virtualFramebuffer[16]; /* try to build a temporaray buffer for generating this CRC */ if (!pinfo->src.data || !pinfo->dst.data || pinfo->dst.type != AT_ETHER || pinfo->src.type != AT_ETHER) { /* if we don't have src/dst mac addresses then we assume it's not * to avoid various crashes */ return FALSE; } memcpy(&virtualFramebuffer[0], pinfo->dst.data, 6); memcpy(&virtualFramebuffer[6], pinfo->src.data, 6); virtualFramebuffer[12] = 0x88; virtualFramebuffer[13] = 0x92; virtualFramebuffer[15] = (unsigned char) (u16FrameID &0xff); virtualFramebuffer[14] = (unsigned char) (u16FrameID>>8); crc = crc16_plain_init(); crc = crc16_plain_update(crc, &virtualFramebuffer[0], 16); crc = crc16_plain_finalize(crc); /* can check this CRC only by having built a temporary data buffer out of the pinfo data */ u16SFCRC16 = tvb_get_letohs(tvb, offset); if (u16SFCRC16 != 0) /* no crc! */ { if (u16SFCRC16 != crc) { proto_item_append_text(tree, ", no packed frame: SFCRC16 is 0x%x should be 0x%x", u16SFCRC16, crc); return(FALSE); } } /* end of first CRC check */ offset += 2; /*Skip first crc */ tvb_len = tvb_captured_length(tvb); if (offset + 4 > tvb_len) return FALSE; if (tvb_get_letohs(tvb, offset) == 0) return FALSE; /* no valid DFP frame */ while (1) { u32SubStart = offset; u8SFPosition = tvb_get_guint8(tvb, offset); offset += 1; u8SFDataLength = tvb_get_guint8(tvb, offset); offset += 1; if (u8SFDataLength == 0) { break; } offset += 2; offset += u8SFDataLength; if (offset > tvb_len) return /*TRUE; */FALSE; u16SFCRC16 = tvb_get_letohs(tvb, offset); if (u16SFCRC16 != 0) { if (u8SFPosition & 0x80) { crc = crc16_plain_tvb_offset_seed(tvb, u32SubStart, offset-u32SubStart, 0); if (crc != u16SFCRC16) { return FALSE; } else { } } else { } } offset += 2; } return TRUE; } /* possibly dissect a CSF_SDU related PN-RT packet */ gboolean dissect_CSF_SDU_heur(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) { /* the sub tvb will NOT contain the frame_id here! */ guint16 u16FrameID = GPOINTER_TO_UINT(data); guint16 u16SFCRC16; guint8 u8SFPosition; guint8 u8SFDataLength = 255; guint8 u8SFCycleCounter; guint8 u8SFDataStatus; gint offset = 0; guint32 u32SubStart; proto_item *sub_item; proto_tree *sub_tree; guint16 crc; /* possible FrameID ranges for DFP */ if ((u16FrameID < 0x100) || (u16FrameID > 0x0FFF)) return (FALSE); if (IsDFP_Frame(tvb, pinfo, tree, u16FrameID)) { /* can't check this CRC, as the checked data bytes are not available */ u16SFCRC16 = tvb_get_letohs(tvb, offset); if (u16SFCRC16 != 0) { /* Checksum verify will always succeed */ /* XXX - should we combine the two calls to always show "unverified"? */ proto_tree_add_checksum(tree, tvb, offset, hf_pn_rt_sf_crc16, hf_pn_rt_sf_crc16_status, &ei_pn_rt_sf_crc16, pinfo, u16SFCRC16, ENC_LITTLE_ENDIAN, PROTO_CHECKSUM_VERIFY); } else { proto_tree_add_checksum(tree, tvb, offset, hf_pn_rt_sf_crc16, hf_pn_rt_sf_crc16_status, &ei_pn_rt_sf_crc16, pinfo, 0, ENC_LITTLE_ENDIAN, PROTO_CHECKSUM_NO_FLAGS); } offset += 2; while (1) { sub_item = proto_tree_add_item(tree, hf_pn_rt_sf, tvb, offset, 0, ENC_NA); sub_tree = proto_item_add_subtree(sub_item, ett_pn_rt_sf); u32SubStart = offset; u8SFPosition = tvb_get_guint8(tvb, offset); proto_tree_add_uint(sub_tree, hf_pn_rt_sf_position, tvb, offset, 1, u8SFPosition); offset += 1; u8SFDataLength = tvb_get_guint8(tvb, offset); proto_tree_add_uint(sub_tree, hf_pn_rt_sf_data_length, tvb, offset, 1, u8SFDataLength); offset += 1; if (u8SFDataLength == 