/* packet-ieee802154.c * * Auxiliary Security Header support and * option to force TI CC24xx FCS format * By Jean-Francois Wauthy * Copyright 2009 The University of Namur, Belgium * * IEEE 802.15.4 Dissectors for Wireshark * By Owen Kirby * Copyright 2007 Exegin Technologies Limited * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *------------------------------------------------------------ * * In IEEE 802.15.4 packets, all fields are little endian. And * Each byte is transmitted least significant bit first (reflected * bit ordering). *------------------------------------------------------------ * * IEEE 802.15.4 Packets have the following format: * | FCF |Seq No| Addressing | Data | FCS | * |2 bytes|1 byte|0 to 20 bytes|Length-(Overhead) bytes|2 Bytes| *------------------------------------------------------------ * * CRC16 is calculated using the x^16 + x^12 + x^5 + 1 polynomial * as specified by ITU-T, and is calculated over the IEEE 802.15.4 * packet (excluding the FCS) as transmitted over the air. Note, * that because the least significan bits are transmitted first, this * will require reversing the bit-order in each byte. Also, unlike * most CRC algorithms, IEEE 802.15.4 uses an initial and final value * of 0x0000, instead of 0xffff (which is used by the CCITT). *------------------------------------------------------------ * * This dissector supports both link-layer IEEE 802.15.4 captures * and IEEE 802.15.4 packets encapsulated within other layers. * Additionally, support has been provided for various formats * of the frame check sequence: * - IEEE 802.15.4 compliant FCS. * - ChipCon/Texas Instruments CC24xx style FCS. *------------------------------------------------------------ */ /* Include files */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Use libgcrypt for cipher libraries. */ #include #include "packet-ieee802154.h" #include "packet-sll.h" void proto_register_ieee802154(void); void proto_reg_handoff_ieee802154(void); /* Dissection Options for dissect_ieee802154_common */ #define DISSECT_IEEE802154_OPTION_CC24xx 0x00000001 /* FCS field contains a TI CC24xx style FCS. */ #define DISSECT_IEEE802154_OPTION_LINUX 0x00000002 /* Addressing fields are padded DLT_IEEE802_15_4_LINUX, not implemented. */ /* ethertype for 802.15.4 tag - encapsulating an Ethernet packet */ static unsigned int ieee802154_ethertype = 0x809A; /* boolean value set if the FCS field is using the TI CC24xx format */ static gboolean ieee802154_cc24xx = FALSE; /* boolean value set if the FCS must be ok before payload is dissected */ static gboolean ieee802154_fcs_ok = TRUE; /* User string with the decryption key. */ static const gchar *ieee802154_key_str = NULL; static gboolean ieee802154_key_valid; static guint8 ieee802154_key[IEEE802154_CIPHER_SIZE]; static const char *ieee802154_user = "User"; /* * Address Hash Tables * */ static ieee802154_map_tab_t ieee802154_map = { NULL, NULL }; /* * Static Address Mapping UAT * */ /* UAT entry structure. */ typedef struct { guchar *eui64; guint eui64_len; guint addr16; guint pan; } static_addr_t; /* UAT variables */ static uat_t *static_addr_uat = NULL; static static_addr_t *static_addrs = NULL; static guint num_static_addrs = 0; /* Sanity-checks a UAT record. */ static gboolean addr_uat_update_cb(void *r, char **err) { static_addr_t *map = (static_addr_t *)r; /* Ensure a valid short address */ if (map->addr16 >= IEEE802154_NO_ADDR16) { *err = g_strdup("Invalid short address"); return FALSE; } /* Ensure a valid PAN identifier. */ if (map->pan >= IEEE802154_BCAST_PAN) { *err = g_strdup("Invalid PAN identifier"); return FALSE; } /* Ensure a valid EUI-64 length */ if (map->eui64_len != sizeof(guint64)) { *err = g_strdup("Invalid EUI-64 length"); return FALSE; } return TRUE; } /* ieee802154_addr_uat_update_cb */ /* Field callbacks. */ UAT_HEX_CB_DEF(addr_uat, addr16, static_addr_t) UAT_HEX_CB_DEF(addr_uat, pan, static_addr_t) UAT_BUFFER_CB_DEF(addr_uat, eui64, static_addr_t, eui64, eui64_len) /*------------------------------------- * Dissector Function Prototypes *------------------------------------- */ /* Dissection Routines. */ static int dissect_ieee802154_nonask_phy (tvbuff_t *, packet_info *, proto_tree *, void *); static int dissect_ieee802154 (tvbuff_t *, packet_info *, proto_tree *, void *); static int dissect_ieee802154_nofcs (tvbuff_t *, packet_info *, proto_tree *, void *); static int dissect_ieee802154_cc24xx (tvbuff_t *, packet_info *, proto_tree *, void *); static tvbuff_t *dissect_zboss_specific (tvbuff_t *, packet_info *, proto_tree *); /*static void dissect_ieee802154_linux (tvbuff_t *, packet_info *, proto_tree *); TODO: Implement Me. */ static void dissect_ieee802154_common (tvbuff_t *, packet_info *, proto_tree *, guint); /* Information Elements */ static void dissect_ieee802154_header_ie (tvbuff_t *, packet_info *, proto_tree *, guint *, ieee802154_packet *); static void dissect_ieee802154_payload_ie (tvbuff_t *, packet_info *, proto_tree *, guint *); /* Sub-dissector helpers. */ static void dissect_ieee802154_fcf (tvbuff_t *, packet_info *, proto_tree *, ieee802154_packet *, guint *); static void dissect_ieee802154_superframe (tvbuff_t *, packet_info *, proto_tree *, guint *); static void dissect_ieee802154_gtsinfo (tvbuff_t *, packet_info *, proto_tree *, guint *); static void dissect_ieee802154_pendaddr (tvbuff_t *, packet_info *, proto_tree *, guint *); static void dissect_ieee802154_command (tvbuff_t *, packet_info *, proto_tree *, ieee802154_packet *); static void dissect_ieee802154_assoc_req (tvbuff_t *, packet_info *, proto_tree *, ieee802154_packet *); static void dissect_ieee802154_assoc_rsp (tvbuff_t *, packet_info *, proto_tree *, ieee802154_packet *); static void dissect_ieee802154_disassoc (tvbuff_t *, packet_info *, proto_tree *, ieee802154_packet *); static void dissect_ieee802154_realign (tvbuff_t *, packet_info *, proto_tree *, ieee802154_packet *); static void dissect_ieee802154_gtsreq (tvbuff_t *, packet_info *, proto_tree *, ieee802154_packet *); /* Decryption helpers. */ typedef enum { DECRYPT_PACKET_SUCCEEDED, DECRYPT_NOT_ENCRYPTED, DECRYPT_VERSION_UNSUPPORTED, DECRYPT_PACKET_TOO_SMALL, DECRYPT_PACKET_NO_EXT_SRC_ADDR, DECRYPT_PACKET_NO_KEY, DECRYPT_PACKET_DECRYPT_FAILED, DECRYPT_PACKET_MIC_CHECK_FAILED } ws_decrypt_status; static tvbuff_t *dissect_ieee802154_decrypt(tvbuff_t *, guint, packet_info *, ieee802154_packet *, ws_decrypt_status *); static void ccm_init_block (gchar *, gboolean, gint, guint64, ieee802154_packet *, gint); static gboolean ccm_ctr_encrypt (const gchar *, const gchar *, gchar *, gchar *, gint); static gboolean ccm_cbc_mac (const gchar *, const gchar *, const gchar *, gint, const gchar *, gint, gchar *); /* Initialize Protocol and Registered fields */ static int proto_ieee802154_nonask_phy = -1; static int hf_ieee802154_nonask_phy_preamble = -1; static int hf_ieee802154_nonask_phy_sfd = -1; static int hf_ieee802154_nonask_phy_length = -1; static int hf_ieee802154_nonask_phr = -1; static int proto_ieee802154 = -1; static int hf_ieee802154_frame_length = -1; static int hf_ieee802154_fcf = -1; static int hf_ieee802154_frame_type = -1; static int hf_ieee802154_security = -1; static int hf_ieee802154_pending = -1; static int hf_ieee802154_ack_request = -1; static int hf_ieee802154_pan_id_compression = -1; static int hf_ieee802154_seqno_suppression = -1; static int hf_ieee802154_ie_present = -1; static int hf_ieee802154_src_addr_mode = -1; static int hf_ieee802154_version = -1; static int hf_ieee802154_dst_addr_mode = -1; static int hf_ieee802154_header_ie = -1; static int hf_ieee802154_header_ie_type = -1; static int hf_ieee802154_header_ie_id = -1; static int hf_ieee802154_header_ie_length = -1; static int hf_ieee802154_header_ie_data = -1; static int hf_ieee802154_payload_ie = -1; static int hf_ieee802154_payload_ie_type = -1; static int hf_ieee802154_payload_ie_id = -1; static int hf_ieee802154_payload_ie_length = -1; static int hf_ieee802154_payload_ie_data = -1; static int proto_zboss = -1; static int zboss_direction = -1; static int zboss_channel = -1; static int zboss_trace_number = -1; static int hf_ieee802154_seqno = -1; static int hf_ieee802154_dst_panID = -1; static int hf_ieee802154_dst16 = -1; static int hf_ieee802154_dst64 = -1; static int hf_ieee802154_src_panID = -1; static int hf_ieee802154_src16 = -1; static int hf_ieee802154_src64 = -1; static int hf_ieee802154_src64_origin = -1; static int hf_ieee802154_fcs = -1; static int hf_ieee802154_rssi = -1; static int hf_ieee802154_fcs_ok = -1; static int hf_ieee802154_correlation = -1; /* Registered fields for Command Packets */ static int hf_ieee802154_cmd_id = -1; static int hf_ieee802154_cinfo_alt_coord = -1; static int hf_ieee802154_cinfo_device_type = -1; static int hf_ieee802154_cinfo_power_src = -1; static int hf_ieee802154_cinfo_idle_rx = -1; static int hf_ieee802154_cinfo_sec_capable = -1; static int hf_ieee802154_cinfo_alloc_addr = -1; static int hf_ieee802154_assoc_addr = -1; static int hf_ieee802154_assoc_status = -1; static int hf_ieee802154_disassoc_reason = -1; static int hf_ieee802154_realign_pan = -1; static int hf_ieee802154_realign_caddr = -1; static int hf_ieee802154_realign_channel = -1; static int hf_ieee802154_realign_addr = -1; static int hf_ieee802154_realign_channel_page = -1; static int hf_ieee802154_gtsreq_len = -1; static int hf_ieee802154_gtsreq_dir = -1; static int hf_ieee802154_gtsreq_type = -1; /* Registered fields for Beacon Packets */ static int hf_ieee802154_beacon_order = -1; static int hf_ieee802154_superframe_order = -1; static int hf_ieee802154_cap = -1; static int hf_ieee802154_superframe_battery_ext = -1; static int hf_ieee802154_superframe_coord = -1; static int hf_ieee802154_assoc_permit = -1; static int hf_ieee802154_gts_count = -1; static int hf_ieee802154_gts_permit = -1; static int hf_ieee802154_gts_direction = -1; static int hf_ieee802154_gts_address = -1; static int hf_ieee802154_pending16 = -1; static int hf_ieee802154_pending64 = -1; /* Registered fields for Auxiliary Security Header */ static int hf_ieee802154_security_control_field = -1; static int hf_ieee802154_security_level = -1; static int hf_ieee802154_key_id_mode = -1; static int hf_ieee802154_aux_sec_reserved = -1; static int hf_ieee802154_aux_sec_frame_counter = -1; static int hf_ieee802154_aux_sec_key_source = -1; static int hf_ieee802154_aux_sec_key_index = -1; /* 802.15.4-2003 security */ static int hf_ieee802154_sec_frame_counter = -1; static int hf_ieee802154_sec_key_sequence_counter = -1; /* Initialize Subtree Pointers */ static gint ett_ieee802154_nonask_phy = -1; static gint ett_ieee802154_nonask_phy_phr = -1; static gint ett_ieee802154 = -1; static gint ett_ieee802154_fcf = -1; static gint ett_ieee802154_auxiliary_security = -1; static gint ett_ieee802154_aux_sec_control = -1; static gint ett_ieee802154_aux_sec_key_id = -1; static gint ett_ieee802154_fcs = -1; static gint ett_ieee802154_cmd = -1; static gint ett_ieee802154_superframe = -1; static gint ett_ieee802154_gts = -1; static gint ett_ieee802154_gts_direction = -1; static gint ett_ieee802154_gts_descriptors = -1; static gint ett_ieee802154_pendaddr = -1; static gint ett_ieee802154_header = -1; static gint ett_ieee802154_header_ie = -1; static gint ett_ieee802154_payload = -1; static gint ett_ieee802154_payload_ie = -1; static gint ett_ieee802154_zboss = -1; static expert_field ei_ieee802154_invalid_addressing = EI_INIT; static expert_field ei_ieee802154_invalid_panid_compression = EI_INIT; static expert_field ei_ieee802154_fcs = EI_INIT; static expert_field ei_ieee802154_decrypt_error = EI_INIT; static expert_field ei_ieee802154_dst = EI_INIT; static expert_field ei_ieee802154_src = EI_INIT; static expert_field ei_ieee802154_frame_ver = EI_INIT; static expert_field ei_ieee802154_frame_type = EI_INIT; static expert_field ei_ieee802154_seqno_suppression = EI_INIT; static int ieee802_15_4_short_address_type = -1; /* * Dissector handles * - beacon dissection is always heuristic. * - the PANID table is for stateful dissectors only (ie: Decode-As) * - otherwise, data dissectors fall back to the heuristic dissectors. */ static dissector_handle_t data_handle; static dissector_table_t panid_dissector_table; static heur_dissector_list_t ieee802154_beacon_subdissector_list; static heur_dissector_list_t ieee802154_heur_subdissector_list; /* Versions */ static const value_string ieee802154_frame_versions[] = { { IEEE802154_VERSION_2003, "IEEE Std 802.15.4-2003" }, { IEEE802154_VERSION_2006, "IEEE Std 802.15.4-2006" }, { IEEE802154_VERSION_2012e, "IEEE Std 802.15.4-2012e" }, { IEEE802154_VERSION_RESERVED, "Reserved" }, { 0, NULL } }; /* Name Strings */ static const value_string ieee802154_frame_types[] = { { IEEE802154_FCF_BEACON, "Beacon" }, { IEEE802154_FCF_DATA, "Data" }, { IEEE802154_FCF_ACK, "Ack" }, { IEEE802154_FCF_CMD, "Command" }, { IEEE802154_FCF_RESERVED, "Reserved" }, { IEEE802154_FCF_MULTIPURPOSE, "Multipurpose" }, { IEEE802154_FCF_FRAGMENT, "Fragment or Frak" }, { IEEE802154_FCF_EXTENDED, "Extended" }, { 0, NULL } }; static const value_string ieee802154_addr_modes[] = { { IEEE802154_FCF_ADDR_NONE, "None" }, { IEEE802154_FCF_ADDR_RESERVED, "Reserved" }, { IEEE802154_FCF_ADDR_SHORT, "Short/16-bit" }, { IEEE802154_FCF_ADDR_EXT, "Long/64-bit" }, { 0, NULL } }; static const value_string ieee802154_cmd_names[] = { { IEEE802154_CMD_ASSOC_REQ, "Association Request" }, { IEEE802154_CMD_ASSOC_RSP, "Association Response" }, { IEEE802154_CMD_DISASSOC_NOTIFY, "Disassociation Notification" }, { IEEE802154_CMD_DATA_RQ, "Data Request" }, { IEEE802154_CMD_PANID_CONFLICT, "PAN ID Conflict" }, { IEEE802154_CMD_ORPHAN_NOTIFY, "Orphan Notification" }, { IEEE802154_CMD_BEACON_REQ, "Beacon