/* print.c * Routines for printing packet analysis trees. * * Gilbert Ramirez * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PDML_VERSION "0" #define PSML_VERSION "0" typedef struct { int level; print_stream_t *stream; gboolean success; GSList *src_list; print_dissections_e print_dissections; gboolean print_hex_for_data; packet_char_enc encoding; GHashTable *output_only_tables; /* output only these protocols */ } print_data; typedef struct { int level; FILE *fh; GSList *src_list; gchar **filter; pf_flags filter_flags; } write_pdml_data; typedef struct { int level; FILE *fh; GSList *src_list; gchar **filter; pf_flags filter_flags; gboolean print_hex; gboolean print_text; proto_node_children_grouper_func node_children_grouper; } write_json_data; typedef struct { output_fields_t *fields; epan_dissect_t *edt; } write_field_data_t; struct _output_fields { gboolean print_bom; gboolean print_header; gchar separator; gchar occurrence; gchar aggregator; GPtrArray *fields; GHashTable *field_indicies; GPtrArray **field_values; gchar quote; gboolean includes_col_fields; }; static gchar *get_field_hex_value(GSList *src_list, field_info *fi); static void proto_tree_print_node(proto_node *node, gpointer data); static void proto_tree_write_node_pdml(proto_node *node, gpointer data); static void proto_tree_write_node_ek(proto_node *node, write_json_data *data); static const guint8 *get_field_data(GSList *src_list, field_info *fi); static void pdml_write_field_hex_value(write_pdml_data *pdata, field_info *fi); static void json_write_field_hex_value(write_json_data *pdata, field_info *fi); static gboolean print_hex_data_buffer(print_stream_t *stream, const guchar *cp, guint length, packet_char_enc encoding); static void write_specified_fields(fields_format format, output_fields_t *fields, epan_dissect_t *edt, column_info *cinfo, FILE *fh); static void print_escaped_xml(FILE *fh, const char *unescaped_string); static void print_escaped_json(FILE *fh, const char *unescaped_string); static void print_escaped_ek(FILE *fh, const char *unescaped_string); typedef void (*proto_node_value_writer)(proto_node *, write_json_data *); static void write_json_proto_node_list(GSList *proto_node_list_head, write_json_data *data); static void write_json_proto_node(GSList *node_values_head, const char *suffix, proto_node_value_writer value_writer, write_json_data *data); static void write_json_proto_node_value_list(GSList *node_values_head, proto_node_value_writer value_writer, write_json_data *data); static void write_json_proto_node_filtered(proto_node *node, write_json_data *data); static void write_json_proto_node_hex_dump(proto_node *node, write_json_data *data); static void write_json_proto_node_children(proto_node *node, write_json_data *data); static void write_json_proto_node_value(proto_node *node, write_json_data *data); static void write_json_proto_node_no_value(proto_node *node, write_json_data *data); static const char *proto_node_to_json_key(proto_node *node); static void print_pdml_geninfo(epan_dissect_t *edt, FILE *fh); static void write_ek_summary(column_info *cinfo, FILE *fh); static void proto_tree_get_node_field_values(proto_node *node, gpointer data); static gboolean json_is_first; /* Cache the protocols and field handles that the print functionality needs This helps break explicit dependency on the dissectors. */ static int proto_data = -1; static int proto_frame = -1; void print_cache_field_handles(void) { proto_data = proto_get_id_by_short_name("Data"); proto_frame = proto_get_id_by_short_name("Frame"); } gboolean proto_tree_print(print_dissections_e print_dissections, gboolean print_hex, epan_dissect_t *edt, GHashTable *output_only_tables, print_stream_t *stream) { print_data data; /* Create the output */ data.level = 0; data.stream = stream; data.success = TRUE; data.src_list = edt->pi.data_src; data.encoding = (packet_char_enc)edt->pi.fd->flags.encoding; data.print_dissections = print_dissections; /* If we're printing the entire packet in hex, don't print uninterpreted data fields in hex as well. */ data.print_hex_for_data = !print_hex; data.output_only_tables = output_only_tables; proto_tree_children_foreach(edt->tree, proto_tree_print_node, &data); return data.success; } /* Print a tree's data, and any child nodes. */ static void proto_tree_print_node(proto_node *node, gpointer data) { field_info *fi = PNODE_FINFO(node); print_data *pdata = (print_data*) data; const guint8 *pd; gchar label_str[ITEM_LABEL_LENGTH]; gchar *label_ptr; /* dissection with an invisible proto tree? */ g_assert(fi); /* Don't print invisible entries. */ if (PROTO_ITEM_IS_HIDDEN(node) && (prefs.display_hidden_proto_items == FALSE)) return; /* Give up if we've already gotten an error. */ if (!pdata->success) return; /* was a free format label produced? */ if (fi->rep) { label_ptr = fi->rep->representation; } else { /* no, make a generic label */ label_ptr = label_str; proto_item_fill_label(fi, label_str); } if (PROTO_ITEM_IS_GENERATED(node)) label_ptr = g_strconcat("[", label_ptr, "]", NULL); pdata->success = print_line(pdata->stream, pdata->level, label_ptr); if (PROTO_ITEM_IS_GENERATED(node)) g_free(label_ptr); if (!pdata->success) return; /* * If -O is specified, only display the protocols which are in the * lookup table. Only check on the first level: once we start printing * a tree, print the rest of the subtree. Otherwise we won't print * subitems whose abbreviation doesn't match the protocol--for example * text items (whose abbreviation is simply "text"). */ if ((pdata->output_only_tables != NULL) && (pdata->level == 0) && (g_hash_table_lookup(pdata->output_only_tables, fi->hfinfo->abbrev) == NULL)) { return; } /* If it's uninterpreted data, dump it (unless our caller will be printing the entire packet in hex). */ if ((fi->hfinfo->id == proto_data) && (pdata->print_hex_for_data)) { /* * Find the data for this field. */ pd = get_field_data(pdata->src_list, fi); if (pd) { if (!print_line(pdata->stream, 0, "")) { pdata->success = FALSE; return; } if (!print_hex_data_buffer(pdata->stream, pd, fi->length, pdata->encoding)) { pdata->success = FALSE; return; } } } /* If we're printing all levels, or if this node is one with a subtree and its subtree is expanded, recurse into the subtree, if it exists. */ g_assert((fi->tree_type >= -1) && (fi->tree_type < num_tree_types)); if ((pdata->print_dissections == print_dissections_expanded) || ((pdata->print_dissections == print_dissections_as_displayed) && (fi->tree_type >= 0) && tree_expanded(fi->tree_type))) { if (node->first_child != NULL) { pdata->level++; proto_tree_children_foreach(node, proto_tree_print_node, pdata); pdata->level--; if (!pdata->success) return; } } } #define PDML2HTML_XSL "pdml2html.xsl" void write_pdml_preamble(FILE *fh, const gchar *filename) { time_t t = time(NULL); struct tm * timeinfo; char *fmt_ts; const char *ts; /* Create the output */ timeinfo = localtime(&t); if (timeinfo != NULL) { fmt_ts = asctime(timeinfo); fmt_ts[strlen(fmt_ts)-1] = 0; /* overwrite \n */ ts = fmt_ts; } else ts = "Not representable"; fprintf(fh, "\n"); fprintf(fh, "\n"); fprintf(fh, "\n", get_datafile_dir()); fprintf(fh, "\n"); } /* Check if the str match the protocolfilter. json_filter is space delimited string and str need to exact-match to one of the value. */ static gboolean check_protocolfilter(gchar **protocolfilter, const char *str) { gboolean res = FALSE; gchar **ptr; if (str == NULL || protocolfilter == NULL) { return FALSE; } for (ptr = protocolfilter; *ptr; ptr++) { if (strcmp(*ptr, str) == 0) { res = TRUE; break; } } return res; } void write_pdml_proto_tree(output_fields_t* fields, gchar **protocolfilter, pf_flags protocolfilter_flags, epan_dissect_t *edt, FILE *fh, gboolean use_color) { write_pdml_data data; const color_filter_t *cfp; g_assert(edt); g_assert(fh); cfp = edt->pi.fd->color_filter; /* Create the output */ if (use_color && (cfp != NULL)) { fprintf(fh, "\n", color_t_to_rgb(&cfp->fg_color), color_t_to_rgb(&cfp->bg_color)); } else { fprintf(fh, "\n"); } /* Print a "geninfo" protocol as required by PDML */ print_pdml_geninfo(edt, fh); if (fields == NULL || fields->fields == NULL) { /* Write out all fields */ data.level = 0; data.fh = fh; data.src_list = edt->pi.data_src; data.filter = protocolfilter; data.filter_flags = protocolfilter_flags; proto_tree_children_foreach(edt->tree, proto_tree_write_node_pdml, &data); } else { /* Write out specified fields */ write_specified_fields(FORMAT_XML, fields, edt, NULL, fh); } fprintf(fh, "\n\n"); } void write_ek_proto_tree(output_fields_t* fields, gboolean print_summary, gboolean print_hex, gchar **protocolfilter, pf_flags protocolfilter_flags, epan_dissect_t *edt, FILE *fh) { write_json_data data; char ts[30]; time_t t = time(NULL); struct tm *timeinfo; g_assert(edt); g_assert(fh); /* Create the output */ timeinfo = localtime(&t); if (timeinfo != NULL) strftime(ts, sizeof ts, "%Y-%m-%d", timeinfo); else g_strlcpy(ts, "XXXX-XX-XX", sizeof ts); /* XXX - better way of saying "Not representable"? */ fprintf(fh, "{\"index\" : {\"_index\": \"packets-%s\", \"_type\": \"pcap_file\"}}\n", ts); /* Timestamp added for time indexing in Elasticsearch */ fprintf(fh, "{\"timestamp\" : \"%" G_GUINT64_FORMAT "%03d\"", (guint64)edt->pi.abs_ts.secs, edt->pi.abs_ts.nsecs/1000000); if (print_summary) write_ek_summary(edt->pi.cinfo, fh); if (edt->tree) { fprintf(fh, ", \"layers\" : {"); if (fields == NULL || fields->fields == NULL) { /* Write out all fields */ data.level = 0; data.fh = fh; data.src_list = edt->pi.data_src; data.filter = protocolfilter; data.filter_flags = protocolfilter_flags; data.print_hex = print_hex; proto_tree_write_node_ek(edt->tree, &data); } else { /* Write out specified fields */ write_specified_fields(FORMAT_EK, fields, edt, NULL, fh); } fputs("}", fh); } fputs("}\n", fh); } void write_fields_proto_tree(output_fields_t* fields, epan_dissect_t *edt, column_info *cinfo, FILE *fh) { g_assert(edt); g_assert(fh); /* Create the output */ write_specified_fields(FORMAT_CSV, fields, edt, cinfo, fh); } /* Indent to the correct level */ static void print_indent(int level, FILE *fh) { int i; if (fh == NULL) { return; } for (i = 0; i < level; i++) { fputs(" ", fh); } } /* Write out a tree's data, and any child nodes, as PDML */ static void proto_tree_write_node_pdml(proto_node *node, gpointer data) { field_info *fi = PNODE_FINFO(node); write_pdml_data *pdata = (write_pdml_data*) data; const gchar *label_ptr; gchar label_str[ITEM_LABEL_LENGTH]; char *dfilter_string; gboolean wrap_in_fake_protocol; /* dissection with an invisible proto tree? */ g_assert(fi); /* Will wrap up top-level field items inside a fake protocol wrapper to preserve the PDML schema */ wrap_in_fake_protocol = (((fi->hfinfo->type != FT_PROTOCOL) || (fi->hfinfo->id == proto_data)) && (pdata->level == 0)); print_indent(pdata->level + 1, pdata->fh); if (wrap_in_fake_protocol) { /* Open fake protocol wrapper */ fputs("\n", pdata->fh); pdata->level++; print_indent(pdata->level + 1, pdata->fh); } /* Text label. It's printed as a field with no name. */ if (fi->hfinfo->id == hf_text_only) { /* Get the text */ if (fi->rep) { label_ptr = fi->rep->representation; } else { label_ptr = ""; } /* Show empty name since it is a required field */ fputs("fh); fputs("\" show=\"", pdata->fh); print_escaped_xml(pdata->fh, label_ptr); fprintf(pdata->fh, "\" size=\"%d", fi->length); if (node->parent && node->parent->finfo && (fi->start < node->parent->finfo->start)) { fprintf(pdata->fh, "\" pos=\"%d", node->parent->finfo->start + fi->start); } else { fprintf(pdata->fh, "\" pos=\"%d", fi->start); } if (fi->length > 0) { fputs("\" value=\"", pdata->fh); pdml_write_field_hex_value(pdata, fi); } if (node->first_child != NULL) { fputs("\">\n", pdata->fh); } else { fputs("\"/>\n", pdata->fh); } } /* Uninterpreted data, i.e., the "Data" protocol, is * printed as a field instead of a protocol. */ else if (fi->hfinfo->id == proto_data) { /* Write out field with data */ fputs("fh); pdml_write_field_hex_value(pdata, fi); fputs("\">\n", pdata->fh); } /* Normal protocols and fields */ else { if ((fi->hfinfo->type == FT_PROTOCOL) && (fi->hfinfo->id != proto_expert)) { fputs("fh); } else { fputs("fh); } print_escaped_xml(pdata->fh, fi->hfinfo->abbrev); #if 0 /* PDML spec, see: * https://wayback.archive.org/web/20150330045501/http://www.nbee.org/doku.php?id=netpdl:pdml_specification * * the show fields contains things in 'human readable' format * showname: contains only the name of the field * show: contains only the data of the field * showdtl: contains additional details of the field data * showmap: contains mappings of the field data (e.g. the hostname to an IP address) * * XXX - the showname shouldn't contain the field data itself * (like it's contained in the fi->rep->representation). * Unfortunately, we don't have the field data representation for * all fields, so this isn't currently possible */ fputs("\" showname=\"", pdata->fh); print_escaped_xml(pdata->fh, fi->hfinfo->name); #endif if (fi->rep) { fputs("\" showname=\"", pdata->fh); print_escaped_xml(pdata->fh, fi->rep->representation); } else { label_ptr = label_str; proto_item_fill_label(fi, label_str); fputs("\" showname=\"", pdata->fh); print_escaped_xml(pdata->fh, label_ptr); } if (PROTO_ITEM_IS_HIDDEN(node) && (prefs.display_hidden_proto_items == FALSE)) fprintf(pdata->fh, "\" hide=\"yes"); fprintf(pdata->fh, "\" size=\"%d", fi->length); if (node->parent && node->parent->finfo && (fi->start < node->parent->finfo->start)) { fprintf(pdata->fh, "\" pos=\"%d", node->parent->finfo->start + fi->start); } else { fprintf(pdata->fh, "\" pos=\"%d", fi->start); } /* fprintf(pdata->fh, "\" id=\"%d", fi->hfinfo->id);*/ /* show, value, and unmaskedvalue attributes */ switch (fi->hfinfo->type) { case FT_PROTOCOL: break; case FT_NONE: fputs("\" show=\"\" value=\"", pdata->fh); break; default: dfilter_string = fvalue_to_string_repr(NULL, &fi->value, FTREPR_DISPLAY, fi->hfinfo->display); if (dfilter_string != NULL) { fputs("\" show=\"", pdata->fh); print_escaped_xml(pdata->fh, dfilter_string); } wmem_free(NULL, dfilter_string); /* * XXX - should we omit "value" for any fields? * What should we do for fields whose length is 0? * They might come from a pseudo-header or from * the capture header (e.g., time stamps), or * they might be generated fields. */ if (fi->length > 0) { fputs("\" value=\"", pdata->fh); if (fi->hfinfo->bitmask!=0) { switch (fi->value.ftype->ftype) { case FT_INT8: case FT_INT16: case FT_INT24: case FT_INT32: fprintf(pdata->fh, "%X", (guint) fvalue_get_sinteger(&fi->value)); break; case FT_UINT8: case FT_UINT16: case FT_UINT24: case FT_UINT32: fprintf(pdata->fh, "%X", fvalue_get_uinteger(&fi->value)); break; case FT_INT40: case FT_INT48: case FT_INT56: case FT_INT64: fprintf(pdata->fh, "%" G_GINT64_MODIFIER "X", fvalue_get_sinteger64(&fi->value)); break; case FT_UINT40: case FT_UINT48: case FT_UINT56: case FT_UINT64: case FT_BOOLEAN: fprintf(pdata->fh, "%" G_GINT64_MODIFIER "X", fvalue_get_uinteger64(&fi->value)); break; default: g_assert_not_reached(); } fputs("\" unmaskedvalue=\"", pdata->fh); pdml_write_field_hex_value(pdata, fi); } else { pdml_write_field_hex_value(pdata, fi); } } } if (node->first_child != NULL) { fputs("\">\n", pdata->fh); } else if (fi->hfinfo->id == proto_data) { fputs("\">\n", pdata->fh); } else { fputs("\"/>\n", pdata->fh); } } /* We print some levels for PDML. Recurse here. */ if (node->first_child != NULL) { if (pdata->filter == NULL || check_protocolfilter(pdata->filter, fi->hfinfo->abbrev)) { gchar **_filter = NULL; /* Remove protocol filter for children, if children should be included */ if ((pdata->filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) { _filter = pdata->filter; pdata->filter = NULL; } pdata->level++; proto_tree_children_foreach(node, proto_tree_write_node_pdml, pdata); pdata->level--; /* Put protocol filter back */ if ((pdata->filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) { pdata->filter = _filter; } } else { print_indent(pdata->level + 2, pdata->fh); /* print dummy field */ fputs("fh); print_escaped_xml(pdata->fh, fi->hfinfo->abbrev); fputs("\" />\n", pdata->fh); } } /* Take back the extra level we added for fake wrapper protocol */ if (wrap_in_fake_protocol) { pdata->level--; } if (node->first_child != NULL) { print_indent(pdata->level + 1, pdata->fh); /* Close off current element */ /* Data and expert "protocols" use simple tags */ if ((fi->hfinfo->id != proto_data) && (fi->hfinfo->id != proto_expert)) { if (fi->hfinfo->type == FT_PROTOCOL) { fputs("\n", pdata->fh); } else { fputs("\n", pdata->fh); } } else { fputs("\n", pdata->fh); } } /* Close off fake wrapper protocol */ if (wrap_in_fake_protocol) { print_indent(pdata->level + 1, pdata->fh); fputs("\n", pdata->fh); } } void write_json_preamble(FILE *fh) { fputs("[\n", fh); json_is_first = TRUE; } void write_json_finale(FILE *fh) { fputs("\n\n]\n", fh); } void write_json_proto_tree(output_fields_t* fields, print_dissections_e print_dissections, gboolean print_hex, gchar **protocolfilter, pf_flags protocolfilter_flags, epan_dissect_t *edt, proto_node_children_grouper_func node_children_grouper, FILE *fh) { char ts[30]; time_t t = time(NULL); struct tm * timeinfo; write_json_data data; if (!json_is_first) { fputs("\n\n ,\n", fh); } else { json_is_first = FALSE; } timeinfo = localtime(&t); if (timeinfo != NULL) { strftime(ts, sizeof ts, "%Y-%m-%d", timeinfo); } else { g_strlcpy(ts, "XXXX-XX-XX", sizeof ts); /* XXX - better way of saying "Not representable"? */ } fputs(" {\n", fh); fprintf(fh, " \"_index\": \"packets-%s\",\n", ts); fputs(" \"_type\": \"pcap_file\",\n", fh); fputs(" \"_score\": null,\n", fh); fputs(" \"_source\": {\n", fh); fputs(" \"layers\": ", fh); if (fields == NULL || fields->fields == NULL) { /* Write out all fields */ data.level = 3; data.fh = fh; data.src_list = edt->pi.data_src; data.filter = protocolfilter; data.filter_flags = protocolfilter_flags; data.print_hex = print_hex; data.print_text = TRUE; if (print_dissections == print_dissections_none) { data.print_text = FALSE; } data.node_children_grouper = node_children_grouper; write_json_proto_node_children(edt->tree, &data); } else { write_specified_fields(FORMAT_JSON, fields, edt, NULL, fh); } fputs("\n", fh); fputs(" }\n", fh); fputs(" }", fh); } /** * Write a json object containing a list of key:value pairs where each key:value pair corresponds to a different json * key and its associated nodes in the proto_tree. * @param proto_node_list_head A 2-dimensional list containing a list of values for each different node json key. The * elements themselves are a linked list of values associated with the same json key. * @param data json writing metadata */ static void write_json_proto_node_list(GSList *proto_node_list_head, write_json_data *data) { GSList *current_node = proto_node_list_head; fputs("{\n", data->fh); data->level++; /* * In most of the following if statements we cannot be sure if its the first or last if statement to be * executed. Thus we need a way of knowing whether a key:value pair has already been printed in order to know * if a comma should be printed before the next key:value pair. We use the delimiter_needed variable to store * whether a comma needs to be written before a new key:value pair is written. Note that instead of checking * before writing a new key:value pair if a comma is needed we could also check after writing a key:value pair * whether a comma is needed but this would be considerably more complex since after each if statement a * different condition would have to be checked. After the first value is written a delimiter is always needed so * this value is never set back to FALSE after it has been set to TRUE. */ gboolean delimiter_needed = FALSE; // Loop over each list of nodes (differentiated by json key) and write the associated json key:value pair in the // output. while (current_node != NULL) { // Get the list of values for the current json key. GSList *node_values_list = (GSList *) current_node->data; // Retrieve the json key from the first value. proto_node *first_value = (proto_node *) node_values_list->data; const char *json_key = proto_node_to_json_key(first_value); // Check if the current json key is filtered from the output with the "-j" cli option. gboolean is_filtered = data->filter != NULL && !check_protocolfilter(data->filter, json_key); field_info *fi = first_value->finfo; char *value_string_repr = fvalue_to_string_repr(NULL, &fi->value, FTREPR_DISPLAY, fi->hfinfo->display); // We assume all values of a json key have roughly the same layout. Thus we can use the first value to derive // attributes of all the values. gboolean has_value = value_string_repr != NULL; gboolean has_children = first_value->first_child != NULL; gboolean is_pseudo_text_field = fi->hfinfo->id == 0; wmem_free(NULL, value_string_repr); // fvalue_to_string_repr returns allocated buffer // "-x" command line option. A "_raw" suffix is added to the json key so the textual value can be printed // with the original json key. If both hex and text writing are enabled the raw information of fields whose // length is equal to 0 is not written to the output. If the field is a special text pseudo field no raw // information is written either. if (data->print_hex && (!data->print_text || fi->length > 0) && !is_pseudo_text_field) { if (delimiter_needed) fputs(",\n", data->fh); write_json_proto_node(node_values_list, "_raw", write_json_proto_node_hex_dump, data); delimiter_needed = TRUE; } if (data->print_text && has_value) { if (delimiter_needed) fputs(",\n", data->fh); write_json_proto_node(node_values_list, "", write_json_proto_node_value, data); delimiter_needed = TRUE; } if (has_children) { if (delimiter_needed) fputs(",\n", data->fh); // If a node has both a value and a set of children we print the value and the children in separate // key:value pairs. These can't have the same key so whenever a value is already printed with the node // json key we print the children with the same key with a "_tree" suffix added. char *suffix = has_value ? "_tree": ""; if (is_filtered) { write_json_proto_node(node_values_list, suffix, write_json_proto_node_filtered, data); } else { // Remove protocol filter for children, if children should be included. This functionality is enabled // with the "-J" command line option. We save the filter so it can be reenabled when we are done with // the current key:value pair. gchar **_filter = NULL; if ((data->filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) { _filter = data->filter; data->filter = NULL; } write_json_proto_node(node_values_list, suffix, write_json_proto_node_children, data); // Put protocol filter back if ((data->filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) { data->filter = _filter; } } delimiter_needed = TRUE; } if (!has_value && !has_children && (data->print_text || (data->print_hex && is_pseudo_text_field))) { if (delimiter_needed) fputs(",\n", data->fh); write_json_proto_node(node_values_list, "", write_json_proto_node_no_value, data); delimiter_needed = TRUE; } current_node = current_node->next; } data->level--; fputs("\n", data->fh); print_indent(data->level, data->fh); fputs("}", data->fh); } /** * Writes a single node as a key:value pair. The value_writer param can be used to specify how the node's value should * be written. * @param node_values_head Linked list containing all nodes associated with the same json key in this object. * @param suffix Suffix that should be added to the json key. * @param value_writer A function which writes the actual values of the node json key. * @param data json writing metadata */ static void write_json_proto_node(GSList *node_values_head, const char *suffix, proto_node_value_writer value_writer, write_json_data *data) { // Retrieve json key from first value. proto_node *first_value = (proto_node *) node_values_head->data; const char *json_key = proto_node_to_json_key(first_value); print_indent(data->level, data->fh); fputs("\"", data->fh); print_escaped_json(data->fh, json_key); print_escaped_json(data->fh, suffix); fputs("\": ", data->fh); write_json_proto_node_value_list(node_values_head, value_writer, data); } /** * Writes a list of values of a single json key. If multiple values are passed they are wrapped in a json array. * @param node_values_head Linked list containing all values that should be written. * @param value_writer Function which writes the separate values. * @param data json writing metadata */ static void write_json_proto_node_value_list(GSList *node_values_head, proto_node_value_writer value_writer, write_json_data *data) { GSList *current_value = node_values_head; // Write directly if only a single value is passed. Wrap