/* packet-tcp.c * Routines for TCP packet disassembly * * $Id: packet-tcp.c,v 1.210 2003/10/27 19:34:03 guy Exp $ * * Ethereal - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include #include "in_cksum.h" #include #include #include "ipproto.h" #include "ip_opts.h" #include "follow.h" #include "prefs.h" #include "packet-tcp.h" #include "packet-ip.h" #include "packet-frame.h" #include #include #include "reassemble.h" #include "tap.h" static int tcp_tap = -1; /* Place TCP summary in proto tree */ static gboolean tcp_summary_in_tree = TRUE; /* * Flag to control whether to check the TCP checksum. * * In at least some Solaris network traces, there are packets with bad * TCP checksums, but the traffic appears to indicate that the packets * *were* received; the packets were probably sent by the host on which * the capture was being done, on a network interface to which * checksumming was offloaded, so that DLPI supplied an un-checksummed * packet to the capture program but a checksummed packet got put onto * the wire. */ static gboolean tcp_check_checksum = TRUE; extern FILE* data_out_file; static int proto_tcp = -1; static int hf_tcp_srcport = -1; static int hf_tcp_dstport = -1; static int hf_tcp_port = -1; static int hf_tcp_seq = -1; static int hf_tcp_nxtseq = -1; static int hf_tcp_ack = -1; static int hf_tcp_hdr_len = -1; static int hf_tcp_flags = -1; static int hf_tcp_flags_cwr = -1; static int hf_tcp_flags_ecn = -1; static int hf_tcp_flags_urg = -1; static int hf_tcp_flags_ack = -1; static int hf_tcp_flags_push = -1; static int hf_tcp_flags_reset = -1; static int hf_tcp_flags_syn = -1; static int hf_tcp_flags_fin = -1; static int hf_tcp_window_size = -1; static int hf_tcp_checksum = -1; static int hf_tcp_checksum_bad = -1; static int hf_tcp_len = -1; static int hf_tcp_urgent_pointer = -1; static int hf_tcp_analysis_flags = -1; static int hf_tcp_analysis_acks_frame = -1; static int hf_tcp_analysis_ack_rtt = -1; static int hf_tcp_analysis_retransmission = -1; static int hf_tcp_analysis_fast_retransmission = -1; static int hf_tcp_analysis_out_of_order = -1; static int hf_tcp_analysis_lost_packet = -1; static int hf_tcp_analysis_ack_lost_packet = -1; static int hf_tcp_analysis_keep_alive = -1; static int hf_tcp_analysis_keep_alive_ack = -1; static int hf_tcp_analysis_duplicate_ack = -1; static int hf_tcp_analysis_duplicate_ack_num = -1; static int hf_tcp_analysis_duplicate_ack_frame = -1; static int hf_tcp_analysis_zero_window = -1; static int hf_tcp_analysis_zero_window_probe = -1; static int hf_tcp_analysis_zero_window_violation = -1; static int hf_tcp_reassembled_in = -1; static int hf_tcp_segments = -1; static int hf_tcp_segment = -1; static int hf_tcp_segment_overlap = -1; static int hf_tcp_segment_overlap_conflict = -1; static int hf_tcp_segment_multiple_tails = -1; static int hf_tcp_segment_too_long_fragment = -1; static int hf_tcp_segment_error = -1; static int hf_tcp_option_mss = -1; static int hf_tcp_option_mss_val = -1; static int hf_tcp_option_wscale = -1; static int hf_tcp_option_wscale_val = -1; static int hf_tcp_option_sack_perm = -1; static int hf_tcp_option_sack = -1; static int hf_tcp_option_sack_sle = -1; static int hf_tcp_option_sack_sre = -1; static int hf_tcp_option_echo = -1; static int hf_tcp_option_echo_reply = -1; static int hf_tcp_option_time_stamp = -1; static int hf_tcp_option_cc = -1; static int hf_tcp_option_ccnew = -1; static int hf_tcp_option_ccecho = -1; static int hf_tcp_option_md5 = -1; static gint ett_tcp = -1; static gint ett_tcp_flags = -1; static gint ett_tcp_options = -1; static gint ett_tcp_option_sack = -1; static gint ett_tcp_analysis = -1; static gint ett_tcp_analysis_faults = -1; static gint ett_tcp_segments = -1; static gint ett_tcp_segment = -1; /* not all of the hf_fields below make sense for TCP but we have to provide them anyways to comply with the api (which was aimed for ip fragment reassembly) */ static const fragment_items tcp_segment_items = { &ett_tcp_segment, &ett_tcp_segments, &hf_tcp_segments, &hf_tcp_segment, &hf_tcp_segment_overlap, &hf_tcp_segment_overlap_conflict, &hf_tcp_segment_multiple_tails, &hf_tcp_segment_too_long_fragment, &hf_tcp_segment_error, &hf_tcp_reassembled_in, "Segments" }; static dissector_table_t subdissector_table; static heur_dissector_list_t heur_subdissector_list; static dissector_handle_t data_handle; /* TCP structs and definitions */ /* ************************************************************************** * stuff to analyze TCP sequencenumbers for retransmissions, missing segments, * RTT and reltive sequence numbers. * **************************************************************************/ static gboolean tcp_analyze_seq = FALSE; static gboolean tcp_relative_seq = FALSE; static GMemChunk *tcp_unacked_chunk = NULL; static int tcp_unacked_count = 500; /* one for each packet until it is acked*/ struct tcp_unacked { struct tcp_unacked *next; guint32 frame; guint32 seq; guint32 nextseq; nstime_t ts; /* this is to keep track of zero window and zero window probe */ guint32 window; guint32 flags; }; /* Idea for gt: either x > y, or y is much bigger (assume wrap) */ #define GT_SEQ(x, y) ((gint32)((y) - (x)) < 0) #define LT_SEQ(x, y) ((gint32)((x) - (y)) < 0) #define GE_SEQ(x, y) ((gint32)((y) - (x)) <= 0) #define LE_SEQ(x, y) ((gint32)((x) - (y)) <= 0) #define EQ_SEQ(x, y) ((x) == (y)) static GMemChunk *tcp_acked_chunk = NULL; static int tcp_acked_count = 5000; /* one for almost every other segment in the capture */ #define TCP_A_RETRANSMISSION 0x0001 #define TCP_A_LOST_PACKET 0x0002 #define TCP_A_ACK_LOST_PACKET 0x0004 #define TCP_A_KEEP_ALIVE 0x0008 #define TCP_A_DUPLICATE_ACK 0x0010 #define TCP_A_ZERO_WINDOW 0x0020 #define TCP_A_ZERO_WINDOW_PROBE 0x0040 #define TCP_A_ZERO_WINDOW_VIOLATION 0x0080 #define TCP_A_KEEP_ALIVE_ACK 0x0100 #define TCP_A_OUT_OF_ORDER 0x0200 #define TCP_A_FAST_RETRANSMISSION 0x0400 struct tcp_acked { guint32 frame_acked; nstime_t ts; guint16 flags; guint32 dupack_num; /* dup ack number */ guint32 dupack_frame; /* dup ack to frame # */ }; static GHashTable *tcp_analyze_acked_table = NULL; static GMemChunk *tcp_rel_seq_chunk = NULL; static int tcp_rel_seq_count = 10000; /* one for each segment in the capture */ struct tcp_rel_seq { guint32 seq_base; guint32 ack_base; gint16 win_scale; }; static GHashTable *tcp_rel_seq_table = NULL; static GMemChunk *tcp_analysis_chunk = NULL; static int tcp_analysis_count = 20; /* one for each conversation */ struct tcp_analysis { /* These two structs are managed based on comparing the source * and destination addresses and, if they're equal, comparing * the source and destination ports. * * If the source is greater than the destination, then stuff * sent from src is in ual1. * * If the source is less than the destination, then stuff * sent from src is in ual2. * * XXX - if the addresses and ports are equal, we don't guarantee * the behavior. */ struct tcp_unacked *ual1; /* UnAcked List 1*/ guint32 base_seq1; struct tcp_unacked *ual2; /* UnAcked List 2*/ guint32 base_seq2; gint16 win_scale1; gint16 win_scale2; guint32 ack1, ack2; guint32 ack1_frame, ack2_frame; nstime_t ack1_time, ack2_time; guint32 num1_acks, num2_acks; /* these two lists are used to track when PDUs may start inside a segment. */ struct tcp_next_pdu *pdu_seq1; struct tcp_next_pdu *pdu_seq2; }; static GMemChunk *tcp_next_pdu_chunk = NULL; static int tcp_next_pdu_count = 20; struct tcp_next_pdu { struct tcp_next_pdu *next; guint32 seq; }; static GHashTable *tcp_pdu_tracking_table = NULL; static struct tcp_analysis * get_tcp_conversation_data(packet_info *pinfo) { conversation_t *conv=NULL; struct tcp_analysis *tcpd=NULL; /* Have we seen this conversation before? */ if( (conv=find_conversation(&pinfo->src, &pinfo->dst, pinfo->ptype, pinfo->srcport, pinfo->destport, 0)) == NULL){ /* No this is a new conversation. */ conv=conversation_new(&pinfo->src, &pinfo->dst, pinfo->ptype, pinfo->srcport, pinfo->destport, 0); } /* check if we have any data for this conversation */ tcpd=conversation_get_proto_data(conv, proto_tcp); if(!tcpd){ /* No no such data yet. Allocate and init it */ tcpd=g_mem_chunk_alloc(tcp_analysis_chunk); tcpd->ual1=NULL; tcpd->base_seq1=0; tcpd->win_scale1=-1; tcpd->ack1=0; tcpd->ack1_frame=0; tcpd->ack1_time.secs=0; tcpd->ack1_time.nsecs=0; tcpd->num1_acks=0; tcpd->ual2=NULL; tcpd->base_seq2=0; tcpd->win_scale2=-1; tcpd->ack2=0; tcpd->ack2_frame=0; tcpd->ack2_time.secs=0; tcpd->ack2_time.nsecs=0; tcpd->num2_acks=0; tcpd->pdu_seq1=NULL; tcpd->pdu_seq2=NULL; conversation_add_proto_data(conv, proto_tcp, tcpd); } return tcpd; } /* This function is called from the tcp analysis code to provide clues on how the seq and ack numbers are changed. To prevent the next_pdu lists from growing uncontrollable in size we use this function to do the following : IF we see an ACK then we assume that the left edge of the window has changed at least to this point and assuming it is rare with reordering and trailing duplicate/retransmitted segments, we just assume that after we have seen the ACK we will not see any more segments prior to the ACK value. If we will not see any segments prior to the ACK value then we can just delete all next_pdu entries that describe pdu's starting prior to the ACK. If this heuristics is prooved to be too simplistic we can just enhance it later. */ /* XXX this function should be ehnanced to handle sequence number wrapping */ /* XXX to handle retransmissions and reordered packets maybe we should only discard entries that are more than (guesstimate) 50kb older than the specified sequence number ? */ static void prune_next_pdu_list(struct tcp_next_pdu **tnp, guint32 seq) { struct tcp_next_pdu *tmptnp; if(*tnp == NULL){ return; } for(tmptnp=*tnp;tmptnp;tmptnp=tmptnp->next){ if(tmptnp->seq<=seq){ struct tcp_next_pdu *oldtnp; oldtnp=tmptnp; if(tmptnp==*tnp){ tmptnp=tmptnp->next; *tnp=tmptnp; g_mem_chunk_free(tcp_next_pdu_chunk, oldtnp); if(!tmptnp){ return; } continue; } else { for(tmptnp=*tnp;tmptnp;tmptnp=tmptnp->next){ if(tmptnp->next==oldtnp){ tmptnp->next=oldtnp->next; g_mem_chunk_free(tcp_next_pdu_chunk, oldtnp); break; } } if(!tmptnp){ return; } } } } } /* if we know that a PDU starts inside this segment, return the adjusted offset to where that PDU starts or just return offset back and let TCP try to find out what it can about this segment */ static int scan_for_next_pdu(packet_info *pinfo, int offset, guint32 seq, guint32 nxtseq) { struct tcp_analysis *tcpd=NULL; struct tcp_next_pdu *tnp=NULL; int direction; if(!pinfo->fd->flags.visited){ /* find(or create if needed) the conversation for this tcp session */ tcpd=get_tcp_conversation_data(pinfo); /* check direction and get pdu start lists */ direction=CMP_ADDRESS(&pinfo->src, &pinfo->dst); /* if the addresses are equal, match the ports instead */ if(direction==0) { direction= (pinfo->srcport > pinfo->destport)*2-1; } if(direction>=0){ tnp=tcpd->pdu_seq1; } else { tnp=tcpd->pdu_seq2; } /* scan and see if we find any pdus starting inside this tvb */ for(;tnp;tnp=tnp->next){ /* XXX here we should also try to handle sequence number wrapping */ if(seqseq && nxtseq>tnp->seq){ g_hash_table_insert(tcp_pdu_tracking_table, (void *)pinfo->fd->num, (void *)tnp->seq); offset+=tnp->seq-seq; break; } } } else { guint32 pduseq; pduseq=(guint32)g_hash_table_lookup(tcp_pdu_tracking_table, (void *)pinfo->fd->num); if(pduseq){ offset+=pduseq-seq; } } return offset; } /* if we saw a PDU that extended beyond the end of the segment, use this function to remember where the next pdu starts */ static void pdu_store_sequencenumber_of_next_pdu(packet_info *pinfo, guint32 nxtpdu) { struct tcp_analysis *tcpd=NULL; struct tcp_next_pdu *tnp=NULL; int direction; /* find(or create if needed) the conversation for this tcp session */ tcpd=get_tcp_conversation_data(pinfo); tnp=g_mem_chunk_alloc(tcp_next_pdu_chunk); tnp->seq=nxtpdu; /* check direction and get pdu start list */ direction=CMP_ADDRESS(&pinfo->src, &pinfo->dst); /* if the addresses are equal, match the ports instead */ if(direction==0) { direction= (pinfo->srcport > pinfo->destport)*2-1; } if(direction>=0){ tnp->next=tcpd->pdu_seq1; tcpd->pdu_seq1=tnp; } else { tnp->next=tcpd->pdu_seq2; tcpd->pdu_seq2=tnp; } /*QQQ Add check for ACKs and purge list of sequence numbers already acked. */ } /* if we saw a window scaling option, store it for future reference */ static void pdu_store_window_scale_option(packet_info *pinfo, guint8 ws) { struct tcp_analysis *tcpd=NULL; int direction; /* find(or create if needed) the conversation for this tcp session */ tcpd=get_tcp_conversation_data(pinfo); /* check direction and get pdu start list */ direction=CMP_ADDRESS(&pinfo->src, &pinfo->dst); /* if the addresses are equal, match the ports instead */ if(direction==0) { direction= (pinfo->srcport > pinfo->destport)*2-1; } if(direction>=0){ tcpd->win_scale1=ws; } else { tcpd->win_scale2=ws; } } static void tcp_get_relative_seq_ack(guint32 frame, guint32 *seq, guint32 *ack, guint32 *win) { struct tcp_rel_seq *trs; trs=g_hash_table_lookup(tcp_rel_seq_table, (void *)frame); if(!trs){ return; } (*seq) -= trs->seq_base; (*ack) -= trs->ack_base; if(trs->win_scale!=-1){ (*win)<<=trs->win_scale; } } static struct tcp_acked * tcp_analyze_get_acked_struct(guint32 frame, gboolean createflag) { struct tcp_acked *ta; ta=g_hash_table_lookup(tcp_analyze_acked_table, (void *)frame); if((!ta) && createflag){ ta=g_mem_chunk_alloc(tcp_acked_chunk); ta->frame_acked=0; ta->ts.secs=0; ta->ts.nsecs=0; ta->flags=0; ta->dupack_num=0; ta->dupack_frame=0; g_hash_table_insert(tcp_analyze_acked_table, (void *)frame, ta); } return ta; } static void tcp_analyze_sequence_number(packet_info *pinfo, guint32 seq, guint32 ack, guint32 seglen, guint8 flags, guint16 window) { struct tcp_analysis *tcpd=NULL; int direction; struct tcp_unacked *ual1=NULL; struct tcp_unacked *ual2=NULL; struct tcp_unacked *ual=NULL; guint32 base_seq; guint32 base_ack; guint32 ack1, ack2; guint32 ack1_frame, ack2_frame; nstime_t *ack1_time, *ack2_time; guint32 num1_acks, num2_acks; gint16 win_scale; struct tcp_next_pdu **tnp=NULL; /* find(or create if needed) the conversation for this tcp session */ tcpd=get_tcp_conversation_data(pinfo); /* check direction and get ua lists */ direction=CMP_ADDRESS(&pinfo->src, &pinfo->dst); /* if the addresses are equal, match the ports instead */ if(direction==0) { direction= (pinfo->srcport > pinfo->destport)*2-1; } if(direction>=0){ ual1=tcpd->ual1; ual2=tcpd->ual2; ack1=tcpd->ack1; ack2=tcpd->ack2; ack1_frame=tcpd->ack1_frame; ack2_frame=tcpd->ack2_frame; ack1_time=&tcpd->ack1_time; ack2_time=&tcpd->ack2_time; num1_acks=tcpd->num1_acks; num2_acks=tcpd->num2_acks; tnp=&tcpd->pdu_seq2; base_seq=(tcp_relative_seq && (ual1==NULL))?seq:tcpd->base_seq1; base_ack=(tcp_relative_seq && (ual2==NULL))?seq:tcpd->base_seq2; win_scale=tcpd->win_scale1; } else { ual1=tcpd->ual2; ual2=tcpd->ual1; ack1=tcpd->ack2; ack2=tcpd->ack1; ack1_frame=tcpd->ack2_frame; ack2_frame=tcpd->ack1_frame; ack1_time=&tcpd->ack2_time; ack2_time=&tcpd->ack1_time; num1_acks=tcpd->num2_acks; num2_acks=tcpd->num1_acks; tnp=&tcpd->pdu_seq1; base_seq=(tcp_relative_seq && (ual1==NULL))?seq:tcpd->base_seq2; base_ack=(tcp_relative_seq && (ual2==NULL))?seq:tcpd->base_seq1; win_scale=tcpd->win_scale2; } if(!seglen){ if(!ack2_frame){ ack2_frame=pinfo->fd->num; ack2=ack; ack2_time->secs=pinfo->fd->abs_secs; ack2_time->nsecs=pinfo->fd->abs_usecs*1000; num2_acks=0; } else if(GT_SEQ(ack, ack2)){ ack2_frame=pinfo->fd->num; ack2=ack; ack2_time->secs=pinfo->fd->abs_secs; ack2_time->nsecs=pinfo->fd->abs_usecs*1000; num2_acks=0; } } #ifdef REMOVED /* useful debug ouput * it prints the two lists of the sliding window emulation */ { struct tcp_unacked *u=NULL; printf("\n"); printf("analyze_sequence_number(frame:%d seq:%d nextseq:%d ack:%d)\n",pinfo->fd->num,seq,seq+seglen,ack); printf("UAL1:\n"); for(u=ual1;u;u=u->next){ printf(" Frame:%d seq:%d nseq:%d time:%d.%09d ack:%d:%d\n",u->frame,u->seq,u->nextseq,u->ts.secs,u->ts.nsecs,ack1,ack2); } printf("UAL2:\n"); for(u=ual2;u;u=u->next){ printf(" Frame:%d seq:%d nseq:%d time:%d.%09d ack:%d:%d\n",u->frame,u->seq,u->nextseq,u->ts.secs,u->ts.nsecs,ack1,ack2); } } #endif /* To handle FIN, just add 1 to the length. else the ACK following the FIN-ACK will look like it was outside the window. */ if( flags&TH_FIN ){ seglen+=1; } /* handle the sequence numbers */ /* if this was a SYN packet, then remove existing list and * put SEQ+1 first the list */ if(flags&TH_SYN){ for(ual=ual1;ual1;ual1=ual){ ual=ual1->next; g_mem_chunk_free(tcp_unacked_chunk, ual1); } ual1=g_mem_chunk_alloc(tcp_unacked_chunk); ual1->next=NULL; ual1->frame=pinfo->fd->num; ack1_frame=0; ack2_frame=0; ack1=0; ack2=0; num1_acks=0; num2_acks=0; ual1->seq=seq+1; ual1->nextseq=seq+1; ual1->ts.secs=pinfo->fd->abs_secs; ual1->ts.nsecs=pinfo->fd->abs_usecs*1000; ual1->window=window; ual1->flags=0; if(tcp_relative_seq){ base_seq=seq; base_ack=ack; } goto seq_finished; } /* if this is the first segment we see then just add it */ if( !ual1 ){ ual1=g_mem_chunk_alloc(tcp_unacked_chunk); ual1->next=NULL; ual1->frame=pinfo->fd->num; ual1->seq=seq; ual1->nextseq=seq+seglen; ual1->ts.secs=pinfo->fd->abs_secs; ual1->ts.nsecs=pinfo->fd->abs_usecs*1000; ual1->window=window; ual1->flags=0; if(tcp_relative_seq){ base_seq=seq; base_ack=ack; } goto seq_finished; } /* if we get past here we know that ual1 points to a segment */ /* if seq is beyond ual1->nextseq we have lost a segment */ if (GT_SEQ(seq, ual1->nextseq)) { struct tcp_acked *ta; ta=tcp_analyze_get_acked_struct(pinfo->fd->num, TRUE); ta->flags|=TCP_A_LOST_PACKET; /* just add the segment to the beginning of the list */ ual=g_mem_chunk_alloc(tcp_unacked_chunk); ual->next=ual1; ual->frame=pinfo->fd->num; ual->seq=seq; ual->nextseq=seq+seglen; ual->ts.secs=pinfo->fd->abs_secs; ual->ts.nsecs=pinfo->fd->abs_usecs*1000; ual->window=window; ual->flags=0; ual1=ual; goto seq_finished; } /* keep-alives are empty segments with a sequence number -1 of what * we would expect. * * Solaris is an exception, Solaris does not really use KeepAlives * according to RFC793, instead they move the left window edge one * byte to the left and makes up a fake byte to fill in this position * of the enlarged window. * This means that Solaris will do "weird" KeepAlives that actually * contains a one-byte segment with "random" junk data which the * Solaris host then will try to transmit, and posisbly retransmit * to the other side. Of course the other side will ignore this junk * byte since it is outside (left of) the window. * This is actually a brilliant trick that gives them, for free, * semi-reliable KeepAlives. * (since normal retransmission will handle any lost keepalive segments * , brilliant) */ if( (seglen<=1) && EQ_SEQ(seq, (ual1->nextseq-1)) ){ if(!(flags&TH_FIN)){ /* FIN segments are not keepalives */ struct tcp_acked *ta; ta=tcp_analyze_get_acked_struct(pinfo->fd->num, TRUE); ta->flags|=TCP_A_KEEP_ALIVE; ual1->flags|=TCP_A_KEEP_ALIVE; goto seq_finished; } } /* if this is an empty segment, just skip it all */ if( !seglen ){ goto seq_finished; } /* check if the sequence number is lower than expected, i.e. either a * retransmission a fast retransmission or an out of order segment */ if( LT_SEQ(seq, ual1->nextseq )){ gboolean outoforder; struct tcp_unacked *tu,*ntu; /* assume it is a fast retransmission if * 1 we have seen >=3 dupacks in the other direction for this * segment (i.e. >=4 acks) * 2 if this segment is the next unacked segment * 3 this segment came within 10ms of the last dupack * (10ms is arbitrary but should be low enough not to be * confused with a retransmission timeout */ if( (num1_acks>=4) && (seq==ack1) ){ guint32 t; t=(pinfo->fd->abs_secs-ack1_time->secs)*1000000000; t=t+(pinfo->fd->abs_usecs*1000)-ack1_time->nsecs; if(t<10000000){ /* has to be a retransmission then */ struct tcp_acked *ta; ta=tcp_analyze_get_acked_struct(pinfo->fd->num, TRUE); ta->flags|=TCP_A_FAST_RETRANSMISSION; goto seq_finished; } } /* check it is a suspected out of order segment. * we assume it is an out of order segment if * 1 it has not been ACKed yet. * 2 we have not seen the segment before * 3 it arrived within (arbitrary value) 4ms of the * next semgent in the sequence. * 4 there were no dupacks in the opposite direction. */ outoforder=TRUE; /* 1 has it already been ACKed ? */ if(LT_SEQ(seq,ack1)){ outoforder=FALSE; } /* 2 have we seen this segment before ? */ for(tu=ual1;tu;tu=tu->next){ if((tu->frame)&&(tu->seq==seq)){ outoforder=FALSE; } } /* 3 was it received within 4ms of the next segment ?*/ ntu=NULL; for(tu=ual1;tu;tu=tu->next){ if(LT_SEQ(seq,tu->seq)){ if(tu->frame){ ntu=tu; } } } if(ntu){ if(pinfo->fd->abs_secs>(guint32)(ntu->ts.secs+2)){ outoforder=FALSE; } else if((pinfo->fd->abs_secs+2)<(guint32)ntu->ts.secs){ outoforder=FALSE; } else { guint32 t; t=(ntu->ts.secs-pinfo->fd->abs_secs)*1000000000; t=t+ntu->ts.nsecs-(pinfo->fd->abs_usecs*1000); if(t>4000000){ outoforder=FALSE; } } } if(outoforder) { struct tcp_acked *ta; ta=tcp_analyze_get_acked_struct(pinfo->fd->num, TRUE); ta->flags|=TCP_A_OUT_OF_ORDER; } else { /* has to be a retransmission then */ struct tcp_acked *ta; ta=tcp_analyze_get_acked_struct(pinfo->fd->num, TRUE); ta->flags|=TCP_A_RETRANSMISSION; /* did this segment contain any more data we havent seen yet? * if so we can just increase nextseq */ if(GT_SEQ((seq+seglen), ual1->nextseq)){ ual1->nextseq=seq+seglen; ual1->frame=pinfo->fd->num; ual1->ts.secs=pinfo->fd->abs_secs; ual1->ts.nsecs=pinfo->fd->abs_usecs*1000; } } goto seq_finished; } /* just add the segment to the beginning of the list */ ual=g_mem_chunk_alloc(tcp_unacked_chunk); ual->next=ual1; ual->frame=pinfo->fd->num; ual->seq=seq; ual->nextseq=seq+seglen; ual->ts.secs=pinfo->fd->abs_secs; ual->ts.nsecs=pinfo->fd->abs_usecs*1000; ual->window=window; ual->flags=0; ual1=ual; seq_finished: /* handle the ack numbers */ /* if we dont have the ack flag its not much we can do */ if( !