Request" }, { IEEE802154_CMD_COORD_REALIGN, "Coordinator Realignment" }, { IEEE802154_CMD_GTS_REQ, "GTS Request" }, { IEEE802154_CMD_TRLE_MGMT_REQ, "TRLE Management Request"}, { IEEE802154_CMD_TRLE_MGMT_RSP, "TRLE Management Response"}, { IEEE802154_CMD_DSME_ASSOC_REQ, "DSME Association Request"}, { IEEE802154_CMD_DSME_ASSOC_RSP, "DSME Association Response"}, { IEEE802154_CMD_DSME_GTS_REQ, "DSME GTS Request"}, { IEEE802154_CMD_DSME_GTS_RSP, "DSME GTS Response"}, { IEEE802154_CMD_DSME_GTS_NOTIFY, "DSME GTS Notify"}, { IEEE802154_CMD_DSME_INFO_REQ, "DSME Information Request"}, { IEEE802154_CMD_DSME_INFO_RSP, "DSME Information Reponse"}, { IEEE802154_CMD_DSME_BEACON_ALLOC_NOTIFY, "DSME Beacon Allocation Notification"}, { IEEE802154_CMD_DSME_BEACON_COLL_NOTIFY, "DSME Beacon Collision Notification"}, { IEEE802154_CMD_DSME_LINK_REPORT, "DSME Link Report"}, { IEEE802154_CMD_RIT_DATA_REQ, "RIT Data Request"}, { IEEE802154_CMD_DBS_REQ, "DBS Request"}, { IEEE802154_CMD_DBS_RSP, "DBS Response"}, { 0, NULL } }; static const value_string ieee802154_sec_level_names[] = { { SECURITY_LEVEL_NONE, "No Security" }, { SECURITY_LEVEL_MIC_32, "32-bit Message Integrity Code" }, { SECURITY_LEVEL_MIC_64, "64-bit Message Integrity Code" }, { SECURITY_LEVEL_MIC_128, "128-bit Message Integrity Code" }, { SECURITY_LEVEL_ENC, "Encryption" }, { SECURITY_LEVEL_ENC_MIC_32, "Encryption with 32-bit Message Integrity Code" }, { SECURITY_LEVEL_ENC_MIC_64, "Encryption with 64-bit Message Integrity Code" }, { SECURITY_LEVEL_ENC_MIC_128, "Encryption with 128-bit Message Integrity Code" }, { 0, NULL } }; static const value_string ieee802154_key_id_mode_names[] = { { KEY_ID_MODE_IMPLICIT, "Implicit Key" }, { KEY_ID_MODE_KEY_INDEX, "Indexed Key using the Default Key Source" }, { KEY_ID_MODE_KEY_EXPLICIT_4, "Explicit Key with 4-octet Key Source" }, { KEY_ID_MODE_KEY_EXPLICIT_8, "Explicit Key with 8-octet Key Source" }, { 0, NULL } }; static const true_false_string ieee802154_gts_direction_tfs = { "Receive Only", "Transmit Only" }; /* The 802.15.4-2003 security suites for the security preferences (only AES-CCM suites are supported). */ /* NOTE: The equivalent 2006 security level identifer enumerations are used to simplify 2003 & 2006 integration! */ static const enum_val_t ieee802154_2003_sec_suite_enums[] = { { "AES-CCM-128", "AES-128 Encryption, 128-bit Integrity Protection", SECURITY_LEVEL_ENC_MIC_128 }, { "AES-CCM-64", "AES-128 Encryption, 64-bit Integrity Protection", SECURITY_LEVEL_ENC_MIC_64 }, { "AES-CCM-32", "AES-128 Encryption, 32-bit Integrity Protection", SECURITY_LEVEL_ENC_MIC_32 }, { NULL, NULL, 0 } }; static const value_string ieee802154_ie_types[] = { { 0, "Header" }, { 1, "Payload" }, { 0, NULL } }; static const value_string ieee802154_header_ie_names[] = { { IEEE802154_HEADER_IE_EID_TERM1, "Header Termination 1" }, { IEEE802154_HEADER_IE_EID_TERM2, "Header Termination 2" }, { 0, NULL } }; static const value_string ieee802154_payload_ie_names[] = { { IEEE802154_PAYLOAD_IE_GID_TERM, "Payload Termination IE" }, { 0, NULL } }; static const value_string zboss_direction_names[] = { { 0, "IN" }, { 1, "OUT" }, { 0, NULL } }; /* Preferences for 2003 security */ static gint ieee802154_sec_suite = SECURITY_LEVEL_ENC_MIC_64; static gboolean ieee802154_extend_auth = TRUE; /* Macro to check addressing, and throw a warning flag if incorrect. */ #define IEEE802154_CMD_ADDR_CHECK(_pinfo_, _item_, _cmdid_, _x_) \ if (!(_x_)) \ expert_add_info_format(_pinfo_, _item_, &ei_ieee802154_invalid_addressing, \ "Invalid Addressing for %s", \ val_to_str_const(_cmdid_, ieee802154_cmd_names, "Unknown Command")) /* CRC definitions. IEEE 802.15.4 CRCs vary from CCITT by using an initial value of * 0x0000, and no XOR out. IEEE802154_CRC_XOR is defined as 0xFFFF in order to un-XOR * the output from the CCITT CRC routines in Wireshark. */ #define IEEE802154_CRC_SEED 0x0000 #define IEEE802154_CRC_XOROUT 0xFFFF #define ieee802154_crc_tvb(tvb, offset) (crc16_ccitt_tvb_seed(tvb, offset, IEEE802154_CRC_SEED) ^ IEEE802154_CRC_XOROUT) static int ieee802_15_4_short_address_to_str(const address* addr, gchar *buf, int buf_len) { guint16 ieee_802_15_4_short_addr = pletoh16(addr->data); if (ieee_802_15_4_short_addr == 0xffff) { g_strlcpy(buf, "Broadcast", buf_len); return 10; } *buf++ = '0'; *buf++ = 'x'; buf = word_to_hex(buf, ieee_802_15_4_short_addr); *buf = '\0'; /* NULL terminate */ return 7; } static int ieee802_15_4_short_address_str_len(const address* addr _U_) { return 11; } static int ieee802_15_4_short_address_len(void) { return 2; } /** * Dissector helper, parses and displays the frame control field. * *@param tvb pointer to buffer containing raw packet. *@param pinfo pointer to packet information fields *@param tree pointer to data tree wireshark uses to display packet. *@param packet IEEE 802.15.4 packet information. *@param offset offset into the tvb to find the FCF. * */ static void dissect_ieee802154_fcf(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, ieee802154_packet *packet, guint *offset) { guint16 fcf; static const int * fields[] = { &hf_ieee802154_frame_type, &hf_ieee802154_security, &hf_ieee802154_pending, &hf_ieee802154_ack_request, &hf_ieee802154_pan_id_compression, &hf_ieee802154_seqno_suppression, &hf_ieee802154_ie_present, &hf_ieee802154_dst_addr_mode, &hf_ieee802154_version, &hf_ieee802154_src_addr_mode, NULL }; /* Get the FCF field. */ fcf = tvb_get_letohs(tvb, *offset); /* Parse FCF Flags. */ packet->frame_type = (fcf & IEEE802154_FCF_TYPE_MASK); packet->security_enable = (fcf & IEEE802154_FCF_SEC_EN) >> 3; packet->frame_pending = (fcf & IEEE802154_FCF_FRAME_PND) >> 4; packet->ack_request = (fcf & IEEE802154_FCF_ACK_REQ) >> 5; packet->pan_id_compression = (fcf & IEEE802154_FCF_PAN_ID_COMPRESSION) >> 6; /* bit 7 reserved */ packet->seqno_suppression = (fcf & IEEE802154_FCF_SEQNO_SUPPRESSION) >> 8; packet->ie_present = (fcf & IEEE802154_FCF_IE_PRESENT) >> 9; packet->dst_addr_mode = (fcf & IEEE802154_FCF_DADDR_MASK) >> 10; packet->version = (fcf & IEEE802154_FCF_VERSION) >> 12; packet->src_addr_mode = (fcf & IEEE802154_FCF_SADDR_MASK) >> 14; /* Display the frame type. */ proto_item_append_text(tree, " %s", val_to_str_const(packet->frame_type, ieee802154_frame_types, "Reserved")); col_set_str(pinfo->cinfo, COL_INFO, val_to_str_const(packet->frame_type, ieee802154_frame_types, "Reserved")); proto_tree_add_bitmask(tree, tvb, *offset, hf_ieee802154_fcf, ett_ieee802154_fcf, fields, ENC_LITTLE_ENDIAN); *offset += 2; } /* dissect_ieee802154_fcf */ /* *Dissector for IEEE 802.15.4 non-ASK PHY packet with an FCS containing a 16-bit CRC value. * *@param tvb pointer to buffer containing raw packet. *@param pinfo pointer to packet information fields *@param tree pointer to data tree wireshark uses to display packet. */ static int dissect_ieee802154_nonask_phy(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_) { proto_tree *ieee802154_tree = NULL; proto_item *proto_root = NULL; guint offset = 0; guint8 phr; tvbuff_t* mac; /* Create the protocol tree. */ if (tree) { proto_root = proto_tree_add_protocol_format(tree, proto_ieee802154_nonask_phy, tvb, 0, tvb_captured_length(tvb), "IEEE 802.15.4 non-ASK PHY"); ieee802154_tree = proto_item_add_subtree(proto_root, ett_ieee802154_nonask_phy); } /* Add the protocol name. */ col_set_str(pinfo->cinfo, COL_PROTOCOL, "IEEE 802.15.4 non-ASK PHY"); /* Add the packet length. */ col_add_fstr(pinfo->cinfo, COL_PACKET_LENGTH, "%i", tvb_captured_length(tvb)); phr=tvb_get_guint8(tvb,offset+4+1); if(tree) { guint loffset=offset; static const int * phr_fields[] = { &hf_ieee802154_nonask_phy_length, NULL }; proto_tree_add_item(ieee802154_tree, hf_ieee802154_nonask_phy_preamble, tvb, loffset, 4, ENC_LITTLE_ENDIAN); loffset+=4; proto_tree_add_item(ieee802154_tree, hf_ieee802154_nonask_phy_sfd, tvb, loffset, 1, ENC_LITTLE_ENDIAN); loffset+=1; proto_tree_add_bitmask(ieee802154_tree, tvb, loffset, hf_ieee802154_nonask_phr, ett_ieee802154_nonask_phy_phr, phr_fields, ENC_NA); } offset+=4+2*1; mac=tvb_new_subset(tvb,offset,-1, phr & IEEE802154_PHY_LENGTH_MASK); /* Call the common dissector. */ dissect_ieee802154(mac, pinfo, ieee802154_tree, NULL); return tvb_captured_length(tvb); } /* dissect_ieee802154_nonask_phy */ /** *Dissector for IEEE 802.15.4 packet with an FCS containing a 16-bit CRC value. * *@param tvb pointer to buffer containing raw packet. *@param pinfo pointer to packet information fields. *@param tree pointer to data tree wireshark uses to display packet. */ static int dissect_ieee802154(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_) { tvbuff_t *new_tvb = dissect_zboss_specific(tvb, pinfo, tree); /* Call the common dissector. */ dissect_ieee802154_common(new_tvb, pinfo, tree, ((ieee802154_cc24xx || new_tvb != tvb) ? DISSECT_IEEE802154_OPTION_CC24xx : 0)); return tvb_captured_length(tvb); } /* dissect_ieee802154 */ /** * Dissector for IEEE 802.15.4 packet with no FCS present. * *@param tvb pointer to buffer containing raw packet. *@param pinfo pointer to packet information fields *@param tree pointer to data tree wireshark uses to display packet. *@return captured length. */ static int dissect_ieee802154_nofcs(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void * data _U_) { tvbuff_t *new_tvb; /* If there is no FCS present in the reported packet, then the length of * the true IEEE 802.15.4 packet is actually 2 bytes longer. Re-create * the buffer with an extended reported length so that the packet will * be handled as though the FCS were truncated. * * Note, we can't just call tvb_set_reported_length(), because it includes * checks to ensure that the new reported length is not longer than the old * reported length (why?), and will throw an exception. */ new_tvb = tvb_new_subset(tvb, 0, -1, tvb_reported_length(tvb)+IEEE802154_FCS_LEN); /* Call the common dissector. */ dissect_ieee802154_common(new_tvb, pinfo, tree, 0); return tvb_captured_length(tvb); } /* dissect_ieee802154_nofcs */ /** * Dissector for IEEE 802.15.4 packet dump produced by ZBOSS * *@param tvb pointer to buffer containing raw packet. *@param pinfo pointer to packet information fields *@param tree pointer to data tree wireshark uses to display packet. *@return new tvb subset if this is really ZBOSS dump, else oririnal tvb. */ static tvbuff_t * dissect_zboss_specific(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree) { if (tvb_captured_length(tvb) > 5) { guint off = 0; if (tvb_get_guint8(tvb, off++) == 'Z' && tvb_get_guint8(tvb, off++) == 'B' && tvb_get_guint8(tvb, off++) == 'O' && tvb_get_guint8(tvb, off++) == 'S' && tvb_get_guint8(tvb, off++) == 'S') { proto_tree *zboss_tree = NULL; proto_item *proto_root = NULL; /* Create the protocol tree. */ if (tree) { proto_root = proto_tree_add_protocol_format(tree, proto_zboss, tvb, 0, tvb_captured_length(tvb), "ZBOSS dump"); zboss_tree = proto_item_add_subtree(proto_root, ett_ieee802154_zboss); } proto_tree_add_item(zboss_tree, zboss_direction, tvb, off, 1, ENC_NA); proto_item_append_text(proto_root, ", %s", tvb_get_guint8(tvb, off) ? "OUT" : "IN"); off++; proto_tree_add_item(zboss_tree, zboss_channel, tvb, off, 1, ENC_NA); proto_item_append_text(proto_root, ", channel %u", tvb_get_guint8(tvb, off)); off++; proto_tree_add_item(zboss_tree, zboss_trace_number, tvb, off, 4, ENC_LITTLE_ENDIAN); off += 4; return tvb_new_subset(tvb, off, tvb_captured_length(tvb) - off, tvb_captured_length(tvb) - off); } } return tvb; } /* dissect_zboss_heur */ /** *Dissector for IEEE 802.15.4 packet with a ChipCon/Texas *Instruments compatible FCS. This is typically called by *layers encapsulating an IEEE 802.15.4 packet. * *@param tvb pointer to buffer containing raw packet. *@param pinfo pointer to packet information fields *@param tree pointer to data tree wireshark uses to display packet. */ static int dissect_ieee802154_cc24xx(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void * data _U_) { /* Call the common dissector. */ dissect_ieee802154_common(tvb, pinfo, tree, DISSECT_IEEE802154_OPTION_CC24xx); return tvb_captured_length(tvb); } /* dissect_ieee802154_cc24xx */ /** *IEEE 802.15.4 packet dissection routine for Wireshark. * *This function extracts all the information first before displaying. *If payload exists, that portion will be passed into another dissector *for further processing. * *This is called after the individual dissect_ieee802154* functions *have been called to determine what sort of FCS is present. *The dissect_ieee802154* functions will set the parameters *in the ieee802154_packet structure, and pass it to this one *through the data parameter. * *@param tvb pointer to buffer containing raw packet. *@param pinfo pointer to packet information fields *@param tree pointer to data tree wireshark uses to display packet. *@param options bitwise or of dissector options (see DISSECT_IEEE802154_OPTION_xxx). */ static void dissect_ieee802154_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, guint options) { tvbuff_t *volatile payload_tvb; proto_tree *volatile ieee802154_tree = NULL; proto_item *volatile proto_root = NULL; proto_item *hidden_item; proto_item *ti; guint offset = 0; volatile gboolean fcs_ok = TRUE; const char *saved_proto; ws_decrypt_status status; gboolean dstPanPresent = FALSE; gboolean srcPanPresent = FALSE; ieee802154_packet *packet = wmem_new0(wmem_packet_scope(), ieee802154_packet); ieee802154_short_addr addr16; ieee802154_hints_t *ieee_hints; heur_dtbl_entry_t *hdtbl_entry; packet->short_table = ieee802154_map.short_table; /* Allocate frame data with hints for upper layers */ if(!pinfo->fd->flags.visited){ ieee_hints = wmem_new0(wmem_file_scope(), ieee802154_hints_t); p_add_proto_data(wmem_file_scope(), pinfo, proto_ieee802154, 