in json array otherwise. if (current_value->next == NULL) { value_writer((proto_node *) current_value->data, data); } else { fputs("[\n", data->fh); data->level++; while (current_value != NULL) { // Do not print delimiter before first value if (current_value != node_values_head) fputs(",\n", data->fh); print_indent(data->level, data->fh); value_writer((proto_node *) current_value->data, data); current_value = current_value->next; } data->level--; fputs("\n", data->fh); print_indent(data->level, data->fh); fputs("]", data->fh); } } /** * Writes the value for a node that's filtered from the output. */ static void write_json_proto_node_filtered(proto_node *node, write_json_data *data) { const char *json_key = proto_node_to_json_key(node); fputs("{\n", data->fh); data->level++; print_indent(data->level, data->fh); fputs("\"filtered\": ", data->fh); fputs("\"", data->fh); print_escaped_json(data->fh, json_key); fputs("\"\n", data->fh); data->level--; print_indent(data->level, data->fh); fputs("}", data->fh); } /** * Writes the hex dump of a node. A json array is written containing the hex dump, position, length, bitmask and type of * the node. */ static void write_json_proto_node_hex_dump(proto_node *node, write_json_data *data) { field_info *fi = node->finfo; fputs("[\"", data->fh); if (fi->hfinfo->bitmask!=0) { switch (fi->value.ftype->ftype) { case FT_INT8: case FT_INT16: case FT_INT24: case FT_INT32: fprintf(data->fh, "%X", (guint) fvalue_get_sinteger(&fi->value)); break; case FT_UINT8: case FT_UINT16: case FT_UINT24: case FT_UINT32: fprintf(data->fh, "%X", fvalue_get_uinteger(&fi->value)); break; case FT_INT40: case FT_INT48: case FT_INT56: case FT_INT64: fprintf(data->fh, "%" G_GINT64_MODIFIER "X", fvalue_get_sinteger64(&fi->value)); break; case FT_UINT40: case FT_UINT48: case FT_UINT56: case FT_UINT64: case FT_BOOLEAN: fprintf(data->fh, "%" G_GINT64_MODIFIER "X", fvalue_get_uinteger64(&fi->value)); break; default: g_assert_not_reached(); } } else { json_write_field_hex_value(data, fi); } /* Dump raw hex-encoded dissected information including position, length, bitmask, type */ fprintf(data->fh, "\", %" G_GINT32_MODIFIER "d", fi->start); fprintf(data->fh, ", %" G_GINT32_MODIFIER "d", fi->length); fprintf(data->fh, ", %" G_GUINT64_FORMAT, fi->hfinfo->bitmask); fprintf(data->fh, ", %" G_GINT32_MODIFIER "d", (gint32)fi->value.ftype->ftype); fputs("]", data->fh); } /** * Writes the children of a node. Calls write_json_proto_node_list internally which recursively writes children of nodes * to the output. */ static void write_json_proto_node_children(proto_node *node, write_json_data *data) { GSList *grouped_children_list = data->node_children_grouper(node); write_json_proto_node_list(grouped_children_list, data); g_slist_free_full(grouped_children_list, (GDestroyNotify) g_slist_free); } /** * Writes the value of a node to the output. */ static void write_json_proto_node_value(proto_node *node, write_json_data *data) { field_info *fi = node->finfo; // Get the actual value of the node as a string. char *value_string_repr = fvalue_to_string_repr(NULL, &fi->value, FTREPR_DISPLAY, fi->hfinfo->display); fputs("\"", data->fh); print_escaped_json(data->fh, value_string_repr); fputs("\"", data->fh); wmem_free(NULL, value_string_repr); } /** * Write the value for a node that has no value and no children. This is the empty string for all nodes except those of * type FT_PROTOCOL for which the full name is written instead. */ static void write_json_proto_node_no_value(proto_node *node, write_json_data *data) { field_info *fi = node->finfo; fputs("\"", data->fh); if (fi->hfinfo->type == FT_PROTOCOL) { if (fi->rep) { print_escaped_json(data->fh, fi->rep->representation); } else { gchar label_str[ITEM_LABEL_LENGTH]; proto_item_fill_label(fi, label_str); print_escaped_json(data->fh, label_str); } } fputs("\"", data->fh); } /** * Groups each child of the node separately. * @return Linked list where each element is another linked list containing a single node. */ GSList * proto_node_group_children_by_unique(proto_node *node) { GSList *unique_nodes_list = NULL; proto_node *current_child = node->first_child; while (current_child != NULL) { GSList *unique_node = g_slist_prepend(NULL, current_child); unique_nodes_list = g_slist_prepend(unique_nodes_list, unique_node); current_child = current_child->next; } return g_slist_reverse(unique_nodes_list); } /** * Groups the children of a node by their json key. Children are put in the same group if they have the same json key. * @return Linked list where each element is another linked list of nodes associated with the same json key. */ GSList * proto_node_group_children_by_json_key(proto_node *node) { /** * For each different json key we store a linked list of values corresponding to that json key. These lists are kept * in both a linked list and a hashmap. The hashmap is used to quickly retrieve the values of a json key. The linked * list is used to preserve the ordering of keys as they are encountered which is not guaranteed when only using a * hashmap. */ GSList *same_key_nodes_list = NULL; GHashTable *lookup_by_json_key = g_hash_table_new(g_str_hash, g_str_equal); proto_node *current_child = node->first_child; /** * For each child of the node get the key and get the list of values already associated with that key from the * hashmap. If no list exist yet for that key create a new one and add it to both the linked list and hashmap. If a * list already exists add the node to that list. */ while (current_child != NULL) { char *json_key = (char *) proto_node_to_json_key(current_child); GSList *json_key_nodes = (GSList *) g_hash_table_lookup(lookup_by_json_key, json_key); if (json_key_nodes == NULL) { json_key_nodes = g_slist_append(json_key_nodes, current_child); // Prepending in single linked list is O(1), appending is O(n). Better to prepend here and reverse at the // end than potentially looping to the end of the linked list for each child. same_key_nodes_list = g_slist_prepend(same_key_nodes_list, json_key_nodes); g_hash_table_insert(lookup_by_json_key, json_key, json_key_nodes); } else { // Store and insert value again to circumvent unused_variable warning. // Append in this case since most value lists will only have a single value. json_key_nodes = g_slist_append(json_key_nodes, current_child); g_hash_table_insert(lookup_by_json_key, json_key, json_key_nodes); } current_child = current_child->next; } // Hash table is not needed anymore since the linked list with the correct ordering is returned. g_hash_table_destroy(lookup_by_json_key); return g_slist_reverse(same_key_nodes_list); } /** * Returns the json key of a node. Tries to use the node's abbreviated name. If the abbreviated name is not available * the representation is used instead. */ static const char * proto_node_to_json_key(proto_node *node) { const char *json_key; // Check if node has abbreviated name. if (node->finfo->hfinfo->id != hf_text_only) { json_key = node->finfo->hfinfo->abbrev; } else if (node->finfo->rep != NULL) { json_key = node->finfo->rep->representation; } else { json_key = ""; } return json_key; } static gboolean ek_check_protocolfilter(gchar **protocolfilter, const char *str) { gchar *str_escaped = NULL; int i; /* to to thread the '.' and '_' equally. The '.' is replace by print_escaped_ek for '_' */ if (str != NULL && strlen(str) > 0) { str_escaped = g_strdup(str); i = 0; while (str_escaped[i] != '\0') { if (str_escaped[i] == '.') { str_escaped[i] = '_'; } i++; } } return check_protocolfilter(protocolfilter, str) || check_protocolfilter(protocolfilter, str_escaped); } /** * Finds a node's descendants to be printed as EK/JSON attributes. */ static void write_ek_summary(column_info *cinfo, FILE *fh) { gint i; for (i = 0; i < cinfo->num_cols; i++) { fputs(", \"", fh); print_escaped_ek(fh, g_ascii_strdown(cinfo->columns[i].col_title, -1)); fputs("\": \"", fh); print_escaped_json(fh, cinfo->columns[i].col_data); fputs("\"", fh); } } /* Write out a tree's data, and any child nodes, as JSON for EK */ static void ek_fill_attr(proto_node *node, GSList **attr_list, GHashTable *attr_table, write_json_data *pdata) { field_info *fi = NULL; field_info *fi_parent = NULL; gchar *node_name = NULL; GSList *attr_instances = NULL; proto_node *current_node = node->first_child; while (current_node != NULL) { fi = PNODE_FINFO(current_node); fi_parent = PNODE_FINFO(current_node->parent); /* dissection with an invisible proto tree? */ g_assert(fi); if (fi_parent == NULL) { node_name = g_strdup(fi->hfinfo->abbrev); } else { node_name = g_strconcat(fi_parent->hfinfo->abbrev, "_", fi->hfinfo->abbrev, NULL); } attr_instances = (GSList *) g_hash_table_lookup(attr_table, node_name); // First time we encounter this attr if (attr_instances == NULL) { attr_instances = g_slist_append(attr_instances, current_node); *attr_list = g_slist_prepend(*attr_list, attr_instances); } else { attr_instances = g_slist_append(attr_instances, current_node); } // Update instance list for this attr in hash table g_hash_table_insert(attr_table, node_name, attr_instances); /* Field, recurse through children*/ if (fi->hfinfo->type != FT_PROTOCOL && current_node->first_child != NULL) { if (pdata->filter != NULL) { if (ek_check_protocolfilter(pdata->filter, fi->hfinfo->abbrev)) { gchar **_filter = NULL; /* Remove protocol filter for children, if children should be included */ if ((pdata->filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) { _filter = pdata->filter; pdata->filter = NULL; } ek_fill_attr(current_node, attr_list, attr_table, pdata); /* Put protocol filter back */ if ((pdata->filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) { pdata->filter = _filter; } } else { // Don't traverse children if filtered out } } else { ek_fill_attr(current_node, attr_list, attr_table, pdata); } } else { // Will descend into object at another point } current_node = current_node->next; } } static void ek_write_name(proto_node *pnode, write_json_data *pdata) { field_info *fi = PNODE_FINFO(pnode); field_info *fi_parent = PNODE_FINFO(pnode->parent); if (fi_parent != NULL) { print_escaped_ek(pdata->fh, fi_parent->hfinfo->abbrev); fputs("_", pdata->fh); } print_escaped_ek(pdata->fh, fi->hfinfo->abbrev); } static void ek_write_hex(field_info *fi, write_json_data *pdata) { if (fi->hfinfo->bitmask!=0) { switch (fi->value.ftype->ftype) { case FT_INT8: case FT_INT16: case FT_INT24: case FT_INT32: fprintf(pdata->fh, "%X", (guint) fvalue_get_sinteger(&fi->value)); break; case FT_UINT8: case FT_UINT16: case FT_UINT24: case FT_UINT32: fprintf(pdata->fh, "%X", fvalue_get_uinteger(&fi->value)); break; case FT_INT40: case FT_INT48: case FT_INT56: case FT_INT64: fprintf(pdata->fh, "%" G_GINT64_MODIFIER "X", fvalue_get_sinteger64(&fi->value)); break; case FT_UINT40: case FT_UINT48: case FT_UINT56: case FT_UINT64: case FT_BOOLEAN: fprintf(pdata->fh, "%" G_GINT64_MODIFIER "X", fvalue_get_uinteger64(&fi->value)); break; default: g_assert_not_reached(); } } else { json_write_field_hex_value(pdata, fi); } } static void ek_write_field_value(field_info *fi, write_json_data *pdata) { gchar label_str[ITEM_LABEL_LENGTH]; char *dfilter_string; /* Text label */ if (fi->hfinfo->id == hf_text_only && fi->rep) { print_escaped_json(pdata->fh, fi->rep->representation); } else { /* show, value, and unmaskedvalue attributes */ if (fi->hfinfo->type == FT_PROTOCOL) { if (fi->rep) { print_escaped_json(pdata->fh, fi->rep->representation); } else { proto_item_fill_label(fi, label_str); print_escaped_json(pdata->fh, label_str); } } else if (fi->hfinfo->type != FT_NONE) { dfilter_string = fvalue_to_string_repr(NULL, &fi->value, FTREPR_DISPLAY, fi->hfinfo->display); if (dfilter_string != NULL) { print_escaped_json(pdata->fh, dfilter_string); } wmem_free(NULL, dfilter_string); } } } static void ek_write_attr_hex(GSList *attr_instances, write_json_data *pdata) { GSList *current_node = attr_instances; proto_node *pnode = (proto_node *) current_node->data; field_info *fi = NULL; // Raw name fputs("\"", pdata->fh); ek_write_name(pnode, pdata); fputs("_raw\": ", pdata->fh); if (g_slist_length(attr_instances) > 1) { fputs("[", pdata->fh); } // Raw value(s) while (current_node != NULL) { pnode = (proto_node *) current_node->data; fi = PNODE_FINFO(pnode); fputs("\"", pdata->fh); ek_write_hex(fi, pdata); fputs("\"", pdata->fh); current_node = current_node->next; if (current_node != NULL) { fputs(",", pdata->fh); } } if (g_slist_length(attr_instances) > 1) { fputs("]", pdata->fh); } } static void ek_write_attr(GSList *attr_instances, write_json_data *pdata) { GSList *current_node = attr_instances; proto_node *pnode = (proto_node *) current_node->data; field_info *fi = PNODE_FINFO(pnode); // Hex dump -x if (pdata->print_hex && fi && fi->length > 0 && fi->hfinfo->id != hf_text_only) { ek_write_attr_hex(attr_instances, pdata); fputs(",", pdata->fh); } // Print attr name fputs("\"", pdata->fh); ek_write_name(pnode, pdata); fputs("\": ", pdata->fh); if (g_slist_length(attr_instances) > 1) { fputs("[", pdata->fh); } while (current_node != NULL) { pnode = (proto_node *) current_node->data; fi = PNODE_FINFO(pnode); /* Field */ if (fi->hfinfo->type != FT_PROTOCOL) { fputs("\"", pdata->fh); if (pdata->filter != NULL && !ek_check_protocolfilter(pdata->filter, fi->hfinfo->abbrev)) { /* print dummy field */ fputs("\",\"filtered\": \"", pdata->fh); print_escaped_ek(pdata->fh, fi->hfinfo->abbrev); } else { ek_write_field_value(fi, pdata); } fputs("\"", pdata->fh); } /* Object */ else { fputs("{", pdata->fh); if (pdata->filter != NULL) { if (ek_check_protocolfilter(pdata->filter, fi->hfinfo->abbrev)) { gchar **_filter = NULL; /* Remove protocol filter for children, if children should be included */ if ((pdata->filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) { _filter = pdata->filter; pdata->filter = NULL; } proto_tree_write_node_ek(pnode, pdata); /* Put protocol filter back */ if ((pdata->filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) { pdata->filter = _filter; } } else { /* print dummy field */ fputs("\"filtered\": \"", pdata->fh); print_escaped_ek(pdata->fh, fi->hfinfo->abbrev); fputs("\"", pdata->fh); } } else { proto_tree_write_node_ek(pnode, pdata); } fputs("}", pdata->fh); } current_node = current_node->next; if (current_node != NULL) { fputs(",", pdata->fh); } } if (g_slist_length(attr_instances) > 1) { fputs("]", pdata->fh); } } /* Write out a tree's data, and any child nodes, as JSON for EK */ static void proto_tree_write_node_ek(proto_node *node, write_json_data *pdata) { GSList *attr_list = NULL; GHashTable *attr_table = g_hash_table_new_full(g_str_hash, g_str_equal, g_free, NULL); ek_fill_attr(node, &attr_list, attr_table, pdata); g_hash_table_destroy(attr_table); // Print attributes GSList *current_attr = g_slist_reverse(attr_list); while (current_attr != NULL) { GSList *attr_instances = (GSList *) current_attr->data; ek_write_attr(attr_instances, pdata); current_attr = current_attr->next; if (current_attr != NULL) { fputs(",", pdata->fh); } } g_slist_free_full(attr_list, (GDestroyNotify) g_slist_free); } /* Print info for a 'geninfo' pseudo-protocol. This is required by * the PDML spec. The information is contained in Wireshark's 'frame' protocol, * but we produce a 'geninfo' protocol in the PDML to conform to spec. * The 'frame' protocol follows the 'geninfo' protocol in the PDML. */ static void print_pdml_geninfo(epan_dissect_t *edt, FILE *fh) { guint32 num, len, caplen; GPtrArray *finfo_array; field_info *frame_finfo; gchar *tmp; /* Get frame protocol's finfo. */ finfo_array = proto_find_first_finfo(edt->tree, proto_frame); if (g_ptr_array_len(finfo_array) < 1) { return; } frame_finfo = (field_info *)finfo_array->pdata[0]; g_ptr_array_free(finfo_array, TRUE); /* frame.number, packet_info.num */ num = edt->pi.num; /* frame.frame_len, packet_info.frame_data->pkt_len */ len = edt->pi.fd->pkt_len; /* frame.cap_len --> packet_info.frame_data->cap_len */ caplen = edt->pi.fd->cap_len; /* Print geninfo start */ fprintf(fh, " \n", frame_finfo->length); /* Print geninfo.num */ fprintf(fh, " \n", num, num, frame_finfo->length); /* Print geninfo.len */ fprintf(fh, " \n", len, len, frame_finfo->length); /* Print geninfo.caplen */ fprintf(fh, " \n", caplen, caplen, frame_finfo->length); tmp = abs_time_to_str(NULL, &edt->pi.abs_ts, ABSOLUTE_TIME_LOCAL, TRUE); /* Print geninfo.timestamp */ fprintf(fh, " \n", tmp, (int)edt->pi.abs_ts.secs, edt->pi.abs_ts.nsecs, frame_finfo->length); wmem_free(NULL, tmp); /* Print geninfo end */ fprintf(fh, " \n"); } void write_pdml_finale(FILE *fh) { fputs("\n", fh); } void write_psml_preamble(column_info *cinfo, FILE *fh) { gint i; fprintf(fh, "\n"); fprintf(fh, "\n", PACKAGE, VERSION); fprintf(fh, "\n"); for (i = 0; i < cinfo->num_cols; i++) { fprintf(fh, "