(flags&TH_ACK)){ goto ack_finished; } /* if we havent seen anything yet in the other direction we dont * know what this one acks */ if( !ual2 ){ goto ack_finished; } /* if we dont have any real segments in the other direction not * acked yet (as we see from the magic frame==0 entry) * then there is no point in continuing */ if( !ual2->frame ){ goto ack_finished; } /* if we get here we know ual2 is valid */ /* if we are acking beyong what we have seen in the other direction * we must have lost packets. Not much point in keeping the segments * in the other direction either. */ if( GT_SEQ(ack, ual2->nextseq )){ struct tcp_acked *ta; ta=tcp_analyze_get_acked_struct(pinfo->fd->num, TRUE); ta->flags|=TCP_A_ACK_LOST_PACKET; for(ual=ual2;ual2;ual2=ual){ ual=ual2->next; g_mem_chunk_free(tcp_unacked_chunk, ual2); } prune_next_pdu_list(tnp, ack-base_ack); goto ack_finished; } /* does this ACK ack all semgents we have seen in the other direction?*/ if( EQ_SEQ(ack, ual2->nextseq )){ struct tcp_acked *ta; ta=tcp_analyze_get_acked_struct(pinfo->fd->num, TRUE); ta->frame_acked=ual2->frame; ta->ts.secs=pinfo->fd->abs_secs-ual2->ts.secs; ta->ts.nsecs=pinfo->fd->abs_usecs*1000-ual2->ts.nsecs; if(ta->ts.nsecs<0){ ta->ts.nsecs+=1000000000; ta->ts.secs--; } /* its all been ACKed so we dont need to keep them anymore */ for(ual=ual2;ual2;ual2=ual){ ual=ual2->next; g_mem_chunk_free(tcp_unacked_chunk, ual2); } prune_next_pdu_list(tnp, ack-base_ack); goto ack_finished; } /* ok it only ACKs part of what we have seen. Find out how much * update and remove the ACKed segments */ for(ual=ual2;ual->next;ual=ual->next){ if( GE_SEQ(ack, ual->next->nextseq)){ break; } } if(ual->next){ struct tcp_unacked *tmpual=NULL; struct tcp_unacked *ackedual=NULL; struct tcp_acked *ta; /* XXX normal ACK*/ ackedual=ual->next; ta=tcp_analyze_get_acked_struct(pinfo->fd->num, TRUE); ta->frame_acked=ackedual->frame; ta->ts.secs=pinfo->fd->abs_secs-ackedual->ts.secs; ta->ts.nsecs=pinfo->fd->abs_usecs*1000-ackedual->ts.nsecs; if(ta->ts.nsecs<0){ ta->ts.nsecs+=1000000000; ta->ts.secs--; } /* just delete all ACKed segments */ tmpual=ual->next; ual->next=NULL; for(ual=tmpual;ual;ual=tmpual){ tmpual=ual->next; g_mem_chunk_free(tcp_unacked_chunk, ual); } prune_next_pdu_list(tnp, ack-base_ack); } ack_finished: /* we might have deleted the entire ual2 list, if this is an ACK, make sure ual2 at least has a dummy entry for the current ACK */ if( (!ual2) && (flags&TH_ACK) ){ ual2=g_mem_chunk_alloc(tcp_unacked_chunk); ual2->next=NULL; ual2->frame=0; ual2->seq=ack; ual2->nextseq=ack; ual2->ts.secs=0; ual2->ts.nsecs=0; ual2->window=window; ual2->flags=0; } /* update the ACK counter and check for duplicate ACKs*/ /* go to the oldest segment in the list of segments in the other direction */ /* XXX we should guarantee ual2 to always be non NULL here so we can skip the ual/ual2 tests */ for(ual=ual2;ual&&ual->next;ual=ual->next) ; if(ual2){ /* we only consider this being a potential duplicate ack if the segment length is 0 (ack only segment) and if it acks something previous to oldest segment in the other direction */ if((!seglen)&&LE_SEQ(ack,ual->seq)){ /* if this is the first ack to keep track of, it is not a duplicate */ if(num2_acks==0){ ack2=ack; ack2_frame=pinfo->fd->num; num2_acks=1; /* if this ack is different, store this one instead and forget the previous one(s) */ } else if(ack2!=ack){ ack2=ack; ack2_frame=pinfo->fd->num; num2_acks=1; /* this has to be a duplicate ack */ } else { num2_acks++; } /* is this an ACK to a KeepAlive? */ if( (ual->flags&TCP_A_KEEP_ALIVE) && (ack==ual->seq) ){ struct tcp_acked *ta; ta=tcp_analyze_get_acked_struct(pinfo->fd->num, TRUE); ta->flags|=TCP_A_KEEP_ALIVE_ACK; ual->flags^=TCP_A_KEEP_ALIVE; } else if(num2_acks>1) { /* ok we have found a potential duplicate ack */ struct tcp_acked *ta; ta=tcp_analyze_get_acked_struct(pinfo->fd->num, TRUE); /* keepalives are not dupacks */ if( (!(ta->flags&TCP_A_KEEP_ALIVE)) ){ ta->flags|=TCP_A_DUPLICATE_ACK; ta->dupack_num=num2_acks-1; ta->dupack_frame=ack2_frame; } } } } /* check for zero window probes a zero window probe is when a TCP tries to write 1 byte segments where the remote side has advertised a window of 0 bytes. We only do this check if we actually have seen anything from the other side of this connection. We also assume ual still points to the last entry in the ual2 list from the section above. At the same time, check for violations, i.e. attempts to write >1 byte to a zero-window. */ /* XXX we should not need to do the ual->frame check here? might be a bug somewhere. look for it later . */ if(ual2&&(ual->frame)){ if((seglen==1)&&(ual->window==0)){ struct tcp_acked *ta; ta=tcp_analyze_get_acked_struct(pinfo->fd->num, TRUE); ta->flags|=TCP_A_ZERO_WINDOW_PROBE; } if((seglen>1)&&(ual->window==0)){ struct tcp_acked *ta; ta=tcp_analyze_get_acked_struct(pinfo->fd->num, TRUE); ta->flags|=TCP_A_ZERO_WINDOW_VIOLATION; } } /* check for zero window */ if(!window){ struct tcp_acked *ta; ta=tcp_analyze_get_acked_struct(pinfo->fd->num, TRUE); ta->flags|=TCP_A_ZERO_WINDOW; } /* store the lists back in our struct */ if(direction>=0){ /* * XXX - if direction == 0, that'll be true for packets * from both sides of the connection, so this won't * work. * * That'd be a connection from a given port on a machine * to that same port on the same machine; does that ever * happen? */ tcpd->ual1=ual1; tcpd->ual2=ual2; tcpd->ack1=ack1; tcpd->ack2=ack2; tcpd->ack1_frame=ack1_frame; tcpd->ack2_frame=ack2_frame; tcpd->num1_acks=num1_acks; tcpd->num2_acks=num2_acks; tcpd->base_seq1=base_seq; } else { tcpd->ual1=ual2; tcpd->ual2=ual1; tcpd->ack1=ack2; tcpd->ack2=ack1; tcpd->ack1_frame=ack2_frame; tcpd->ack2_frame=ack1_frame; tcpd->num1_acks=num2_acks; tcpd->num2_acks=num1_acks; tcpd->base_seq2=base_seq; } if(tcp_relative_seq){ struct tcp_rel_seq *trs; /* remember relative seq/ack number base for this packet */ trs=g_mem_chunk_alloc(tcp_rel_seq_chunk); trs->seq_base=base_seq; trs->ack_base=base_ack; trs->win_scale=win_scale; g_hash_table_insert(tcp_rel_seq_table, (void *)pinfo->fd->num, trs); } } static void tcp_print_sequence_number_analysis(packet_info *pinfo, tvbuff_t *tvb, proto_tree *parent_tree) { struct tcp_acked *ta; proto_item *item; proto_tree *tree; ta=tcp_analyze_get_acked_struct(pinfo->fd->num, FALSE); if(!ta){ return; } item=proto_tree_add_text(parent_tree, tvb, 0, 0, "SEQ/ACK analysis"); tree=proto_item_add_subtree(item, ett_tcp_analysis); /* encapsulate all proto_tree_add_xxx in ifs so we only print what data we actually have */ if(ta->frame_acked){ proto_tree_add_uint(tree, hf_tcp_analysis_acks_frame, tvb, 0, 0, ta->frame_acked); } if( ta->ts.secs || ta->ts.nsecs ){ proto_tree_add_time(tree, hf_tcp_analysis_ack_rtt, tvb, 0, 0, &ta->ts); } if(ta->flags){ proto_item *flags_item=NULL; proto_tree *flags_tree=NULL; flags_item = proto_tree_add_item(tree, hf_tcp_analysis_flags, tvb, 0, -1, FALSE); flags_tree=proto_item_add_subtree(flags_item, ett_tcp_analysis); if( ta->flags&TCP_A_RETRANSMISSION ){ proto_tree_add_none_format(flags_tree, hf_tcp_analysis_retransmission, tvb, 0, 0, "This frame is a (suspected) retransmission"); if(check_col(pinfo->cinfo, COL_INFO)){ col_prepend_fstr(pinfo->cinfo, COL_INFO, "[TCP Retransmission] "); } } if( ta->flags&TCP_A_FAST_RETRANSMISSION ){ proto_tree_add_none_format(flags_tree, hf_tcp_analysis_fast_retransmission, tvb, 0, 0, "This frame is a (suspected) fast retransmission"); proto_tree_add_none_format(flags_tree, hf_tcp_analysis_retransmission, tvb, 0, 0, "This frame is a (suspected) retransmission"); if(check_col(pinfo->cinfo, COL_INFO)){ col_prepend_fstr(pinfo->cinfo, COL_INFO, "[TCP Fast Retransmission] "); } } if( ta->flags&TCP_A_OUT_OF_ORDER ){ proto_tree_add_none_format(flags_tree, hf_tcp_analysis_out_of_order, tvb, 0, 0, "This frame is a (suspected) out-of-order segment"); if(check_col(pinfo->cinfo, COL_INFO)){ col_prepend_fstr(pinfo->cinfo, COL_INFO, "[TCP Out-Of-Order] "); } } if( ta->flags&TCP_A_LOST_PACKET ){ proto_tree_add_none_format(flags_tree, hf_tcp_analysis_lost_packet, tvb, 0, 0, "A segment before this frame was lost"); if(check_col(pinfo->cinfo, COL_INFO)){ col_prepend_fstr(pinfo->cinfo, COL_INFO, "[TCP Previous segment lost] "); } } if( ta->flags&TCP_A_ACK_LOST_PACKET ){ proto_tree_add_none_format(flags_tree, hf_tcp_analysis_ack_lost_packet, tvb, 0, 0, "This frame ACKs a segment we have not seen (lost?)"); if(check_col(pinfo->cinfo, COL_INFO)){ col_prepend_fstr(pinfo->cinfo, COL_INFO, "[TCP ACKed lost segment] "); } } if( ta->flags&TCP_A_KEEP_ALIVE ){ proto_tree_add_none_format(flags_tree, hf_tcp_analysis_keep_alive, tvb, 0, 0, "This is a TCP keep-alive segment"); if(check_col(pinfo->cinfo, COL_INFO)){ col_prepend_fstr(pinfo->cinfo, COL_INFO, "[TCP Keep-Alive] "); } } if( ta->flags&TCP_A_KEEP_ALIVE_ACK ){ proto_tree_add_none_format(flags_tree, hf_tcp_analysis_keep_alive_ack, tvb, 0, 0, "This is an ACK to a TCP keep-alive segment"); if(check_col(pinfo->cinfo, COL_INFO)){ col_prepend_fstr(pinfo->cinfo, COL_INFO, "[TCP Keep-Alive ACK] "); } } if( ta->dupack_num){ if( ta->flags&TCP_A_DUPLICATE_ACK ){ proto_tree_add_none_format(flags_tree, hf_tcp_analysis_duplicate_ack, tvb, 0, 0, "This is a TCP duplicate ack"); if(check_col(pinfo->cinfo, COL_INFO)){ col_prepend_fstr(pinfo->cinfo, COL_INFO, "[TCP Dup ACK %d#%d] ", ta->dupack_frame, ta->dupack_num); } } proto_tree_add_uint(tree, hf_tcp_analysis_duplicate_ack_num, tvb, 0, 0, ta->dupack_num); proto_tree_add_uint(tree, hf_tcp_analysis_duplicate_ack_frame, tvb, 0, 0, ta->dupack_frame); } if( ta->flags&TCP_A_ZERO_WINDOW_PROBE ){ proto_tree_add_none_format(flags_tree, hf_tcp_analysis_zero_window_probe, tvb, 0, 0, "This is a TCP zero-window-probe"); if(check_col(pinfo->cinfo, COL_INFO)){ col_prepend_fstr(pinfo->cinfo, COL_INFO, "[TCP ZeroWindowProbe] "); } } if( ta->flags&TCP_A_ZERO_WINDOW ){ proto_tree_add_none_format(flags_tree, hf_tcp_analysis_zero_window, tvb, 0, 0, "This is a ZeroWindow segment"); if(check_col(pinfo->cinfo, COL_INFO)){ col_prepend_fstr(pinfo->cinfo, COL_INFO, "[TCP ZeroWindow] "); } } if( ta->flags&TCP_A_ZERO_WINDOW_VIOLATION ){ proto_tree_add_none_format(flags_tree, hf_tcp_analysis_zero_window_violation, tvb, 0, 0, "This is a ZeroWindow violation, attempts to write >1 byte of data to a zero-window"); if(check_col(pinfo->cinfo, COL_INFO)){ col_prepend_fstr(pinfo->cinfo, COL_INFO, "[TCP ZeroWindowViolation] "); } } } } /* Do we still need to do this ...remove_all() even though we dont need * to do anything special? The glib docs are not clear on this and * its better safe than sorry */ static gboolean