0) { proto_item_append_text(sub_item, ": Pos:%u, Length:%u", u8SFPosition, u8SFDataLength); proto_item_set_len(sub_item, offset - u32SubStart); break; } u8SFCycleCounter = tvb_get_guint8(tvb, offset); proto_tree_add_uint(sub_tree, hf_pn_rt_sf_cycle_counter, tvb, offset, 1, u8SFCycleCounter); offset += 1; u8SFDataStatus = tvb_get_guint8(tvb, offset); dissect_DataStatus(tvb, offset, sub_tree, pinfo, u8SFDataStatus); offset += 1; offset = dissect_pn_user_data(tvb, offset, pinfo, sub_tree, u8SFDataLength, "DataItem"); u16SFCRC16 = tvb_get_letohs(tvb, offset); if (u16SFCRC16 != 0 /* "old check": u8SFPosition & 0x80 */) { crc = crc16_plain_tvb_offset_seed(tvb, u32SubStart, offset-u32SubStart, 0); proto_tree_add_checksum(tree, tvb, offset, hf_pn_rt_sf_crc16, hf_pn_rt_sf_crc16_status, &ei_pn_rt_sf_crc16, pinfo, crc, ENC_LITTLE_ENDIAN, PROTO_CHECKSUM_VERIFY); } else { proto_tree_add_checksum(tree, tvb, offset, hf_pn_rt_sf_crc16, hf_pn_rt_sf_crc16_status, &ei_pn_rt_sf_crc16, pinfo, 0, ENC_LITTLE_ENDIAN, PROTO_CHECKSUM_NO_FLAGS); } offset += 2; proto_item_append_text(sub_item, ": Pos:%u, Length:%u, Cycle:%u, Status: 0x%02x (%s,%s,%s,%s)", u8SFPosition, u8SFDataLength, u8SFCycleCounter, u8SFDataStatus, (u8SFDataStatus & 0x04) ? "Valid" : "Invalid", (u8SFDataStatus & 0x01) ? "Primary" : "Backup", (u8SFDataStatus & 0x20) ? "Ok" : "Problem", (u8SFDataStatus & 0x10) ? "Run" : "Stop"); proto_item_set_len(sub_item, offset - u32SubStart); } return TRUE; } return FALSE; } /* for reasemble processing we need some inits.. */ /* Register PNIO defrag table init routine. */ static reassembly_table pdu_reassembly_table; static GHashTable *reasembled_frag_table = NULL; static dissector_table_t ethertype_subdissector_table; static guint32 start_frag_OR_ID[16]; static void pnio_defragment_init(void) { guint32 i; for (i=0; i < 16; i++) /* init the reasemble help array */ start_frag_OR_ID[i] = 0; reasembled_frag_table = g_hash_table_new(NULL, NULL); } static void pnio_defragment_cleanup(void) { g_hash_table_destroy(reasembled_frag_table); } /* possibly dissect a FRAG_PDU related PN-RT packet */ static gboolean dissect_FRAG_PDU_heur(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) { /* the sub tvb will NOT contain the frame_id here! */ guint16 u16FrameID = GPOINTER_TO_UINT(data); int offset = 0; /* possible FrameID ranges for FRAG_PDU */ if (u16FrameID >= 0xFF80 && u16FrameID <= 0xFF8F) { proto_item *sub_item; proto_tree *sub_tree; proto_item *status_item; proto_tree *status_tree; guint8 u8FragDataLength; guint8 u8FragStatus; gboolean bMoreFollows; guint8 uFragNumber; sub_item = proto_tree_add_item(tree, hf_pn_rt_frag, tvb, offset, 0, ENC_NA); sub_tree = proto_item_add_subtree(sub_item, ett_pn_rt_frag); u8FragDataLength = tvb_get_guint8(tvb, offset); proto_tree_add_uint(sub_tree, hf_pn_rt_frag_data_length, tvb, offset, 1, u8FragDataLength); offset += 1; status_item = proto_tree_add_item(sub_tree, hf_pn_rt_frag_status, tvb, offset, 1, ENC_NA); status_tree = proto_item_add_subtree(status_item, ett_pn_rt_frag_status); u8FragStatus = tvb_get_guint8(tvb, offset); proto_tree_add_uint(status_tree, hf_pn_rt_frag_status_more_follows, tvb, offset, 1, u8FragStatus); proto_tree_add_uint(status_tree, hf_pn_rt_frag_status_error, tvb, offset, 1, u8FragStatus); proto_tree_add_uint(status_tree, hf_pn_rt_frag_status_fragment_number, tvb, offset, 1, u8FragStatus); offset += 1; uFragNumber = u8FragStatus & 0x3F; /* bits 0 to 5 */ bMoreFollows = (u8FragStatus & 0x80) != 