/* packet-ntlmssp.c * Routines for NTLM Secure Service Provider * Devin Heitmueller * Copyright 2003, Tim Potter * * $Id: packet-ntlmssp.c,v 1.45 2003/09/26 06:30:13 tpot Exp $ * * Ethereal - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include "packet-smb-common.h" #include "asn1.h" /* XXX - needed for subid_t */ #include "packet-gssapi.h" #include "packet-frame.h" #include "prefs.h" #include "crypt-rc4.h" #include "crypt-md4.h" #include "crypt-des.h" #include "packet-dcerpc.h" /* Message types */ #define NTLMSSP_NEGOTIATE 1 #define NTLMSSP_CHALLENGE 2 #define NTLMSSP_AUTH 3 #define NTLMSSP_UNKNOWN 4 static const value_string ntlmssp_message_types[] = { { NTLMSSP_NEGOTIATE, "NTLMSSP_NEGOTIATE" }, { NTLMSSP_CHALLENGE, "NTLMSSP_CHALLENGE" }, { NTLMSSP_AUTH, "NTLMSSP_AUTH" }, { NTLMSSP_UNKNOWN, "NTLMSSP_UNKNOWN" }, { 0, NULL } }; /* * NTLMSSP negotiation flags * Taken from Samba */ #define NTLMSSP_NEGOTIATE_UNICODE 0x00000001 #define NTLMSSP_NEGOTIATE_OEM 0x00000002 #define NTLMSSP_REQUEST_TARGET 0x00000004 #define NTLMSSP_NEGOTIATE_00000008 0x00000008 #define NTLMSSP_NEGOTIATE_SIGN 0x00000010 #define NTLMSSP_NEGOTIATE_SEAL 0x00000020 #define NTLMSSP_NEGOTIATE_DATAGRAM_STYLE 0x00000040 #define NTLMSSP_NEGOTIATE_LM_KEY 0x00000080 #define NTLMSSP_NEGOTIATE_NETWARE 0x00000100 #define NTLMSSP_NEGOTIATE_NTLM 0x00000200 #define NTLMSSP_NEGOTIATE_00000400 0x00000400 #define NTLMSSP_NEGOTIATE_00000800 0x00000800 #define NTLMSSP_NEGOTIATE_DOMAIN_SUPPLIED 0x00001000 #define NTLMSSP_NEGOTIATE_WORKSTATION_SUPPLIED 0x00002000 #define NTLMSSP_NEGOTIATE_THIS_IS_LOCAL_CALL 0x00004000 #define NTLMSSP_NEGOTIATE_ALWAYS_SIGN 0x00008000 #define NTLMSSP_CHAL_INIT_RESPONSE 0x00010000 #define NTLMSSP_CHAL_ACCEPT_RESPONSE 0x00020000 #define NTLMSSP_CHAL_NON_NT_SESSION_KEY 0x00040000 #define NTLMSSP_NEGOTIATE_NTLM2 0x00080000 #define NTLMSSP_NEGOTIATE_00100000 0x00100000 #define NTLMSSP_NEGOTIATE_00200000 0x00200000 #define NTLMSSP_NEGOTIATE_00400000 0x00400000 #define NTLMSSP_CHAL_TARGET_INFO 0x00800000 #define NTLMSSP_NEGOTIATE_01000000 0x01000000 #define NTLMSSP_NEGOTIATE_02000000 0x02000000 #define NTLMSSP_NEGOTIATE_04000000 0x04000000 #define NTLMSSP_NEGOTIATE_08000000 0x08000000 #define NTLMSSP_NEGOTIATE_10000000 0x10000000 #define NTLMSSP_NEGOTIATE_128 0x20000000 #define NTLMSSP_NEGOTIATE_KEY_EXCH 0x40000000 #define NTLMSSP_NEGOTIATE_80000000 0x80000000 static int proto_ntlmssp = -1; static int hf_ntlmssp = -1; static int hf_ntlmssp_auth = -1; static int hf_ntlmssp_message_type = -1; static int hf_ntlmssp_negotiate_flags = -1; static int hf_ntlmssp_negotiate_flags_01 = -1; static int hf_ntlmssp_negotiate_flags_02 = -1; static int hf_ntlmssp_negotiate_flags_04 = -1; static int hf_ntlmssp_negotiate_flags_08 = -1; static int hf_ntlmssp_negotiate_flags_10 = -1; static int hf_ntlmssp_negotiate_flags_20 = -1; static int hf_ntlmssp_negotiate_flags_40 = -1; static int hf_ntlmssp_negotiate_flags_80 = -1; static int hf_ntlmssp_negotiate_flags_100 = -1; static int hf_ntlmssp_negotiate_flags_200 = -1; static int hf_ntlmssp_negotiate_flags_400 = -1; static int hf_ntlmssp_negotiate_flags_800 = -1; static int hf_ntlmssp_negotiate_flags_1000 = -1; static int hf_ntlmssp_negotiate_flags_2000 = -1; static int hf_ntlmssp_negotiate_flags_4000 = -1; static int hf_ntlmssp_negotiate_flags_8000 = -1; static int hf_ntlmssp_negotiate_flags_10000 = -1; static int hf_ntlmssp_negotiate_flags_20000 = -1; static int hf_ntlmssp_negotiate_flags_40000 = -1; static int hf_ntlmssp_negotiate_flags_80000 = -1; static int hf_ntlmssp_negotiate_flags_100000 = -1; static int hf_ntlmssp_negotiate_flags_200000 = -1; static int hf_ntlmssp_negotiate_flags_400000 = -1; static int hf_ntlmssp_negotiate_flags_800000 = -1; static int hf_ntlmssp_negotiate_flags_1000000 = -1; static int hf_ntlmssp_negotiate_flags_2000000 = -1; static int hf_ntlmssp_negotiate_flags_4000000 = -1; static int hf_ntlmssp_negotiate_flags_8000000 = -1; static int hf_ntlmssp_negotiate_flags_10000000 = -1; static int hf_ntlmssp_negotiate_flags_20000000 = -1; static int hf_ntlmssp_negotiate_flags_40000000 = -1; static int hf_ntlmssp_negotiate_flags_80000000 = -1; static int hf_ntlmssp_negotiate_workstation_strlen = -1; static int hf_ntlmssp_negotiate_workstation_maxlen = -1; static int hf_ntlmssp_negotiate_workstation_buffer = -1; static int hf_ntlmssp_negotiate_workstation = -1; static int hf_ntlmssp_negotiate_domain_strlen = -1; static int hf_ntlmssp_negotiate_domain_maxlen = -1; static int hf_ntlmssp_negotiate_domain_buffer = -1; static int hf_ntlmssp_negotiate_domain = -1; static int hf_ntlmssp_ntlm_challenge = -1; static int hf_ntlmssp_reserved = -1; static int hf_ntlmssp_challenge_domain = -1; static int hf_ntlmssp_auth_username = -1; static int hf_ntlmssp_auth_domain = -1; static int hf_ntlmssp_auth_hostname = -1; static int hf_ntlmssp_auth_lmresponse = -1; static int hf_ntlmssp_auth_ntresponse = -1; static int hf_ntlmssp_auth_sesskey = -1; static int hf_ntlmssp_string_len = -1; static int hf_ntlmssp_string_maxlen = -1; static int hf_ntlmssp_string_offset = -1; static int hf_ntlmssp_blob_len = -1; static int hf_ntlmssp_blob_maxlen = -1; static int hf_ntlmssp_blob_offset = -1; static int hf_ntlmssp_address_list = -1; static int hf_ntlmssp_address_list_len = -1; static int hf_ntlmssp_address_list_maxlen = -1; static int hf_ntlmssp_address_list_offset = -1; static int hf_ntlmssp_address_list_server_nb = -1; static int hf_ntlmssp_address_list_domain_nb = -1; static int hf_ntlmssp_address_list_server_dns = -1; static int hf_ntlmssp_address_list_domain_dns = -1; static int hf_ntlmssp_address_list_terminator = -1; static int hf_ntlmssp_address_list_item_type = -1; static int hf_ntlmssp_address_list_item_len = -1; static int hf_ntlmssp_address_list_item_content = -1; static int hf_ntlmssp_verf = -1; static int hf_ntlmssp_verf_vers = -1; static int hf_ntlmssp_verf_body = -1; static int hf_ntlmssp_verf_unknown1 = -1; static int hf_ntlmssp_verf_crc32 = -1; static int hf_ntlmssp_verf_sequence = -1; static int hf_ntlmssp_decrypted_payload = -1; static gint ett_ntlmssp = -1; static gint ett_ntlmssp_negotiate_flags = -1; static gint ett_ntlmssp_string = -1; static gint ett_ntlmssp_blob = -1; static gint ett_ntlmssp_address_list = -1; static gint ett_ntlmssp_address_list_item = -1; /* Configuration variables */ static char *nt_password = NULL; #define MAX_BLOB_SIZE 256 typedef struct _ntlmssp_blob { guint16 length; guint8 contents[MAX_BLOB_SIZE]; } ntlmssp_blob; /* Used in the conversation function */ typedef struct _ntlmssp_info { guint32 flags; guint8 challenge[8]; rc4_state_struct rc4_state_peer1; rc4_state_struct rc4_state_peer2; guint32 peer1_dest_port; int rc4_state_initialized; ntlmssp_blob ntlm_response; ntlmssp_blob lm_response; } ntlmssp_info; /* * GMemChunk from which ntlmssp_info