free_all_acked(gpointer key_arg _U_, gpointer value _U_, gpointer user_data _U_) { return TRUE; } static guint tcp_acked_hash(gconstpointer k) { guint32 frame = (guint32)k; return frame; } static gint tcp_acked_equal(gconstpointer k1, gconstpointer k2) { guint32 frame1 = (guint32)k1; guint32 frame2 = (guint32)k2; return frame1==frame2; } static void tcp_analyze_seq_init(void) { /* first destroy the tables */ if( tcp_analyze_acked_table ){ g_hash_table_foreach_remove(tcp_analyze_acked_table, free_all_acked, NULL); g_hash_table_destroy(tcp_analyze_acked_table); tcp_analyze_acked_table = NULL; } if( tcp_rel_seq_table ){ g_hash_table_foreach_remove(tcp_rel_seq_table, free_all_acked, NULL); g_hash_table_destroy(tcp_rel_seq_table); tcp_rel_seq_table = NULL; } if( tcp_pdu_tracking_table ){ g_hash_table_foreach_remove(tcp_pdu_tracking_table, free_all_acked, NULL); g_hash_table_destroy(tcp_pdu_tracking_table); tcp_pdu_tracking_table = NULL; } /* * Now destroy the chunk from which the conversation table * structures were allocated. */ if (tcp_next_pdu_chunk) { g_mem_chunk_destroy(tcp_next_pdu_chunk); tcp_next_pdu_chunk = NULL; } if (tcp_analysis_chunk) { g_mem_chunk_destroy(tcp_analysis_chunk); tcp_analysis_chunk = NULL; } if (tcp_unacked_chunk) { g_mem_chunk_destroy(tcp_unacked_chunk); tcp_unacked_chunk = NULL; } if (tcp_acked_chunk) { g_mem_chunk_destroy(tcp_acked_chunk); tcp_acked_chunk = NULL; } if (tcp_rel_seq_chunk) { g_mem_chunk_destroy(tcp_rel_seq_chunk); tcp_rel_seq_chunk = NULL; } if(tcp_analyze_seq){ tcp_analyze_acked_table = g_hash_table_new(tcp_acked_hash, tcp_acked_equal); tcp_rel_seq_table = g_hash_table_new(tcp_acked_hash, tcp_acked_equal); tcp_pdu_tracking_table = g_hash_table_new(tcp_acked_hash, tcp_acked_equal); tcp_next_pdu_chunk = g_mem_chunk_new("tcp_next_pdu_chunk", sizeof(struct tcp_next_pdu), tcp_next_pdu_count * sizeof(struct tcp_next_pdu), G_ALLOC_ONLY); tcp_analysis_chunk = g_mem_chunk_new("tcp_analysis_chunk", sizeof(struct tcp_analysis), tcp_analysis_count * sizeof(struct tcp_analysis), G_ALLOC_ONLY); tcp_unacked_chunk = g_mem_chunk_new("tcp_unacked_chunk", sizeof(struct tcp_unacked), tcp_unacked_count * sizeof(struct tcp_unacked), G_ALLOC_ONLY); tcp_acked_chunk = g_mem_chunk_new("tcp_acked_chunk", sizeof(struct tcp_acked), tcp_acked_count * sizeof(struct tcp_acked), G_ALLOC_ONLY); if(tcp_relative_seq){ tcp_rel_seq_chunk = g_mem_chunk_new("tcp_rel_seq_chunk", sizeof(struct tcp_rel_seq), tcp_rel_seq_count * sizeof(struct tcp_rel_seq), G_ALLOC_ONLY); } } } /* ************************************************************************** * End of tcp sequence number analysis * **************************************************************************/ /* Minimum TCP header length. */ #define TCPH_MIN_LEN 20 /* * TCP option */ #define TCPOPT_NOP 1 /* Padding */ #define TCPOPT_EOL 0 /* End of options */ #define TCPOPT_MSS 2 /* Segment size negotiating */ #define TCPOPT_WINDOW 3 /* Window scaling */ #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ #define TCPOPT_SACK 5 /* SACK Block */ #define TCPOPT_ECHO 6 #define TCPOPT_ECHOREPLY 7 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ #define TCPOPT_CC 11 #define TCPOPT_CCNEW 12 #define TCPOPT_CCECHO 13 #define TCPOPT_MD5 19 /* RFC2385 */ /* * TCP option lengths */ #define TCPOLEN_MSS 4 #define TCPOLEN_WINDOW 3 #define TCPOLEN_SACK_PERM 2 #define TCPOLEN_SACK_MIN 2 #define TCPOLEN_ECHO 6 #define TCPOLEN_ECHOREPLY 6 #define TCPOLEN_TIMESTAMP 10 #define TCPOLEN_CC 6 #define TCPOLEN_CCNEW 6 #define TCPOLEN_CCECHO 6 #define TCPOLEN_MD5 18 /* Desegmentation of TCP streams */ /* table to hold defragmented TCP streams */ static GHashTable *tcp_fragment_table = NULL; static void tcp_fragment_init(void) { fragment_table_init(&tcp_fragment_table); } /* functions to trace tcp segments */ /* Enable desegmenting of TCP streams */ static gboolean tcp_desegment = FALSE; static GHashTable *tcp_segment_table = NULL; static GMemChunk *tcp_segment_key_chunk = NULL; static int tcp_segment_init_count = 200; static GMemChunk *tcp_segment_address_chunk = NULL; static int tcp_segment_address_init_count = 500; typedef struct _tcp_segment_key { /* for own bookkeeping inside packet-tcp.c */ address *src; address *dst; guint32 seq; /* xxx */ guint16 sport; guint16 dport; guint32 start_seq; guint32 tot_len; guint32 first_frame; } tcp_segment_key; static gboolean free_all_segments(gpointer key_arg, gpointer value _U_, gpointer user_data _U_) { tcp_segment_key *key = key_arg; if((key->src)&&(key->src->data)){ g_free((gpointer)key->src->data); key->src->data=NULL; } if((key->dst)&&(key->dst->data)){ g_free((gpointer)key->dst->data); key->dst->data=NULL; } return TRUE; } static guint tcp_segment_hash(gconstpointer k) { const tcp_segment_key *key = (const tcp_segment_key *)k; return key->seq+key->sport; } static gint tcp_segment_equal(gconstpointer k1, gconstpointer k2) { const tcp_segment_key *key1 = (const tcp_segment_key *)k1; const tcp_segment_key *key2 = (const tcp_segment_key *)k2; return ( ( (key1->seq==key2->seq) &&(ADDRESSES_EQUAL(key1->src, key2->src)) &&(ADDRESSES_EQUAL(key1->dst, key2->dst)) &&(key1->sport==key2->sport) &&(key1->dport==key2->dport) ) ? TRUE:FALSE); } static void tcp_desegment_init(void) { /* * Free this before freeing any memory chunks; those * chunks contain data we'll look at in "free_all_segments()". */ if(tcp_segment_table){ g_hash_table_foreach_remove(tcp_segment_table, free_all_segments, NULL); g_hash_table_destroy(tcp_segment_table); tcp_segment_table = NULL; } if(tcp_segment_key_chunk){ g_mem_chunk_destroy(tcp_segment_key_chunk); tcp_segment_key_chunk = NULL; } if(tcp_segment_address_chunk){ g_mem_chunk_destroy(tcp_segment_address_chunk); tcp_segment_address_chunk = NULL; } /* dont allocate any hash table or memory chunks unless the user really uses this option */ if(!tcp_desegment){ return; } tcp_segment_table = g_hash_table_new(tcp_segment_hash, tcp_segment_equal); tcp_segment_key_chunk = g_mem_chunk_new("tcp_segment_key_chunk", sizeof(tcp_segment_key), tcp_segment_init_count*sizeof(tcp_segment_key), G_ALLOC_ONLY); tcp_segment_address_chunk = g_mem_chunk_new("tcp_segment_address_chunk", sizeof(address), tcp_segment_address_init_count*sizeof(address), G_ALLOC_ONLY); } static void desegment_tcp(tvbuff_t *tvb, packet_info *pinfo, int offset, guint32 seq, guint32 nxtseq, guint32 sport, guint32 dport, proto_tree *tree, proto_tree *tcp_tree) { struct tcpinfo *tcpinfo = pinfo->private_data; fragment_data *ipfd_head=NULL; tcp_segment_key old_tsk, *tsk; gboolean must_desegment = FALSE; gboolean called_dissector = FALSE; int deseg_offset; guint32 deseg_seq; gint nbytes; /* * Initialize these to assume no desegmentation. * If that's not the case, these will be set appropriately * by the subdissector. */ pinfo->desegment_offset = 0; pinfo->desegment_len = 0; /* * Initialize this to assume that this segment will just be * added to the middle of a desegmented chunk of data, so * that we should show it all as data. * If that's not the case, it will be set appropriately. */ deseg_offset = offset; /* First we must check if this TCP segment should be desegmented. This is only to check if we should desegment this packet, so we dont spend time doing COPY_ADDRESS/g_free. We just "borrow" some address structures from pinfo instead. Cheaper. */ old_tsk.src = &pinfo->src; old_tsk.dst = &pinfo->dst; old_tsk.sport = sport; old_tsk.dport = dport; old_tsk.seq = seq; tsk = g_hash_table_lookup(tcp_segment_table, &old_tsk); if(tsk){ /* OK, this segment was found, which means it continues a higher-level PDU. This means we must desegment it. Add it to the defragmentation lists. */ ipfd_head = fragment_add(tvb, offset, pinfo, tsk->first_frame, tcp_fragment_table, seq - tsk->start_seq, nxtseq - seq, (LT_SEQ (nxtseq,tsk->start_seq + tsk->tot_len)) ); if(!ipfd_head){ /* fragment_add() returned NULL, This means that desegmentation is not completed yet. (its like defragmentation but we know we will always add the segments in order). XXX - no, we don't; there is no guarantee that TCP segments are in order on the wire. we must add next segment to our table so we will find it later. */ tcp_segment_key *new_tsk; new_tsk = g_mem_chunk_alloc(tcp_segment_key_chunk); memcpy(new_tsk, tsk, sizeof(tcp_segment_key)); new_tsk->seq=nxtseq; g_hash_table_insert(tcp_segment_table,new_tsk,new_tsk); } } else { /* This segment was not found in our table, so it doesn't contain a continuation of a higher-level PDU. Call the normal subdissector. */ decode_tcp_ports(tvb, offset, pinfo, tree, sport, dport, 0); called_dissector = TRUE; /* Did the subdissector ask us to desegment some more data before it could handle the packet? If so we have to create some structures in our table but this is something we only do the first time we see this packet. */ if(pinfo->desegment_len) { if (!pinfo->fd->flags.visited) must_desegment = TRUE; /* * Set "deseg_offset" to the offset in "tvb" * of the first byte of data that the * subdissector didn't process. */ deseg_offset = offset + pinfo->desegment_offset; } /* Either no desegmentation is necessary, or this is segment contains the beginning but not the end of a higher-level PDU and thus isn't completely desegmented. */ ipfd_head = NULL; } /* is it completely desegmented? */ if(ipfd_head){ fragment_data *ipfd; /* * Yes, we think it is. * We only call subdissector for the last segment. * Note that the last segment may include more than what * we needed. */ if(GE_SEQ(nxtseq, tsk->start_seq + tsk->tot_len)){ /* * OK, this is the last segment. * Let's call the subdissector with the desegmented * data. */ tvbuff_t *next_tvb; int old_len; /* create a new TVB structure for desegmented data */ next_tvb = tvb_new_real_data(ipfd_head->data, ipfd_head->datalen, ipfd_head->datalen); /* add this tvb as a child to the original one */ tvb_set_child_real_data_tvbuff(tvb, next_tvb); /* add desegmented data to the data source list */ add_new_data_source(pinfo, next_tvb, "Desegmented"); /* * Supply the sequence number of the first of the * reassembled bytes. */ tcpinfo->seq = tsk->start_seq; /* indicate that this is reassembled data */ tcpinfo->is_reassembled = TRUE; /* call subdissector */ decode_tcp_ports(next_tvb, 0, pinfo, tree, sport, dport, 0); called_dissector = TRUE; /* * OK, did the subdissector think it was completely * desegmented, or does it think we need even more * data? */ old_len=(int)(tvb_reported_length(next_tvb)-tvb_reported_length_remaining(tvb, offset)); if(pinfo->desegment_len && pinfo->desegment_offset<=old_len){ tcp_segment_key *new_tsk; /* * "desegment_len" isn't 0, so it needs more * data for something - and "desegment_offset" * is before "old_len", so it needs more data * to dissect the stuff we thought was * completely desegmented (as opposed to the * stuff at the beginning being completely * desegmented, but the stuff