0, ieee_hints); } else { ieee_hints = (ieee802154_hints_t *)p_get_proto_data(wmem_file_scope(), pinfo, proto_ieee802154, 0); } /* Create the protocol tree. */ if (tree) { proto_root = proto_tree_add_protocol_format(tree, proto_ieee802154, tvb, 0, tvb_captured_length(tvb), "IEEE 802.15.4"); ieee802154_tree = proto_item_add_subtree(proto_root, ett_ieee802154); } /* Add the protocol name. */ col_set_str(pinfo->cinfo, COL_PROTOCOL, "IEEE 802.15.4"); /* Add the packet length. */ col_add_fstr(pinfo->cinfo, COL_PACKET_LENGTH, "%i", tvb_captured_length(tvb)); /* Add the packet length to the filter field */ hidden_item = proto_tree_add_uint(ieee802154_tree, hf_ieee802154_frame_length, NULL, 0, 0, tvb_reported_length(tvb)); PROTO_ITEM_SET_HIDDEN(hidden_item); /* Frame Control Field */ dissect_ieee802154_fcf(tvb, pinfo, ieee802154_tree, packet, &offset); /* Sequence Number */ if (packet->seqno_suppression) { if (packet->version != IEEE802154_VERSION_2012e) { expert_add_info(pinfo, proto_root, &ei_ieee802154_seqno_suppression); } } else { /* IEEE 802.15.4 Sequence Number Suppression */ packet->seqno = tvb_get_guint8(tvb, offset); if (tree) { proto_tree_add_uint(ieee802154_tree, hf_ieee802154_seqno, tvb, offset, 1, packet->seqno); /* For Ack packets display this in the root. */ if (packet->frame_type == IEEE802154_FCF_ACK) { proto_item_append_text(proto_root, ", Sequence Number: %u", packet->seqno); } } offset += 1; } /* * ADDRESSING FIELDS */ /* Clear out the addressing strings. */ set_address(&pinfo->net_dst, AT_NONE, 0, NULL); copy_address_shallow(&pinfo->dl_dst, &pinfo->net_dst); copy_address_shallow(&pinfo->dst, &pinfo->net_dst); set_address(&pinfo->net_src, AT_NONE, 0, NULL); copy_address_shallow(&pinfo->dl_src, &pinfo->net_src); copy_address_shallow(&pinfo->src, &pinfo->net_src); if (packet->dst_addr_mode == IEEE802154_FCF_ADDR_RESERVED) { /* Invalid Destination Address Mode. Abort Dissection. */ expert_add_info(pinfo, proto_root, &ei_ieee802154_dst); return; } if (packet->src_addr_mode == IEEE802154_FCF_ADDR_RESERVED) { /* Invalid Source Address Mode. Abort Dissection. */ expert_add_info(pinfo, proto_root, &ei_ieee802154_src); return; } if (packet->version == IEEE802154_VERSION_RESERVED) { /* Unknown Frame Version. Abort Dissection. */ expert_add_info(pinfo, proto_root, &ei_ieee802154_frame_ver); return; } if ((packet->frame_type == IEEE802154_FCF_BEACON) || (packet->frame_type == IEEE802154_FCF_DATA) || (packet->frame_type == IEEE802154_FCF_ACK) || (packet->frame_type == IEEE802154_FCF_CMD) ) { /* * Table 6 in 802.15.4-2015 */ if (packet->dst_addr_mode == IEEE802154_FCF_ADDR_NONE) { /* dst not present */ if (packet->src_addr_mode == IEEE802154_FCF_ADDR_NONE) { if ((packet->version == IEEE802154_VERSION_2003) || (packet->version == IEEE802154_VERSION_2006)) { if (packet->frame_type != IEEE802154_FCF_ACK) { /* In IEEE 802.15.4-2003 and 2006 only Acknowledgment is * allowed to have neither a source nor destination address */ expert_add_info(pinfo, proto_root, &ei_ieee802154_invalid_addressing); return; } if (packet->pan_id_compression == 1) { expert_add_info(pinfo, proto_root, &ei_ieee802154_invalid_panid_compression); return; } } else { /* Frame Version 0b10 */ if (packet->pan_id_compression == 1) { dstPanPresent = TRUE; } /* else neither are present */ } } else { /* src present, dst not present */ if ((packet->version == IEEE802154_VERSION_2003) || (packet->version == IEEE802154_VERSION_2006)) { if (packet->pan_id_compression == 1) { expert_add_info(pinfo, proto_root, &ei_ieee802154_invalid_panid_compression); return; } else { srcPanPresent = TRUE; } } else { /* Frame Version 0b10 */ if (packet->pan_id_compression == 0) { srcPanPresent = TRUE; } /* else neither present */ } } } /* * Destination Present */ else { if (packet->src_addr_mode == IEEE802154_FCF_ADDR_NONE) { if ((packet->version == IEEE802154_VERSION_2003) || (packet->version == IEEE802154_VERSION_2006)) { if (packet->pan_id_compression == 1) { expert_add_info(pinfo, proto_root, &ei_ieee802154_invalid_panid_compression); return; } else { dstPanPresent = TRUE; } } else { /* Frame Version 0b10 */ if (packet->pan_id_compression == 0) { dstPanPresent = TRUE; } } } else { /* src present, dst present */ if ((packet->version == IEEE802154_VERSION_2003) || (packet->version == IEEE802154_VERSION_2006)) { if (packet->pan_id_compression == 0) { dstPanPresent = TRUE; srcPanPresent = TRUE; } else { dstPanPresent = TRUE; } } else { /* Frame Version 0b10 */ if (packet->pan_id_compression == 0) { dstPanPresent = TRUE; } /* else neither PAN Ids */ } } } /* * Addressing Fields */ /* Destination PAN Id */ if (dstPanPresent) { packet->dst_pan = tvb_get_letohs(tvb, offset); if (tree) { proto_tree_add_uint(ieee802154_tree, hf_ieee802154_dst_panID, tvb, offset, 2, packet->dst_pan); } offset += 2; } /* Destination Address */ if (packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT) { char dst_addr[32]; /* Get the address. */ packet->dst16 = tvb_get_letohs(tvb, offset); /* Display the destination address. */ if ( packet->dst16 == IEEE802154_BCAST_ADDR ) { g_snprintf(dst_addr, 32, "Broadcast"); } else { g_snprintf(dst_addr, 32, "0x%04x", packet->dst16); } /* Provide address hints to higher layers that need it. */ if (ieee_hints) { ieee_hints->dst16 = packet->dst16; } set_address_tvb(&pinfo->dl_dst, ieee802_15_4_short_address_type, 2, tvb, offset); copy_address_shallow(&pinfo->dst, &pinfo->dl_dst); if (tree) { proto_tree_add_uint(ieee802154_tree, hf_ieee802154_dst16, tvb, offset, 2, packet->dst16); proto_item_append_text(proto_root, ", Dst: %s", dst_addr); } col_append_fstr(pinfo->cinfo, COL_INFO, ", Dst: %s", dst_addr); offset += 2; } else if (packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT) { guint64 *p_addr = (guint64 *)wmem_new(pinfo->pool, guint64); /* Get the address */ packet->dst64 = tvb_get_letoh64(tvb, offset); /* Copy and convert the address to network byte order. */ *p_addr = pntoh64(&(packet->dst64)); /* Display the destination address. */ /* XXX - OUI resolution doesn't happen when displaying resolved * EUI64 addresses; that should probably be fixed in * epan/addr_resolv.c. */ set_address(&pinfo->dl_dst, AT_EUI64, 8, p_addr); copy_address_shallow(&pinfo->dst, &pinfo->dl_dst); if (tree) { proto_tree_add_item(ieee802154_tree, hf_ieee802154_dst64, tvb, offset, 8, ENC_LITTLE_ENDIAN); proto_item_append_text(proto_root, ", Dst: %s", eui64_to_display(wmem_packet_scope(), packet->dst64)); } col_append_fstr(pinfo->cinfo, COL_INFO, ", Dst: %s", eui64_to_display(wmem_packet_scope(), packet->dst64)); offset += 8; } /* Source PAN Id */ if (srcPanPresent) { packet->src_pan = tvb_get_letohs(tvb, offset); if (tree) { proto_tree_add_uint(ieee802154_tree, hf_ieee802154_src_panID, tvb, offset, 2, packet->src_pan); } offset += 2; } else { if (dstPanPresent) { packet->src_pan = packet->dst_pan; } else { packet->src_pan = IEEE802154_BCAST_PAN; } } if (ieee_hints) { ieee_hints->src_pan = packet->src_pan; } /* Source Address */ if (packet->src_addr_mode == IEEE802154_FCF_ADDR_SHORT) { char src_addr[32]; /* Get the address. */ packet->src16 = tvb_get_letohs(tvb, offset); /* Update the Address fields. */ if (packet->src16==IEEE802154_BCAST_ADDR) { g_snprintf(src_addr, 32, "Broadcast"); } else { g_snprintf(src_addr, 32, "0x%04x", packet->src16); if (!pinfo->fd->flags.visited) { /* If we know our extended source address from previous packets, * provide a pointer to it in a hint for upper layers */ addr16.addr = packet->src16; addr16.pan = packet->src_pan; if (ieee_hints) { ieee_hints->src16 = packet->src16; ieee_hints->map_rec = (ieee802154_map_rec *) g_hash_table_lookup(ieee802154_map.short_table, &addr16); } } } set_address_tvb(&pinfo->dl_src, ieee802_15_4_short_address_type, 2, tvb, offset); copy_address_shallow(&pinfo->src, &pinfo->dl_src); /* Add the addressing info to the tree. */ if (tree) { proto_tree_add_uint(ieee802154_tree, hf_ieee802154_src16, tvb, offset, 2, packet->src16); proto_item_append_text(proto_root, ", Src: %s", src_addr); if (ieee_hints && ieee_hints->map_rec) { /* Display inferred source address info */ ti = proto_tree_add_eui64(ieee802154_tree, hf_ieee802154_src64, tvb, offset, 0, ieee_hints->map_rec->addr64); PROTO_ITEM_SET_GENERATED(ti); if ( ieee_hints->map_rec->start_fnum ) { ti = proto_tree_add_uint(ieee802154_tree, hf_ieee802154_src64_origin, tvb, 0, 0, ieee_hints->map_rec->start_fnum); } else { ti = proto_tree_add_uint_format_value(ieee802154_tree, hf_ieee802154_src64_origin, tvb, 0, 0, ieee_hints->map_rec->start_fnum, "Pre-configured"); } PROTO_ITEM_SET_GENERATED(ti); } } col_append_fstr(pinfo->cinfo, COL_INFO, ", Src: %s", src_addr); offset += 2; } else if (packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) { guint64 *p_addr = (guint64 *)wmem_new(pinfo->pool, guint64); /* Get the address. */ packet->src64 = tvb_get_letoh64(tvb, offset); /* Copy and convert the address to network byte order. */ *p_addr = pntoh64(&(packet->src64)); /* Display the source address. */ /* XXX - OUI resolution doesn't happen when displaying resolved * EUI64 addresses; that should probably be fixed in * epan/addr_resolv.c. */ set_address(&pinfo->dl_src, AT_EUI64, 8, p_addr); copy_address_shallow(&pinfo->src, &pinfo->dl_src); if (tree) { proto_tree_add_item(ieee802154_tree, hf_ieee802154_src64, tvb, offset, 8, ENC_LITTLE_ENDIAN); proto_item_append_text(proto_root, ", Src: %s", eui64_to_display(wmem_packet_scope(), packet->src64)); } col_append_fstr(pinfo->cinfo, COL_INFO, ", Src: %s", eui64_to_display(wmem_packet_scope(), packet->src64)); offset += 8; } } else { /* Unsupported Frame Type. Abort Dissection. */ expert_add_info(pinfo, proto_root, &ei_ieee802154_frame_type); return; } /* Check, but don't display the FCS yet, otherwise the payload dissection * may be out of place in the tree. But we want to know if the FCS is OK in * case the CRC is bad (don't want to continue dissection to the NWK layer). */ if (tvb_bytes_exist(tvb, tvb_reported_length(tvb)-IEEE802154_FCS_LEN, IEEE802154_FCS_LEN)) { /* The FCS is in the last two bytes of the packet. */ guint16 fcs = tvb_get_letohs(tvb, tvb_reported_length(tvb)-IEEE802154_FCS_LEN); /* Check if we are expecting a CC2420-style FCS*/ if (options & DISSECT_IEEE802154_OPTION_CC24xx) { fcs_ok = (fcs & IEEE802154_CC24xx_CRC_OK); } else { guint16 fcs_calc = ieee802154_crc_tvb(tvb, tvb_reported_length(tvb)-IEEE802154_FCS_LEN); fcs_ok = (fcs == fcs_calc); } } /* Existance of the Auxiliary Security Header is controlled by the Security Enabled Field */ if (packet->security_enable) { proto_tree *header_tree, *field_tree; guint8 security_control; guint aux_length = 5; /* Minimum length of the auxiliary header. */ static const int * security_fields[] = { &hf_ieee802154_security_level, &hf_ieee802154_key_id_mode, &hf_ieee802154_aux_sec_reserved, NULL }; /* Parse the security control field. */ security_control = tvb_get_guint8(tvb, offset); packet->security_level = (ieee802154_security_level)(security_control & IEEE802154_AUX_SEC_LEVEL_MASK); packet->key_id_mode = (ieee802154_key_id_mode)((security_control & IEEE802154_AUX_KEY_ID_MODE_MASK) >> IEEE802154_AUX_KEY_ID_MODE_SHIFT); /* Compute the length of the auxiliary header and create a subtree. */ if (packet->key_id_mode != KEY_ID_MODE_IMPLICIT) aux_length++; if (packet->key_id_mode == KEY_ID_MODE_KEY_EXPLICIT_4) aux_length += 4; if (packet->key_id_mode == KEY_ID_MODE_KEY_EXPLICIT_8) aux_length += 8; header_tree = proto_tree_add_subtree(ieee802154_tree, tvb, offset, aux_length, ett_ieee802154_auxiliary_security, NULL, "Auxiliary Security Header"); /* Security Control Field */ proto_tree_add_bitmask(header_tree, tvb, offset, hf_ieee802154_security_control_field, ett_ieee802154_aux_sec_control, security_fields, ENC_NA); offset++; /* Frame Counter Field */ packet->frame_counter = tvb_get_letohl (tvb, offset); proto_tree_add_uint(header_tree, hf_ieee802154_aux_sec_frame_counter, tvb, offset,4, packet->frame_counter); offset +=4; /* Key identifier field(s). */ if (packet->key_id_mode != KEY_ID_MODE_IMPLICIT) { /* Create a subtree. */ field_tree = proto_tree_add_subtree(header_tree, tvb, offset, 1, ett_ieee802154_aux_sec_key_id, &ti, "Key Identifier Field"); /* Will fix length later. */ /* Add key source, if it exists. */ if (packet->key_id_mode == KEY_ID_MODE_KEY_EXPLICIT_4) { packet->key_source.addr32 = tvb_get_ntohl(tvb, offset); proto_tree_add_uint64(field_tree, hf_ieee802154_aux_sec_key_source, tvb, offset, 4, packet->key_source.addr32); proto_item_set_len(ti, 1 + 4); offset += (int)sizeof (guint32); } if (packet->key_id_mode == KEY_ID_MODE_KEY_EXPLICIT_8) { packet->key_source.addr64 = tvb_get_ntoh64(tvb, offset); proto_tree_add_uint64(field_tree, hf_ieee802154_aux_sec_key_source, tvb, offset, 8, packet->key_source.addr64); proto_item_set_len(ti, 1 + 8); offset += 8; } /* Add key identifier. */ packet->key_index = tvb_get_guint8(tvb, offset); proto_tree_add_uint(field_tree, hf_ieee802154_aux_sec_key_index, tvb, offset,1, packet->key_index); offset++; } } /* * NONPAYLOAD FIELDS * */ /* All of the beacon fields, except the beacon payload are considered nonpayload. */ if ((packet->version == IEEE802154_VERSION_2003) || (packet->version == IEEE802154_VERSION_2006)) { if (packet->frame_type == IEEE802154_FCF_BEACON) { /* Regular Beacon. These are not present in Enhanced frame version 2 Beacons */ dissect_ieee802154_superframe(tvb, pinfo, ieee802154_tree, &offset); /* superframe spec */ dissect_ieee802154_gtsinfo(tvb, pinfo, ieee802154_tree, &offset); /* GTS information fields */ dissect_ieee802154_pendaddr(tvb, pinfo, ieee802154_tree, &offset); /* Pending address list */ } if (packet->frame_type == IEEE802154_FCF_CMD) { /** * In IEEE802.15.4-2003 