structures are allocated. */ static GMemChunk *ntlmssp_info_chunk; static int ntlmssp_info_count = 10; /* If this struct exists in the payload_decrypt, then we have already decrypted it once */ typedef struct _ntlmssp_packet_info { guint32 flags; guint8 challenge[8]; guint8 *decrypted_payload; guint8 verifier[16]; gboolean payload_decrypted; gboolean verifier_decrypted; } ntlmssp_packet_info; /* * GMemChunk from which ntlmssp_packet_info structures are allocated. */ static GMemChunk *ntlmssp_packet_info_chunk; static int ntlmssp_packet_info_count = 10; /* * GSlist of decrypted payloads. */ static GSList *decrypted_payloads; /* Generate a challenge response, given an eight byte challenge and either the NT or the Lan Manager password hash (16 bytes). Returns output in response, which is expected to be 24 bytes. */ static int ntlmssp_generate_challenge_response(guint8 *response, const guint8 *passhash, const guint8 *challenge) { guint8 pw21[21]; /* Password hash padded to 21 bytes */ memset(pw21, 0x0, sizeof(pw21)); memcpy(pw21, passhash, 16); memset(response, 0, 24); crypt_des_ecb(response, challenge, pw21, 1); crypt_des_ecb(response + 8, challenge, pw21 + 7, 1); crypt_des_ecb(response + 16, challenge, pw21 + 14, 1); return 1; } /* Create an NTLMSSP version 1 key. * password points to the ANSI password to encrypt, challenge points to * the 8 octet challenge string, key128 will do a 128 bit key if set to 1, * otherwise it will do a 40 bit key. The result is stored in * sspkey (expected to be 16 octets) */ static void create_ntlmssp_v1_key(const char *nt_password, const guint8 *challenge, int use_key_128, guint8 *sspkey) { unsigned char lm_password_upper[16]; unsigned char lm_password_hash[16]; guint8 lm_challenge_response[24]; guint8 rc4key[24]; guint8 pw21[21]; /* Password hash padded to 21 bytes */ size_t password_len; unsigned int i; unsigned char lmhash_key[] = {0x4b, 0x47, 0x53, 0x21, 0x40, 0x23, 0x24, 0x25}; memset(lm_password_upper, 0, sizeof(lm_password_upper)); /* Create a Lan Manager hash of the input password */ if (nt_password[0] != '\0') { password_len = strlen(nt_password); /* Truncate password if too long */ if (password_len > 16) password_len = 16; for (i = 0; i < password_len; i++) { lm_password_upper[i] = toupper(nt_password[i]); } } crypt_des_ecb(lm_password_hash, lmhash_key, lm_password_upper, 1); crypt_des_ecb(lm_password_hash+8, lmhash_key, lm_password_upper+7, 1); /* Generate the LanMan Challenge Response */ ntlmssp_generate_challenge_response(lm_challenge_response, lm_password_hash, challenge); /* Generate the NTLMSSP-v1 RC4 Key. * The RC4 key is derived from the Lan Manager Hash. * See lkcl "DCE/RPC over SMB" page 254 for the algorithm. */ memset(pw21, 0xBD, sizeof(pw21)); memcpy(pw21, lm_password_hash, sizeof(lm_password_hash)); /* Only the first eight bytes of challenge_response is used */ crypt_des_ecb(rc4key, lm_challenge_response, pw21, 1); crypt_des_ecb(rc4key + 8, lm_challenge_response, pw21 + 7, 1); crypt_des_ecb(rc4key + 16, lm_challenge_response, pw21 + 14, 1); /* Create the SSP Key */ memset(sspkey, 0, sizeof(sspkey)); if (use_key_128) { /* Create 128 bit key */ memcpy(sspkey, rc4key, 16); } else { /* Create 40 bit key */ memcpy(sspkey, rc4key, 5); sspkey[5]=0xe5; sspkey[6]=0x38; sspkey[7]=0xb0; } return; } /* dissect a string - header area contains: two byte len two byte maxlen four byte offset of string in data area The function returns the offset at the end of the string header, but the 'end' parameter returns the offset of the end of the string itself The 'start' parameter returns the offset of the beginning of the string */ static int dissect_ntlmssp_string (tvbuff_t *tvb, int offset, proto_tree *ntlmssp_tree, gboolean unicode_strings, int string_hf, int *start, int *end) { proto_tree *tree = NULL; proto_item *tf = NULL; gint16 string_length = tvb_get_letohs(tvb, offset); gint16 string_maxlen = tvb_get_letohs(tvb, offset+2); gint32 string_offset = tvb_get_letohl(tvb, offset+4); const char *string_text = NULL; int result_length; guint16 bc; *start = (string_offset > offset+8 ? string_offset : offset+8); if (0 == string_length) { *end = *start; if (ntlmssp_tree) proto_tree_add_string(ntlmssp_tree, string_hf, tvb, offset, 8, "NULL"); return offset+8; } bc = result_length = string_length; string_text = get_unicode_or_ascii_string(tvb, &string_offset, unicode_strings, &result_length, FALSE, TRUE, &bc); if (ntlmssp_tree) { tf = proto_tree_add_string(ntlmssp_tree, string_hf, tvb, string_offset, result_length, string_text); tree = proto_item_add_subtree(tf, ett_ntlmssp_string); } proto_tree_add_uint(tree, hf_ntlmssp_string_len, tvb, offset, 2, string_length); offset += 2; proto_tree_add_uint(tree, hf_ntlmssp_string_maxlen, tvb, offset, 2, string_maxlen); offset += 2; proto_tree_add_uint(tree, hf_ntlmssp_string_offset, tvb, offset, 4, string_offset); offset += 4; *end = string_offset + string_length; return offset; } /* dissect a generic blob - header area contains: two byte len two byte maxlen four byte offset of blob in data area The function returns the offset at the end of the blob header, but the 'end' parameter returns the offset of the end of the blob itself */ static int dissect_ntlmssp_blob (tvbuff_t *tvb, int offset, proto_tree *ntlmssp_tree, int blob_hf, int *end, ntlmssp_blob *result) { proto_item *tf = NULL; proto_tree *tree = NULL; guint16 blob_length = tvb_get_letohs(tvb, offset); guint16 blob_maxlen = tvb_get_letohs(tvb, offset+2); guint32 blob_offset = tvb_get_letohl(tvb, offset+4); if (0 == blob_length) { *end = (blob_offset > ((guint)offset)+8 ? blob_offset : ((guint)offset)+8); if (ntlmssp_tree) proto_tree_add_text(ntlmssp_tree, tvb, offset, 8, "%s: Empty", proto_registrar_get_name(blob_hf)); return offset+8; } if (ntlmssp_tree) { tf = proto_tree_add_item (ntlmssp_tree, blob_hf, tvb, blob_offset, blob_length, FALSE); tree = proto_item_add_subtree(tf, ett_ntlmssp_blob); } proto_tree_add_uint(tree, hf_ntlmssp_blob_len, tvb, offset, 2, blob_length); offset += 2; proto_tree_add_uint(tree, hf_ntlmssp_blob_maxlen, tvb, offset, 2, blob_maxlen); offset += 2; proto_tree_add_uint(tree, hf_ntlmssp_blob_offset, tvb, offset, 4, blob_offset); offset += 4; *end = blob_offset + blob_length; if (result != NULL) { result->length = blob_length; memset(result->contents, 0, MAX_BLOB_SIZE); if (blob_length < MAX_BLOB_SIZE) tvb_memcpy(tvb, result->contents, blob_offset, blob_length); } /* If we are dissecting the NTLM response and it is a NTLMv2 response call the appropriate dissector. */ if (blob_hf == hf_ntlmssp_auth_ntresponse && blob_length > 24) dissect_ntlmv2_response(tvb, tree, blob_offset, blob_length); return offset; } static int dissect_ntlmssp_negotiate_flags (tvbuff_t *tvb, int offset, proto_tree *ntlmssp_tree, guint32 negotiate_flags) { proto_tree *negotiate_flags_tree = NULL; proto_item *tf = NULL; if (ntlmssp_tree) { tf = proto_tree_add_uint (ntlmssp_tree, hf_ntlmssp_negotiate_flags, tvb, offset, 4, negotiate_flags); negotiate_flags_tree = proto_item_add_subtree (tf, ett_ntlmssp_negotiate_flags); } proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_80000000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_40000000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_20000000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_10000000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_8000000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_4000000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_2000000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_1000000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_800000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_400000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_200000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_100000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_80000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_40000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_20000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_10000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_8000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_4000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_2000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_1000, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_800, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_400, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_200, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_100, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_80, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_40, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_20, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_10, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_08, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_04, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_02, tvb, offset, 4, negotiate_flags); proto_tree_add_boolean (negotiate_flags_tree, hf_ntlmssp_negotiate_flags_01, tvb, offset, 4, negotiate_flags); return (offset + 4); } static int dissect_ntlmssp_negotiate (tvbuff_t *tvb, int offset, proto_tree *ntlmssp_tree) { guint32 negotiate_flags; int start; int workstation_end; int domain_end; /* NTLMSSP Negotiate Flags */ negotiate_flags = tvb_get_letohl (tvb, offset); offset = dissect_ntlmssp_negotiate_flags (tvb, offset, ntlmssp_tree, negotiate_flags); offset = dissect_ntlmssp_string(tvb, offset, ntlmssp_tree, FALSE, hf_ntlmssp_negotiate_domain, &start, &workstation_end); offset = dissect_ntlmssp_string(tvb, offset, ntlmssp_tree, FALSE, hf_ntlmssp_negotiate_workstation, &start, &domain_end); /* XXX - two blobs after this one, sometimes? */ return MAX(workstation_end, domain_end); } static int dissect_ntlmssp_address_list (tvbuff_t *tvb, int offset, proto_tree *ntlmssp_tree, int *end) { guint16 list_length = tvb_get_letohs(tvb, offset); guint16 list_maxlen = tvb_get_letohs(tvb, offset+2); guint32 list_offset = tvb_get_letohl(tvb, offset+4); guint16 item_type, item_length; guint32 item_offset; proto_item *tf = NULL; proto_tree *tree = NULL; proto_item *addr_tf = NULL; proto_tree *addr_tree = NULL; /* the address list is just a blob */ if (0 == list_length) { *end = (list_offset > ((guint)offset)+8 ? list_offset : ((guint)offset)+8); if (ntlmssp_tree) proto_tree_add_text(ntlmssp_tree, tvb, offset, 8, "Address List: Empty"); return offset+8; } if (ntlmssp_tree) { tf = proto_tree_add_item (ntlmssp_tree, hf_ntlmssp_address_list, tvb, list_offset, list_length, FALSE); tree = proto_item_add_subtree(tf, ett_ntlmssp_address_list); } proto_tree_add_uint(tree, hf_ntlmssp_address_list_len, tvb, offset, 2, list_length); offset += 2; proto_tree_add_uint(tree, hf_ntlmssp_address_list_maxlen, tvb, offset, 2, list_maxlen); offset += 2; proto_tree_add_uint(tree, hf_ntlmssp_address_list_offset, tvb, offset, 4, list_offset); offset += 4; /* Now enumerate through the individual items in the list */ item_offset = list_offset; while (item_offset < (list_offset + list_length)) { const char *text=NULL; guint32 content_offset; guint16 content_length; guint32 type_offset; guint32 len_offset; /* Content type */ type_offset = item_offset; item_type = tvb_get_letohs(tvb, type_offset); /* Content length */ len_offset = type_offset + 2; content_length = tvb_get_letohs(tvb, len_offset); /* Content value */ content_offset = len_offset + 2; item_length = content_length + 4; /* Strings are always in unicode regardless of the negotiated string type. */ if (content_length > 0) { guint16 bc; int result_length; int item_offset_int; item_offset_int = content_offset; bc = content_length; text = get_unicode_or_ascii_string(tvb, &item_offset_int, TRUE, &result_length, FALSE, FALSE, &bc); } if (!text) text = ""; /* Make sure we don't blow up below */ switch(item_type) { case NTLM_NAME_NB_HOST: addr_tf = proto_tree_add_string(tree, hf_ntlmssp_address_list_server_nb, tvb, item_offset, item_length, text); break; case NTLM_NAME_NB_DOMAIN: addr_tf = proto_tree_add_string(tree, hf_ntlmssp_address_list_domain_nb, tvb, item_offset, item_length, text); break; case NTLM_NAME_DNS_HOST: addr_tf = proto_tree_add_string(tree, hf_ntlmssp_address_list_server_dns, tvb, item_offset, item_length, text); break; case NTLM_NAME_DNS_DOMAIN: addr_tf = proto_tree_add_string(tree, hf_ntlmssp_address_list_domain_dns, tvb, item_offset, item_length, text); break; case NTLM_NAME_END: addr_tf = proto_tree_add_item(tree, hf_ntlmssp_address_list_terminator, tvb, item_offset, item_length, TRUE); } /* Now show the actual bytes that made up the summary line */ addr_tree = proto_item_add_subtree (addr_tf, ett_ntlmssp_address_list_item); proto_tree_add_item (addr_tree, hf_ntlmssp_address_list_item_type, tvb, type_offset, 2, TRUE); proto_tree_add_item (addr_tree, hf_ntlmssp_address_list_item_len, tvb, len_offset, 2, TRUE); if (content_length > 0) { proto_tree_add_string(addr_tree, hf_ntlmssp_address_list_item_content, tvb, content_offset, content_length, text); } item_offset += item_length; } *end = list_offset + list_length; return offset; } static int dissect_ntlmssp_challenge (tvbuff_t *tvb, packet_info *pinfo, int offset, proto_tree *ntlmssp_tree) { guint32 negotiate_flags; int item_start, item_end; int data_start, data_end; ntlmssp_info *conv_ntlmssp_info; conversation_t *conversation; gboolean unicode_strings = FALSE; guint8 sspkey[16]; /* NTLMSSP cipher key */ guint8 ssp_key_len; /* Either 8 or 16 (40 bit or 128) */ /* need to find unicode flag */ negotiate_flags = tvb_get_letohl (tvb, offset+8); if (negotiate_flags & NTLMSSP_NEGOTIATE_UNICODE) unicode_strings = TRUE; /* Domain name */ offset = dissect_ntlmssp_string(tvb, offset, ntlmssp_tree, unicode_strings, hf_ntlmssp_challenge_domain, &item_start, &item_end); data_start = item_start; data_end = item_end; /* NTLMSSP Negotiate Flags */ offset = dissect_ntlmssp_negotiate_flags (tvb, offset, ntlmssp_tree, negotiate_flags); /* NTLMSSP NT Lan Manager Challenge */ proto_tree_add_item (ntlmssp_tree, hf_ntlmssp_ntlm_challenge, tvb, offset, 8, FALSE); /* * Store the flags and the challenge with the conversation, as they're * needed in order to dissect subsequent messages. */ conversation = find_conversation(&pinfo->src, &pinfo->dst, pinfo->ptype, pinfo->srcport, pinfo->destport, 0); if (!conversation) { /* Create one */ conversation = conversation_new(&pinfo->src, &pinfo->dst, pinfo->ptype, pinfo->srcport, pinfo->destport, 0); } if (!conversation_get_proto_data(conversation, proto_ntlmssp)) { conv_ntlmssp_info = g_mem_chunk_alloc(ntlmssp_info_chunk); /* Insert the flags into the conversation */ conv_ntlmssp_info->flags = negotiate_flags; /* Insert the challenge into the conversation */ tvb_memcpy(tvb, conv_ntlmssp_info->challenge, offset, 8); /* Between the challenge and the user provided password, we can build the NTLMSSP key and initialize the cipher */ if (conv_ntlmssp_info->flags & NTLMSSP_NEGOTIATE_128) { create_ntlmssp_v1_key(nt_password, conv_ntlmssp_info->challenge, 1, sspkey); ssp_key_len = 16; } else { create_ntlmssp_v1_key(nt_password, conv_ntlmssp_info->challenge, 0, sspkey); ssp_key_len = 8; } crypt_rc4_init(&conv_ntlmssp_info->rc4_state_peer1, sspkey, ssp_key_len); crypt_rc4_init(&conv_ntlmssp_info->rc4_state_peer2, sspkey, ssp_key_len); conv_ntlmssp_info->peer1_dest_port = pinfo->destport; conv_ntlmssp_info->rc4_state_initialized = 1; conversation_add_proto_data(conversation, proto_ntlmssp, conv_ntlmssp_info); } offset += 8; /* Reserved (function not completely known) */ /* XXX - SSP key? */ proto_tree_add_item (ntlmssp_tree, hf_ntlmssp_reserved, tvb, offset, 8, FALSE); offset += 8; /* * The presence or absence of this field is not obviously correlated * with any flags in the previous NEGOTIATE message or in this * message (other than the "Workstation Supplied" and "Domain * Supplied" flags in the NEGOTIATE message, at least in the capture * I've seen - but those also correlate with the presence of workstation * and domain name fields, so it doesn't seem to make sense that they * actually *indicate* whether the subsequent CHALLENGE has an * address list). */ if (offset < data_start) { offset = dissect_ntlmssp_address_list(tvb, offset, ntlmssp_tree, &item_end); data_end = MAX(data_end, item_end); } return MAX(offset, data_end); } static int dissect_ntlmssp_auth (tvbuff_t *tvb, packet_info *pinfo, int offset, proto_tree *ntlmssp_tree) { int item_start, item_end; int data_start, data_end = 0; guint32 negotiate_flags; gboolean unicode_strings = FALSE; ntlmssp_info *conv_ntlmssp_info; conversation_t *conversation; /* * Get flag info from the original negotiate message, if any. * This is because the flag information is sometimes missing from * the AUTHENTICATE message, so we can't figure out whether * strings are Unicode or not by looking at *our* flags. */ conv_ntlmssp_info = p_get_proto_data(pinfo->fd, proto_ntlmssp); if (conv_ntlmssp_info == NULL) { /* * There isn't any. Is there any from this conversation? If so, * it means this is the first time we've dissected this frame, so * we should give it flag info. */ conversation = find_conversation(&pinfo->src, &pinfo->dst, pinfo->ptype, pinfo->srcport, pinfo->destport, 0); if (conversation != NULL) { conv_ntlmssp_info = conversation_get_proto_data(conversation, proto_ntlmssp); if (conv_ntlmssp_info != NULL) { /* * We have flag info; attach it to the frame. */ p_add_proto_data(pinfo->fd, proto_ntlmssp, conv_ntlmssp_info); } } } if (conv_ntlmssp_info != NULL) { if (conv_ntlmssp_info->flags & NTLMSSP_NEGOTIATE_UNICODE) unicode_strings = TRUE; } /* * Sometimes the session key and flags are missing. * Sometimes the session key is present but the flags are missing. * Sometimes they're both present. * * This does not correlate with any flags in the previous CHALLENGE * message, and only correlates with "Negotiate Unicode", "Workstation * Supplied", and "Domain Supplied" in the NEGOTIATE message - but * those don't make sense as flags to use to determine this. * * So we check all of the descriptors to figure out where the data * area begins, and if the session key or the flags would be in the * middle of the data area, we assume the field in question is * missing. */ /* Lan Manager response */ data_start = tvb_get_letohl(tvb, offset+4); offset = dissect_ntlmssp_blob(tvb, offset, ntlmssp_tree, hf_ntlmssp_auth_lmresponse, &item_end, conv_ntlmssp_info == NULL ? NULL : &conv_ntlmssp_info->lm_response); data_end = MAX(data_end, item_end); /* NTLM response */ item_start = tvb_get_letohl(tvb, offset+4); offset = dissect_ntlmssp_blob(tvb, offset, ntlmssp_tree, hf_ntlmssp_auth_ntresponse, &item_end, conv_ntlmssp_info == NULL ? NULL : &conv_ntlmssp_info->ntlm_response); data_start = MIN(data_start, item_start); data_end = MAX(data_end, item_end); /* domain name */ item_start = tvb_get_letohl(tvb, offset+4); offset = dissect_ntlmssp_string(tvb, offset, ntlmssp_tree, unicode_strings, hf_ntlmssp_auth_domain, &item_start, &item_end); data_start = MIN(data_start, item_start); data_end = MAX(data_end, item_end); /* user name */ item_start = tvb_get_letohl(tvb, offset+4); offset = dissect_ntlmssp_string(tvb, offset, ntlmssp_tree, unicode_strings, hf_ntlmssp_auth_username, &item_start, &item_end); data_start = MIN(data_start, item_start); data_end = MAX(data_end, item_end); /* hostname */ item_start = tvb_get_letohl(tvb, offset+4); offset = dissect_ntlmssp_string(tvb, offset, ntlmssp_tree, unicode_strings, hf_ntlmssp_auth_hostname, &item_start, &item_end); data_start = MIN(data_start, item_start); data_end = MAX(data_end, item_end); if (offset < data_start) { /* Session Key */ offset = dissect_ntlmssp_blob(tvb, offset, ntlmssp_tree, hf_ntlmssp_auth_sesskey, &item_end, NULL); data_end = MAX(data_end, item_end); } if (offset < data_start) { /* NTLMSSP Negotiate Flags */ negotiate_flags = tvb_get_letohl (tvb, offset); offset = dissect_ntlmssp_negotiate_flags (tvb, offset, ntlmssp_tree, negotiate_flags); } return MAX(offset, data_end); } static void dissect_ntlmssp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { guint32 ntlmssp_message_type; volatile int offset = 0; proto_tree *volatile ntlmssp_tree = NULL; proto_item *tf = NULL; /* Setup a new tree for the NTLMSSP payload */ if (tree) { tf = proto_tree_add_item (tree, hf_ntlmssp, tvb, offset, -1, FALSE); ntlmssp_tree = proto_item_add_subtree (tf, ett_ntlmssp); } /* * Catch the ReportedBoundsError exception; the stuff we've been * handed doesn't