at the end * being a new higher-level PDU that also * needs desegmentation). */ fragment_set_partial_reassembly(pinfo,tsk->first_frame,tcp_fragment_table); tsk->tot_len = tvb_reported_length(next_tvb) + pinfo->desegment_len; /* * Update tsk structure. * Can ask ->next->next because at least there's a hdr and one * entry in fragment_add() */ for(ipfd=ipfd_head->next; ipfd->next; ipfd=ipfd->next){ old_tsk.seq = tsk->start_seq + ipfd->offset; new_tsk = g_hash_table_lookup(tcp_segment_table, &old_tsk); new_tsk->tot_len = tsk->tot_len; } /* this is the next segment in the sequence we want */ new_tsk = g_mem_chunk_alloc(tcp_segment_key_chunk); memcpy(new_tsk, tsk, sizeof(tcp_segment_key)); new_tsk->seq = nxtseq; g_hash_table_insert(tcp_segment_table,new_tsk,new_tsk); } else { /* * Show the stuff in this TCP segment as * just raw TCP segment data. */ nbytes = tvb_reported_length_remaining(tvb, offset); proto_tree_add_text(tcp_tree, tvb, offset, -1, "TCP segment data (%u byte%s)", nbytes, plurality(nbytes, "", "s")); /* * The subdissector thought it was completely * desegmented (although the stuff at the * end may, in turn, require desegmentation), * so we show a tree with all segments. */ show_fragment_tree(ipfd_head, &tcp_segment_items, tcp_tree, pinfo, next_tvb); /* Did the subdissector ask us to desegment some more data? This means that the data at the beginning of this segment completed a higher-level PDU, but the data at the end of this segment started a higher-level PDU but didn't complete it. If so, we have to create some structures in our table, but this is something we only do the first time we see this packet. */ if(pinfo->desegment_len) { if (!pinfo->fd->flags.visited) must_desegment = TRUE; /* The stuff we couldn't dissect must have come from this segment, so it's all in "tvb". "pinfo->desegment_offset" is relative to the beginning of "next_tvb"; we want an offset relative to the beginning of "tvb". First, compute the offset relative to the *end* of "next_tvb" - i.e., the number of bytes before the end of "next_tvb" at which the subdissector stopped. That's the length of "next_tvb" minus the offset, relative to the beginning of "next_tvb, at which the subdissector stopped. */ deseg_offset = ipfd_head->datalen - pinfo->desegment_offset; /* "tvb" and "next_tvb" end at the same byte of data, so the offset relative to the end of "next_tvb" of the byte at which we stopped is also the offset relative to the end of "tvb" of the byte at which we stopped. Convert that back into an offset relative to the beginninng of "tvb", by taking the length of "tvb" and subtracting the offset relative to the end. */ deseg_offset=tvb_reported_length(tvb) - deseg_offset; } } } } if (must_desegment) { tcp_segment_key *tsk, *new_tsk; /* * The sequence number at which the stuff to be desegmented * starts is the sequence number of the byte at an offset * of "deseg_offset" into "tvb". * * The sequence number of the byte at an offset of "offset" * is "seq", i.e. the starting sequence number of this * segment, so the sequence number of the byte at * "deseg_offset" is "seq + (deseg_offset - offset)". */ deseg_seq = seq + (deseg_offset - offset); /* * XXX - how do we detect out-of-order transmissions? * We can't just check for "nxtseq" being greater than * "tsk->start_seq"; for now, we check for the difference * being less than a megabyte, but this is a really * gross hack - we really need to handle out-of-order * transmissions correctly. */ if ((nxtseq - deseg_seq) <= 1024*1024) { /* OK, subdissector wants us to desegment some data before it can process it. Add what remains of this packet and set up next packet/sequence number as well. We must remember this segment */ tsk = g_mem_chunk_alloc(tcp_segment_key_chunk); tsk->src = g_mem_chunk_alloc(tcp_segment_address_chunk); COPY_ADDRESS(tsk->src, &pinfo->src); tsk->dst = g_mem_chunk_alloc(tcp_segment_address_chunk); COPY_ADDRESS(tsk->dst, &pinfo->dst); tsk->seq = deseg_seq; tsk->start_seq = tsk->seq; tsk->tot_len = nxtseq - tsk->start_seq + pinfo->desegment_len; tsk->first_frame = pinfo->fd->num; tsk->sport=sport; tsk->dport=dport; g_hash_table_insert(tcp_segment_table, tsk, tsk); /* Add portion of segment unprocessed by the subdissector to defragmentation lists */ fragment_add(tvb, deseg_offset, pinfo, tsk->first_frame, tcp_fragment_table, tsk->seq - tsk->start_seq, nxtseq - tsk->start_seq, LT_SEQ (nxtseq, tsk->start_seq + tsk->tot_len)); /* this is the next segment in the sequence we want */ new_tsk = g_mem_chunk_alloc(tcp_segment_key_chunk); memcpy(new_tsk, tsk, sizeof(tcp_segment_key)); new_tsk->seq = nxtseq; g_hash_table_insert(tcp_segment_table,new_tsk,new_tsk); } } if (!called_dissector || pinfo->desegment_len != 0) { if (ipfd_head != NULL && ipfd_head->reassembled_in != 0) { /* * We know what frame this PDU is reassembled in; * let the user know. */ proto_tree_add_uint(tcp_tree, hf_tcp_reassembled_in, tvb, 0, 0, ipfd_head->reassembled_in); } /* * Either we didn't call the subdissector at all (i.e., * this is a segment that contains the middle of a * higher-level PDU, but contains neither the beginning * nor the end), or the subdissector couldn't dissect it * all, as some data was missing (i.e., it set * "pinfo->desegment_len" to the amount of additional * data it needs). */ if (pinfo->desegment_offset == 0) { /* * It couldn't, in fact, dissect any of it (the * first byte it couldn't dissect is at an offset * of "pinfo->desegment_offset" from the beginning * of the payload, and that's 0). * Just mark this as TCP. */ if (check_col(pinfo->cinfo, COL_PROTOCOL)){ col_set_str(pinfo->cinfo, COL_PROTOCOL, "TCP"); } if (check_col(pinfo->cinfo, COL_INFO)){ col_set_str(pinfo->cinfo, COL_INFO, "[Desegmented TCP]"); } } /* * Show what's left in the packet as just raw TCP segment * data. * XXX - remember what protocol the last subdissector * was, and report it as a continuation of that, instead? */ nbytes = tvb_reported_length_remaining(tvb, deseg_offset); proto_tree_add_text(tcp_tree, tvb, deseg_offset, -1, "TCP segment data (%u byte%s)", nbytes, plurality(nbytes, "", "s")); } pinfo->can_desegment=0; pinfo->desegment_offset = 0; pinfo->desegment_len = 0; } /* * Loop for dissecting PDUs within a TCP stream; assumes that a PDU * consists of a fixed-length chunk of data that contains enough information * to determine the length of the PDU, followed by rest of the PDU. * * The first three arguments are the arguments passed to the dissector * that calls this routine. * * "proto_desegment" is the dissector's flag controlling whether it should * desegment PDUs that cross TCP segment boundaries. * * "fixed_len" is the length of the fixed-length part of the PDU. * * "get_pdu_len()" is a routine called to get the length of the PDU from * the fixed-length part of the PDU; it's passed "tvb" and "offset". * * "dissect_pdu()" is the routine to dissect a PDU. */ void tcp_dissect_pdus(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, gboolean proto_desegment, guint fixed_len, guint (*get_pdu_len)(tvbuff_t *, int), void (*dissect_pdu)(tvbuff_t *, packet_info *, proto_tree *)) { volatile int offset = 0; int offset_before; guint length_remaining; guint plen; guint length; tvbuff_t *next_tvb; while (tvb_reported_length_remaining(tvb, offset) != 0) { /* * We use "tvb_ensure_length_remaining()" to make sure there actually * *is* data remaining. The protocol we're handling could conceivably * consists of a sequence of fixed-length PDUs, and therefore the * "get_pdu_len" routine might not actually fetch anything from * the tvbuff, and thus might not cause an exception to be thrown if * we've run past the end of the tvbuff. * * This means we're guaranteed that "length_remaining" is positive. */ length_remaining = tvb_ensure_length_remaining(tvb, offset); /* * Can we do reassembly? */ if (proto_desegment && pinfo->can_desegment) { /* * Yes - is the fixed-length part of the PDU split across segment * boundaries? */ if (length_remaining < fixed_len) { /* * Yes. Tell the TCP dissector where the data for this message * starts in the data it handed us, and how many more bytes we * need, and return. */ pinfo->desegment_offset = offset; pinfo->desegment_len = fixed_len - length_remaining; return; } } /* * Get the length of the PDU. */ plen = (*get_pdu_len)(tvb, offset); if (plen < fixed_len) { /* * The PDU length from the fixed-length portion probably didn't * include the fixed-length portion's length, and was probably so * large that the total length overflowed. * * Report this as an error. */ show_reported_bounds_error(tvb, pinfo, tree); return; } /* * Can we do reassembly? */ if (proto_desegment && pinfo->can_desegment) { /* * Yes - is the PDU split across segment boundaries? */ if (length_remaining < plen) { /* * Yes. Tell the TCP dissector where the data for this message * starts in the data it handed us, and how many more bytes we * need, and return. */ pinfo->desegment_offset = offset; pinfo->desegment_len = plen - length_remaining; return; } } /* * Construct a tvbuff containing the amount of the payload we have * available. Make its reported length the amount of data in the PDU. * * XXX - if reassembly isn't enabled. the subdissector will throw a * BoundsError exception, rather than a ReportedBoundsError exception. * We really want a tvbuff where the length is "length", the reported * length is "plen", and the "if the snapshot length were infinite" * length is the minimum of the reported length of the tvbuff handed * to us and "plen", with a new type of exception thrown if the offset * is within the reported length but beyond that third length, with * that exception getting the "Unreassembled Packet" error. */ length = length_remaining; if (length > plen) length = plen; next_tvb = tvb_new_subset(tvb, offset, length, plen); /* * Dissect the PDU. * * Catch the ReportedBoundsError exception; if this particular message * happens to get a ReportedBoundsError exception, that doesn't mean * that we should stop dissecting PDUs within this frame or chunk of * reassembled data. * * If it gets a BoundsError, we can stop, as there's nothing more to * see, so we just re-throw it. */ TRY { (*dissect_pdu)(next_tvb, pinfo, tree); } CATCH(BoundsError) { RETHROW; } CATCH(ReportedBoundsError) { show_reported_bounds_error(tvb, pinfo, tree); } ENDTRY; /* * Step to the next PDU. * Make sure we don't overflow. */ offset_before = offset; offset += plen; if (offset <= offset_before) break; } } static void tcp_info_append_uint(packet_info *pinfo, const char *abbrev, guint32 val) { if (check_col(pinfo->cinfo, COL_INFO)) col_append_fstr(pinfo->cinfo, COL_INFO, " %s=%u", abbrev, val); } static void dissect_tcpopt_maxseg(const ip_tcp_opt *optp, tvbuff_t *tvb, int offset, guint optlen, packet_info *pinfo, proto_tree *opt_tree) { guint16 mss; mss = tvb_get_ntohs(tvb, offset + 