and 2006 the command identifier is considered to be part of the header * and is thus not encrypted. For IEEE802.15.4-2012e and later the command id is considered to be * part of the payload, is encrypted, and follows the payload IEs. Thus we only parse the command id * here for 2006 and earlier frames. */ packet->command_id = tvb_get_guint8(tvb, offset); if (tree) { proto_tree_add_uint(ieee802154_tree, hf_ieee802154_cmd_id, tvb, offset, 1, packet->command_id); } offset++; /* Display the command identifier in the info column. */ col_set_str(pinfo->cinfo, COL_INFO, val_to_str_const(packet->command_id, ieee802154_cmd_names, "Unknown Command")); } } else { if (packet->ie_present) { dissect_ieee802154_header_ie(tvb, pinfo, ieee802154_tree, &offset, packet); } } /* IEEE 802.15.4-2003 may have security information pre-pended to payload */ if (packet->security_enable && (packet->version == IEEE802154_VERSION_2003)) { /* Store security suite preference in the 2006 security level identifier to simplify 2003 integration! */ packet->security_level = (ieee802154_security_level)ieee802154_sec_suite; /* Frame Counter and Key Sequence Counter prepended to the payload of an encrypted frame */ if (IEEE802154_IS_ENCRYPTED(packet->security_level)) { packet->frame_counter = tvb_get_letohl (tvb, offset); proto_tree_add_uint(ieee802154_tree, hf_ieee802154_sec_frame_counter, tvb, offset, (int)sizeof(guint32), packet->frame_counter); offset += (int)sizeof(guint32); packet->key_sequence_counter = tvb_get_guint8 (tvb, offset); proto_tree_add_uint(ieee802154_tree, hf_ieee802154_sec_key_sequence_counter, tvb, offset, (int)sizeof(guint8), packet->key_sequence_counter); offset += (int)sizeof(guint8); } } /* Encrypted Payload. */ if (packet->security_enable) { payload_tvb = dissect_ieee802154_decrypt(tvb, offset, pinfo, packet, &status); /* Get the unencrypted data if decryption failed. */ if (!payload_tvb) { /* Deal with possible truncation and the FCS field at the end. */ gint reported_len = tvb_reported_length(tvb)-offset-IEEE802154_FCS_LEN; gint captured_len = tvb_captured_length(tvb)-offset; if (reported_len < captured_len) captured_len = reported_len; payload_tvb = tvb_new_subset(tvb, offset, captured_len, reported_len); } /* Display the reason for failure, and abort if the error was fatal. */ switch (status) { case DECRYPT_PACKET_SUCCEEDED: case DECRYPT_NOT_ENCRYPTED: /* No problem. */ break; case DECRYPT_VERSION_UNSUPPORTED: /* We don't support decryption with that version of the protocol */ expert_add_info_format(pinfo, proto_root, &ei_ieee802154_decrypt_error, "We don't support decryption with protocol version %u", packet->version); call_dissector(data_handle, payload_tvb, pinfo, tree); goto dissect_ieee802154_fcs; case DECRYPT_PACKET_TOO_SMALL: expert_add_info_format(pinfo, proto_root, &ei_ieee802154_decrypt_error, "Packet was too small to include the CRC and MIC"); call_dissector(data_handle, payload_tvb, pinfo, tree); goto dissect_ieee802154_fcs; case DECRYPT_PACKET_NO_EXT_SRC_ADDR: expert_add_info_format(pinfo, proto_root, &ei_ieee802154_decrypt_error, "No extended source address - can't decrypt"); call_dissector(data_handle, payload_tvb, pinfo, tree); goto dissect_ieee802154_fcs; case DECRYPT_PACKET_NO_KEY: expert_add_info_format(pinfo, proto_root, &ei_ieee802154_decrypt_error, "No encryption key set - can't decrypt"); call_dissector(data_handle, payload_tvb, pinfo, tree); goto dissect_ieee802154_fcs; case DECRYPT_PACKET_DECRYPT_FAILED: expert_add_info_format(pinfo, proto_root, &ei_ieee802154_decrypt_error, "Decrypt failed"); call_dissector(data_handle, payload_tvb, pinfo, tree); goto dissect_ieee802154_fcs; case DECRYPT_PACKET_MIC_CHECK_FAILED: expert_add_info_format(pinfo, proto_root, &ei_ieee802154_decrypt_error, "MIC check failed"); /* * Abort only if the payload was encrypted, in which case we * probably didn't decrypt the packet right (eg: wrong key). */ if (IEEE802154_IS_ENCRYPTED(packet->security_level)) { call_dissector(data_handle, payload_tvb, pinfo, tree); goto dissect_ieee802154_fcs; } break; } } /* Plaintext Payload. */ else { /* Deal with possible truncation and the FCS field at the end. */ gint reported_len = tvb_reported_length(tvb)-offset-IEEE802154_FCS_LEN; gint captured_len = tvb_captured_length(tvb)-offset; if (reported_len < captured_len) captured_len = reported_len; payload_tvb = tvb_new_subset(tvb, offset, captured_len, reported_len); } /* presense of Payload IEs is defined by the termination of the Header IEs */ if (packet->payload_ie_present) { dissect_ieee802154_payload_ie(tvb, pinfo, ieee802154_tree, &offset); } if ((packet->version == IEEE802154_VERSION_2012e) && (packet->frame_type == IEEE802154_FCF_CMD)) { /* In 802.15.4e and later the Command Id follows the Payload IEs. */ packet->command_id = tvb_get_guint8(tvb, offset); if (tree) { proto_tree_add_uint(ieee802154_tree, hf_ieee802154_cmd_id, tvb, offset, 1, packet->command_id); } offset++; /* Display the command identifier in the info column. */ col_set_str(pinfo->cinfo, COL_INFO, val_to_str_const(packet->command_id, ieee802154_cmd_names, "Unknown Command")); } if (tvb_captured_length_remaining(tvb, offset) > IEEE802154_FCS_LEN) { /* * Wrap the sub-dissection in a try/catch block in case the payload is * broken. First we store the current protocol so we can fix it if an * exception is thrown by the subdissectors. */ saved_proto = pinfo->current_proto; /* Try to dissect the payload. */ TRY { switch (packet->frame_type) { case IEEE802154_FCF_BEACON: if (!dissector_try_heuristic(ieee802154_beacon_subdissector_list, payload_tvb, pinfo, tree, &hdtbl_entry, packet)) { /* Could not subdissect, call the data dissector instead. */ call_dissector(data_handle, payload_tvb, pinfo, tree); } break; case IEEE802154_FCF_CMD: dissect_ieee802154_command(payload_tvb, pinfo, ieee802154_tree, packet); break; case IEEE802154_FCF_DATA: /* Sanity-check. */ if ((!fcs_ok && ieee802154_fcs_ok) || !tvb_reported_length(payload_tvb)) { call_dissector(data_handle, payload_tvb, pinfo, tree); break; } /* Try the PANID dissector table for stateful dissection. */ if (dissector_try_uint_new(panid_dissector_table, packet->src_pan, payload_tvb, pinfo, tree, TRUE, packet)) { break; } /* Try again with the destination PANID (if different) */ if (((packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT) || (packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT)) && (packet->dst_pan != packet->src_pan) && dissector_try_uint_new(panid_dissector_table, packet->src_pan, payload_tvb, pinfo, tree, TRUE, packet)) { break; } /* Try heuristic dissection. */ if (dissector_try_heuristic(ieee802154_heur_subdissector_list, payload_tvb, pinfo, tree, &hdtbl_entry, packet)) break; /* Fall-through to dump undissectable payloads. */ default: /* Could not subdissect, call the data dissector instead. */ call_dissector(data_handle, payload_tvb, pinfo, tree); } /* switch */ } CATCH_ALL { /* * Someone encountered an error while dissecting the payload. But * we haven't yet finished processing all of our layer. Catch and * display the exception, then fall-through to finish displaying * the FCS (which we display last so the frame is ordered correctly * in the tree). */ show_exception(payload_tvb, pinfo, tree, EXCEPT_CODE, GET_MESSAGE); pinfo->current_proto = saved_proto; } ENDTRY; } /* * Frame Check Sequence (FCS) * */ dissect_ieee802154_fcs: /* The FCS should be the last bytes of the reported packet. */ offset = tvb_reported_length(tvb)-IEEE802154_FCS_LEN; /* Dissect the FCS only if it exists (captures which don't or can't get the * FCS will simply truncate the packet to omit it, but should still set the * reported length to cover the original packet length), so if the snapshot * is too short for an FCS don't make a fuss. */ if (tvb_bytes_exist(tvb, offset, IEEE802154_FCS_LEN) && (tree)) { proto_tree *field_tree; guint16 fcs = tvb_get_letohs(tvb, offset); /* Display the FCS depending on expected FCS format */ if ((options & DISSECT_IEEE802154_OPTION_CC24xx)) { /* Create a subtree for the FCS. */ field_tree = proto_tree_add_subtree_format(ieee802154_tree, tvb, offset, 2, ett_ieee802154_fcs, NULL, "Frame Check Sequence (TI CC24xx format): FCS %s", (fcs_ok) ? "OK" : "Bad"); /* Display FCS contents. */ ti = proto_tree_add_int(field_tree, hf_ieee802154_rssi, tvb, offset++, 1, (gint8) (fcs & IEEE802154_CC24xx_RSSI)); proto_item_append_text(ti, " dB"); /* Displaying Units */ proto_tree_add_boolean(field_tree, hf_ieee802154_fcs_ok, tvb, offset, 1, (gboolean) (fcs & IEEE802154_CC24xx_CRC_OK)); proto_tree_add_uint(field_tree, hf_ieee802154_correlation, tvb, offset, 1, (guint8) ((fcs & IEEE802154_CC24xx_CORRELATION) >> 8)); } else { ti = proto_tree_add_uint(ieee802154_tree, hf_ieee802154_fcs, tvb, offset, 2, fcs); if (fcs_ok) { proto_item_append_text(ti, " (Correct)"); } else { proto_item_append_text(ti, " (Incorrect, expected FCS=0x%04x", ieee802154_crc_tvb(tvb, offset)); } /* To Help with filtering, add the fcs_ok field to the tree. */ ti = proto_tree_add_boolean(ieee802154_tree, hf_ieee802154_fcs_ok, tvb, offset, 2, fcs_ok); PROTO_ITEM_SET_HIDDEN(ti); } } else if (tree) { /* Even if the FCS isn't present, add the fcs_ok field to the tree to * help with filter. Be sure not to make it visible though. */ ti = proto_tree_add_boolean_format_value(ieee802154_tree, hf_ieee802154_fcs_ok, tvb, offset, 2, fcs_ok, "Unknown"); PROTO_ITEM_SET_HIDDEN(ti); } /* If the CRC is invalid, make a note of it in the info column. */ if (!fcs_ok) { col_append_str(pinfo->cinfo, COL_INFO, ", Bad FCS"); if (tree) proto_item_append_text(proto_root, ", Bad FCS"); /* Flag packet as having a bad crc. */ expert_add_info(pinfo, proto_root, &ei_ieee802154_fcs); } } /* dissect_ieee802154_common */ /** *Subdissector command for the Superframe specification sub-field within the beacon frame. * *@param tvb pointer to buffer containing raw packet. *@param pinfo pointer to packet information fields (unused). *@param tree pointer to command subtree. *@param offset offset into the tvbuff to begin dissection. */ static void dissect_ieee802154_superframe(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, guint *offset) { static const int * superframe[] = { &hf_ieee802154_beacon_order, &hf_ieee802154_superframe_order, &hf_ieee802154_cap, &hf_ieee802154_superframe_battery_ext, &hf_ieee802154_superframe_coord, &hf_ieee802154_assoc_permit, NULL }; proto_tree_add_bitmask_text(tree, tvb, *offset, 2, "Superframe Specification", NULL , ett_ieee802154_superframe, superframe, ENC_LITTLE_ENDIAN, BMT_NO_INT|BMT_NO_TFS); (*offset) += 2; } /* dissect_ieee802154_superframe */ /** *Subdissector command for the GTS information fields within the beacon frame. * *@param tvb - pointer to buffer containing raw packet. *@param pinfo - pointer to packet information fields (unused). *@param tree - pointer to command subtree. *@param offset - offset into the tvbuff to begin dissection. */ static void dissect_ieee802154_gtsinfo(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, guint *offset) { proto_tree *field_tree = NULL; proto_tree *subtree = NULL; proto_item *ti; guint8 gts_spec; guint8 gts_count; /* Get and display the GTS specification field */ gts_spec = tvb_get_guint8(tvb, *offset); gts_count = gts_spec & IEEE802154_GTS_COUNT_MASK; if (tree) { /* Add Subtree for GTS information. */ if (gts_count) { field_tree = proto_tree_add_subtree(tree, tvb, *offset, 2 + (gts_count * 3), ett_ieee802154_gts, NULL, "GTS"); } else { field_tree = proto_tree_add_subtree(tree, tvb, *offset, 1, ett_ieee802154_gts, NULL, "GTS"); } proto_tree_add_uint(field_tree, hf_ieee802154_gts_count, tvb, *offset, 1, gts_count); proto_tree_add_boolean(field_tree, hf_ieee802154_gts_permit, tvb, *offset, 1, gts_spec & IEEE802154_GTS_PERMIT_MASK); } (*offset) += 1; /* If the GTS descriptor count is nonzero, then the GTS directions mask and descriptor list are present. */ if (gts_count) { guint8 gts_directions = tvb_get_guint8(tvb, *offset); guint gts_rx = 0; int i; /* Display the directions mask. */ if (tree) { proto_tree *dir_tree; /* Create a subtree. */ dir_tree = proto_tree_add_subtree(field_tree, tvb, *offset, 1, ett_ieee802154_gts_direction, &ti, "GTS Directions"); /* Add the directions to the subtree. */ for (i=0; i> IEEE802154_GTS_LENGTH_SHIFT; gts_slot = (gts_slot & IEEE802154_GTS_SLOT_MASK); if (tree) { /* Add address, slot, and time length fields. */ ti = proto_tree_add_uint(subtree, hf_ieee802154_gts_address, tvb, (*offset), 3, gts_addr); proto_item_append_text(ti, ", Slot: %i", gts_slot); proto_item_append_text(ti, ", Length: %i", gts_length); } (*offset) += 3; } /* for */ } } /* dissect_ieee802154_gtsinfo */ /** *Subdissector command for the pending address list fields within the beacon frame. * *@param tvb pointer to buffer containing raw packet. *@param pinfo pointer to packet information fields (unused). *@param tree pointer to command subtree. *@offset offset into the tvbuff to begin dissection. */ static void dissect_ieee802154_pendaddr(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, guint *offset) { proto_tree *subtree; guint8 pend_spec; guint8 pend_num16; guint8 pend_num64; int i; /* Get the Pending Addresses specification fields */ pend_spec = tvb_get_guint8(tvb, *offset); pend_num16 = pend_spec & IEEE802154_PENDADDR_SHORT_MASK; pend_num64 = (pend_spec & IEEE802154_PENDADDR_LONG_MASK) >> IEEE802154_PENDADDR_LONG_SHIFT; /* Add Subtree for the addresses */ subtree = proto_tree_add_subtree_format(tree, tvb, *offset, 1 + 2*pend_num16 + 8*pend_num64, ett_ieee802154_pendaddr, NULL, "Pending Addresses: %i Short and %i Long", pend_num16, pend_num64); (*offset) += 1; for (i=0; i> 7; length = header_ie & IEEE802154_HEADER_IE_LENGTH_MASK; /* Create