necessarily run to the end of the packet, it's * an item inside a packet, so if it happens to be malformed (or * we, or a dissector we call, has a bug), so that an exception * is thrown, we want to report the error, but return and let * our caller dissect the rest of the packet. * * If it gets a BoundsError, we can stop, as there's nothing more * in the packet after our blob to see, so we just re-throw the * exception. */ TRY { /* NTLMSSP constant */ proto_tree_add_item (ntlmssp_tree, hf_ntlmssp_auth, tvb, offset, 8, FALSE); offset += 8; /* NTLMSSP Message Type */ proto_tree_add_item (ntlmssp_tree, hf_ntlmssp_message_type, tvb, offset, 4, TRUE); ntlmssp_message_type = tvb_get_letohl (tvb, offset); offset += 4; if (check_col(pinfo->cinfo, COL_INFO)) col_append_fstr(pinfo->cinfo, COL_INFO, ", %s", val_to_str(ntlmssp_message_type, ntlmssp_message_types, "Unknown message type")); /* Call the appropriate dissector based on the Message Type */ switch (ntlmssp_message_type) { case NTLMSSP_NEGOTIATE: offset = dissect_ntlmssp_negotiate (tvb, offset, ntlmssp_tree); break; case NTLMSSP_CHALLENGE: offset = dissect_ntlmssp_challenge (tvb, pinfo, offset, ntlmssp_tree); break; case NTLMSSP_AUTH: offset = dissect_ntlmssp_auth (tvb, pinfo, offset, ntlmssp_tree); break; default: /* Unrecognized message type */ proto_tree_add_text (ntlmssp_tree, tvb, offset, -1, "Unrecognized NTLMSSP Message"); break; } } CATCH(BoundsError) { RETHROW; } CATCH(ReportedBoundsError) { show_reported_bounds_error(tvb, pinfo, tree); } ENDTRY; } /* * Get the encryption state tied to this conversation. cryptpeer indicates * whether to retrieve the data for peer1 or peer2. */ static rc4_state_struct * get_encrypted_state(packet_info *pinfo, int cryptpeer) { conversation_t *conversation; ntlmssp_info *conv_ntlmssp_info; conversation = find_conversation(&pinfo->src, &pinfo->dst, pinfo->ptype, pinfo->srcport, pinfo->destport, 0); if (conversation == NULL) { /* We don't have a conversation. In this case, stop processing because we do not have enough info to decrypt the payload */ return NULL; } else { /* We have a conversation, check for encryption state */ conv_ntlmssp_info = conversation_get_proto_data(conversation, proto_ntlmssp); if (conv_ntlmssp_info == NULL) { /* No encryption state tied to the conversation. Therefore, we cannot decrypt the payload */ return NULL; } else { /* We have the encryption state in the conversation. So return the crypt state tied to the requested peer */ if (cryptpeer == 1) { return &conv_ntlmssp_info->rc4_state_peer1; } else { return &conv_ntlmssp_info->rc4_state_peer2; } } } return NULL; } /* * See page 45 of "DCE/RPC over SMB" by Luke Kenneth Casson Leighton. */ static void decrypt_verifier(tvbuff_t *tvb, int offset, guint32 encrypted_block_length, packet_info *pinfo, proto_tree *tree) { proto_tree *decr_tree = NULL; proto_item *tf = NULL; conversation_t *conversation; rc4_state_struct *rc4_state; rc4_state_struct *rc4_state_peer; tvbuff_t *decr_tvb; /* Used to display decrypted buffer */ guint8 *peer_block; ntlmssp_info *conv_ntlmssp_info = NULL; ntlmssp_packet_info *packet_ntlmssp_info = NULL; int decrypted_offset = 0; packet_ntlmssp_info = p_get_proto_data(pinfo->fd, proto_ntlmssp); if (packet_ntlmssp_info == NULL) { /* We don't have data for this packet */ return; } if (!packet_ntlmssp_info->verifier_decrypted) { conversation = find_conversation(&pinfo->src, &pinfo->dst, pinfo->ptype, pinfo->srcport, pinfo->destport, 0); if (conversation == NULL) { /* There is no conversation, thus no encryption state */ return; } conv_ntlmssp_info = conversation_get_proto_data(conversation, proto_ntlmssp); if (conv_ntlmssp_info == NULL) { /* There is no NTLMSSP state tied to the conversation */ return; } if (conv_ntlmssp_info->rc4_state_initialized != 1 ) { /* The crypto sybsystem is not initialized. This means that either the conversation did not include a challenge, or we are doing something other than NTLMSSP v1 */ return; } if (conv_ntlmssp_info->peer1_dest_port == pinfo->destport) { rc4_state = get_encrypted_state(pinfo, 1); rc4_state_peer = get_encrypted_state(pinfo, 0); } else { rc4_state = get_encrypted_state(pinfo, 0); rc4_state_peer = get_encrypted_state(pinfo, 1); } if (rc4_state == NULL || rc4_state_peer == NULL) { /* There is no encryption state, so we cannot decrypt */ return; } /* Setup the buffer to decrypt to */ tvb_memcpy(tvb, packet_ntlmssp_info->verifier, offset, encrypted_block_length); /* Do the actual decryption of the verifier */ crypt_rc4(rc4_state, packet_ntlmssp_info->verifier, encrypted_block_length); /* We setup a temporary buffer so we can re-encrypt the payload after decryption. This is to update the opposite peer's RC4 state */ peer_block = g_malloc(encrypted_block_length); memcpy(peer_block, packet_ntlmssp_info->verifier, encrypted_block_length); crypt_rc4(rc4_state_peer, peer_block, encrypted_block_length); g_free(peer_block); /* Mark the packet as decrypted so that subsequent attempts to dissect the packet use the already decrypted payload instead of attempting to decrypt again */ packet_ntlmssp_info->verifier_decrypted = TRUE; } /* Show the decrypted buffer in a new window */ decr_tvb = tvb_new_real_data(packet_ntlmssp_info->verifier, encrypted_block_length, encrypted_block_length); tvb_set_child_real_data_tvbuff(tvb, decr_tvb); add_new_data_source(pinfo, decr_tvb, "Decrypted NTLMSSP Verifier"); /* Show the decrypted payload in the tree */ tf = proto_tree_add_text(tree, decr_tvb, 0, -1, "Decrypted Verifier (%d byte%s)", encrypted_block_length, plurality(encrypted_block_length, "", "s")); decr_tree = proto_item_add_subtree (tf, ett_ntlmssp); /* LKCL page 45 says this is a "reserved" field. I'm not sure if it's garbage because it's some sort of nonce, or because there is a problem with the verifier decryption routine. */ proto_tree_add_item (decr_tree, hf_ntlmssp_verf_unknown1, decr_tvb, decrypted_offset, 4, TRUE); decrypted_offset += 4; /* CRC32 of the DCE fragment data */ proto_tree_add_item (decr_tree, hf_ntlmssp_verf_crc32, decr_tvb, decrypted_offset, 4, TRUE); decrypted_offset += 4; /* Incrementing sequence number of DCE conversation */ proto_tree_add_item (decr_tree, hf_ntlmssp_verf_sequence, decr_tvb, decrypted_offset, 4, TRUE); decrypted_offset += 4; } static int dissect_ntlmssp_verf(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { volatile int offset = 0; proto_tree *volatile ntlmssp_tree = NULL; proto_item *tf = NULL; guint32 verifier_length; guint32 encrypted_block_length; verifier_length = tvb_length_remaining (tvb, offset); encrypted_block_length = verifier_length - 4; if (encrypted_block_length < 12) { /* Don't know why this would happen, but if it does, don't even bother attempting decryption/dissection */ return offset + verifier_length; } /* Setup a new tree