2); proto_tree_add_boolean_hidden(opt_tree, hf_tcp_option_mss, tvb, offset, optlen, TRUE); proto_tree_add_uint_format(opt_tree, hf_tcp_option_mss_val, tvb, offset, optlen, mss, "%s: %u bytes", optp->name, mss); tcp_info_append_uint(pinfo, "MSS", mss); } static void dissect_tcpopt_wscale(const ip_tcp_opt *optp, tvbuff_t *tvb, int offset, guint optlen, packet_info *pinfo, proto_tree *opt_tree) { guint8 ws; ws = tvb_get_guint8(tvb, offset + 2); proto_tree_add_boolean_hidden(opt_tree, hf_tcp_option_wscale, tvb, offset, optlen, TRUE); proto_tree_add_uint_format(opt_tree, hf_tcp_option_wscale_val, tvb, offset, optlen, ws, "%s: %u (multiply by %u)", optp->name, ws, 1 << ws); tcp_info_append_uint(pinfo, "WS", ws); if(!pinfo->fd->flags.visited && tcp_analyze_seq && tcp_relative_seq){ pdu_store_window_scale_option(pinfo, ws); } } static void dissect_tcpopt_sack(const ip_tcp_opt *optp, tvbuff_t *tvb, int offset, guint optlen, packet_info *pinfo, proto_tree *opt_tree) { proto_tree *field_tree = NULL; proto_item *tf; guint leftedge, rightedge; tf = proto_tree_add_text(opt_tree, tvb, offset, optlen, "%s:", optp->name); offset += 2; /* skip past type and length */ optlen -= 2; /* subtract size of type and length */ while (optlen > 0) { if (field_tree == NULL) { /* Haven't yet made a subtree out of this option. Do so. */ field_tree = proto_item_add_subtree(tf, *optp->subtree_index); proto_tree_add_boolean_hidden(field_tree, hf_tcp_option_sack, tvb, offset, optlen, TRUE); } if (optlen < 4) { proto_tree_add_text(field_tree, tvb, offset, optlen, "(suboption would go past end of option)"); break; } leftedge = tvb_get_ntohl(tvb, offset); proto_tree_add_uint_format(field_tree, hf_tcp_option_sack_sle, tvb, offset, 4, leftedge, "left edge = %u", leftedge); optlen -= 4; if (optlen < 4) { proto_tree_add_text(field_tree, tvb, offset, optlen, "(suboption would go past end of option)"); break; } /* XXX - check whether it goes past end of packet */ rightedge = tvb_get_ntohl(tvb, offset + 4); optlen -= 4; proto_tree_add_uint_format(field_tree, hf_tcp_option_sack_sre, tvb, offset+4, 4, rightedge, "right edge = %u", rightedge); tcp_info_append_uint(pinfo, "SLE", leftedge); tcp_info_append_uint(pinfo, "SRE", rightedge); offset += 8; } } static void dissect_tcpopt_echo(const ip_tcp_opt *optp, tvbuff_t *tvb, int offset, guint optlen, packet_info *pinfo, proto_tree *opt_tree) { guint32 echo; echo = tvb_get_ntohl(tvb, offset + 2); proto_tree_add_boolean_hidden(opt_tree, hf_tcp_option_echo, tvb, offset, optlen, TRUE); proto_tree_add_text(opt_tree, tvb, offset, optlen, "%s: %u", optp->name, echo); tcp_info_append_uint(pinfo, "ECHO", echo); } static void dissect_tcpopt_timestamp(const ip_tcp_opt *optp, tvbuff_t *tvb, int offset, guint optlen, packet_info *pinfo, proto_tree *opt_tree) { guint32 tsv, tser; tsv = tvb_get_ntohl(tvb, offset + 2); tser = tvb_get_ntohl(tvb, offset + 6); proto_tree_add_boolean_hidden(opt_tree, hf_tcp_option_time_stamp, tvb, offset, optlen, TRUE); proto_tree_add_text(opt_tree, tvb, offset, optlen, "%s: tsval %u, tsecr %u", optp->name, tsv, tser); tcp_info_append_uint(pinfo, "TSV", tsv); tcp_info_append_uint(pinfo, "TSER", tser); } static void dissect_tcpopt_cc(const ip_tcp_opt *optp, tvbuff_t *tvb, int offset, guint optlen, packet_info *pinfo, proto_tree *opt_tree) { guint32 cc; cc = tvb_get_ntohl(tvb, offset + 2); proto_tree_add_boolean_hidden(opt_tree, hf_tcp_option_cc, tvb, offset, optlen, TRUE); proto_tree_add_text(opt_tree, tvb, offset, optlen, "%s: %u", optp->name, cc); tcp_info_append_uint(pinfo, "CC", cc); } static const ip_tcp_opt tcpopts[] = { { TCPOPT_EOL, "EOL", NULL, NO_LENGTH, 0, NULL, }, { TCPOPT_NOP, "NOP", NULL, NO_LENGTH, 0, NULL, }, { TCPOPT_MSS, "Maximum segment size", NULL, FIXED_LENGTH, TCPOLEN_MSS, dissect_tcpopt_maxseg }, { TCPOPT_WINDOW, "Window scale", NULL, FIXED_LENGTH, TCPOLEN_WINDOW, dissect_tcpopt_wscale }, { TCPOPT_SACK_PERM, "SACK permitted", NULL, FIXED_LENGTH, TCPOLEN_SACK_PERM, NULL, }, { TCPOPT_SACK, "SACK", &ett_tcp_option_sack, VARIABLE_LENGTH, TCPOLEN_SACK_MIN, dissect_tcpopt_sack }, { TCPOPT_ECHO, "Echo", NULL, FIXED_LENGTH, TCPOLEN_ECHO, dissect_tcpopt_echo }, { TCPOPT_ECHOREPLY, "Echo reply", NULL, FIXED_LENGTH, TCPOLEN_ECHOREPLY, dissect_tcpopt_echo }, { TCPOPT_TIMESTAMP, "Time stamp", NULL, FIXED_LENGTH, TCPOLEN_TIMESTAMP, dissect_tcpopt_timestamp }, { TCPOPT_CC, "CC", NULL, FIXED_LENGTH, TCPOLEN_CC, dissect_tcpopt_cc }, { TCPOPT_CCNEW, "CC.NEW", NULL, FIXED_LENGTH, TCPOLEN_CCNEW, dissect_tcpopt_cc }, { TCPOPT_CCECHO, "CC.ECHO", NULL, FIXED_LENGTH, TCPOLEN_CCECHO, dissect_tcpopt_cc }, { TCPOPT_MD5, "TCP MD5 signature", NULL, FIXED_LENGTH, TCPOLEN_MD5, NULL } }; #define N_TCP_OPTS (sizeof tcpopts / sizeof tcpopts[0]) /* Determine if there is a sub-dissector and call it. This has been */ /* separated into a stand alone routine to other protocol dissectors */ /* can call to it, ie. socks */ static gboolean try_heuristic_first = FALSE; void decode_tcp_ports(tvbuff_t *tvb, int offset, packet_info *pinfo, proto_tree *tree, int src_port, int dst_port, guint32 nxtseq) { tvbuff_t *next_tvb; int low_port, high_port; /*qqq see if it is an unaligned PDU */ if(nxtseq && tcp_analyze_seq && (!tcp_desegment)){ guint32 seq; seq=nxtseq-tvb_reported_length_remaining(tvb, offset); offset=scan_for_next_pdu(pinfo, offset, seq, nxtseq); } next_tvb = tvb_new_subset(tvb, offset, -1, -1); /* determine if this packet is part of a conversation and call dissector */ /* for the conversation if available */ if (try_conversation_dissector(&pinfo->src, &pinfo->dst, PT_TCP, src_port, dst_port, next_tvb, pinfo, tree)) goto end_decode_tcp_ports; if (try_heuristic_first) { /* do lookup with the heuristic subdissector table */ if (dissector_try_heuristic(heur_subdissector_list, next_tvb, pinfo, tree)) goto end_decode_tcp_ports; } /* Do lookups with the subdissector table. We try the port number with the lower value first, followed by the port number with the higher value. This means that, for packets where a dissector is registered for *both* port numbers: 1) we pick the same dissector for traffic going in both directions; 2) we prefer the port number that's more likely to be the right one (as that prefers well-known ports to reserved ports); although there is, of course, no guarantee that any such strategy will always pick the right port number. XXX - we ignore port numbers of 0, as some dissectors use a port number of 0 to disable the port. */ if (src_port > dst_port) { low_port = dst_port; high_port = src_port; } else { low_port = src_port; high_port = dst_port; } if (low_port != 0 && dissector_try_port(subdissector_table, low_port, next_tvb, pinfo, tree)) goto end_decode_tcp_ports; if (high_port != 0 && dissector_try_port(subdissector_table, high_port, next_tvb, pinfo, tree)) goto end_decode_tcp_ports; if (!try_heuristic_first) { /* do lookup with the heuristic subdissector table */ if (dissector_try_heuristic(heur_subdissector_list, next_tvb, pinfo, tree)) goto end_decode_tcp_ports; } /* Oh, well, we don't know this; dissect it as data. */ call_dissector(data_handle,next_tvb, pinfo, tree); return; end_decode_tcp_ports: /* if !visited, check want_pdu_tracking and store it in table */ /* XXX fix nxtseq so that it always has valid content and skip the ==0 check */ if((!pinfo->fd->flags.visited) && nxtseq && tcp_analyze_seq && pinfo->want_pdu_tracking){ pdu_store_sequencenumber_of_next_pdu(pinfo, nxtseq+pinfo->bytes_until_next_pdu); } } static void dissect_tcp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { guint8 th_off_x2; /* combines th_off and th_x2 */ guint16 th_sum; guint16 th_urp; proto_tree *tcp_tree = NULL, *field_tree = NULL; proto_item *ti = NULL, *tf; int offset = 0; gchar flags[64] = ""; gchar *fstr[] = {"FIN", "SYN", "RST", "PSH", "ACK", "URG", "ECN", "CWR" }; gint fpos = 0, i; guint bpos; guint optlen; guint32 nxtseq = 0; guint reported_len; vec_t cksum_vec[4]; guint32 phdr[2]; guint16 computed_cksum; guint length_remaining; gboolean desegment_ok; struct tcpinfo tcpinfo; gboolean save_fragmented; static struct tcpheader tcphstruct[4], *tcph; static int tcph_count=0; tcph_count++; if(tcph_count>=4){ tcph_count=0; } tcph=&tcphstruct[tcph_count]; SET_ADDRESS(&tcph->ip_src, pinfo->src.type, pinfo->src.len, pinfo->src.data); SET_ADDRESS(&tcph->ip_dst, pinfo->dst.type, pinfo->dst.len, pinfo->dst.data); if (check_col(pinfo->cinfo, COL_PROTOCOL)) col_set_str(pinfo->cinfo, COL_PROTOCOL, "TCP"); /* Clear out the Info column. */ if (check_col(pinfo->cinfo, COL_INFO)) col_clear(pinfo->cinfo, COL_INFO); tcph->th_sport = tvb_get_ntohs(tvb, offset); tcph->th_dport = tvb_get_ntohs(tvb, offset + 2); if (check_col(pinfo->cinfo, COL_INFO)) { col_append_fstr(pinfo->cinfo, COL_INFO, "%s > %s", get_tcp_port(tcph->th_sport), get_tcp_port(tcph->th_dport)); } if (tree) { if (tcp_summary_in_tree) { ti = proto_tree_add_protocol_format(tree, proto_tcp, tvb, 0, -1, "Transmission Control Protocol, Src Port: %s (%u), Dst Port: %s (%u)", get_tcp_port(tcph->th_sport), tcph->th_sport, get_tcp_port(tcph->th_dport), tcph->th_dport); } else { ti = proto_tree_add_item(tree, proto_tcp, tvb, 0, -1, FALSE); } tcp_tree = proto_item_add_subtree(ti, ett_tcp); proto_tree_add_uint_format(tcp_tree, hf_tcp_srcport, tvb, offset, 2, tcph->th_sport, "Source port: %s (%u)", get_tcp_port(tcph->th_sport), tcph->th_sport); proto_tree_add_uint_format(tcp_tree, hf_tcp_dstport, tvb, offset + 2, 2, tcph->th_dport, "Destination port: %s (%u)", get_tcp_port(tcph->th_dport), tcph->th_dport); proto_tree_add_uint_hidden(tcp_tree, hf_tcp_port, tvb, offset, 2, tcph->th_sport); proto_tree_add_uint_hidden(tcp_tree, hf_tcp_port, tvb, offset + 2, 2, tcph->th_dport); } /* Set the source and destination port numbers as soon as we get them, so that they're available to the "Follow TCP Stream" code even if we throw an exception dissecting the rest of the TCP header. */ pinfo->ptype = PT_TCP; pinfo->srcport = tcph->th_sport; pinfo->destport = tcph->th_dport; tcph->th_seq = tvb_get_ntohl(tvb, offset + 4); tcph->th_ack = tvb_get_ntohl(tvb, offset + 8); th_off_x2 = tvb_get_guint8(tvb, offset + 12); tcph->th_flags = tvb_get_guint8(tvb, offset + 13); tcph->th_win = tvb_get_ntohs(tvb, offset + 14); tcph->th_hlen = hi_nibble(th_off_x2) * 4; /* TCP header length, in bytes */ /* * If we've been handed an IP fragment, we don't know how big the TCP * segment is, so don't do anything that requires that we know that. * * The same applies if we're part of an error packet. (XXX - if the * ICMP and ICMPv6 dissectors could set a "this is how big the IP * header says it is" length in the tvbuff, we could use that; such * a length might also be useful for handling packets where the IP * length is bigger than the actual data available in the frame; the * dissectors should trust that length, and then throw a * ReportedBoundsError exception when they go past the end of the frame.) * * We also can't determine the segment length if the reported length * of the TCP packet is less than the TCP header length. */ reported_len = tvb_reported_length(tvb); if (!pinfo->fragmented && !pinfo->in_error_pkt) { if (reported_len < tcph->th_hlen) { proto_tree_add_text(tcp_tree, tvb, offset, 0, "Short segment. Segment/fragment does not contain a full TCP header" " (might be NMAP or someone else deliberately sending unusual packets)"); tcph->th_have_seglen = FALSE; } else { /* Compute the length of data in this segment. */ tcph->th_seglen = reported_len - tcph->th_hlen; tcph->th_have_seglen = TRUE; if (tree) { /* Add the seglen as an invisible field */ proto_tree_add_uint_hidden(ti, hf_tcp_len, tvb, offset, 4, tcph->th_seglen); } /* handle TCP seq# analysis parse all new segments we see */ if(tcp_analyze_seq){ if(!