0; proto_item_append_text(status_item, ": Number: %u, %s", uFragNumber, val_to_str( (u8FragStatus & 0x80) >> 7, pn_rt_frag_status_more_follows, "Unknown")); /* Is this a string or a bunch of bytes? Should it be FT_BYTES? */ proto_tree_add_string_format(sub_tree, hf_pn_rt_frag_data, tvb, offset, tvb_captured_length_remaining(tvb, offset), "data", "Fragment Length: %d bytes", tvb_captured_length_remaining(tvb, offset)); col_append_fstr(pinfo->cinfo, COL_INFO, " Fragment Length: %d bytes", tvb_captured_length_remaining(tvb, offset)); dissect_pn_user_data_bytes(tvb, offset, pinfo, sub_tree, tvb_captured_length_remaining(tvb, offset), FRAG_DATA); if ((guint)tvb_captured_length_remaining(tvb, offset) < (guint)(u8FragDataLength *8)) { proto_item_append_text(status_item, ": FragDataLength out of Framerange -> discarding!"); return (TRUE); } /* defragmentation starts here */ if (pnio_desegment) { guint32 u32FragID; guint32 u32ReasembleID /*= 0xfedc ??*/; fragment_head *pdu_frag; u32FragID = (u16FrameID & 0xf); if (uFragNumber == 0) { /* this is the first "new" fragment, so set up a new key Id */ guint32 u32FrameKey; u32FrameKey = (pinfo->num << 2) | u32FragID; /* store it in the array */ start_frag_OR_ID[u32FragID] = u32FrameKey; } u32ReasembleID = start_frag_OR_ID[u32FragID]; /* use frame data instead of "pnio fraglen" which sets 8 octet steps */ pdu_frag = fragment_add_seq(&pdu_reassembly_table, tvb, offset, pinfo, u32ReasembleID, NULL, uFragNumber, (tvb_captured_length_remaining(tvb, offset))/*u8FragDataLength*8*/, bMoreFollows, 0); if (pdu_frag && !bMoreFollows) /* PDU is complete! and last fragment */ { /* store this fragment as the completed fragment in hash table */ g_hash_table_insert(reasembled_frag_table, GUINT_TO_POINTER(pinfo->num), pdu_frag); start_frag_OR_ID[u32FragID] = 0; /* reset the starting frame counter */ } if (!bMoreFollows) /* last fragment */ { pdu_frag = (fragment_head *)g_hash_table_lookup(reasembled_frag_table, GUINT_TO_POINTER(pinfo->num)); if (pdu_frag) /* found a matching fragment; dissect it */ { guint16 type; tvbuff_t *pdu_tvb; /* create the new tvb for defragmented frame */ pdu_tvb = tvb_new_chain(tvb, pdu_frag->tvb_data); /* add the defragmented data to the data source list */ add_new_data_source(pinfo, pdu_tvb, "Reassembled Profinet Frame"); /* PDU is complete: look for the Ethertype and give it to the appropriate dissection routine */ type = tvb_get_ntohs(pdu_tvb, 0); pdu_tvb = tvb_new_subset_remaining(pdu_tvb, 2); if (!dissector_try_uint(ethertype_subdissector_table, type, pdu_tvb, pinfo, tree)) call_data_dissector(pdu_tvb, pinfo, tree); } } return TRUE; } else return TRUE; } return FALSE; } /* * dissect_pn_rt - The dissector for the Soft-Real-Time protocol */ static int dissect_pn_rt(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_) { gint pdu_len; gint data_len; guint16 u16FrameID; guint8 u8DataStatus; guint8 u8TransferStatus; guint16 u16CycleCounter; const gchar *pszProtAddInfo; const gchar *pszProtShort; const gchar *pszProtSummary; const gchar *pszProtComment; proto_tree *pn_rt_tree, *ti; gchar szFieldSummary[100]; tvbuff_t *next_tvb; gboolean bCyclic; heur_dtbl_entry_t *hdtbl_entry; /* If the link-layer dissector for the protocol above us knows whether * the packet, as handed to it, includes a link-layer FCS, what it * hands to us should not include the FCS; if that's not the case, * that's a bug in that dissector, and should be fixed there. * * If the link-layer dissector for