a subtree for this command frame. */ subtree = proto_tree_add_subtree(tree, tvb, *offset, 1, ett_ieee802154_header, NULL, "Header IE"); proto_item_append_text(subtree, ", Element ID: %s, Length: %d", val_to_str_const(id, ieee802154_header_ie_names, "Unknown IE"), length); proto_tree_add_bitmask(subtree, tvb, *offset, hf_ieee802154_header_ie, ett_ieee802154_header_ie, fields, ENC_LITTLE_ENDIAN); *offset += 2; /* until the Header IEs are finalized, just use the data dissector */ if (length > 0) { proto_tree_add_bytes_item(subtree, hf_ieee802154_header_ie_data, tvb, *offset, length, ENC_NA, gba, NULL, NULL); *offset += length; } } while ((tvb_reported_length(tvb) > 1) && (id != IEEE802154_HEADER_IE_EID_TERM1) && (id != IEEE802154_HEADER_IE_EID_TERM2)); /* Presense of Payload IEs is determined by how the Header IEs are terminated */ if ((tvb_reported_length(tvb) > 1) && (id == IEEE802154_HEADER_IE_EID_TERM1)) { packet->payload_ie_present = TRUE; } else { packet->payload_ie_present = FALSE; } } /* dissect_ieee802154_header_ie */ /** *Subdissector command for Header IEs (Information Elements) * *@param tvb pointer to buffer containing raw packet. *@param pinfo pointer to packet information fields (unused). *@param tree pointer to command subtree. *@param offset offset into the tvbuff to begin dissection. */ static void dissect_ieee802154_payload_ie(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, guint *offset) { proto_tree *subtree; guint16 payload_ie; guint16 id; guint16 length; GByteArray *gba = g_byte_array_new(); static const int * fields[] = { &hf_ieee802154_payload_ie_type, &hf_ieee802154_payload_ie_id, &hf_ieee802154_payload_ie_length, NULL }; do { payload_ie = tvb_get_letohs(tvb, *offset); id = (payload_ie & IEEE802154_PAYLOAD_IE_ID_MASK) >> 11; length = payload_ie & IEEE802154_PAYLOAD_IE_LENGTH_MASK; /* Create a subtree for this command frame. */ subtree = proto_tree_add_subtree(tree, tvb, *offset, 1, ett_ieee802154_payload, NULL, "Payload IE"); proto_item_append_text(subtree, ", Group ID: %s, Length: %d", val_to_str_const(id, ieee802154_payload_ie_names, "Unknown IE"), length); proto_tree_add_bitmask(subtree, tvb, *offset, hf_ieee802154_payload_ie, ett_ieee802154_payload_ie, fields, ENC_LITTLE_ENDIAN); *offset += 2; /* until the Header IEs are finalized, just use the data dissector */ if (length > 0) { proto_tree_add_bytes_item(subtree, hf_ieee802154_payload_ie_data, tvb, *offset, length, ENC_NA, gba, NULL, NULL); *offset += length; } } while ((tvb_reported_length(tvb) > 1) && (id != IEEE802154_PAYLOAD_IE_GID_TERM)); } static const true_false_string tfs_cinfo_device_type = { "FFD", "RFD" }; static const true_false_string tfs_cinfo_power_src = { "AC/Mains Power", "Battery" }; /** *Command subdissector routine for the Association request command. * *@param tvb pointer to buffer containing raw packet. *@param pinfo pointer to packet information fields. *@param tree pointer to protocol tree. *@param packet IEEE 802.15.4 packet information. */ static void dissect_ieee802154_assoc_req(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, ieee802154_packet *packet) { proto_tree *subtree; static const int * capability[] = { &hf_ieee802154_cinfo_alt_coord, &hf_ieee802154_cinfo_device_type, &hf_ieee802154_cinfo_power_src, &hf_ieee802154_cinfo_idle_rx, &hf_ieee802154_cinfo_sec_capable, &hf_ieee802154_cinfo_alloc_addr, NULL }; /* Create a subtree for this command frame. */ subtree = proto_tree_add_subtree(tree, tvb, 0, 1, ett_ieee802154_cmd, NULL, val_to_str_const(packet->command_id, ieee802154_cmd_names, "Unknown Command")); /* Get and display capability info. */ proto_tree_add_bitmask_list(subtree, tvb, 0, 1, capability, ENC_NA); /* Call the data dissector for any leftover bytes. */ if (tvb_reported_length(tvb) > 1) { call_dissector(data_handle, tvb_new_subset_remaining(tvb, 1), pinfo, tree); } } /* dissect_ieee802154_assoc_req */ /** *Command subdissector routine for the Association response command. * *@param tvb pointer to buffer containing raw packet. *@param pinfo pointer to packet information fields. *@param tree pointer to protocol tree. *@param packet IEEE 802.15.4 packet information. */ static void dissect_ieee802154_assoc_rsp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, ieee802154_packet *packet) { proto_tree *subtree; proto_item *ti; guint16 short_addr; guint8 status; guint offset = 0; /* Create a subtree for this command frame. */ subtree = proto_tree_add_subtree(tree, tvb, offset, 3, ett_ieee802154_cmd, NULL, val_to_str_const(packet->command_id, ieee802154_cmd_names, "Unknown Command")); /* Get and display the short address. */ short_addr = tvb_get_letohs(tvb, offset); proto_tree_add_uint(subtree, hf_ieee802154_assoc_addr, tvb, offset, 2, short_addr); offset += 2; /* Get and display the status. */ status = tvb_get_guint8(tvb, offset); if (tree) { ti = proto_tree_add_uint(subtree, hf_ieee802154_assoc_status, tvb, offset, 1, status); if (status == IEEE802154_CMD_ASRSP_AS_SUCCESS) proto_item_append_text(ti, " (Association Successful)"); else if (status == IEEE802154_CMD_ASRSP_PAN_FULL) proto_item_append_text(ti, " (PAN Full)"); else if (status == IEEE802154_CMD_ASRSP_PAN_DENIED) proto_item_append_text(ti, " (Association Denied)"); else proto_item_append_text(ti, " (Reserved)"); } offset += 1; /* Update the info column. */ if (status == IEEE802154_CMD_ASRSP_AS_SUCCESS) { /* Association was successful. */ if (packet->src_addr_mode != IEEE802154_FCF_ADDR_SHORT) { col_append_fstr(pinfo->cinfo, COL_INFO, ", PAN: 0x%04x", packet->dst_pan); } if (short_addr != IEEE802154_NO_ADDR16) { col_append_fstr(pinfo->cinfo, COL_INFO, " Addr: 0x%04x", short_addr); } } else { /* Association was unsuccessful. */ col_append_str(pinfo->cinfo, COL_INFO, ", Unsuccessful"); } /* Update the address table. */ if ((status == IEEE802154_CMD_ASRSP_AS_SUCCESS) && (short_addr != IEEE802154_NO_ADDR16)) { ieee802154_addr_update(&ieee802154_map, short_addr, packet->dst_pan, packet->dst64, pinfo->current_proto, pinfo->num); } /* Call the data dissector for any leftover bytes. */ if (tvb_captured_length(tvb) > offset) { call_dissector(data_handle, tvb_new_subset_remaining(tvb, offset), pinfo, tree); } } /* dissect_ieee802154_assoc_rsp */ /** * Command subdissector routine for the Disassociate command. * *@param tvb pointer to buffer containing raw packet. *@param pinfo pointer to packet information fields. *@param tree pointer to protocol tree. *@param packet IEEE 802.15.4 packet information. */ static void dissect_ieee802154_disassoc(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, ieee802154_packet *packet) { proto_tree *subtree; proto_item *ti; guint8 reason; /* Create a subtree for this command frame. */ subtree = proto_tree_add_subtree(tree, tvb, 0, 1, ett_ieee802154_cmd, NULL, val_to_str_const(packet->command_id, ieee802154_cmd_names, "Unknown Command")); /* Get and display the disassociation reason. */ reason = tvb_get_guint8(tvb, 0); if (tree) { ti = proto_tree_add_uint(subtree, hf_ieee802154_disassoc_reason, tvb, 0, 1, reason); switch(reason) { case 0x01: proto_item_append_text(ti, " (Coordinator requests device to leave)"); break; case 0x02: proto_item_append_text(ti, " (Device wishes to leave)"); break; default: proto_item_append_text(ti, " (Reserved)"); break; } /* switch */ } if (!pinfo->fd->flags.visited) { /* Update the address tables */ if ( packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT ) { ieee802154_long_addr_invalidate(packet->dst64, pinfo->num); } else if ( packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT ) { ieee802154_short_addr_invalidate(packet->dst16, packet->dst_pan, pinfo->num); } } /* Call the data dissector for any leftover bytes. */ if (tvb_captured_length(tvb) > 1) { call_dissector(data_handle, tvb_new_subset_remaining(tvb, 1), pinfo, tree); } } /* dissect_ieee802154_disassoc */ /** * Command subdissector routine for the Coordinator Realignment command. * *@param tvb pointer to buffer containing raw packet. *@param pinfo pointer to packet information fields. *@param tree pointer to protocol tree. *@param packet IEEE 802.15.4 packet information. */ static void dissect_ieee802154_realign(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, ieee802154_packet *packet) { proto_tree *subtree; proto_item *subitem; guint16 pan_id; guint16 coord_addr; guint8 channel; guint16 short_addr; guint offset = 0; /* Create a subtree for this command frame. */ subtree = proto_tree_add_subtree(tree, tvb, offset, 0, ett_ieee802154_cmd, &subitem, val_to_str_const(packet->command_id, ieee802154_cmd_names, "Unknown Command")); /* Get and display the command PAN ID. */ pan_id = tvb_get_letohs(tvb, offset); proto_tree_add_uint(subtree, hf_ieee802154_realign_pan, tvb, offset, 2, pan_id); col_append_fstr(pinfo->cinfo, COL_INFO, ", PAN: 0x%04x", pan_id); offset += 2; /* Get and display the coordinator address. */ coord_addr = tvb_get_letohs(tvb, offset); proto_tree_add_uint(subtree, hf_ieee802154_realign_caddr, tvb, offset, 2, coord_addr); col_append_fstr(pinfo->cinfo, COL_INFO, ", Coordinator: 0x%04x", coord_addr); offset += 2; /* Get and display the channel. */ channel = tvb_get_guint8(tvb, offset); proto_tree_add_uint(subtree, hf_ieee802154_realign_channel, tvb, offset, 1, channel); col_append_fstr(pinfo->cinfo, COL_INFO, ", Channel: %u", channel); offset += 1; /* Get and display the short address. */ short_addr = tvb_get_letohs(tvb, offset); if (tree) proto_tree_add_uint(subtree, hf_ieee802154_realign_addr, tvb, offset, 2, short_addr); if ((packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT) && (short_addr != IEEE802154_NO_ADDR16)) { col_append_fstr(pinfo->cinfo, COL_INFO, ", Addr: 0x%04x", short_addr); } offset += 2; /* Update the address table. */ if ((short_addr != IEEE802154_NO_ADDR16) && (packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT)) { ieee802154_addr_update(&ieee802154_map, short_addr, packet->dst_pan, packet->dst64, pinfo->current_proto, pinfo->num); } /* Get and display the channel page, if it exists. Added in IEEE802.15.4-2006 */ if (tvb_bytes_exist(tvb, offset, 1)) { guint8 channel_page = tvb_get_guint8(tvb, offset); if (tree) proto_tree_add_uint(subtree, hf_ieee802154_realign_channel_page, tvb, offset, 1, channel_page); offset += 1; } /* Fix the length of the command subtree. */ if (tree) { proto_item_set_len(subitem, offset); } /* Call the data dissector for any leftover bytes. */ if (tvb_captured_length(tvb) > offset) { call_dissector(data_handle, tvb_new_subset_remaining(tvb, offset), pinfo, tree); } } /* dissect_ieee802154_realign */ static const true_false_string tfs_gtsreq_dir = { "Receive", "Transmit" }; static const true_false_string tfs_gtsreq_type= { "Allocate GTS", "Deallocate GTS" }; /** *Command subdissector routine for the GTS request command. * *Assumes that COL_INFO will be set to the command name, *command name will already be appended to the command subtree *and protocol root. In addition, assumes that the command ID *has already been parsed. * *@param tvb pointer to buffer containing raw packet. *@param pinfo pointer to packet information fields (unused). *@param tree pointer to protocol tree. *@param packet IEEE 802.15.4 packet information (unused). */ static void dissect_ieee802154_gtsreq(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, ieee802154_packet *packet) { proto_tree *subtree; static const int * characteristics[] = { &hf_ieee802154_gtsreq_len, &hf_ieee802154_gtsreq_dir, &hf_ieee802154_gtsreq_type, NULL }; /* Create a subtree for this command frame. */ subtree = proto_tree_add_subtree(tree, tvb, 0, 1, ett_ieee802154_cmd, NULL, val_to_str_const(packet->command_id, ieee802154_cmd_names, "Unknown Command")); proto_tree_add_bitmask_list(subtree, tvb, 0, 1, characteristics, ENC_NA); /* Call the data dissector for any leftover bytes. */ if (tvb_reported_length(tvb) > 1) { call_dissector(data_handle, tvb_new_subset_remaining(tvb, 1), pinfo, tree); } } /* dissect_ieee802154_gtsreq */ /** * Subdissector routine all commands. * *@param tvb pointer to buffer containing raw packet. *@param pinfo pointer to packet information fields (unused). *@param tree pointer to protocol tree. *@param packet IEEE 802.15.4 packet information (unused). */ static void dissect_ieee802154_command(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, ieee802154_packet *packet) { switch (packet->command_id) { case IEEE802154_CMD_ASSOC_REQ: IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id, (packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) && (packet->dst_addr_mode != IEEE802154_FCF_ADDR_NONE)); dissect_ieee802154_assoc_req(tvb, pinfo, tree, packet); break; case IEEE802154_CMD_ASSOC_RSP: IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id, (packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) && (packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT)); dissect_ieee802154_assoc_rsp(tvb, pinfo, tree, packet); break; case IEEE802154_CMD_DISASSOC_NOTIFY: IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id, (packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) && (packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT)); dissect_ieee802154_disassoc(tvb, pinfo, tree, packet); return; case IEEE802154_CMD_DATA_RQ: IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id, packet->src_addr_mode != IEEE802154_FCF_ADDR_NONE); /* No payload expected. */ break; case IEEE802154_CMD_PANID_CONFLICT: IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id, (packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) && (packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT)); /* No payload expected. */ break; case IEEE802154_CMD_ORPHAN_NOTIFY: IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id, (packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) && (packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT) && (packet->dst16 == IEEE802154_BCAST_ADDR) && (packet->src_pan == IEEE802154_BCAST_PAN) && (packet->dst_pan == IEEE802154_BCAST_PAN)); /* No payload expected. */ break; case IEEE802154_CMD_BEACON_REQ: if ((packet->version == IEEE802154_VERSION_2003) || (packet->version == IEEE802154_VERSION_2006)) { IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id, (packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT) && (packet->src_addr_mode == IEEE802154_FCF_ADDR_NONE) && (packet->dst16 == IEEE802154_BCAST_ADDR) && (packet->dst_pan == IEEE802154_BCAST_PAN)); } /* No payload expected. */ break; case IEEE802154_CMD_COORD_REALIGN: IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id, (packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) && (packet->dst_pan == IEEE802154_BCAST_PAN) && (packet->dst_addr_mode != IEEE802154_FCF_ADDR_NONE)); if (packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT) { /* If directed to a 16-bit address, check that it is being broadcast. */ IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id, packet->dst16 == IEEE802154_BCAST_ADDR); } dissect_ieee802154_realign(tvb, pinfo, tree, packet); return; case IEEE802154_CMD_GTS_REQ: /* Check that the addressing is correct for this command type. */ IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id, (packet->src_addr_mode == IEEE802154_FCF_ADDR_SHORT) && (packet->dst_addr_mode == IEEE802154_FCF_ADDR_NONE) && (packet->src16 != IEEE802154_BCAST_ADDR) && (packet->src16 != IEEE802154_NO_ADDR16)); dissect_ieee802154_gtsreq(tvb, pinfo, tree, packet); return; case IEEE802154_CMD_TRLE_MGMT_REQ: case IEEE802154_CMD_TRLE_MGMT_RSP: case IEEE802154_CMD_DSME_ASSOC_REQ: case IEEE802154_CMD_DSME_ASSOC_RSP: case IEEE802154_CMD_DSME_GTS_REQ: case IEEE802154_CMD_DSME_GTS_RSP: case IEEE802154_CMD_DSME_GTS_NOTIFY: case IEEE802154_CMD_DSME_INFO_REQ: case IEEE802154_CMD_DSME_INFO_RSP: case IEEE802154_CMD_DSME_BEACON_ALLOC_NOTIFY: case IEEE802154_CMD_DSME_BEACON_COLL_NOTIFY: case IEEE802154_CMD_DSME_LINK_REPORT: case IEEE802154_CMD_RIT_DATA_REQ: case IEEE802154_CMD_DBS_REQ: case IEEE802154_CMD_DBS_RSP: /* TODO add support for these commands, for now * if anything remains other than the FCS, dump it */ if (tvb_captured_length_remaining(tvb, 0) > 2) { call_dissector(data_handle, tvb, pinfo, tree); } return; } /* switch */ } /* dissect_ieee802154_command */ /** *IEEE 802.15.4 decryption algorithm. Tries to find the *appropriate key from the information in the IEEE 802.15.4 *packet structure and dissector config. * *This function implements the security proceedures for the *2006 version of the spec only. IEEE 802.15.4-2003 is *unsupported. *@param tvb IEEE 802.15.4 packet. *@param pinfo Packet info structure. *@param offset Offset where the ciphertext 'c' starts. *@param packet IEEE 802.15.4 packet information. *@param status status of decryption returned through here on failure. *@return decrypted payload. */ static tvbuff_t * dissect_ieee802154_decrypt(tvbuff_t *tvb, guint offset, packet_info *pinfo, ieee802154_packet *packet, ws_decrypt_status *status) { tvbuff_t *ptext_tvb; gboolean have_mic = FALSE; guint64 srcAddr; unsigned char key[16]; unsigned char tmp[16]; unsigned char rx_mic[16]; guint M; gint captured_len; gint reported_len; ieee802154_hints_t *ieee_hints; /* * Check the version; we only support IEEE 802.15.4-2003 and IEEE 802.15.4-2006. * We must do this first, as, if this isn't IEEE 802.15.4-2003 or IEEE 802.15.4-2006, * we don't have the Auxiliary Security Header, and haven't * filled in the information for it, and none of the stuff * we do afterwards, which uses that information, is doable. */ if ((packet->version != IEEE802154_VERSION_2006) && (packet->version != IEEE802154_VERSION_2003)) { *status = DECRYPT_VERSION_UNSUPPORTED; return NULL; } ieee_hints = (ieee802154_hints_t *)p_get_proto_data(wmem_file_scope(), pinfo, proto_ieee802154, 0); /* Get the captured and on-the-wire length of the payload. */ M = IEEE802154_MIC_LENGTH(packet->security_level); reported_len = tvb_reported_length_remaining(tvb, offset) - IEEE802154_FCS_LEN - M; if (reported_len < 0) { *status = DECRYPT_PACKET_TOO_SMALL; return NULL; } /* Check of the payload is truncated. */ if (tvb_bytes_exist(tvb, offset, reported_len)) { captured_len = reported_len; } else { captured_len = tvb_captured_length_remaining(tvb, offset); } /* Check if the MIC is present in the captured data. */ have_mic = tvb_bytes_exist(tvb, offset + reported_len, M); if (have_mic) { tvb_memcpy(tvb, rx_mic, offset + reported_len, M); } /* * Key Lookup - Need to find the appropriate key. * */ /* * Oh God! The specification is so bad. This is the worst * case of design-by-committee I've ever seen in my life. * The IEEE has created an unintelligible mess in order * to decipher which key is used for which message. * * Let's hope it's simpler to implement for dissecting only. * * Also need to find the extended address of the sender. */ if (packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) { /* The source EUI-64 is included in the headers. */ srcAddr = packet->src64; } else if (ieee_hints && ieee_hints->map_rec && ieee_hints->map_rec->addr64) { /* Use the hint */ srcAddr = ieee_hints->map_rec->addr64; } else { /* Lookup failed. */ *status = DECRYPT_PACKET_NO_EXT_SRC_ADDR; return NULL; } /* Lookup the key. */ /* * TODO: What this dissector really needs is a UAT to store multiple keys * and a variety of key configuration data. However, a single shared key * should be sufficient to get packet encryption off to a start. */ if (!ieee802154_key_valid) { *status = DECRYPT_PACKET_NO_KEY; return NULL; } memcpy(key, ieee802154_key, IEEE802154_CIPHER_SIZE); /* * CCM* - CTR mode payload encryption * */ /* Create the CCM* initial block for decryption (Adata=0, M=0, counter=0). */ ccm_init_block(tmp, FALSE, 0, srcAddr, packet, 0); /* Decrypt the ciphertext, and place the plaintext in a new tvb. */ if (IEEE802154_IS_ENCRYPTED(packet->security_level) && captured_len) { guint8 *text; /* * Make a copy of the ciphertext in heap memory. * * We will decrypt the message in-place and then use the buffer as the * real data for the new tvb. */ text = (guint8 *)tvb_memdup(NULL, tvb, offset, captured_len); /* Perform CTR-mode transformation. */ if (!ccm_ctr_encrypt(key, tmp, rx_mic, text, captured_len)) { g_free(text); *status = DECRYPT_PACKET_DECRYPT_FAILED; return NULL; } /* Create a tvbuff for the plaintext. */ ptext_tvb = tvb_new_child_real_data(tvb, text, captured_len, reported_len); tvb_set_free_cb(ptext_tvb, g_free); add_new_data_source(pinfo, ptext_tvb, "Decrypted IEEE 802.15.4 payload"); *status = DECRYPT_PACKET_SUCCEEDED; } /* There is no ciphertext. Wrap the plaintext in a new tvb. */ else { /* Decrypt the MIC (if present). */ if ((have_mic) && (!ccm_ctr_encrypt(key, tmp, rx_mic, NULL, 0))) { *status = DECRYPT_PACKET_DECRYPT_FAILED; return NULL; } /* Create a tvbuff for the plaintext. This might result in a zero-length tvbuff. */ ptext_tvb = tvb_new_subset(tvb, offset, captured_len, reported_len); *status = DECRYPT_PACKET_SUCCEEDED; } /* * CCM* - CBC-mode message authentication * */ /* We can only verify the message if the MIC wasn't truncated. */ if (have_mic) { unsigned char dec_mic[16]; guint l_m = captured_len; guint l_a = offset; /* Adjust the lengths of the plaintext and additional data if unencrypted. */ if (!IEEE802154_IS_ENCRYPTED(packet->security_level)) { l_a += l_m; l_m = 0; } else if ((packet->version == IEEE802154_VERSION_2003) && !ieee802154_extend_auth) l_a -= 5; /* Exclude Frame Counter (4 bytes) and Key Sequence Counter (1 byte) from authentication data */ /* Create the CCM* initial block for authentication (Adata!=0, M!=0, counter=l(m)). */ ccm_init_block(tmp, TRUE, M, srcAddr, packet, l_m); /* Compute CBC-MAC authentication tag. */ /* * And yes, despite the warning in tvbuff.h, I think tvb_get_ptr is the * right function here since either A) the payload wasn't encrypted, in * which case l_m is zero, or B) the payload was encrypted, and the tvb * already points to contiguous memory, since we just allocated it in * decryption phase. */ if (!ccm_cbc_mac(key, tmp, (const gchar *)tvb_memdup(wmem_packet_scope(), tvb, 0, l_a), l_a, tvb_get_ptr(ptext_tvb, 0, l_m), l_m, dec_mic)) { *status = DECRYPT_PACKET_MIC_CHECK_FAILED; } /* Compare the received MIC with the one we generated. */ else if (memcmp(rx_mic, dec_mic, M) != 0) { *status = DECRYPT_PACKET_MIC_CHECK_FAILED; } } /* Done! */ return ptext_tvb; } /* dissect_ieee802154_decrypt */ /** *Creates the CCM* initial block value for IEEE 802.15.4. * *@param block Output pointer for the initial block. *@param adata TRUE if additional auth data is present *@param M CCM* parameter M. *@param addr Source extended address. *@param packet IEEE 802.15.4 packet information. *@param ctr_val Value in the last L bytes of the block. */ static void ccm_init_block(gchar *block, gboolean adata, gint M, guint64 addr, ieee802154_packet *packet, gint ctr_val) { gint i = 0; /* Flags: Reserved(0) || Adata || (M-2)/2 || (L-1) */ block[i] = (0x2 - 1); /* (L-1) */ if (M > 0) block[i] |= (((M-2)/2) << 3); /* (M-2)/2 */ if (adata) block[i] |= (1 << 6); /* Adata */ i++; /* 2003 CCM Nonce: Source Address || Frame Counter || Key Sequence Counter */ /* 2006 CCM* Nonce: Source Address || Frame Counter || Security Level */ block[i++] = (guint8)((addr >> 56) & 0xff); block[i++] = (guint8)((addr >> 48) & 0xff); block[i++] = (guint8)((addr >> 40) & 0xff); block[i++] = (guint8)((addr >> 32) & 0xff); block[i++] = (guint8)((addr >> 24) & 0xff); block[i++] = (guint8)((addr >> 16) & 0xff); block[i++] = (guint8)((addr >> 8) & 0xff); block[i++] = (guint8)((addr >> 0) & 0xff); block[i++] = (guint8)((packet->frame_counter >> 24) & 0xff); block[i++] = (guint8)((packet->frame_counter >> 16) & 0xff); block[i++] = (guint8)((packet->frame_counter >> 8) & 0xff); block[i++] = (guint8)((packet->frame_counter >> 0) & 0xff); if (packet->version == IEEE802154_VERSION_2003) block[i++] = packet->key_sequence_counter; else block[i++] = packet->security_level; /* Plaintext length. */ block[i++] = (guint8)((ctr_val >> 8) & 0xff); block[i] = (guint8)((ctr_val >> 0) & 0xff); } /* ccm_init_block */ /* * Perform an in-place CTR-mode encryption/decryption. * *@param key Encryption Key. *@param iv Counter initial value. *@param mic MIC to encrypt/decrypt. *@param data Buffer to encrypt/decrypt. *@param length Length of the buffer. *@return TRUE on SUCCESS, FALSE on error. */ #ifdef HAVE_LIBGCRYPT static gboolean ccm_ctr_encrypt(const gchar *key, const gchar *iv, gchar *mic, gchar *data, gint length) { gcry_cipher_hd_t cipher_hd; /* Open the cipher. */ if (gcry_cipher_open(&cipher_hd, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_CTR, 0)) { return FALSE; } /* Set the key and initial value. */ if (gcry_cipher_setkey(cipher_hd, key, 16)) { gcry_cipher_close(cipher_hd); return FALSE; } if (gcry_cipher_setctr(cipher_hd, iv, 16)) { gcry_cipher_close(cipher_hd); return FALSE; } /* Decrypt the MIC. */ if (gcry_cipher_encrypt(cipher_hd, mic, 16, NULL, 0)) { gcry_cipher_close(cipher_hd); return FALSE; } /* Decrypt the payload. */ if (gcry_cipher_encrypt(cipher_hd, data, length, NULL, 0)) { gcry_cipher_close(cipher_hd); return FALSE; } /* Done with the cipher. */ gcry_cipher_close(cipher_hd); return TRUE; } /* ccm_ctr_encrypt */ #else static gboolean ccm_ctr_encrypt(const gchar *key _U_, const gchar *iv _U_, gchar *mic _U_, gchar *data _U_, gint length _U_) { return FALSE; } #endif /* HAVE_LIBGCRYPT */ /** *Generate a CBC-MAC of the decrypted payload and additional authentication headers. *@param key Encryption Key. *@param iv Counter initial value. *@param a Additional auth headers. *@param a_len Length of the additional headers. *@param m Plaintext message. *@param m_len Length of plaintext message. *@param mic Output for CBC-MAC. *@return TRUE on SUCCESS, FALSE on error. */ #ifdef HAVE_LIBGCRYPT static gboolean ccm_cbc_mac(const gchar *key, const gchar *iv, const gchar *a, gint a_len, const gchar *m, gint m_len, gchar *mic) { gcry_cipher_hd_t cipher_hd; guint i = 0; unsigned char block[16]; /* Open the cipher. */ if (gcry_cipher_open(&cipher_hd, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_CBC, GCRY_CIPHER_CBC_MAC)) return FALSE; /* Set the key. */ if (gcry_cipher_setkey(cipher_hd, key, 16)) { gcry_cipher_close(cipher_hd); return FALSE; } /* Process the initial value. */ if (gcry_cipher_encrypt(cipher_hd, mic, 16, iv, 16)) { gcry_cipher_close(cipher_hd); return FALSE; } /* Encode L(a) */ i = 0; /* XXX: GINT_MAX is not defined so #if ... will always be false */ #if (GINT_MAX >= (1LL << 32)) if (a_len >= (1LL << 32)) { block[i++] = 0xff; block[i++] = 0xff; block[i++] = (a_len >> 56) & 0xff; block[i++] = (a_len >> 48) & 0xff; block[i++] = (a_len >> 40) & 0xff; block[i++] = (a_len >> 32) & 0xff; block[i++] = (a_len >> 24) & 0xff; block[i++] = (a_len >> 16) & 0xff; block[i++] = (a_len >> 8) & 0xff; block[i++] = (a_len >> 0) & 0xff; } else #endif if (a_len >= ((1 << 16) - (1 << 8))) { block[i++] = 0xff; block[i++] = 0xfe; block[i++] = (a_len >> 24) & 0xff; block[i++] = (a_len >> 16) & 0xff; block[i++] = (a_len >> 8) & 0xff; block[i++] = (a_len >> 0) & 0xff; } else { block[i++] = (a_len >> 8) & 0xff; block[i++] = (a_len >> 0) & 0xff; } /* Append a to get the first block of input (pad if we encounter the end of a). */ while ((i < sizeof(block)) && (a_len-- > 0)) block[i++] = *a++; while (i < sizeof(block)) block[i++] = 0; /* Process the first block of AuthData. */ if (gcry_cipher_encrypt(cipher_hd, mic, 16, block, 