(pinfo->fd->flags.visited)){ tcp_analyze_sequence_number(pinfo, tcph->th_seq, tcph->th_ack, tcph->th_seglen, tcph->th_flags, tcph->th_win); } if(tcp_relative_seq){ tcp_get_relative_seq_ack(pinfo->fd->num, &(tcph->th_seq), &(tcph->th_ack), &(tcph->th_win)); } } /* Compute the sequence number of next octet after this segment. */ nxtseq = tcph->th_seq + tcph->th_seglen; } } else tcph->th_have_seglen = FALSE; if (check_col(pinfo->cinfo, COL_INFO) || tree) { for (i = 0; i < 8; i++) { bpos = 1 << i; if (tcph->th_flags & bpos) { if (fpos) { strcpy(&flags[fpos], ", "); fpos += 2; } strcpy(&flags[fpos], fstr[i]); fpos += 3; } } flags[fpos] = '\0'; } if (check_col(pinfo->cinfo, COL_INFO)) { col_append_fstr(pinfo->cinfo, COL_INFO, " [%s] Seq=%u Ack=%u Win=%u", flags, tcph->th_seq, tcph->th_ack, tcph->th_win); } if (tree) { if (tcp_summary_in_tree) { proto_item_append_text(ti, ", Seq: %u", tcph->th_seq); } proto_tree_add_uint(tcp_tree, hf_tcp_seq, tvb, offset + 4, 4, tcph->th_seq); } if (tcph->th_hlen < TCPH_MIN_LEN) { /* Give up at this point; we put the source and destination port in the tree, before fetching the header length, so that they'll show up if this is in the failing packet in an ICMP error packet, but it's now time to give up if the header length is bogus. */ if (check_col(pinfo->cinfo, COL_INFO)) col_append_fstr(pinfo->cinfo, COL_INFO, ", bogus TCP header length (%u, must be at least %u)", tcph->th_hlen, TCPH_MIN_LEN); if (tree) { proto_tree_add_uint_format(tcp_tree, hf_tcp_hdr_len, tvb, offset + 12, 1, tcph->th_hlen, "Header length: %u bytes (bogus, must be at least %u)", tcph->th_hlen, TCPH_MIN_LEN); } return; } if (tree) { if (tcp_summary_in_tree) { proto_item_append_text(ti, ", Ack: %u", tcph->th_ack); if (tcph->th_have_seglen) proto_item_append_text(ti, ", Len: %u", tcph->th_seglen); } proto_item_set_len(ti, tcph->th_hlen); if (tcph->th_have_seglen) { if (nxtseq != tcph->th_seq) { proto_tree_add_uint(tcp_tree, hf_tcp_nxtseq, tvb, offset, 0, nxtseq); } } if (tcph->th_flags & TH_ACK) proto_tree_add_uint(tcp_tree, hf_tcp_ack, tvb, offset + 8, 4, tcph->th_ack); proto_tree_add_uint_format(tcp_tree, hf_tcp_hdr_len, tvb, offset + 12, 1, tcph->th_hlen, "Header length: %u bytes", tcph->th_hlen); tf = proto_tree_add_uint_format(tcp_tree, hf_tcp_flags, tvb, offset + 13, 1, tcph->th_flags, "Flags: 0x%04x (%s)", tcph->th_flags, flags); field_tree = proto_item_add_subtree(tf, ett_tcp_flags); proto_tree_add_boolean(field_tree, hf_tcp_flags_cwr, tvb, offset + 13, 1, tcph->th_flags); proto_tree_add_boolean(field_tree, hf_tcp_flags_ecn, tvb, offset + 13, 1, tcph->th_flags); proto_tree_add_boolean(field_tree, hf_tcp_flags_urg, tvb, offset + 13, 1, tcph->th_flags); proto_tree_add_boolean(field_tree, hf_tcp_flags_ack, tvb, offset + 13, 1, tcph->th_flags); proto_tree_add_boolean(field_tree, hf_tcp_flags_push, tvb, offset + 13, 1, tcph->th_flags); proto_tree_add_boolean(field_tree, hf_tcp_flags_reset, tvb, offset + 13, 1, tcph->th_flags); proto_tree_add_boolean(field_tree, hf_tcp_flags_syn, tvb, offset + 13, 1, tcph->th_flags); proto_tree_add_boolean(field_tree, hf_tcp_flags_fin, tvb, offset + 13, 1, tcph->th_flags); proto_tree_add_uint(tcp_tree, hf_tcp_window_size, tvb, offset + 14, 2, tcph->th_win); } /* Supply the sequence number of the first byte. */ tcpinfo.seq = tcph->th_seq; /* Assume we'll pass un-reassembled data to subdissectors. */ tcpinfo.is_reassembled = FALSE; pinfo->private_data = &tcpinfo; /* * Assume, initially, that we can't desegment. */ pinfo->can_desegment = 0; th_sum = tvb_get_ntohs(tvb, offset + 16); if (!pinfo->fragmented && tvb_bytes_exist(tvb, 0, reported_len)) { /* The packet isn't part of an un-reassembled fragmented datagram and isn't truncated. This means we have all the data, and thus can checksum it and, unless it's being returned in an error packet, are willing to allow subdissectors to request reassembly on it. */ if (tcp_check_checksum) { /* We haven't turned checksum checking off; checksum it. */ /* Set up the fields of the pseudo-header. */ cksum_vec[0].ptr = pinfo->src.data; cksum_vec[0].len = pinfo->src.len; cksum_vec[1].ptr = pinfo->dst.data; cksum_vec[1].len = pinfo->dst.len; cksum_vec[2].ptr = (const guint8 *)&phdr; switch (pinfo->src.type) { case AT_IPv4: phdr[0] = g_htonl((IP_PROTO_TCP<<16) + reported_len); cksum_vec[2].len = 4; break; case AT_IPv6: phdr[0] = g_htonl(reported_len); phdr[1] = g_htonl(IP_PROTO_TCP); cksum_vec[2].len = 8; break; default: /* TCP runs only atop IPv4 and IPv6.... */ g_assert_not_reached(); break; } cksum_vec[3].ptr = tvb_get_ptr(tvb, offset, reported_len); cksum_vec[3].len = reported_len; computed_cksum = in_cksum(&cksum_vec[0], 4); if (computed_cksum == 0) { proto_tree_add_uint_format(tcp_tree, hf_tcp_checksum, tvb, offset + 16, 2, th_sum, "Checksum: 0x%04x (correct)", th_sum); /* Checksum is valid, so we're willing to desegment it. */ desegment_ok = TRUE; } else { proto_tree_add_boolean_hidden(tcp_tree, hf_tcp_checksum_bad, tvb, offset + 16, 2, TRUE); proto_tree_add_uint_format(tcp_tree, hf_tcp_checksum, tvb, offset + 16, 2, th_sum, "Checksum: 0x%04x (incorrect, should be 0x%04x)", th_sum, in_cksum_shouldbe(th_sum, computed_cksum)); /* Checksum is invalid, so we're not willing to desegment it. */ desegment_ok = FALSE; pinfo->noreassembly_reason = " (incorrect TCP checksum)"; } } else { proto_tree_add_uint_format(tcp_tree, hf_tcp_checksum, tvb, offset + 16, 2, th_sum, "Checksum: 0x%04x", th_sum); /* We didn't check the checksum, and don't care if it's valid, so we're willing to desegment it. */ desegment_ok = TRUE; } } else { /* We don't have all the packet data, so we can't checksum it... */ proto_tree_add_uint_format(tcp_tree, hf_tcp_checksum, tvb, offset + 16, 2, th_sum, "Checksum: 0x%04x", th_sum); /* ...and aren't willing to desegment it. */ desegment_ok = FALSE; } if (desegment_ok) { /* We're willing to desegment this. Is desegmentation enabled? */ if (tcp_desegment) { /* Yes - is this segment being returned in an error packet? */ if (!pinfo->in_error_pkt) { /* No - indicate that we will desegment. We do NOT want to desegment segments returned in error packets, as they're not part of a TCP connection. */ pinfo->can_desegment = 2; } } } if (tcph->th_flags & TH_URG) { th_urp = tvb_get_ntohs(tvb, offset + 18); /* Export the urgent pointer, for the benefit of protocols such as rlogin. */ tcpinfo.urgent = TRUE; tcpinfo.urgent_pointer = th_urp; if (check_col(pinfo->cinfo, COL_INFO)) col_append_fstr(pinfo->cinfo, COL_INFO, " Urg=%u", th_urp); if (tcp_tree != NULL) proto_tree_add_uint(tcp_tree, hf_tcp_urgent_pointer, tvb, offset + 18, 2, th_urp); } else tcpinfo.urgent = FALSE; if (tcph->th_have_seglen) { if (check_col(pinfo->cinfo, COL_INFO)) col_append_fstr(pinfo->cinfo, COL_INFO, " Len=%u", tcph->th_seglen); } /* Decode TCP options, if any. */ if (tree && tcph->th_hlen > TCPH_MIN_LEN) { /* There's more than just the fixed-length header. Decode the options. */ optlen = tcph->th_hlen - TCPH_MIN_LEN; /* length of options, in bytes */ tf = proto_tree_add_text(tcp_tree, tvb, offset + 20, optlen, "Options: (%u bytes)", optlen); field_tree = proto_item_add_subtree(tf, ett_tcp_options); dissect_ip_tcp_options(tvb, offset + 20, optlen, tcpopts, N_TCP_OPTS, TCPOPT_EOL, pinfo, field_tree); } /* Skip over header + options */ offset += tcph->th_hlen; /* Check the packet length to see if there's more data (it could be an ACK-only packet) */ length_remaining = tvb_length_remaining(tvb, offset); if (tcph->th_have_seglen) { if( data_out_file ) { reassemble_tcp( tcph->th_seq, /* sequence number */ tcph->th_seglen, /* data length */ tvb_get_ptr(tvb, offset, length_remaining), /* data */ length_remaining, /* captured data length */ ( tcph->th_flags & TH_SYN ), /* is syn set? */ &pinfo->net_src, &pinfo->net_dst, pinfo->srcport, pinfo->destport); } } /* * XXX - what, if any, of this should we do if this is included in an * error packet? It might be nice to see the details of the packet * that caused the ICMP error, but it might not be nice to have the * dissector update state based on it. * Also, we probably don't want to run TCP taps on those packets. */ if (length_remaining != 0) { if (tcph->th_flags & TH_RST) { /* * RFC1122 says: * * 4.2.2.12 RST Segment: RFC-793 Section 3.4 * * A TCP SHOULD allow a received RST segment to include data. * * DISCUSSION * It has been suggested that a RST segment could contain * ASCII text that encoded and explained the cause of the * RST. No standard has yet been established for such * data. * * so for segments with RST we just display the data as text. */ proto_tree_add_text(tcp_tree, tvb, offset, length_remaining, "Reset cause: %s", tvb_format_text(tvb, offset, length_remaining)); } else { /* Can we desegment this segment? */ if (pinfo->can_desegment) { /* Yes. */ desegment_tcp(tvb, pinfo, offset, tcph->th_seq, nxtseq, tcph->th_sport, tcph->th_dport, tree, tcp_tree); } else { /* No - just call the subdissector. Mark this as fragmented, so if somebody throws an exception, we don't report it as a malformed frame. */ save_fragmented = pinfo->fragmented; pinfo->fragmented = TRUE; decode_tcp_ports(tvb, offset, pinfo, tree, tcph->th_sport, tcph->th_dport, nxtseq); pinfo->fragmented = save_fragmented; } } } /* handle TCP seq# analysis, print any extra SEQ/ACK data for this segment*/ if(tcp_analyze_seq){ tcp_print_sequence_number_analysis(pinfo, tvb, tcp_tree); } tap_queue_packet(tcp_tap, pinfo, tcph); } void proto_register_tcp(void) { static hf_register_info hf[] = { { &hf_tcp_srcport, { "Source Port", "tcp.srcport", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_tcp_dstport, { "Destination Port", "tcp.dstport", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_tcp_port, { "Source or Destination Port", "tcp.port", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_tcp_seq, { "Sequence number", "tcp.seq", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_tcp_nxtseq, { "Next sequence number", "tcp.nxtseq", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_tcp_ack, { "Acknowledgement