for the NTLMSSP payload */ if (tree) { tf = proto_tree_add_item (tree, hf_ntlmssp_verf, tvb, offset, -1, FALSE); ntlmssp_tree = proto_item_add_subtree (tf, ett_ntlmssp); } /* * Catch the ReportedBoundsError exception; the stuff we've been * handed doesn't necessarily run to the end of the packet, it's * an item inside a packet, so if it happens to be malformed (or * we, or a dissector we call, has a bug), so that an exception * is thrown, we want to report the error, but return and let * our caller dissect the rest of the packet. * * If it gets a BoundsError, we can stop, as there's nothing more * in the packet after our blob to see, so we just re-throw the * exception. */ TRY { /* Version number */ proto_tree_add_item (ntlmssp_tree, hf_ntlmssp_verf_vers, tvb, offset, 4, TRUE); offset += 4; /* Encrypted body */ proto_tree_add_item (ntlmssp_tree, hf_ntlmssp_verf_body, tvb, offset, encrypted_block_length, TRUE); /* Try to decrypt */ decrypt_verifier (tvb, offset, encrypted_block_length, pinfo, ntlmssp_tree); offset += encrypted_block_length; } CATCH(BoundsError) { RETHROW; } CATCH(ReportedBoundsError) { show_reported_bounds_error(tvb, pinfo, tree); } ENDTRY; return offset; } static tvbuff_t * dissect_ntlmssp_encrypted_payload(tvbuff_t *tvb, int offset, packet_info *pinfo, dcerpc_auth_info *auth_info _U_) { tvbuff_t *decr_tvb; /* Used to display decrypted buffer */ guint8 *peer_block; conversation_t *conversation; guint32 encrypted_block_length; rc4_state_struct *rc4_state; rc4_state_struct *rc4_state_peer; ntlmssp_info *conv_ntlmssp_info = NULL; ntlmssp_packet_info *packet_ntlmssp_info = NULL; encrypted_block_length = tvb_length_remaining (tvb, offset); /* Check to see if we already have state for this packet */ packet_ntlmssp_info = p_get_proto_data(pinfo->fd, proto_ntlmssp); if (packet_ntlmssp_info == NULL) { /* We don't have any packet state, so create one */ packet_ntlmssp_info = g_mem_chunk_alloc(ntlmssp_packet_info_chunk); memset(packet_ntlmssp_info, 0, sizeof(ntlmssp_packet_info)); p_add_proto_data(pinfo->fd, proto_ntlmssp, packet_ntlmssp_info); } if (!packet_ntlmssp_info->payload_decrypted) { /* Pull the challenge info from the conversation */ conversation = find_conversation(&pinfo->src, &pinfo->dst, pinfo->ptype, pinfo->srcport, pinfo->destport, 0); if (conversation == NULL) { /* There is no conversation, thus no encryption state */ return NULL; } conv_ntlmssp_info = conversation_get_proto_data(conversation, proto_ntlmssp); if (conv_ntlmssp_info == NULL) { /* There is no NTLMSSP state tied to the conversation */ return NULL; } /* Get the pair of RC4 state structures. One is used for to decrypt the payload. The other is used to re-encrypt the payload to represent the peer */ if (conv_ntlmssp_info->peer1_dest_port == pinfo->destport) { rc4_state = get_encrypted_state(pinfo, 1); rc4_state_peer = get_encrypted_state(pinfo, 0); } else { rc4_state = get_encrypted_state(pinfo, 0); rc4_state_peer = get_encrypted_state(pinfo, 1); } if (rc4_state == NULL || rc4_state_peer == NULL) { /* There is no encryption state, so we cannot decrypt */ return NULL; } /* Store the decrypted contents in the packet state struct (of course at this point, they aren't decrypted yet) */ packet_ntlmssp_info->decrypted_payload = g_malloc (encrypted_block_length); decrypted_payloads = g_slist_prepend(decrypted_payloads, packet_ntlmssp_info->decrypted_payload); tvb_memcpy(tvb, packet_ntlmssp_info->decrypted_payload, offset, encrypted_block_length); /* Do the decryption of the payload */ crypt_rc4(rc4_state, packet_ntlmssp_info->decrypted_payload, encrypted_block_length); /* We setup a temporary buffer so we can re-encrypt the payload after decryption. This is to update the opposite peer's RC4 state */ peer_block = g_malloc(encrypted_block_length); memcpy(peer_block, packet_ntlmssp_info->decrypted_payload, encrypted_block_length); crypt_rc4(rc4_state_peer, peer_block, encrypted_block_length); g_free(peer_block); packet_ntlmssp_info->payload_decrypted = TRUE; } /* Show the decrypted buffer in a new window */ decr_tvb = tvb_new_real_data(packet_ntlmssp_info->decrypted_payload, encrypted_block_length, encrypted_block_length); tvb_set_child_real_data_tvbuff(tvb, decr_tvb); offset += encrypted_block_length; return decr_tvb; } static void free_payload(gpointer decrypted_payload, gpointer user_data _U_) { g_free(decrypted_payload); } static void ntlmssp_init_protocol(void) { if (ntlmssp_info_chunk != NULL) g_mem_chunk_destroy(ntlmssp_info_chunk); if (ntlmssp_packet_info_chunk != NULL) g_mem_chunk_destroy(ntlmssp_packet_info_chunk); /* * Free the decrypted payloads, and then free the list of decrypted * payloads. */ if (decrypted_payloads != NULL) { g_slist_foreach(decrypted_payloads, free_payload, NULL); g_slist_free(decrypted_payloads); decrypted_payloads = NULL; } ntlmssp_info_chunk = g_mem_chunk_new("ntlmssp_info_chunk", sizeof(ntlmssp_info), ntlmssp_info_count * sizeof(ntlmssp_info), G_ALLOC_ONLY); ntlmssp_packet_info_chunk = g_mem_chunk_new("ntlmssp_packet_info_chunk", sizeof(ntlmssp_packet_info), ntlmssp_packet_info_count * sizeof(ntlmssp_packet_info), G_ALLOC_ONLY); } void proto_register_ntlmssp(void) { static hf_register_info hf[] = { { &hf_ntlmssp, { "NTLMSSP", "ntlmssp", FT_NONE, BASE_NONE, NULL, 0x0, "NTLMSSP", HFILL }}, { &hf_ntlmssp_auth, { "NTLMSSP identifier", "ntlmssp.identifier", FT_STRING, BASE_NONE, NULL, 0x0, "NTLMSSP Identifier", HFILL }}, { &hf_ntlmssp_message_type, { "NTLM Message Type", "ntlmssp.messagetype", FT_UINT32, BASE_HEX, VALS(ntlmssp_message_types), 0x0, "", HFILL }}, { &hf_ntlmssp_negotiate_flags, { "Flags", "ntlmssp.negotiateflags", FT_UINT32, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_01, { "Negotiate UNICODE", "ntlmssp.negotiateunicode", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_UNICODE, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_02, { "Negotiate OEM", "ntlmssp.negotiateoem", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_OEM, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_04, { "Request Target", "ntlmssp.requesttarget", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_REQUEST_TARGET, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_08, { "Request 0x00000008", "ntlmssp.negotiate00000008", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_00000008, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_10, { "Negotiate Sign", "ntlmssp.negotiatesign", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_SIGN, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_20, { "Negotiate Seal", "ntlmssp.negotiateseal", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_SEAL, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_40, { "Negotiate Datagram Style", "ntlmssp.negotiatedatagramstyle", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_DATAGRAM_STYLE, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_80, { "Negotiate