16)) { gcry_cipher_close(cipher_hd); return FALSE; } /* Transform and process the remainder of a. */ while (a_len > 0) { /* Copy and pad. */ if ((guint)a_len >= sizeof(block)) memcpy(block, a, sizeof(block)); else {memcpy(block, a, a_len); memset(block+a_len, 0, sizeof(block)-a_len);} /* Adjust pointers. */ a += sizeof(block); a_len -= (int)sizeof(block); /* Execute the CBC-MAC algorithm. */ if (gcry_cipher_encrypt(cipher_hd, mic, 16, block, sizeof(block))) { gcry_cipher_close(cipher_hd); return FALSE; } } /* while */ /* Process the message, m. */ while (m_len > 0) { /* Copy and pad. */ if ((guint)m_len >= sizeof(block)) memcpy(block, m, sizeof(block)); else {memcpy(block, m, m_len); memset(block+m_len, 0, sizeof(block)-m_len);} /* Adjust pointers. */ m += sizeof(block); m_len -= (int)sizeof(block); /* Execute the CBC-MAC algorithm. */ if (gcry_cipher_encrypt(cipher_hd, mic, 16, block, sizeof(block))) { gcry_cipher_close(cipher_hd); return FALSE; } } /* Done with the cipher. */ gcry_cipher_close(cipher_hd); return TRUE; } /* ccm_cbc_mac */ #else static gboolean ccm_cbc_mac(const gchar *key _U_, const gchar *iv _U_, const gchar *a _U_, gint a_len _U_, const gchar *m _U_, gint m_len _U_, gchar *mic _U_) { return FALSE; } #endif /* HAVE_LIBGCRYPT */ /* Key hash function. */ guint ieee802154_short_addr_hash(gconstpointer key) { return (((const ieee802154_short_addr *)key)->addr) | (((const ieee802154_short_addr *)key)->pan << 16); } /* Key equal function. */ gboolean ieee802154_short_addr_equal(gconstpointer a, gconstpointer b) { return (((const ieee802154_short_addr *)a)->pan == ((const ieee802154_short_addr *)b)->pan) && (((const ieee802154_short_addr *)a)->addr == ((const ieee802154_short_addr *)b)->addr); } /* Key hash function. */ guint ieee802154_long_addr_hash(gconstpointer key) { return (guint)(((const ieee802154_long_addr *)key)->addr) & 0xFFFFFFFF; } /* Key equal function. */ gboolean ieee802154_long_addr_equal(gconstpointer a, gconstpointer b) { return (((const ieee802154_long_addr *)a)->addr == ((const ieee802154_long_addr *)b)->addr); } /** *Creates a record that maps the given short address and pan to a long (extended) address. *@param short_addr 16-bit short address *@param pan 16-bit PAN id *@param long_addr 64-bit long (extended) address *@param proto pointer to name of current protocol *@param fnum Frame number this mapping became valid *@return TRUE Record was updated, FALSE Couldn't find it */ ieee802154_map_rec *ieee802154_addr_update(ieee802154_map_tab_t *au_ieee802154_map, guint16 short_addr, guint16 pan, guint64 long_addr, const char *proto, guint fnum) { ieee802154_short_addr addr16; ieee802154_map_rec *p_map_rec; gpointer old_key; /* Look up short address hash */ addr16.pan = pan; addr16.addr = short_addr; p_map_rec = (ieee802154_map_rec *)g_hash_table_lookup(au_ieee802154_map->short_table, &addr16); /* Update mapping record */ if (p_map_rec) { /* record already exists */ if ( p_map_rec->addr64 == long_addr ) { /* no change */ return p_map_rec; } else { /* mark current mapping record invalid */ p_map_rec->end_fnum = fnum; } } /* create a new mapping record */ p_map_rec = wmem_new(wmem_file_scope(), ieee802154_map_rec); p_map_rec->proto = proto; p_map_rec->start_fnum = fnum; p_map_rec->end_fnum = 0; p_map_rec->addr64 = long_addr; /* link new mapping record to addr hash tables */ if ( g_hash_table_lookup_extended(au_ieee802154_map->short_table, &addr16, &old_key, NULL) ) { /* update short addr hash table, reusing pointer to old key */ g_hash_table_insert(au_ieee802154_map->short_table, old_key, p_map_rec); } else { /* create new hash entry */ g_hash_table_insert(au_ieee802154_map->short_table, wmem_memdup(wmem_file_scope(), &addr16, sizeof(addr16)), p_map_rec); } if ( g_hash_table_lookup_extended(au_ieee802154_map->long_table, &long_addr, &old_key, NULL) ) { /* update long addr hash table, reusing pointer to old key */ g_hash_table_insert(au_ieee802154_map->long_table, old_key, p_map_rec); } else { /* create new hash entry */ g_hash_table_insert(au_ieee802154_map->long_table, wmem_memdup(wmem_file_scope(), &long_addr, sizeof(long_addr)), p_map_rec); } return p_map_rec; } /* ieee802154_addr_update */ /** *Marks a mapping record associated with device with short_addr *as invalid at a certain frame number, typically when a *disassociation occurs. * *@param short_addr 16-bit short address *@param pan 16-bit PAN id *@param fnum Frame number when mapping became invalid *@return TRUE Record was updated, FALSE Couldn't find it */ gboolean ieee802154_short_addr_invalidate(guint16 short_addr, guint16 pan, guint fnum) { ieee802154_short_addr addr16; ieee802154_map_rec *map_rec; addr16.pan = pan; addr16.addr = short_addr; map_rec = (ieee802154_map_rec *)g_hash_table_lookup(ieee802154_map.short_table, &addr16); if ( map_rec ) { /* indicates this mapping is invalid at frame fnum */ map_rec->end_fnum = fnum; return TRUE; } return FALSE; } /* ieee802154_short_addr_invalidate */ /** * Mark a mapping record associated with device with long_addr * as invalid at a certain frame number, typically when a * disassociation occurs. * *@param long_addr 16-bit short address *@param fnum Frame number when mapping became invalid *@return TRUE If record was updated, FALSE otherwise */ gboolean ieee802154_long_addr_invalidate(guint64 long_addr, guint fnum) { ieee802154_map_rec *map_rec; map_rec = (ieee802154_map_rec *)g_hash_table_lookup(ieee802154_map.long_table, &long_addr); if ( map_rec ) { /* indicates this mapping is invalid at frame fnum */ map_rec->end_fnum = fnum; return TRUE; } return FALSE; } /* ieee802154_long_addr_invalidate */ /** * Init routine for the IEEE 802.15.4 dissector. Creates hash * tables for mapping between 16-bit to 64-bit addresses and * populates them with static address pairs from a UAT * preference table. */ static void proto_init_ieee802154(void) { guint i; ieee802154_map.short_table = g_hash_table_new(ieee802154_short_addr_hash, ieee802154_short_addr_equal); ieee802154_map.long_table = g_hash_table_new(ieee802154_long_addr_hash, ieee802154_long_addr_equal); /* Reload the hash table from the static address UAT. */ for (i=0; (isrc_pan); else g_snprintf(result, MAX_DECODE_AS_PROMPT_LEN, "IEEE 802.15.4 PAN Unknown"); } /* iee802154_da_prompt */ /* Returns the value to index the panid decode table with (source PAN)*/ static gpointer ieee802154_da_value(packet_info *pinfo _U_) { ieee802154_hints_t *hints; hints = (ieee802154_hints_t *)p_get_proto_data(wmem_file_scope(), pinfo, proto_get_id_by_filter_name(IEEE802154_PROTOABBREV_WPAN), 0); if (hints) return GUINT_TO_POINTER((guint)(hints->src_pan)); else return NULL; } /* iee802154_da_value */ /** * IEEE 802.15.4 protocol registration routine. */ void proto_register_ieee802154(void) { /* Protocol fields */ static hf_register_info hf_phy[] = { /* PHY level */ { &hf_ieee802154_nonask_phy_preamble, { "Preamble", "wpan-nonask-phy.preamble", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_nonask_phy_sfd, { "Start of Frame Delimiter", "wpan-nonask-phy.sfd", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_nonask_phy_length, { "Frame Length", "wpan-nonask-phy.frame_length", FT_UINT8, BASE_HEX, NULL, IEEE802154_PHY_LENGTH_MASK, NULL, HFILL }}, { &hf_ieee802154_nonask_phr, { "PHR", "wpan-nonask-phy.phr", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, }; static hf_register_info hf[] = { { &hf_ieee802154_frame_length, { "Frame Length", "wpan.frame_length", FT_UINT8, BASE_DEC, NULL, 0x0, "Frame Length as reported from lower layer", HFILL }}, { &hf_ieee802154_fcf, { "Frame Control Field", "wpan.fcf", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_frame_type, { "Frame Type", "wpan.frame_type", FT_UINT16, BASE_HEX, VALS(ieee802154_frame_types), IEEE802154_FCF_TYPE_MASK, NULL, HFILL }}, { &hf_ieee802154_security, { "Security Enabled", "wpan.security", FT_BOOLEAN, 16, NULL, IEEE802154_FCF_SEC_EN, "Whether security operations are performed at the MAC layer or not.", HFILL }}, { &hf_ieee802154_pending, { "Frame Pending", "wpan.pending", FT_BOOLEAN, 16, NULL, IEEE802154_FCF_FRAME_PND, "Indication of additional packets waiting to be transferred from the source device.", HFILL }}, { &hf_ieee802154_ack_request, { "Acknowledge Request", "wpan.ack_request", FT_BOOLEAN, 16, NULL, IEEE802154_FCF_ACK_REQ, "Whether the sender of this packet requests acknowledgment or not.", HFILL }}, { &hf_ieee802154_pan_id_compression, { "PAN ID Compression", "wpan.pan_id_compression", FT_BOOLEAN, 16, NULL, IEEE802154_FCF_PAN_ID_COMPRESSION, "Whether this packet contains the PAN ID or not.", HFILL }}, { &hf_ieee802154_seqno_suppression, { "Sequence Number Suppression", "wpan.seqno_suppression", FT_BOOLEAN, 16, NULL, IEEE802154_FCF_SEQNO_SUPPRESSION, "Whether this packet contains the Sequence Number or not.", HFILL }}, { &hf_ieee802154_ie_present, { "Information Elements Present", "wpan.ie_present", FT_BOOLEAN, 16, NULL, IEEE802154_FCF_IE_PRESENT, "Whether this packet contains the Information Elements or not.", HFILL }}, { &hf_ieee802154_seqno, { "Sequence Number", "wpan.seq_no", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_dst_addr_mode, { "Destination Addressing Mode", "wpan.dst_addr_mode", FT_UINT16, BASE_HEX, VALS(ieee802154_addr_modes), IEEE802154_FCF_DADDR_MASK, NULL, HFILL }}, { &hf_ieee802154_src_addr_mode, { "Source Addressing Mode", "wpan.src_addr_mode", FT_UINT16, BASE_HEX, VALS(ieee802154_addr_modes), IEEE802154_FCF_SADDR_MASK, NULL, HFILL }}, { &hf_ieee802154_version, { "Frame Version", "wpan.version", FT_UINT16, BASE_DEC, VALS(ieee802154_frame_versions), IEEE802154_FCF_VERSION, NULL, HFILL }}, { &hf_ieee802154_dst_panID, { "Destination PAN", "wpan.dst_pan", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_dst16, { "Destination", "wpan.dst16", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_dst64, { "Destination", "wpan.dst64", FT_EUI64, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_src_panID, { "Source PAN", "wpan.src_pan", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_src16, { "Source", "wpan.src16", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_src64, { "Extended Source", "wpan.src64", FT_EUI64, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_src64_origin, { "Origin", "wpan.src64.origin", FT_FRAMENUM, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_fcs, { "FCS", "wpan.fcs", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_rssi, { "RSSI", "wpan.rssi", FT_INT8, BASE_DEC, NULL, 0x0, "Received Signal Strength", HFILL }}, { &hf_ieee802154_fcs_ok, { "FCS Valid", "wpan.fcs_ok", FT_BOOLEAN, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_correlation, { "LQI Correlation Value", "wpan.correlation", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, /* Header IE */ { &hf_ieee802154_header_ie, { "Header IE", "wpan.header_ie", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_header_ie_type, { "Type", "wpan.header_ie.type", FT_UINT16, BASE_DEC, VALS(ieee802154_ie_types), IEEE802154_HEADER_IE_TYPE_MASK, NULL, HFILL }}, { &hf_ieee802154_header_ie_id, { "Id", "wpan.header_ie.id", FT_UINT16, BASE_HEX, VALS(ieee802154_header_ie_names), IEEE802154_HEADER_IE_ID_MASK, NULL, HFILL }}, { &hf_ieee802154_header_ie_length, { "Length", "wpan.header_ie.length", FT_UINT16, BASE_DEC, NULL, IEEE802154_HEADER_IE_LENGTH_MASK, NULL, HFILL }}, { &hf_ieee802154_header_ie_data, { "Data", "wpan.header_ie.data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, /* Payload IEs */ { &hf_ieee802154_payload_ie, { "Payload IE", "wpan.payload_ie", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_payload_ie_type, { "Type", "wpan.payload_ie.type", FT_UINT16, BASE_DEC, VALS(ieee802154_ie_types), IEEE802154_PAYLOAD_IE_TYPE_MASK, NULL, HFILL }}, { &hf_ieee802154_payload_ie_id, { "Id", "wpan.payload_ie.id", FT_UINT16, BASE_HEX, VALS(ieee802154_payload_ie_names), IEEE802154_PAYLOAD_IE_ID_MASK, NULL, HFILL }}, { &hf_ieee802154_payload_ie_length, { "Length", "wpan.payload_ie.length", FT_UINT16, BASE_DEC, NULL, IEEE802154_PAYLOAD_IE_LENGTH_MASK, NULL, HFILL }}, { &hf_ieee802154_payload_ie_data, { "Data", "wpan.payload_ie.data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, /* * Command Frame Specific Fields */ { &hf_ieee802154_cmd_id, { "Command Identifier", "wpan.cmd", FT_UINT8, BASE_HEX, VALS(ieee802154_cmd_names), 0x0, NULL, HFILL }}, /* Capability Information Fields */ { &hf_ieee802154_cinfo_alt_coord, { "Alternate PAN Coordinator", "wpan.cinfo.alt_coord", FT_BOOLEAN, 8, NULL, IEEE802154_CMD_CINFO_ALT_PAN_COORD, "Whether this device can act as a PAN coordinator or not.", HFILL }}, { &hf_ieee802154_cinfo_device_type, { "Device Type", "wpan.cinfo.device_type", FT_BOOLEAN, 8, TFS(&tfs_cinfo_device_type), IEEE802154_CMD_CINFO_DEVICE_TYPE, "Whether this device is RFD (reduced-function device) or FFD (full-function device).", HFILL }}, { &hf_ieee802154_cinfo_power_src, { "Power Source", "wpan.cinfo.power_src", FT_BOOLEAN, 8, TFS(&tfs_cinfo_power_src), IEEE802154_CMD_CINFO_POWER_SRC, "Whether this device is operating on AC/mains or battery power.", HFILL }}, { &hf_ieee802154_cinfo_idle_rx, { "Receive On When Idle", "wpan.cinfo.idle_rx", FT_BOOLEAN, 8, NULL, IEEE802154_CMD_CINFO_IDLE_RX, "Whether this device can receive packets while idle or not.", HFILL }}, { &hf_ieee802154_cinfo_sec_capable, { "Security Capability", "wpan.cinfo.sec_capable", FT_BOOLEAN, 8, NULL, IEEE802154_CMD_CINFO_SEC_CAPABLE, "Whether this device is capable of receiving encrypted packets.", HFILL }}, { &hf_ieee802154_cinfo_alloc_addr, { "Allocate Address", "wpan.cinfo.alloc_addr", FT_BOOLEAN, 8, NULL, IEEE802154_CMD_CINFO_ALLOC_ADDR, "Whether this device wishes to use a 16-bit short address instead of its IEEE 802.15.4 64-bit long