the protocol above us doesn't know * whether the packet, as handed to us, includes a link-layer FCS, * there are limits as to what can be done there; the dissector * ultimately needs a "yes, it has an FCS" preference setting, which * both the Ethernet and 802.11 dissectors do. If that's not the case * for a dissector, that's a deficiency in that dissector, and should * be fixed there. * * Therefore, we assume we are not handed a packet that includes an * FCS. If we are ever handed such a packet, either the link-layer * dissector needs to be fixed or the link-layer dissector's preference * needs to be set for your capture (even if that means adding such * a preference). This dissector (and other dissectors for protcols * running atop the link layer) should not attempt to process the * FCS themselves, as that will just break things. */ /* Initialize variables */ pn_rt_tree = NULL; ti = NULL; /* * Set the columns now, so that they'll be set correctly if we throw * an exception. We can set them (or append things) later again .... */ col_set_str(pinfo->cinfo, COL_PROTOCOL, "PN-RT"); col_set_str(pinfo->cinfo, COL_INFO, "PROFINET Real-Time"); pdu_len = tvb_reported_length(tvb); if (pdu_len < 6) { dissect_pn_malformed(tvb, 0, pinfo, tree, pdu_len); return 0; } /* build some "raw" data */ u16FrameID = tvb_get_ntohs(tvb, 0); if (u16FrameID <= 0x001F) { pszProtShort = "PN-RT"; pszProtAddInfo = "reserved, "; pszProtSummary = "Real-Time"; pszProtComment = "0x0000-0x001F: Reserved ID"; bCyclic = FALSE; } else if (u16FrameID <= 0x0021) { pszProtShort = "PN-PTCP"; pszProtAddInfo = "Synchronization, "; pszProtSummary = "Real-Time"; pszProtComment = "0x0020-0x0021: Real-Time: Sync (with follow up)"; bCyclic = FALSE; } else if (u16FrameID <= 0x007F) { pszProtShort = "PN-RT"; pszProtAddInfo = "reserved, "; pszProtSummary = "Real-Time"; pszProtComment = "0x0022-0x007F: Reserved ID"; bCyclic = FALSE; } else if (u16FrameID <= 0x0081) { pszProtShort = "PN-PTCP"; pszProtAddInfo = "Synchronization, "; pszProtSummary = "Isochronous-Real-Time"; pszProtComment = "0x0080-0x0081: Real-Time: Sync (without follow up)"; bCyclic = FALSE; } else if (u16FrameID <= 0x00FF) { pszProtShort = "PN-RT"; pszProtAddInfo = "reserved, "; pszProtSummary = "Real-Time"; pszProtComment = "0x0082-0x00FF: Reserved ID"; bCyclic = FALSE; } else if (u16FrameID <= 0x6FF) { pszProtShort = "PN-RTC3"; pszProtAddInfo = "RTC3, "; pszProtSummary = "Isochronous-Real-Time"; pszProtComment = "0x0100-0x06FF: RED: Real-Time(class=3): non redundant, normal or DFP"; bCyclic = TRUE; } else if (u16FrameID <= 0x0FFF) { pszProtShort = "PN-RTC3"; pszProtAddInfo = "RTC3, "; pszProtSummary = "Isochronous-Real-Time"; pszProtComment = "0x0700-0x0FFF: RED: Real-Time(class=3): redundant, normal or DFP"; bCyclic = TRUE; } else if (u16FrameID <= 0x7FFF) { pszProtShort = "PN-RT"; pszProtAddInfo = "reserved, "; pszProtSummary = "Real-Time"; pszProtComment = "0x1000-0x7FFF: Reserved ID"; bCyclic = FALSE; } else if (u16FrameID <= 0xBBFF) { pszProtShort = "PN-RTC1"; pszProtAddInfo = "RTC1, "; pszProtSummary = "cyclic Real-Time"; pszProtComment = "0x8000-0xBBFF: Real-Time(class=1 unicast): non redundant, normal"; bCyclic = TRUE; } else if (u16FrameID <= 0xBFFF) { pszProtShort = "PN-RTC1"; pszProtAddInfo = "RTC1, "; pszProtSummary = "cyclic Real-Time"; pszProtComment = "0xBC00-0xBFFF: Real-Time(class=1 multicast): non redundant, normal"; bCyclic = TRUE; } else if (u16FrameID <= 0xF7FF) { /* check if udp