Lan Manager Key", "ntlmssp.negotiatelmkey", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_LM_KEY, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_100, { "Negotiate Netware", "ntlmssp.negotiatenetware", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_NETWARE, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_200, { "Negotiate NTLM key", "ntlmssp.negotiatentlm", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_NTLM, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_400, { "Negotiate 0x00000400", "ntlmssp.negotiate00000400", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_00000400, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_800, { "Negotiate 0x00000800", "ntlmssp.negotiate00000800", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_00000800, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_1000, { "Negotiate Domain Supplied", "ntlmssp.negotiatedomainsupplied", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_DOMAIN_SUPPLIED, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_2000, { "Negotiate Workstation Supplied", "ntlmssp.negotiateworkstationsupplied", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_WORKSTATION_SUPPLIED, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_4000, { "Negotiate This is Local Call", "ntlmssp.negotiatethisislocalcall", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_THIS_IS_LOCAL_CALL, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_8000, { "Negotiate Always Sign", "ntlmssp.negotiatealwayssign", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_ALWAYS_SIGN, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_10000, { "Negotiate Challenge Init Response", "ntlmssp.negotiatechallengeinitresponse", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_CHAL_INIT_RESPONSE, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_20000, { "Negotiate Challenge Accept Response", "ntlmssp.negotiatechallengeacceptresponse", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_CHAL_ACCEPT_RESPONSE, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_40000, { "Negotiate Challenge Non NT Session Key", "ntlmssp.negotiatechallengenonntsessionkey", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_CHAL_NON_NT_SESSION_KEY, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_80000, { "Negotiate NTLM2 key", "ntlmssp.negotiatentlm2", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_NTLM2, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_100000, { "Negotiate 0x00100000", "ntlmssp.negotiatent00100000", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_00100000, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_200000, { "Negotiate 0x00200000", "ntlmssp.negotiatent00200000", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_00200000, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_400000, { "Negotiate 0x00400000", "ntlmssp.negotiatent00400000", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_00400000, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_800000, { "Negotiate Target Info", "ntlmssp.negotiatetargetinfo", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_CHAL_TARGET_INFO, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_1000000, { "Negotiate 0x01000000", "ntlmssp.negotiatent01000000", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_01000000, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_2000000, { "Negotiate 0x02000000", "ntlmssp.negotiatent02000000", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_02000000, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_4000000, { "Negotiate 0x04000000", "ntlmssp.negotiatent04000000", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_04000000, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_8000000, { "Negotiate 0x08000000", "ntlmssp.negotiatent08000000", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_08000000, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_10000000, { "Negotiate 0x10000000", "ntlmssp.negotiatent10000000", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_10000000, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_20000000, { "Negotiate 128", "ntlmssp.negotiate128", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_128, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_40000000, { "Negotiate Key Exchange", "ntlmssp.negotiatekeyexch", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_KEY_EXCH, "", HFILL }}, { &hf_ntlmssp_negotiate_flags_80000000, { "Negotiate 0x80000000", "ntlmssp.negotiatent80000000", FT_BOOLEAN, 32, TFS (&flags_set_truth), NTLMSSP_NEGOTIATE_80000000, "", HFILL }}, { &hf_ntlmssp_negotiate_workstation_strlen, { "Calling workstation name length", "ntlmssp.negotiate.callingworkstation.strlen", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_negotiate_workstation_maxlen, { "Calling workstation name max length", "ntlmssp.negotiate.callingworkstation.maxlen", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_negotiate_workstation_buffer, { "Calling workstation name buffer", "ntlmssp.negotiate.callingworkstation.buffer", FT_UINT32, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_negotiate_workstation, { "Calling workstation name", "ntlmssp.negotiate.callingworkstation", FT_STRING, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_negotiate_domain_strlen, { "Calling workstation domain length", "ntlmssp.negotiate.domain.strlen", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_negotiate_domain_maxlen, { "Calling workstation domain max length", "ntlmssp.negotiate.domain.maxlen", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_negotiate_domain_buffer, { "Calling workstation domain buffer", "ntlmssp.negotiate.domain.buffer", FT_UINT32, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_negotiate_domain, { "Calling workstation domain", "ntlmssp.negotiate.domain", FT_STRING, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_ntlm_challenge, { "NTLM Challenge", "ntlmssp.ntlmchallenge", FT_BYTES, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_reserved, { "Reserved", "ntlmssp.reserved", FT_BYTES, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_challenge_domain, { "Domain", "ntlmssp.challenge.domain", FT_STRING, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_auth_domain, { "Domain name", "ntlmssp.auth.domain", FT_STRING, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_auth_username, { "User name", "ntlmssp.auth.username", FT_STRING, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_auth_hostname, { "Host name", "ntlmssp.auth.hostname", FT_STRING, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_auth_lmresponse, { "Lan Manager Response", "ntlmssp.auth.lmresponse", FT_BYTES, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_auth_ntresponse, { "NTLM