number", "tcp.ack", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_tcp_hdr_len, { "Header Length", "tcp.hdr_len", FT_UINT8, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_tcp_flags, { "Flags", "tcp.flags", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_tcp_flags_cwr, { "Congestion Window Reduced (CWR)", "tcp.flags.cwr", FT_BOOLEAN, 8, TFS(&flags_set_truth), TH_CWR, "", HFILL }}, { &hf_tcp_flags_ecn, { "ECN-Echo", "tcp.flags.ecn", FT_BOOLEAN, 8, TFS(&flags_set_truth), TH_ECN, "", HFILL }}, { &hf_tcp_flags_urg, { "Urgent", "tcp.flags.urg", FT_BOOLEAN, 8, TFS(&flags_set_truth), TH_URG, "", HFILL }}, { &hf_tcp_flags_ack, { "Acknowledgment", "tcp.flags.ack", FT_BOOLEAN, 8, TFS(&flags_set_truth), TH_ACK, "", HFILL }}, { &hf_tcp_flags_push, { "Push", "tcp.flags.push", FT_BOOLEAN, 8, TFS(&flags_set_truth), TH_PUSH, "", HFILL }}, { &hf_tcp_flags_reset, { "Reset", "tcp.flags.reset", FT_BOOLEAN, 8, TFS(&flags_set_truth), TH_RST, "", HFILL }}, { &hf_tcp_flags_syn, { "Syn", "tcp.flags.syn", FT_BOOLEAN, 8, TFS(&flags_set_truth), TH_SYN, "", HFILL }}, { &hf_tcp_flags_fin, { "Fin", "tcp.flags.fin", FT_BOOLEAN, 8, TFS(&flags_set_truth), TH_FIN, "", HFILL }}, /* 32 bits so we can present some values adjusted to window scaling */ { &hf_tcp_window_size, { "Window size", "tcp.window_size", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_tcp_checksum, { "Checksum", "tcp.checksum", FT_UINT16, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_tcp_checksum_bad, { "Bad Checksum", "tcp.checksum_bad", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_tcp_analysis_flags, { "TCP Analysis Flags", "tcp.analysis.flags", FT_NONE, BASE_NONE, NULL, 0x0, "This frame has some of the TCP analysis flags set", HFILL }}, { &hf_tcp_analysis_retransmission, { "Retransmission", "tcp.analysis.retransmission", FT_NONE, BASE_NONE, NULL, 0x0, "This frame is a suspected TCP retransmission", HFILL }}, { &hf_tcp_analysis_fast_retransmission, { "Fast Retransmission", "tcp.analysis.fast_retransmission", FT_NONE, BASE_NONE, NULL, 0x0, "This frame is a suspected TCP fast retransmission", HFILL }}, { &hf_tcp_analysis_out_of_order, { "Out Of Order", "tcp.analysis.out_of_order", FT_NONE, BASE_NONE, NULL, 0x0, "This frame is a suspected Out-Of-Order segment", HFILL }}, { &hf_tcp_analysis_lost_packet, { "Previous Segment Lost", "tcp.analysis.lost_segment", FT_NONE, BASE_NONE, NULL, 0x0, "A segment before this one was lost from the capture", HFILL }}, { &hf_tcp_analysis_ack_lost_packet, { "ACKed Lost Packet", "tcp.analysis.ack_lost_segment", FT_NONE, BASE_NONE, NULL, 0x0, "This frame ACKs a lost segment", HFILL }}, { &hf_tcp_analysis_keep_alive, { "Keep Alive", "tcp.analysis.keep_alive", FT_NONE, BASE_NONE, NULL, 0x0, "This is a keep-alive segment", HFILL }}, { &hf_tcp_analysis_keep_alive_ack, { "Keep Alive ACK", "tcp.analysis.keep_alive_ack", FT_NONE, BASE_NONE, NULL, 0x0, "This is an ACK to a keep-alive segment", HFILL }}, { &hf_tcp_analysis_duplicate_ack, { "Duplicate ACK", "tcp.analysis.duplicate_ack", FT_NONE, BASE_NONE, NULL, 0x0, "This is a duplicate ACK", HFILL }}, { &hf_tcp_analysis_duplicate_ack_num, { "Duplicate ACK #", "tcp.analysis.duplicate_ack_num", FT_UINT32, BASE_DEC, NULL, 0x0, "This is duplicate ACK number #", HFILL }}, { &hf_tcp_analysis_duplicate_ack_frame, { "Duplicate to the ACK in frame", "tcp.analysis.duplicate_ack_frame", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "This is a duplicate to the ACK in frame #", HFILL }}, { &hf_tcp_analysis_zero_window_violation, { "Zero Window Violation", "tcp.analysis.zero_window_violation", FT_NONE, BASE_NONE, NULL, 0x0, "This is a zero-window violation, an attempt to write >1 byte to a zero-window", HFILL }}, { &hf_tcp_analysis_zero_window_probe, { "Zero Window Probe", "tcp.analysis.zero_window_probe", FT_NONE, BASE_NONE, NULL, 0x0, "This is a zero-window-probe", HFILL }}, { &hf_tcp_analysis_zero_window, { "Zero Window", "tcp.analysis.zero_window", FT_NONE, BASE_NONE, NULL, 0x0, "This is a Zero-Window", HFILL }}, { &hf_tcp_len, { "TCP Segment Len", "tcp.len", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL}}, { &hf_tcp_analysis_acks_frame, { "This is an ACK to the segment in frame", "tcp.analysis.acks_frame", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "Which previous segment is this an ACK for", HFILL}}, { &hf_tcp_analysis_ack_rtt, { "The RTT to ACK the segment was", "tcp.analysis.ack_rtt", FT_RELATIVE_TIME, BASE_NONE, NULL, 0x0, "How long time it took to ACK the segment (RTT)", HFILL}}, { &hf_tcp_urgent_pointer, { "Urgent pointer", "tcp.urgent_pointer", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_tcp_segment_overlap, { "Segment overlap", "tcp.segment.overlap", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Segment overlaps with other segments", HFILL }}, { &hf_tcp_segment_overlap_conflict, { "Conflicting data in segment overlap", "tcp.segment.overlap.conflict", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Overlapping segments contained conflicting data", HFILL }}, { &hf_tcp_segment_multiple_tails, { "Multiple tail segments found", "tcp.segment.multipletails", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Several tails were found when desegmenting the pdu", HFILL }}, { &hf_tcp_segment_too_long_fragment, { "Segment too long", "tcp.segment.toolongfragment", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Segment contained data past end of the pdu", HFILL }}, { &hf_tcp_segment_error, { "Desegmentation error", "tcp.segment.error", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "Desegmentation error due to illegal segments", HFILL }}, { &hf_tcp_segment, { "TCP Segment", "tcp.segment", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "TCP Segment", HFILL }}, { &hf_tcp_segments, { "TCP Segments", "tcp.segments", FT_NONE, BASE_NONE, NULL, 0x0, "TCP Segments", HFILL }}, { &hf_tcp_reassembled_in, { "Reassembled PDU in frame", "tcp.reassembled_in", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "The PDU that starts but doesn't end in this segment is reassembled in this frame", HFILL }}, { &hf_tcp_option_mss, { "TCP MSS Option", "tcp.options.mss", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "TCP MSS Option", HFILL }}, { &hf_tcp_option_mss_val, { "TCP MSS Option Value", "tcp.options.mss_val", FT_UINT16, BASE_DEC, NULL, 0x0, "TCP MSS Option Value", HFILL}}, { &hf_tcp_option_wscale, { "TCP Window Scale Option", "tcp.options.wscale", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "TCP Window Option", HFILL}}, { &hf_tcp_option_wscale_val, { "TCP Windows Scale Option Value", "tcp.options.wscale_val", FT_UINT8, BASE_DEC, NULL, 0x0, "TCP Window Scale Value", HFILL}}, { &hf_tcp_option_sack_perm, { "TCP Sack Perm Option", "tcp.options.sack_perm", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "TCP Sack Perm Option", HFILL}}, { &hf_tcp_option_sack, { "TCP Sack Option", "tcp.options.sack", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "TCP Sack Option", HFILL}}, { &hf_tcp_option_sack_sle, {"TCP Sack Left Edge", "tcp.options.sack_le", FT_UINT32, BASE_DEC, NULL, 0x0, "TCP Sack Left Edge", HFILL}}, { &hf_tcp_option_sack_sre, {"TCP Sack Right Edge", "tcp.options.sack_re", FT_UINT32, BASE_DEC, NULL, 0x0, "TCP Sack Right Edge", HFILL}}, { &hf_tcp_option_echo, { "TCP Echo Option", "tcp.options.echo", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "TCP Sack Echo", HFILL}}, { &hf_tcp_option_echo_reply, { "TCP Echo Reply Option", "tcp.options.echo_reply", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "TCP Echo Reply Option", HFILL}}, { &hf_tcp_option_time_stamp, { "TCP Time Stamp Option", "tcp.options.time_stamp", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "TCP Time Stamp Option", HFILL}}, { &hf_tcp_option_cc, { "TCP CC Option", "tcp.options.cc", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "TCP CC Option", HFILL}}, { &hf_tcp_option_ccnew, { "TCP CC New Option", "tcp.options.ccnew", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "TCP CC New Option", HFILL}}, { &hf_tcp_option_ccecho, { "TCP CC Echo Option", "tcp.options.ccecho", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "TCP CC Echo Option", HFILL}}, { &hf_tcp_option_md5, { "TCP MD5 Option", "tcp.options.md5", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "TCP MD5 Option", HFILL}}, }; static gint *ett[] = { &ett_tcp, &ett_tcp_flags, &ett_tcp_options, &ett_tcp_option_sack, &ett_tcp_analysis_faults, &ett_tcp_analysis, &ett_tcp_segments, &ett_tcp_segment }; module_t *tcp_module; proto_tcp = proto_register_protocol("Transmission Control Protocol", "TCP", "tcp"); proto_register_field_array(proto_tcp, hf, array_length(hf)); proto_register_subtree_array(ett, array_length(ett)); /* subdissector code */ subdissector_table = register_dissector_table("tcp.port", "TCP port", FT_UINT16, BASE_DEC); register_heur_dissector_list("tcp", &heur_subdissector_list); /* Register configuration preferences */ tcp_module = prefs_register_protocol(proto_tcp, NULL); prefs_register_bool_preference(tcp_module, "summary_in_tree", "Show TCP summary in protocol tree", "Whether the TCP summary line should be shown in the protocol tree", &tcp_summary_in_tree); prefs_register_bool_preference(tcp_module, "check_checksum", "Check the validity of the TCP checksum when possible", "Whether to check the validity of the TCP checksum", &tcp_check_checksum); prefs_register_bool_preference(tcp_module, "desegment_tcp_streams", "Allow subdissector to desegment TCP streams", "Whether subdissector can request TCP streams to be desegmented", &tcp_desegment); prefs_register_bool_preference(tcp_module, "analyze_sequence_numbers", "Analyze TCP sequence numbers", "Make the TCP dissector analyze TCP sequence numbers to find and flag segment retransmissions, missing segments and RTT", &tcp_analyze_seq); prefs_register_bool_preference(tcp_module, "relative_sequence_numbers", "Relative sequence numbers and window scaling", "Make the TCP dissector use relative sequence numbers instead of absolute ones. " "To use this option you must also enable \"Analyze TCP sequence numbers\". " "This option will also try to track and adjust the window field according to any TCP window scaling options seen.", &tcp_relative_seq); prefs_register_bool_preference(tcp_module, "try_heuristic_first", "Try heuristic sub-dissectors first", "Try to decode a packet using an heuristic sub-dissector before using a sub-dissector registered to a specific port", &try_heuristic_first); register_init_routine(tcp_analyze_seq_init); register_init_routine(tcp_desegment_init); register_init_routine(tcp_fragment_init); } void proto_reg_handoff_tcp(void) { dissector_handle_t tcp_handle; tcp_handle = create_dissector_handle(dissect_tcp, proto_tcp); dissector_add("ip.proto", IP_PROTO_TCP, tcp_handle); data_handle = find_dissector("data"); tcp_tap = register_tap("tcp"); }