frame on PNIO port */ if (pinfo->destport == 0x8892) { /* UDP frame */ pszProtShort = "PN-RTCUDP,"; pszProtAddInfo = "RT_CLASS_UDP, "; pszProtComment = "0xC000-0xF7FF: Real-Time(UDP unicast): Cyclic"; } else { /* layer 2 frame */ pszProtShort = "PN-RT"; pszProtAddInfo = "RTC1(legacy), "; pszProtComment = "0xC000-0xF7FF: Real-Time(class=1 unicast): Cyclic"; } pszProtSummary = "cyclic Real-Time"; bCyclic = TRUE; } else if (u16FrameID <= 0xFBFF) { if (pinfo->destport == 0x8892) { /* UDP frame */ pszProtShort = "PN-RTCUDP,"; pszProtAddInfo = "RT_CLASS_UDP, "; pszProtComment = "0xF800-0xFBFF:: Real-Time(UDP multicast): Cyclic"; } else { /* layer 2 frame */ pszProtShort = "PN-RT"; pszProtAddInfo = "RTC1(legacy), "; pszProtComment = "0xF800-0xFBFF: Real-Time(class=1 multicast): Cyclic"; } pszProtSummary = "cyclic Real-Time"; bCyclic = TRUE; } else if (u16FrameID <= 0xFDFF) { pszProtShort = "PN-RTA"; pszProtAddInfo = "Reserved, "; pszProtSummary = "acyclic Real-Time"; pszProtComment = "0xFC00-0xFDFF: Reserved"; bCyclic = FALSE; if (u16FrameID == 0xfc01) { pszProtShort = "PN-RTA"; pszProtAddInfo = "Alarm High, "; pszProtSummary = "acyclic Real-Time"; pszProtComment = "Real-Time: Acyclic PN-IO Alarm high priority"; } } else if (u16FrameID <= 0xFEFF) { pszProtShort = "PN-RTA"; pszProtAddInfo = "Reserved, "; pszProtSummary = "acyclic Real-Time"; pszProtComment = "0xFE00-0xFEFF: Real-Time: Reserved"; bCyclic = FALSE; if (u16FrameID == 0xFE01) { pszProtShort = "PN-RTA"; pszProtAddInfo = "Alarm Low, "; pszProtSummary = "acyclic Real-Time"; pszProtComment = "Real-Time: Acyclic PN-IO Alarm low priority"; } if (u16FrameID == FRAME_ID_DCP_HELLO) { pszProtShort = "PN-RTA"; pszProtAddInfo = ""; pszProtSummary = "acyclic Real-Time"; pszProtComment = "Real-Time: DCP (Dynamic Configuration Protocol) hello"; } if (u16FrameID == FRAME_ID_DCP_GETORSET) { pszProtShort = "PN-RTA"; pszProtAddInfo = ""; pszProtSummary = "acyclic Real-Time"; pszProtComment = "Real-Time: DCP (Dynamic Configuration Protocol) get/set"; } if (u16FrameID == FRAME_ID_DCP_IDENT_REQ) { pszProtShort = "PN-RTA"; pszProtAddInfo = ""; pszProtSummary = "acyclic Real-Time"; pszProtComment = "Real-Time: DCP (Dynamic Configuration Protocol) identify multicast request"; } if (u16FrameID == FRAME_ID_DCP_IDENT_RES) { pszProtShort = "PN-RTA"; pszProtAddInfo = ""; pszProtSummary = "acyclic Real-Time"; pszProtComment = "Real-Time: DCP (Dynamic Configuration Protocol) identify response"; } } else if (u16FrameID <= 0xFF01) { pszProtShort = "PN-PTCP"; pszProtAddInfo = "RTA Sync, "; pszProtSummary = "acyclic Real-Time"; pszProtComment = "0xFF00-0xFF01: PTCP Announce"; bCyclic = FALSE; } else if (u16FrameID <= 0xFF1F) { pszProtShort = "PN-PTCP"; pszProtAddInfo = "RTA Sync, "; pszProtSummary = "acyclic Real-Time"; pszProtComment = "0xFF02-0xFF1F: Reserved"; bCyclic = FALSE; } else if (u16FrameID <= 0xFF21) { pszProtShort = "PN-PTCP"; pszProtAddInfo = "Follow Up, "; pszProtSummary = "acyclic Real-Time"; pszProtComment = "0xFF20-0xFF21: PTCP Follow Up"; bCyclic = FALSE; } else if (u16FrameID <= 0xFF22) { pszProtShort = "PN-PTCP"; pszProtAddInfo = "Follow Up, "; pszProtSummary = "acyclic Real-Time"; pszProtComment = "0xFF22-0xFF3F: Reserved"; bCyclic = FALSE; } else if (u16FrameID <= 0xFF43) { pszProtShort = "PN-PTCP"; pszProtAddInfo = "Delay, "; pszProtSummary = "acyclic Real-Time"; pszProtComment = "0xFF40-0xFF43: Acyclic Real-Time: Delay"; bCyclic = FALSE; } else if (u16FrameID <= 