Response", "ntlmssp.auth.ntresponse", FT_BYTES, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_auth_sesskey, { "Session Key", "ntlmssp.auth.sesskey", FT_BYTES, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_string_len, { "Length", "ntlmssp.string.length", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL}}, { &hf_ntlmssp_string_maxlen, { "Maxlen", "ntlmssp.string.maxlen", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL}}, { &hf_ntlmssp_string_offset, { "Offset", "ntlmssp.string.offset", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL}}, { &hf_ntlmssp_blob_len, { "Length", "ntlmssp.blob.length", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL}}, { &hf_ntlmssp_blob_maxlen, { "Maxlen", "ntlmssp.blob.maxlen", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL}}, { &hf_ntlmssp_blob_offset, { "Offset", "ntlmssp.blob.offset", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL}}, { &hf_ntlmssp_address_list, { "Address List", "ntlmssp.challenge.addresslist", FT_NONE, BASE_NONE, NULL, 0x0, "", HFILL}}, { &hf_ntlmssp_address_list_len, { "Length", "ntlmssp.challenge.addresslist.length", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL}}, { &hf_ntlmssp_address_list_maxlen, { "Maxlen", "ntlmssp.challenge.addresslist.maxlen", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL}}, { &hf_ntlmssp_address_list_offset, { "Offset", "ntlmssp.challenge.addresslist.offset", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL}}, { &hf_ntlmssp_address_list_item_type, { "Target item type", "ntlmssp.targetitemtype", FT_UINT16, BASE_HEX, VALS(ntlm_name_types), 0x0, "", HFILL }}, { &hf_ntlmssp_address_list_item_len, { "Target item Length", "ntlmssp.challenge.addresslist.item.length", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL}}, { &hf_ntlmssp_address_list_item_content, { "Target item Content", "ntlmssp.challenge.addresslist.item.content", FT_STRING, BASE_NONE, NULL, 0x0, "", HFILL}}, { &hf_ntlmssp_address_list_server_nb, { "Server NetBIOS Name", "ntlmssp.challenge.addresslist.servernb", FT_STRING, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_address_list_domain_nb, { "Domain NetBIOS Name", "ntlmssp.challenge.addresslist.domainnb", FT_STRING, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_address_list_server_dns, { "Server DNS Name", "ntlmssp.challenge.addresslist.serverdns", FT_STRING, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_address_list_domain_dns, { "Domain DNS Name", "ntlmssp.challenge.addresslist.domaindns", FT_STRING, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_address_list_terminator, { "List Terminator", "ntlmssp.challenge.addresslist.terminator", FT_NONE, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_verf, { "NTLMSSP Verifier", "ntlmssp.verf", FT_NONE, BASE_NONE, NULL, 0x0, "NTLMSSP Verifier", HFILL }}, { &hf_ntlmssp_verf_vers, { "Version Number", "ntlmssp.verf.vers", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_verf_body, { "Verifier Body", "ntlmssp.verf.body", FT_BYTES, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_decrypted_payload, { "NTLM Decrypted Payload", "ntlmssp.decrypted_payload", FT_BYTES, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_verf_unknown1, { "Unknown 1", "ntlmssp.verf.unknown1", FT_UINT32, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_verf_crc32, { "Verifier CRC32", "ntlmssp.verf.crc32", FT_UINT32, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_ntlmssp_verf_sequence, { "Verifier Sequence Number", "ntlmssp.verf.sequence", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL }} }; static gint *ett[] = { &ett_ntlmssp, &ett_ntlmssp_negotiate_flags, &ett_ntlmssp_string, &ett_ntlmssp_blob, &ett_ntlmssp_address_list, &ett_ntlmssp_address_list_item }; module_t *ntlmssp_module; proto_ntlmssp = proto_register_protocol ( "NTLM Secure Service Provider", /* name */ "NTLMSSP", /* short name */ "ntlmssp" /* abbrev */ ); proto_register_field_array (proto_ntlmssp, hf, array_length (hf)); proto_register_subtree_array (ett, array_length (ett)); register_init_routine(&ntlmssp_init_protocol); ntlmssp_module = prefs_register_protocol(proto_ntlmssp, NULL); prefs_register_string_preference(ntlmssp_module, "nt_password", "NT Password", "NT Password (used to decrypt payloads)", &nt_password); register_dissector("ntlmssp", dissect_ntlmssp, proto_ntlmssp); new_register_dissector("ntlmssp_verf", dissect_ntlmssp_verf, proto_ntlmssp); } static int wrap_dissect_ntlmssp(tvbuff_t *tvb, int offset, packet_info *pinfo, proto_tree *tree, char *drep _U_) { tvbuff_t *auth_tvb; auth_tvb = tvb_new_subset( tvb, offset, tvb_length_remaining(tvb, offset), tvb_length_remaining(tvb, offset)); dissect_ntlmssp(auth_tvb, pinfo, tree); return tvb_length_remaining(tvb, offset); } static int wrap_dissect_ntlmssp_verf(tvbuff_t *tvb, int offset, packet_info *pinfo, proto_tree *tree, char *drep _U_) { tvbuff_t *auth_tvb; auth_tvb = tvb_new_subset( tvb, offset, tvb_length_remaining(tvb, offset), tvb_length_remaining(tvb, offset)); return dissect_ntlmssp_verf(auth_tvb, pinfo, tree); } static dcerpc_auth_subdissector_fns ntlmssp_sign_fns = { wrap_dissect_ntlmssp, /* Bind */ wrap_dissect_ntlmssp, /* Bind ACK */ wrap_dissect_ntlmssp, /* AUTH3 */ wrap_dissect_ntlmssp_verf, /* Request verifier */ wrap_dissect_ntlmssp_verf, /* Response verifier */ NULL, /* Request data */ NULL /* Response data */ }; static dcerpc_auth_subdissector_fns ntlmssp_seal_fns = { wrap_dissect_ntlmssp, /* Bind */ wrap_dissect_ntlmssp, /* Bind ACK */ wrap_dissect_ntlmssp, /* AUTH3 */ wrap_dissect_ntlmssp_verf, /* Request verifier */ wrap_dissect_ntlmssp_verf, /* Response verifier */ dissect_ntlmssp_encrypted_payload, /* Request data */ dissect_ntlmssp_encrypted_payload /* Response data */ }; void proto_reg_handoff_ntlmssp(void) { dissector_handle_t ntlmssp_handle, ntlmssp_wrap_handle; /* Register protocol with the GSS-API module */ ntlmssp_handle = find_dissector("ntlmssp"); ntlmssp_wrap_handle = find_dissector("ntlmssp_verf"); gssapi_init_oid("1.3.6.1.4.1.311.2.2.10", proto_ntlmssp, ett_ntlmssp, ntlmssp_handle, ntlmssp_wrap_handle, "NTLMSSP - Microsoft NTLM Security Support Provider"); /* Register authenticated pipe dissector */ /* * XXX - the verifiers here seem to have a version of 1 and a body of all * zeroes. * * XXX - DCE_C_AUTHN_LEVEL_CONNECT is, according to the DCE RPC 1.1 * spec, upgraded to DCE_C_AUTHN_LEVEL_PKT. Should we register * any other levels here? */ register_dcerpc_auth_subdissector(DCE_C_AUTHN_LEVEL_CONNECT, DCE_C_RPC_AUTHN_PROTOCOL_NTLMSSP, &ntlmssp_sign_fns); register_dcerpc_auth_subdissector(DCE_C_AUTHN_LEVEL_PKT_INTEGRITY, DCE_C_RPC_AUTHN_PROTOCOL_NTLMSSP, &ntlmssp_sign_fns); register_dcerpc_auth_subdissector(DCE_C_AUTHN_LEVEL_PKT_PRIVACY, DCE_C_RPC_AUTHN_PROTOCOL_NTLMSSP, &ntlmssp_seal_fns); }