"); print_escaped_xml(fh, cinfo->columns[i].col_title); fprintf(fh, "
\n"); } fprintf(fh, "
\n\n"); } void write_psml_columns(epan_dissect_t *edt, FILE *fh, gboolean use_color) { gint i; const color_filter_t *cfp = edt->pi.fd->color_filter; if (use_color && (cfp != NULL)) { fprintf(fh, "\n", color_t_to_rgb(&cfp->fg_color), color_t_to_rgb(&cfp->bg_color)); } else { fprintf(fh, "\n"); } for (i = 0; i < edt->pi.cinfo->num_cols; i++) { fprintf(fh, "
"); print_escaped_xml(fh, edt->pi.cinfo->columns[i].col_data); fprintf(fh, "
\n"); } fprintf(fh, "
\n\n"); } void write_psml_finale(FILE *fh) { fputs("
\n", fh); } static gchar *csv_massage_str(const gchar *source, const gchar *exceptions) { gchar *csv_str; gchar *tmp_str; /* In general, our output for any field can contain Unicode characters, so g_strescape (which escapes any non-ASCII) is the wrong thing to do. Unfortunately glib doesn't appear to provide g_unicode_strescape()... */ csv_str = g_strescape(source, exceptions); tmp_str = csv_str; /* Locate the UTF-8 right arrow character and replace it by an ASCII equivalent */ while ( (tmp_str = strstr(tmp_str, UTF8_RIGHTWARDS_ARROW)) != NULL ) { tmp_str[0] = ' '; tmp_str[1] = '>'; tmp_str[2] = ' '; } tmp_str = csv_str; while ( (tmp_str = strstr(tmp_str, "\\\"")) != NULL ) *tmp_str = '\"'; return csv_str; } static void csv_write_str(const char *str, char sep, FILE *fh) { gchar *csv_str; /* Do not escape the UTF-8 right arrow character */ csv_str = csv_massage_str(str, UTF8_RIGHTWARDS_ARROW); fprintf(fh, "\"%s\"%c", csv_str, sep); g_free(csv_str); } void write_csv_column_titles(column_info *cinfo, FILE *fh) { gint i; for (i = 0; i < cinfo->num_cols - 1; i++) csv_write_str(cinfo->columns[i].col_title, ',', fh); csv_write_str(cinfo->columns[i].col_title, '\n', fh); } void write_csv_columns(epan_dissect_t *edt, FILE *fh) { gint i; for (i = 0; i < edt->pi.cinfo->num_cols - 1; i++) csv_write_str(edt->pi.cinfo->columns[i].col_data, ',', fh); csv_write_str(edt->pi.cinfo->columns[i].col_data, '\n', fh); } void write_carrays_hex_data(guint32 num, FILE *fh, epan_dissect_t *edt) { guint32 i = 0, src_num = 0; GSList *src_le; tvbuff_t *tvb; char *name; const guchar *cp; guint length; char ascii[9]; struct data_source *src; for (src_le = edt->pi.data_src; src_le != NULL; src_le = src_le->next) { memset(ascii, 0, sizeof(ascii)); src = (struct data_source *)src_le->data; tvb = get_data_source_tvb(src); length = tvb_captured_length(tvb); if (length == 0) continue; cp = tvb_get_ptr(tvb, 0, length); name = get_data_source_name(src); if (name) { fprintf(fh, "/* %s */\n", name); wmem_free(NULL, name); } if (src_num) { fprintf(fh, "static const unsigned char pkt%u_%u[%u] = {\n", num, src_num, length); } else { fprintf(fh, "static const unsigned char pkt%u[%u] = {\n", num, length); } src_num++; for (i = 0; i < length; i++) { fprintf(fh, "0x%02x", *(cp + i)); ascii[i % 8] = g_ascii_isprint(*(cp + i)) ? *(cp + i) : '.'; if (i == (length - 1)) { guint rem; rem = length % 8; if (rem) { guint j; for ( j = 0; j < 8 - rem; j++ ) fprintf(fh, " "); } fprintf(fh, " /* %s */\n};\n\n", ascii); break; } if (!((i + 1) % 8)) { fprintf(fh, ", /* %s */\n", ascii); memset(ascii, 0, sizeof(ascii)); } else { fprintf(fh, ", "); } } } } /* * Find the data source for a specified field, and return a pointer * to the data in it. Returns NULL if the data is out of bounds. */ /* XXX: What am I missing ? * Why bother searching for fi->ds_tvb for the matching tvb * in the data_source list ? * IOW: Why not just use fi->ds_tvb for the arg to tvb_get_ptr() ? */ static const guint8 * get_field_data(GSList *src_list, field_info *fi) { GSList *src_le; tvbuff_t *src_tvb; gint length, tvbuff_length; struct data_source *src; for (src_le = src_list; src_le != NULL; src_le = src_le->next) { src = (struct data_source *)src_le->data; src_tvb = get_data_source_tvb(src); if (fi->ds_tvb == src_tvb) { /* * Found it. * * XXX - a field can have a length that runs past * the end of the tvbuff. Ideally, that should * be fixed when adding an item to the protocol * tree, but checking the length when doing * that could be expensive. Until we fix that, * we'll do the check here. */ tvbuff_length = tvb_captured_length_remaining(src_tvb, fi->start); if (tvbuff_length < 0) { return NULL; } length = fi->length; if (length > tvbuff_length) length = tvbuff_length; return tvb_get_ptr(src_tvb, fi->start, length); } } g_assert_not_reached(); return NULL; /* not found */ } /* Print a string, escaping out certain characters that need to * escaped out for XML. */ static void print_escaped_xml(FILE *fh, const char *unescaped_string) { const char *p; char temp_str[8]; if (fh == NULL || unescaped_string == NULL) { return; } for (p = unescaped_string; *p != '\0'; p++) { switch (*p) { case '&': fputs("&", fh); break; case '<': fputs("<", fh); break; case '>': fputs(">", fh); break; case '"': fputs(""", fh); break; case '\'': fputs("'", fh); break; default: if (g_ascii_isprint(*p)) fputc(*p, fh); else { g_snprintf(temp_str, sizeof(temp_str), "\\x%x", (guint8)*p); fputs(temp_str, fh); } } } } static void print_escaped_bare(FILE *fh, const char *unescaped_string, gboolean change_dot) { const char *p; char temp_str[8]; if (fh == NULL || unescaped_string == NULL) { return; } for (p = unescaped_string; *p != '\0'; p++) { switch (*p) { case '"': fputs("\\\"", fh); break; case '\\': fputs("\\\\", fh); break; case '/': fputs("\\/", fh); break; case '\b': fputs("\\b", fh); break; case '\f': fputs("\\f", fh); break; case '\n': fputs("\\n", fh); break; case '\r': fputs("\\r", fh); break; case '\t': fputs("\\t", fh); break; case '.': if (change_dot) fputs("_", fh); else fputs(".", fh); break; default: if (g_ascii_isprint(*p)) fputc(*p, fh); else { g_snprintf(temp_str, sizeof(temp_str), "\\u00%02x", (guint8)*p); fputs(temp_str, fh); } } } } /* Print a string, escaping out certain characters that need to * escaped out for JSON. */ static void print_escaped_json(FILE *fh, const char *unescaped_string) { print_escaped_bare(fh, unescaped_string, FALSE); } /* Print a string, escaping out certain characters that need to * escaped out for Elasticsearch title. */ static void print_escaped_ek(FILE *fh, const char *unescaped_string) { print_escaped_bare(fh, unescaped_string, TRUE); } static void pdml_write_field_hex_value(write_pdml_data *pdata, field_info *fi) { int i; const guint8 *pd; if (!fi->ds_tvb) return; if (fi->length > tvb_captured_length_remaining(fi->ds_tvb, fi->start)) { fprintf(pdata->fh, "field length invalid!"); return; } /* Find the data for this field. */ pd = get_field_data(pdata->src_list, fi); if (pd) { /* Print a simple hex dump */ for (i = 0 ; i < fi->length; i++) { fprintf(pdata->fh, "%02x", pd[i]); } } } static void json_write_field_hex_value(write_json_data *pdata, field_info *fi) { int i; const guint8 *pd; if (!fi->ds_tvb) return; if (fi->length > tvb_captured_length_remaining(fi->ds_tvb, fi->start)) { fprintf(pdata->fh, "field length invalid!"); return; } /* Find the data for this field. */ pd = get_field_data(pdata->src_list, fi); if (pd) { /* Print a simple hex dump */ for (i = 0 ; i < fi->length; i++) { fprintf(pdata->fh, "%02x", pd[i]); } } } gboolean print_hex_data(print_stream_t *stream, epan_dissect_t *edt) { gboolean multiple_sources; GSList *src_le; tvbuff_t *tvb; char *line, *name; const guchar *cp; guint length; struct data_source *src; /* * Set "multiple_sources" iff this frame has more than one * data source; if it does, we need to print the name of * the data source before printing the data from the * data source. */ multiple_sources = (edt->pi.data_src->next != NULL); for (src_le = edt->pi.data_src; src_le != NULL; src_le = src_le->next) { src = (struct data_source *)src_le->data; tvb = get_data_source_tvb(src); if (multiple_sources) { name = get_data_source_name(src); line = g_strdup_printf("%s:", name); wmem_free(NULL, name); print_line(stream, 0, line); g_free(line); } length = tvb_captured_length(tvb); if (length == 0) return TRUE; cp = tvb_get_ptr(tvb, 0, length); if (!print_hex_data_buffer(stream, cp, length, (packet_char_enc)edt->pi.fd->flags.encoding)) return FALSE; } return TRUE; } /* * This routine is based on a routine created by Dan Lasley * . * * It was modified for Wireshark by Gilbert Ramirez and others. */ #define MAX_OFFSET_LEN 8 /* max length of hex offset of bytes */ #define BYTES_PER_LINE 16 /* max byte values printed on a line */ #define HEX_DUMP_LEN (BYTES_PER_LINE*3) /* max number of characters hex dump takes - 2 digits plus trailing blank */ #define DATA_DUMP_LEN (HEX_DUMP_LEN + 2 + BYTES_PER_LINE) /* number of characters those bytes take; 3 characters per byte of hex dump, 2 blanks separating hex from ASCII, 1 character per byte of ASCII dump */ #define MAX_LINE_LEN (MAX_OFFSET_LEN + 2 + DATA_DUMP_LEN) /* number of characters per line; offset, 2 blanks separating offset from data dump, data dump */ static gboolean print_hex_data_buffer(print_stream_t *stream, const guchar *cp, guint length, packet_char_enc encoding) { register unsigned int ad, i, j, k, l; guchar c; gchar line[MAX_LINE_LEN + 1]; unsigned int use_digits; static gchar binhex[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'}; /* * How many of the leading digits of the offset will we supply? * We always supply at least 4 digits, but if the maximum offset * won't fit in 4 digits, we use as many digits as will be needed. */ if (((length - 1) & 0xF0000000) != 0) use_digits = 8; /* need all 8 digits */ else if (((length - 1) & 0x0F000000) != 0) use_digits = 7; /* need 7 digits */ else if (((length - 1) & 0x00F00000) != 0) use_digits = 6; /* need 6 digits */ else if (((length - 1) & 0x000F0000) != 0) use_digits = 5; /* need 5 digits */ else use_digits = 4; /* we'll supply 4 digits */ ad = 0; i = 0; j = 0; k = 0; while (i < length) { if ((i & 15) == 0) { /* * Start of a new line. */ j = 0; l = use_digits; do { l--; c = (ad >> (l*4)) & 0xF; line[j++] = binhex[c]; } while (l != 0); line[j++] = ' '; line[j++] = ' '; memset(line+j, ' ', DATA_DUMP_LEN); /* * Offset in line of ASCII dump. */ k = j + HEX_DUMP_LEN + 2; } c = *cp++; line[j++] = binhex[c>>4]; line[j++] = binhex[c&0xf]; j++; if (encoding == PACKET_CHAR_ENC_CHAR_EBCDIC) { c = EBCDIC_to_ASCII1(c); } line[k++] = ((c >= ' ') && (c < 0x7f)) ? c : '.'; i++; if (((i & 15) == 0) || (i == length)) { /* * We'll be starting a new line, or * we're finished printing this buffer; * dump out the line we've constructed, * and advance the offset. */ line[k] = '\0'; if (!print_line(stream, 0, line)) return FALSE; ad += 16; } } return TRUE; } gsize output_fields_num_fields(output_fields_t* fields) { g_assert(fields); if (NULL == fields->fields) { return 0; } else { return fields->fields->len; } } void output_fields_free(output_fields_t* fields) { g_assert(fields); if (NULL != fields->fields) { gsize i; if (NULL != fields->field_indicies) { /* Keys are stored in fields->fields, values are * integers. */ g_hash_table_destroy(fields->field_indicies); } if (NULL != fields->field_values) { g_free(fields->field_values); } for(i = 0; i < fields->fields->len; ++i) { gchar* field = (gchar *)g_ptr_array_index(fields->fields,i); g_free(field); } g_ptr_array_free(fields->fields, TRUE); } g_free(fields); } #define COLUMN_FIELD_FILTER "_ws.col." void output_fields_add(output_fields_t *fields, const gchar *field) { gchar *field_copy; g_assert(fields); g_assert(field); if (NULL == fields->fields) { fields->fields = g_ptr_array_new(); } field_copy = g_strdup(field); g_ptr_array_add(fields->fields, field_copy); /* See if we have a column as a field entry */ if (!strncmp(field, COLUMN_FIELD_FILTER, strlen(COLUMN_FIELD_FILTER))) fields->includes_col_fields = TRUE; } static void output_field_check(void *data, void *user_data) { gchar *field = (gchar *)data; GSList **invalid_fields = (GSList **)user_data; if (!strncmp(field, COLUMN_FIELD_FILTER, strlen(COLUMN_FIELD_FILTER))) return; if (!proto_registrar_get_byname(field)) { *invalid_fields = g_slist_prepend(*invalid_fields, field); } } GSList * output_fields_valid(output_fields_t *fields) { GSList *invalid_fields = NULL; if (fields->fields == NULL) { return NULL; } g_ptr_array_foreach(fields->fields, output_field_check, &invalid_fields); return invalid_fields; } gboolean output_fields_set_option(output_fields_t *info, gchar *option) { const gchar *option_name; const gchar *option_value; g_assert(info); g_assert(option); if ('\0' == *option) { return FALSE; /* this happens if we're called from tshark -E '' */ } option_name = strtok(option, "="); if (!option_name) { return FALSE; } option_value = option + strlen(option_name) + 1; if (*option_value == '\0') { return FALSE; } if (0 == strcmp(option_name, "header")) { switch (*option_value) { case 'n': info->print_header = FALSE; break; case 'y': info->print_header = TRUE; break; default: return FALSE; } return TRUE; } else if (0 == strcmp(option_name, "separator")) { switch (*option_value) { case '/': switch (*++option_value) { case 't': info->separator = '\t'; break; case 's': info->separator = ' '; break; default: info->separator = '\\'; } break; default: info->separator = *option_value; break; } return TRUE; } else if (0 == strcmp(option_name, "occurrence")) { switch (*option_value) { case 'f': case 'l': case 'a': info->occurrence = *option_value; break; default: return FALSE; } return TRUE; } else if (0 == strcmp(option_name, "aggregator")) { switch (*option_value) { case '/': switch (*++option_value) { case 's': info->aggregator = ' '; break; default: info->aggregator = '\\'; } break; default: info->aggregator = *option_value; break; } return TRUE; } else if (0 == strcmp(option_name, "quote")) { switch (*option_value) { case 'd': info->quote = '"'; break; case 's': info->quote = '\''; break; case 'n': info->quote = '\0'; break; default: info->quote = '\0'; return FALSE; } return TRUE; } else if (0 == strcmp(option_name, "bom")) { switch (*option_value) { case 'n': info->print_bom = FALSE; break; case 'y': info->print_bom = TRUE; break; default: return FALSE; } return TRUE; } return FALSE; } void output_fields_list_options(FILE *fh) { fprintf(fh, "TShark: The available options for field output \"E\" are:\n"); fputs("bom=y|n Prepend output with the UTF-8 BOM (def: N: no)\n", fh); fputs("header=y|n Print field abbreviations as first line of output (def: N: no)\n", fh); fputs("separator=/t|/s| Set the separator to use;\n \"/t\" = tab, \"/s\" = space (def: /t: tab)\n", fh); fputs("occurrence=f|l|a Select the occurrence of a field to use;\n \"f\" = first, \"l\" = last, \"a\" = all (def: a: all)\n", fh); fputs("aggregator=,|/s| Set the aggregator to use;\n \",\" = comma, \"/s\" = space (def: ,: comma)\n", fh); fputs("quote=d|s|n Print either d: double-quotes, s: single quotes or \n n: no quotes around field values (def: n: none)\n", fh); } gboolean output_fields_has_cols(output_fields_t* fields) { g_assert(fields); return fields->includes_col_fields; } void write_fields_preamble(output_fields_t* fields, FILE *fh) { gsize i; g_assert(fields); g_assert(fh); g_assert(fields->fields); if (fields->print_bom) { fputs(UTF8_BOM, fh); } if (!fields->print_header) { return; } for(i = 0; i < fields->fields->len; ++i) { const gchar* field = (const gchar *)g_ptr_array_index(fields->fields,i); if (i != 0 ) { fputc(fields->separator, fh); } fputs(field, fh); } fputc('\n', fh); } static void format_field_values(output_fields_t* fields, gpointer field_index, const gchar* value) { guint indx; GPtrArray* fv_p; if (NULL == value) return; /* Unwrap change made to disambiguiate zero / null */ indx = GPOINTER_TO_UINT(field_index) - 1; if (fields->field_values[indx] == NULL) { fields->field_values[indx] = g_ptr_array_new(); } /* Essentially: fieldvalues[indx] is a 'GPtrArray *' with each array entry */ /* pointing to a string which is (part of) the final output string. */ fv_p = fields->field_values[indx]; switch (fields->occurrence) { case 'f': /* print the value of only the first occurrence of the field */ if (g_ptr_array_len(fv_p) != 0) return; break; case 'l': /* print the value of only the last occurrence of the field */ g_ptr_array_set_size(fv_p, 0); break; case 'a': /* print the value of all accurrences of the