0xFF7F) { pszProtShort = "PN-RT"; pszProtAddInfo = "Reserved, "; pszProtSummary = "Real-Time"; pszProtComment = "0xFF44-0xFF7F: reserved ID"; bCyclic = FALSE; } else if (u16FrameID <= 0xFF8F) { pszProtShort = "PN-RT"; pszProtAddInfo = ""; pszProtSummary = "Fragmentation"; pszProtComment = "0xFF80-0xFF8F: Fragmentation"; bCyclic = FALSE; } else { pszProtShort = "PN-RT"; pszProtAddInfo = "Reserved, "; pszProtSummary = "Real-Time"; pszProtComment = "0xFF90-0xFFFF: reserved ID"; bCyclic = FALSE; } /* decode optional cyclic fields at the packet end and build the summary line */ if (bCyclic) { /* cyclic transfer has cycle counter, data status and transfer status fields at the end */ u16CycleCounter = tvb_get_ntohs(tvb, pdu_len - 4); u8DataStatus = tvb_get_guint8(tvb, pdu_len - 2); u8TransferStatus = tvb_get_guint8(tvb, pdu_len - 1); g_snprintf (szFieldSummary, sizeof(szFieldSummary), "%sID:0x%04x, Len:%4u, Cycle:%5u (%s,%s,%s,%s)", pszProtAddInfo, u16FrameID, pdu_len - 2 - 4, u16CycleCounter, (u8DataStatus & 0x04) ? "Valid" : "Invalid", (u8DataStatus & 0x01) ? "Primary" : "Backup", (u8DataStatus & 0x20) ? "Ok" : "Problem", (u8DataStatus & 0x10) ? "Run" : "Stop"); /* user data length is packet len - frame id - optional cyclic status fields */ data_len = pdu_len - 2 - 4; } else { /* satisfy the gcc compiler, so it won't throw an "uninitialized" warning */ u16CycleCounter = 0; u8DataStatus = 0; u8TransferStatus = 0; /* acyclic transfer has no fields at the end */ g_snprintf (szFieldSummary, sizeof(szFieldSummary), "%sID:0x%04x, Len:%4u", pszProtAddInfo, u16FrameID, pdu_len - 2); /* user data length is packet len - frame id field */ data_len = pdu_len - 2; } /* build protocol tree only, if tree is really used */ if (tree) { /* build pn_rt protocol tree with summary line */ if (pn_rt_summary_in_tree) { ti = proto_tree_add_protocol_format(tree, proto_pn_rt, tvb, 0, pdu_len, "PROFINET %s, %s", pszProtSummary, szFieldSummary); } else { ti = proto_tree_add_item(tree, proto_pn_rt, tvb, 0, pdu_len, ENC_NA); } pn_rt_tree = proto_item_add_subtree(ti, ett_pn_rt); /* add frame ID */ proto_tree_add_uint_format(pn_rt_tree, hf_pn_rt_frame_id, tvb, 0, 2, u16FrameID, "FrameID: 0x%04x (%s)", u16FrameID, pszProtComment); if (bCyclic) { /* add cycle counter */ proto_tree_add_uint_format(pn_rt_tree, hf_pn_rt_cycle_counter, tvb, pdu_len - 4, 2, u16CycleCounter, "CycleCounter: %u", u16CycleCounter); /* add data status subtree */ dissect_DataStatus(tvb, pdu_len - 2, pn_rt_tree, pinfo, u8DataStatus); /* add transfer status */ if (u8TransferStatus) { proto_tree_add_uint_format(pn_rt_tree, hf_pn_rt_transfer_status, tvb, pdu_len - 1, 1, u8TransferStatus, "TransferStatus: 0x%02x (ignore this frame)", u8TransferStatus); } else { proto_tree_add_uint_format(pn_rt_tree, hf_pn_rt_transfer_status, tvb, pdu_len - 1, 1, u8TransferStatus, "TransferStatus: 0x%02x (OK)", u8TransferStatus); } } } /* update column info now */ col_add_str(pinfo->cinfo, COL_INFO, szFieldSummary); col_set_str(pinfo->cinfo, COL_PROTOCOL, pszProtShort); /* get frame user data tvb (without header and footer) */ next_tvb = tvb_new_subset_length(tvb, 2, data_len); /* ask heuristics, if some sub-dissector is interested in this packet payload */ if (!dissector_try_heuristic(heur_subdissector_list, next_tvb, pinfo, tree, &hdtbl_entry, GUINT_TO_POINTER( (guint32) u16FrameID))) { /*col_set_str(pinfo->cinfo, COL_INFO, "Unknown");*/ /* Oh, well, we don't know this; dissect it as data. */ dissect_pn_undecoded(next_tvb, 0, pinfo, tree, tvb_captured_length(next_tvb)); } return tvb_captured_length(tvb); } /* Register all the bits needed by the filtering engine */ void proto_register_pn_rt(void) { static hf_register_info hf[] = { { &hf_pn_rt_frame_id, { "FrameID", "pn_rt.frame_id", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_pn_rt_cycle_counter, { "CycleCounter", "pn_rt.cycle_counter", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_pn_rt_data_status, { "DataStatus", "pn_rt.ds", FT_UINT8, BASE_HEX, 0, 0x0, NULL, HFILL }}, { &hf_pn_rt_data_status_ignore, { "Ignore (1:Ignore/0:Evaluate)", "pn_rt.ds_ignore", FT_UINT8, BASE_HEX, 0, 0x80, NULL, HFILL }}, { &hf_pn_rt_frame_info_type, { "PN Frame Type", "pn_rt.ds_frame_info_type", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_pn_rt_frame_info_function_meaning_input_conv, { "Function/Meaning", "pn_rt.ds_frame_info_meaning", FT_UINT8, BASE_HEX, VALS(pn_rt_frame_info_function_meaning_input_conv), 0x7, NULL, HFILL } }, { &hf_pn_rt_frame_info_function_meaning_output_conv, { "Function/Meaning", "pn_rt.ds_frame_info_meaning", FT_UINT8, BASE_HEX, VALS(pn_rt_frame_info_function_meaning_output_conv), 0x7, NULL, HFILL } }, { &hf_pn_rt_data_status_Reserved_2, { "Reserved_2 (should be zero)", "pn_rt.ds_Reserved_2", FT_UINT8, BASE_HEX, 0, 0x40, NULL, HFILL }}, { &hf_pn_rt_data_status_ok, { "StationProblemIndicator (1:Ok/0:Problem)", "pn_rt.ds_ok", FT_UINT8, BASE_HEX, 0, 0x20, NULL, HFILL }}, { &hf_pn_rt_data_status_operate, { "ProviderState (1:Run/0:Stop)", "pn_rt.ds_operate", FT_UINT8, BASE_HEX, 0, 0x10, NULL, HFILL }}, { &hf_pn_rt_data_status_res3, { "Reserved_1 (should be zero)", "pn_rt.ds_res3", FT_UINT8, BASE_HEX, 0, 0x08, NULL, HFILL }}, { &hf_pn_rt_data_status_valid, { "DataValid (1:Valid/0:Invalid)", "pn_rt.ds_valid", FT_UINT8, BASE_HEX, 0, 0x04, NULL, HFILL }}, { &hf_pn_rt_data_status_redundancy, { "Redundancy", "pn_rt.ds_redundancy", FT_BOOLEAN, 8, TFS(&tfs_pn_rt_ds_redundancy), 0x02, NULL, HFILL }}, { &hf_pn_rt_data_status_redundancy_output_cr, { "Redundancy", "pn_rt.ds_redundancy", FT_BOOLEAN, 8, TFS(&tfs_pn_rt_ds_redundancy_output_cr), 0x02, NULL, HFILL }}, { &hf_pn_rt_data_status_redundancy_input_cr_state_is_backup, { "Redundancy", "pn_rt.ds_redundancy", FT_BOOLEAN, 8, TFS(&tfs_pn_rt_ds_redundancy_input_cr_state_is_backup), 0x02, NULL, HFILL }}, { &hf_pn_rt_data_status_redundancy_input_cr_state_is_primary, { "Redundancy", "pn_rt.ds_redundancy", FT_BOOLEAN, 8, TFS(&tfs_pn_rt_ds_redundancy_input_cr_state_is_primary), 0x02, NULL, HFILL }}, { &hf_pn_rt_data_status_primary, { "State (1:Primary/0:Backup)", "pn_rt.ds_primary", FT_UINT8, BASE_HEX, 0, 0x01, NULL, HFILL }}, { &hf_pn_rt_transfer_status, { "TransferStatus", "pn_rt.transfer_status", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_pn_rt_sf, { "SubFrame", "pn_rt.sf", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_pn_rt_sf_crc16, { "SFCRC16", "pn_rt.sf.crc16", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_pn_rt_sf_crc16_status, { "SFCRC16 status", "pn_rt.sf.crc16.status", FT_UINT8, BASE_NONE, VALS(plugin_proto_checksum_vals), 0x0, NULL, HFILL }}, { &hf_pn_rt_sf_position, { "Position", "pn_rt.sf.position", FT_UINT8, BASE_DEC, NULL, 0x7F, NULL, HFILL }}, #if 0 { &hf_pn_rt_sf_position_control, { "Control", "pn_rt.sf.position_control", FT_UINT8, BASE_DEC, VALS(pn_rt_position_control), 0x80, NULL, HFILL }}, #endif { &hf_pn_rt_sf_data_length, { "DataLength", "pn_rt.sf.data_length", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_pn_rt_sf_cycle_counter, { "CycleCounter", "pn_rt.sf.cycle_counter", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_pn_rt_frag, { "PROFINET Fragment", "pn_rt.frag", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_pn_rt_frag_data_length, { "FragDataLength", "pn_rt.frag_data_length", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_pn_rt_frag_status, { "FragStatus", "pn_rt.frag_status", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_pn_rt_frag_status_more_follows, { "MoreFollows", "pn_rt.frag_status.more_follows", FT_UINT8, BASE_HEX, VALS(pn_rt_frag_status_more_follows), 0x80, NULL, HFILL }}, { &hf_pn_rt_frag_status_error, { "Reserved", "pn_rt.frag_status.error", FT_UINT8, BASE_HEX, VALS(pn_rt_frag_status_error), 0x40, NULL, HFILL }}, { &hf_pn_rt_frag_status_fragment_number, { "FragmentNumber (zero based)", "pn_rt.frag_status.fragment_number", FT_UINT8, BASE_DEC, NULL, 0x3F, NULL, HFILL }}, /* Is this a string or a bunch of bytes? Should it be FT_BYTES? */ { &hf_pn_rt_frag_data, { "FragData", "pn_rt.frag_data", FT_STRING, BASE_NONE, NULL, 0x00, NULL, HFILL }}, }; static gint *ett[] = { &ett_pn_rt, &ett_pn_rt_data_status, &ett_pn_rt_sf, &ett_pn_rt_frag, &ett_pn_rt_frag_status }; static ei_register_info ei[] = { { &ei_pn_rt_sf_crc16, { "pn_rt.sf.crc16_bad", PI_CHECKSUM, PI_ERROR, "Bad checksum", EXPFILL }}, }; module_t *pn_rt_module; expert_module_t* expert_pn_rt; proto_pn_rt = proto_register_protocol("PROFINET Real-Time Protocol", "PN-RT", "pn_rt"); proto_register_field_array(proto_pn_rt, hf, array_length(hf)); proto_register_subtree_array(ett, array_length(ett)); expert_pn_rt = expert_register_protocol(proto_pn_rt); expert_register_field_array(expert_pn_rt, ei, array_length(ei)); /* Register our configuration options */ pn_rt_module = prefs_register_protocol(proto_pn_rt, NULL); prefs_register_bool_preference(pn_rt_module, "summary_in_tree", "Show PN-RT summary in protocol tree", "Whether the PN-RT summary line should be shown in the protocol tree", &pn_rt_summary_in_tree); prefs_register_bool_preference(pn_rt_module, "desegment", "reassemble PNIO Fragments", "Reassemble PNIO Fragments and get them decoded", &pnio_desegment); /* register heuristics anchor for payload dissectors */ heur_subdissector_list = register_heur_dissector_list("pn_rt", proto_pn_rt); init_pn (proto_pn_rt); register_init_routine(pnio_defragment_init); register_cleanup_routine(pnio_defragment_cleanup); reassembly_table_register(&pdu_reassembly_table, &addresses_reassembly_table_functions); } /* The registration hand-off routine is called at startup */ void proto_reg_handoff_pn_rt(void) { dissector_handle_t pn_rt_handle; pn_rt_handle = create_dissector_handle(dissect_pn_rt, proto_pn_rt); dissector_add_uint("ethertype", ETHERTYPE_PROFINET, pn_rt_handle); dissector_add_uint_with_preference("udp.port", PROFINET_UDP_PORT, pn_rt_handle); heur_dissector_add("pn_rt", dissect_CSF_SDU_heur, "PROFINET CSF_SDU IO", "pn_csf_sdu_pn_rt", proto_pn_rt, HEURISTIC_ENABLE); heur_dissector_add("pn_rt", dissect_FRAG_PDU_heur, "PROFINET Frag PDU IO", "pn_frag_pn_rt", proto_pn_rt, HEURISTIC_ENABLE); ethertype_subdissector_table = find_dissector_table("ethertype"); } /* * Editor modelines - http://www.wireshark.org/tools/modelines.html * * Local variables: * c-basic-offset: 4 * tab-width: 8 * indent-tabs-mode: nil * End: * * vi: set shiftwidth=4 tabstop=8 expandtab: * :indentSize=4:tabSize=8:noTabs=true: */