field */ /* If not the first, add the 'aggregator' */ if (g_ptr_array_len(fv_p) > 0) { g_ptr_array_add(fv_p, (gpointer)g_strdup_printf("%c", fields->aggregator)); } break; default: g_assert_not_reached(); break; } g_ptr_array_add(fv_p, (gpointer)value); } static void proto_tree_get_node_field_values(proto_node *node, gpointer data) { write_field_data_t *call_data; field_info *fi; gpointer field_index; call_data = (write_field_data_t *)data; fi = PNODE_FINFO(node); /* dissection with an invisible proto tree? */ g_assert(fi); field_index = g_hash_table_lookup(call_data->fields->field_indicies, fi->hfinfo->abbrev); if (NULL != field_index) { format_field_values(call_data->fields, field_index, get_node_field_value(fi, call_data->edt) /* g_ alloc'd string */ ); } /* Recurse here. */ if (node->first_child != NULL) { proto_tree_children_foreach(node, proto_tree_get_node_field_values, call_data); } } static void write_specified_fields(fields_format format, output_fields_t *fields, epan_dissect_t *edt, column_info *cinfo, FILE *fh) { gsize i; gboolean first = TRUE; gint col; gchar *col_name; gpointer field_index; write_field_data_t data; g_assert(fields); g_assert(fields->fields); g_assert(edt); g_assert(fh); data.fields = fields; data.edt = edt; if (NULL == fields->field_indicies) { /* Prepare a lookup table from string abbreviation for field to its index. */ fields->field_indicies = g_hash_table_new(g_str_hash, g_str_equal); i = 0; while (i < fields->fields->len) { gchar *field = (gchar *)g_ptr_array_index(fields->fields, i); /* Store field indicies +1 so that zero is not a valid value, * and can be distinguished from NULL as a pointer. */ ++i; g_hash_table_insert(fields->field_indicies, field, GUINT_TO_POINTER(i)); } } /* Array buffer to store values for this packet */ /* Allocate an array for the 'GPtrarray *' the first time */ /* ths function is invoked for a file; */ /* Any and all 'GPtrArray *' are freed (after use) each */ /* time (each packet) this function is invoked for a flle. */ /* XXX: ToDo: use packet-scope'd memory & (if/when implemented) wmem ptr_array */ if (NULL == fields->field_values) fields->field_values = g_new0(GPtrArray*, fields->fields->len); /* free'd in output_fields_free() */ proto_tree_children_foreach(edt->tree, proto_tree_get_node_field_values, &data); switch (format) { case FORMAT_CSV: if (fields->includes_col_fields) { for (col = 0; col < cinfo->num_cols; col++) { /* Prepend COLUMN_FIELD_FILTER as the field name */ col_name = g_strdup_printf("%s%s", COLUMN_FIELD_FILTER, cinfo->columns[col].col_title); field_index = g_hash_table_lookup(fields->field_indicies, col_name); g_free(col_name); if (NULL != field_index) { format_field_values(fields, field_index, g_strdup(cinfo->columns[col].col_data)); } } } for(i = 0; i < fields->fields->len; ++i) { if (0 != i) { fputc(fields->separator, fh); } if (NULL != fields->field_values[i]) { GPtrArray *fv_p; gchar * str; gsize j; fv_p = fields->field_values[i]; if (fields->quote != '\0') { fputc(fields->quote, fh); } /* Output the array of (partial) field values */ for (j = 0; j < g_ptr_array_len(fv_p); j++ ) { str = (gchar *)g_ptr_array_index(fv_p, j); fputs(str, fh); g_free(str); } if (fields->quote != '\0') { fputc(fields->quote, fh); } g_ptr_array_free(fv_p, TRUE); /* get ready for the next packet */ fields->field_values[i] = NULL; } } break; case FORMAT_XML: for(i = 0; i < fields->fields->len; ++i) { gchar *field = (gchar *)g_ptr_array_index(fields->fields, i); if (NULL != fields->field_values[i]) { GPtrArray *fv_p; gchar * str; gsize j; fv_p = fields->field_values[i]; /* Output the array of (partial) field values */ for (j = 0; j < (g_ptr_array_len(fv_p)); j+=2 ) { str = (gchar *)g_ptr_array_index(fv_p, j); fprintf(fh, " \n", fh); g_free(str); } g_ptr_array_free(fv_p, TRUE); /* get ready for the next packet */ fields->field_values[i] = NULL; } } break; case FORMAT_JSON: fputs("{\n", fh); for(i = 0; i < fields->fields->len; ++i) { gchar *field = (gchar *)g_ptr_array_index(fields->fields, i); if (NULL != fields->field_values[i]) { GPtrArray *fv_p; gchar * str; gsize j; fv_p = fields->field_values[i]; /* Output the array of (partial) field values */ for (j = 0; j < (g_ptr_array_len(fv_p)); j += 2) { str = (gchar *) g_ptr_array_index(fv_p, j); if (j == 0) { if (!first) { fputs(",\n", fh); } fprintf(fh, " \"%s\": [", field); } fputs("\"", fh); print_escaped_json(fh, str); fputs("\"", fh); g_free(str); if (j + 2 < (g_ptr_array_len(fv_p))) { fputs(",", fh); } else { fputs("]", fh); } } first = FALSE; g_ptr_array_free(fv_p, TRUE); /* get ready for the next packet */ fields->field_values[i] = NULL; } } fputc('\n',fh); fputs(" }", fh); break; case FORMAT_EK: for(i = 0; i < fields->fields->len; ++i) { gchar *field = (gchar *)g_ptr_array_index(fields->fields, i); if (NULL != fields->field_values[i]) { GPtrArray *fv_p; gchar * str; gsize j; fv_p = fields->field_values[i]; /* Output the array of (partial) field values */ for (j = 0; j < (g_ptr_array_len(fv_p)); j += 2) { str = (gchar *)g_ptr_array_index(fv_p, j); if (j == 0) { if (!first) { fputs(",", fh); } fputs("\"", fh); print_escaped_ek(fh, field); fputs("\": [", fh); } fputs("\"", fh); print_escaped_json(fh, str); fputs("\"", fh); g_free(str); if (j + 2 < (g_ptr_array_len(fv_p))) { fputs(",", fh); } else { fputs("]", fh); } } first = FALSE; g_ptr_array_free(fv_p, TRUE); /* get ready for the next packet */ fields->field_values[i] = NULL; } } break; default: fprintf(stderr, "Unknown fields format %d\n", format); g_assert_not_reached(); break; } } void write_fields_finale(output_fields_t* fields _U_ , FILE *fh _U_) { /* Nothing to do */ } /* Returns an g_malloced string */ gchar* get_node_field_value(field_info* fi, epan_dissect_t* edt) { if (fi->hfinfo->id == hf_text_only) { /* Text label. * Get the text */ if (fi->rep) { return g_strdup(fi->rep->representation); } else { return get_field_hex_value(edt->pi.data_src, fi); } } else if (fi->hfinfo->id == proto_data) { /* Uninterpreted data, i.e., the "Data" protocol, is * printed as a field instead of a protocol. */ return get_field_hex_value(edt->pi.data_src, fi); } else { /* Normal protocols and fields */ gchar *dfilter_string; switch (fi->hfinfo->type) { case FT_PROTOCOL: /* Print out the full details for the protocol. */ if (fi->rep) { return g_strdup(fi->rep->representation); } else { /* Just print out the protocol abbreviation */ return g_strdup(fi->hfinfo->abbrev); } case FT_NONE: /* Return "1" so that the presence of a field of type * FT_NONE can be checked when using -T fields */ return g_strdup("1"); default: dfilter_string = fvalue_to_string_repr(NULL, &fi->value, FTREPR_DISPLAY, fi->hfinfo->display); if (dfilter_string != NULL) { gchar* ret = g_strdup(dfilter_string); wmem_free(NULL, dfilter_string); return ret; } else { return get_field_hex_value(edt->pi.data_src, fi); } } } } static gchar* get_field_hex_value(GSList *src_list, field_info *fi) { const guint8 *pd; if (!fi->ds_tvb) return NULL; if (fi->length > tvb_captured_length_remaining(fi->ds_tvb, fi->start)) { return g_strdup("field length invalid!"); } /* Find the data for this field. */ pd = get_field_data(src_list, fi); if (pd) { int i; gchar *buffer; gchar *p; int len; const int chars_per_byte = 2; len = chars_per_byte * fi->length; buffer = (gchar *)g_malloc(sizeof(gchar)*(len + 1)); buffer[len] = '\0'; /* Ensure NULL termination in bad cases */ p = buffer; /* Print a simple hex dump */ for (i = 0 ; i < fi->length; i++) { g_snprintf(p, chars_per_byte+1, "%02x", pd[i]); p += chars_per_byte; } return buffer; } else { return NULL; } } output_fields_t* output_fields_new(void) { output_fields_t* fields = g_new(output_fields_t, 1); fields->print_bom = FALSE; fields->print_header = FALSE; fields->separator = '\t'; fields->occurrence = 'a'; fields->aggregator = ','; fields->fields = NULL; /*Do lazy initialisation */ fields->field_indicies = NULL; fields->field_values = NULL; fields->quote ='\0'; fields->includes_col_fields = FALSE; return fields; } /* * Editor modelines - http://www.wireshark.org/tools/modelines.html * * Local variables: * c-basic-offset: 4 * tab-width: 8 * indent-tabs-mode: nil * End: * * vi: set shiftwidth=4 tabstop=8 expandtab: * :indentSize=4:tabSize=8:noTabs=true: */