address.", HFILL }}, /* Association response fields */ { &hf_ieee802154_assoc_addr, { "Short Address", "wpan.asoc.addr", FT_UINT16, BASE_HEX, NULL, 0x0, "The short address that the device should assume. An address of 0xfffe indicates that the device should use its IEEE 64-bit long address.", HFILL }}, { &hf_ieee802154_assoc_status, { "Association Status", "wpan.assoc.status", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_disassoc_reason, { "Disassociation Reason", "wpan.disassoc.reason", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, /* Coordinator Realignment fields */ { &hf_ieee802154_realign_pan, { "PAN ID", "wpan.realign.pan", FT_UINT16, BASE_HEX, NULL, 0x0, "The PAN identifier the coordinator wishes to use for future communication.", HFILL }}, { &hf_ieee802154_realign_caddr, { "Coordinator Short Address", "wpan.realign.addr", FT_UINT16, BASE_HEX, NULL, 0x0, "The 16-bit address the coordinator wishes to use for future communication.", HFILL }}, { &hf_ieee802154_realign_channel, { "Logical Channel", "wpan.realign.channel", FT_UINT8, BASE_DEC, NULL, 0x0, "The logical channel the coordinator wishes to use for future communication.", HFILL }}, { &hf_ieee802154_realign_addr, { "Short Address", "wpan.realign.addr", FT_UINT16, BASE_HEX, NULL, 0x0, "A short-address that the orphaned device shall assume if applicable.", HFILL }}, { &hf_ieee802154_realign_channel_page, { "Channel Page", "wpan.realign.channel_page", FT_UINT8, BASE_DEC, NULL, 0x0, "The logical channel page the coordinator wishes to use for future communication.", HFILL }}, { &hf_ieee802154_gtsreq_len, { "GTS Length", "wpan.gtsreq.length", FT_UINT8, BASE_DEC, NULL, IEEE802154_CMD_GTS_REQ_LEN, "Number of superframe slots the device is requesting.", HFILL }}, { &hf_ieee802154_gtsreq_dir, { "GTS Direction", "wpan.gtsreq.direction", FT_BOOLEAN, 8, TFS(&tfs_gtsreq_dir), IEEE802154_CMD_GTS_REQ_DIR, "The direction of traffic in the guaranteed timeslot.", HFILL }}, { &hf_ieee802154_gtsreq_type, { "Characteristic Type", "wpan.gtsreq.type", FT_BOOLEAN, 8, TFS(&tfs_gtsreq_type), IEEE802154_CMD_GTS_REQ_TYPE, "Whether this request is to allocate or deallocate a timeslot.", HFILL }}, /* * Beacon Frame Specific Fields */ { &hf_ieee802154_beacon_order, { "Beacon Interval", "wpan.beacon_order", FT_UINT16, BASE_DEC, NULL, IEEE802154_BEACON_ORDER_MASK, "Specifies the transmission interval of the beacons.", HFILL }}, { &hf_ieee802154_superframe_order, { "Superframe Interval", "wpan.superframe_order", FT_UINT16, BASE_DEC, NULL, IEEE802154_SUPERFRAME_ORDER_MASK, "Specifies the length of time the coordinator will interact with the PAN.", HFILL }}, { &hf_ieee802154_cap, { "Final CAP Slot", "wpan.cap", FT_UINT16, BASE_DEC, NULL, IEEE802154_SUPERFRAME_CAP_MASK, "Specifies the final superframe slot used by the CAP.", HFILL }}, { &hf_ieee802154_superframe_battery_ext, { "Battery Extension", "wpan.battery_ext", FT_BOOLEAN, 16, NULL, IEEE802154_BATT_EXTENSION_MASK, "Whether transmissions may not extend past the length of the beacon frame.", HFILL }}, { &hf_ieee802154_superframe_coord, { "PAN Coordinator", "wpan.bcn_coord", FT_BOOLEAN, 16, NULL, IEEE802154_SUPERFRAME_COORD_MASK, "Whether this beacon frame is being transmitted by the PAN coordinator or not.", HFILL }}, { &hf_ieee802154_assoc_permit, { "Association Permit", "wpan.assoc_permit", FT_BOOLEAN, 16, NULL, IEEE802154_ASSOC_PERMIT_MASK, "Whether this PAN is accepting association requests or not.", HFILL }}, { &hf_ieee802154_gts_count, { "GTS Descriptor Count", "wpan.gts.count", FT_UINT8, BASE_DEC, NULL, 0x0, "The number of GTS descriptors present in this beacon frame.", HFILL }}, { &hf_ieee802154_gts_permit, { "GTS Permit", "wpan.gts.permit", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Whether the PAN coordinator is accepting GTS requests or not.", HFILL }}, { &hf_ieee802154_gts_direction, { "Direction", "wpan.gts.direction", FT_BOOLEAN, BASE_NONE, TFS(&ieee802154_gts_direction_tfs), 0x0, "A flag defining the direction of the GTS Slot.", HFILL }}, { &hf_ieee802154_gts_address, { "Address", "wpan.gts.address", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_pending16, { "Address", "wpan.pending16", FT_UINT16, BASE_HEX, NULL, 0x0, "Device with pending data to receive.", HFILL }}, { &hf_ieee802154_pending64, { "Address", "wpan.pending64", FT_EUI64, BASE_NONE, NULL, 0x0, "Device with pending data to receive.", HFILL }}, /* * Auxiliary Security Header Fields */ { &hf_ieee802154_security_level, { "Security Level", "wpan.aux_sec.sec_level", FT_UINT8, BASE_HEX, VALS(ieee802154_sec_level_names), IEEE802154_AUX_SEC_LEVEL_MASK, "The Security Level of the frame", HFILL }}, { &hf_ieee802154_security_control_field, { "Security Control Field", "wpan.aux_sec.security_control_field", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_ieee802154_key_id_mode, { "Key Identifier Mode", "wpan.aux_sec.key_id_mode", FT_UINT8, BASE_HEX, VALS(ieee802154_key_id_mode_names), IEEE802154_AUX_KEY_ID_MODE_MASK, "The scheme to use by the recipient to lookup the key in its key table", HFILL }}, { &hf_ieee802154_aux_sec_reserved, { "Reserved", "wpan.aux_sec.reserved", FT_UINT8, BASE_HEX, NULL, IEEE802154_AUX_KEY_RESERVED_MASK, NULL, HFILL }}, { &hf_ieee802154_aux_sec_frame_counter, { "Frame Counter", "wpan.aux_sec.frame_counter", FT_UINT32, BASE_DEC, NULL, 0x0, "Frame counter of the originator of the protected frame", HFILL }}, { &hf_ieee802154_aux_sec_key_source, { "Key Source", "wpan.aux_sec.key_source", FT_UINT64, BASE_HEX, NULL, 0x0, "Key Source for processing of the protected frame", HFILL }}, { &hf_ieee802154_aux_sec_key_index, { "Key Index", "wpan.aux_sec.key_index", FT_UINT8, BASE_HEX, NULL, 0x0, "Key Index for processing of the protected frame", HFILL }}, /* IEEE 802.15.4-2003 Security Header Fields */ { &hf_ieee802154_sec_frame_counter, { "Frame Counter", "wpan.sec_frame_counter", FT_UINT32, BASE_HEX, NULL, 0x0, "Frame counter of the originator of the protected frame (802.15.4-2003)", HFILL }}, { &hf_ieee802154_sec_key_sequence_counter, { "Key Sequence Counter", "wpan.sec_key_sequence_counter", FT_UINT8, BASE_HEX, NULL, 0x0, "Key Sequence counter of the originator of the protected frame (802.15.4-2003)", HFILL }}, /* ZBOSS dump */ { &zboss_channel, { "Channel", "wpan.zboss.channel", FT_UINT8, BASE_DEC, NULL, 0x0, "Channel number", HFILL }}, { &zboss_direction, { "ZBOSS Direction", "wpan.zboss.direction", FT_UINT8, BASE_HEX, VALS(zboss_direction_names), 0x0, "ZBOSS Packet Direction", HFILL }}, { &zboss_trace_number, { "Trace number", "wpan.zboss.trace", FT_UINT32, BASE_DEC, NULL, 0x0, "Trace item number", HFILL }}, }; /* Subtrees */ static gint *ett[] = { &ett_ieee802154_nonask_phy, &ett_ieee802154_nonask_phy_phr, &ett_ieee802154, &ett_ieee802154_fcf, &ett_ieee802154_auxiliary_security, &ett_ieee802154_aux_sec_control, &ett_ieee802154_aux_sec_key_id, &ett_ieee802154_fcs, &ett_ieee802154_cmd, &ett_ieee802154_superframe, &ett_ieee802154_gts, &ett_ieee802154_gts_direction, &ett_ieee802154_gts_descriptors, &ett_ieee802154_pendaddr, &ett_ieee802154_header, &ett_ieee802154_header_ie, &ett_ieee802154_payload, &ett_ieee802154_payload_ie, &ett_ieee802154_zboss, }; static ei_register_info ei[] = { { &ei_ieee802154_invalid_addressing, { "wpan.invalid_addressing", PI_MALFORMED, PI_WARN, "Invalid Addressing", EXPFILL }}, { &ei_ieee802154_invalid_panid_compression, { "wpan.invalid_panid_compression", PI_MALFORMED, PI_ERROR, "Invalid Setting for PAN Id Compression", EXPFILL }}, { &ei_ieee802154_dst, { "wpan.dst_invalid", PI_MALFORMED, PI_ERROR, "Invalid Destination Address Mode", EXPFILL }}, { &ei_ieee802154_src, { "wpan.src_invalid", PI_MALFORMED, PI_ERROR, "Invalid Source Address Mode", EXPFILL }}, { &ei_ieee802154_frame_ver, { "wpan.frame_version_unknown", PI_MALFORMED, PI_ERROR, "Frame Version Unknown Cannot Dissect", EXPFILL }}, { &ei_ieee802154_frame_type, { "wpan.frame_type_unknown", PI_MALFORMED, PI_ERROR, "Frame Type Unknown Cannot Dissect", EXPFILL }}, { &ei_ieee802154_decrypt_error, { "wpan.decrypt_error", PI_UNDECODED, PI_WARN, "Decryption error", EXPFILL }}, { &ei_ieee802154_fcs, { "wpan.fcs.bad", PI_CHECKSUM, PI_WARN, "Bad FCS", EXPFILL }}, { &ei_ieee802154_seqno_suppression, { "wpan.seqno_supression_invalid", PI_MALFORMED, PI_WARN, "Sequence Number Suppression invalid for 802.15.4-2003 and 2006", EXPFILL }}, }; /* Preferences. */ module_t *ieee802154_module; expert_module_t* expert_ieee802154; static uat_field_t addr_uat_flds[] = { UAT_FLD_HEX(addr_uat,addr16,"Short Address", "16-bit short address in hexadecimal."), UAT_FLD_HEX(addr_uat,pan,"PAN Identifier", "16-bit PAN identifier in hexadecimal."), UAT_FLD_BUFFER(addr_uat,eui64,"EUI-64", "64-bit extended unique identifier."), UAT_END_FIELDS }; static build_valid_func ieee802154_da_build_value[1] = {ieee802154_da_value}; static decode_as_value_t ieee802154_da_values = {ieee802154_da_prompt, 1, ieee802154_da_build_value}; static decode_as_t ieee802154_da = { IEEE802154_PROTOABBREV_WPAN, "PAN", IEEE802154_PROTOABBREV_WPAN_PANID, 1, 0, &ieee802154_da_values, NULL, NULL, decode_as_default_populate_list, decode_as_default_reset, decode_as_default_change, NULL }; /* Register the init routine. */ register_init_routine(proto_init_ieee802154); register_cleanup_routine(proto_cleanup_ieee802154); /* Register Protocol name and description. */ proto_ieee802154 = proto_register_protocol("IEEE 802.15.4 Low-Rate Wireless PAN", "IEEE 802.15.4", IEEE802154_PROTOABBREV_WPAN); proto_ieee802154_nonask_phy = proto_register_protocol("IEEE 802.15.4 Low-Rate Wireless PAN non-ASK PHY", "IEEE 802.15.4 non-ASK PHY", "wpan-nonask-phy"); proto_zboss = proto_register_protocol("ZBOSS IEEE 802.15.4 dump", "ZBOSS dump", "wpan-zboss"); /* Register header fields and subtrees. */ proto_register_field_array(proto_ieee802154, hf, array_length(hf)); proto_register_field_array(proto_ieee802154, hf_phy, array_length(hf_phy)); proto_register_subtree_array(ett, array_length(ett)); expert_ieee802154 = expert_register_protocol(proto_ieee802154); expert_register_field_array(expert_ieee802154, ei, array_length(ei)); ieee802_15_4_short_address_type = address_type_dissector_register("AT_IEEE_802_15_4_SHORT", "IEEE 802.15.4 16-bit short address", ieee802_15_4_short_address_to_str, ieee802_15_4_short_address_str_len, NULL, ieee802_15_4_short_address_len, NULL, NULL); /* add a user preference to set the 802.15.4 ethertype */ ieee802154_module = prefs_register_protocol(proto_ieee802154, proto_reg_handoff_ieee802154); prefs_register_uint_preference(ieee802154_module, "802154_ethertype", "802.15.4 Ethertype (in hex)", "(Hexadecimal) Ethertype used to indicate IEEE 802.15.4 frame.", 16, &ieee802154_ethertype); prefs_register_bool_preference(ieee802154_module, "802154_cc24xx", "TI CC24xx FCS format", "Set if the FCS field is in TI CC24xx format.", &ieee802154_cc24xx); prefs_register_bool_preference(ieee802154_module, "802154_fcs_ok", "Dissect only good FCS", "Dissect payload only if FCS is valid.", &ieee802154_fcs_ok); /* Create a UAT for static address mappings. */ static_addr_uat = uat_new("Static Addresses", sizeof(static_addr_t), /* record size */ "802154_addresses", /* filename */ TRUE, /* from_profile */ &static_addrs, /* data_ptr */ &num_static_addrs, /* numitems_ptr */ UAT_AFFECTS_DISSECTION, /* affects dissection of packets, but not set of named fields */ NULL, /* help */ NULL, /* copy callback */ addr_uat_update_cb, /* update callback */ NULL, /* free callback */ NULL, /* post update callback */ addr_uat_flds); /* UAT field definitions */ prefs_register_uat_preference(ieee802154_module, "static_addr", "Static Addresses", "A table of static address mappings between 16-bit short addressing and EUI-64 addresses", static_addr_uat); /* Register preferences for a decryption key */ /* TODO: Implement a UAT for multiple keys, and with more advanced key management. */ prefs_register_string_preference(ieee802154_module, "802154_key", "Decryption key", "128-bit decryption key in hexadecimal format", (const char **)&ieee802154_key_str); prefs_register_enum_preference(ieee802154_module, "802154_sec_suite", "Security Suite (802.15.4-2003)", "Specifies the security suite to use for 802.15.4-2003 secured frames" " (only supported suites are listed). Option ignored for 802.15.4-2006" " and unsecured frames.", &ieee802154_sec_suite, ieee802154_2003_sec_suite_enums, FALSE); prefs_register_bool_preference(ieee802154_module, "802154_extend_auth", "Extend authentication data (802.15.4-2003)", "Set if the manufacturer extends the authentication data with the" " security header. Option ignored for 802.15.4-2006 and unsecured frames.", &ieee802154_extend_auth); /* Register the subdissector list */ panid_dissector_table = register_dissector_table(IEEE802154_PROTOABBREV_WPAN_PANID, "IEEE 802.15.4 PANID", FT_UINT16, BASE_HEX, DISSECTOR_TABLE_NOT_ALLOW_DUPLICATE); ieee802154_heur_subdissector_list = register_heur_dissector_list(IEEE802154_PROTOABBREV_WPAN); ieee802154_beacon_subdissector_list = register_heur_dissector_list(IEEE802154_PROTOABBREV_WPAN_BEACON); /* Register dissectors with Wireshark. */ register_dissector(IEEE802154_PROTOABBREV_WPAN, dissect_ieee802154, proto_ieee802154); register_dissector("wpan_nofcs", dissect_ieee802154_nofcs, proto_ieee802154); register_dissector("wpan_cc24xx", dissect_ieee802154_cc24xx, proto_ieee802154); register_dissector("wpan-nonask-phy", dissect_ieee802154_nonask_phy, proto_ieee802154_nonask_phy); /* Register a Decode-As handler. */ register_decode_as(&ieee802154_da); } /* proto_register_ieee802154 */ /** * Registers the IEEE 802.15.4 dissector with Wireshark. * Will be called every time 'apply' is pressed in the preferences menu. * as well as during Wireshark initialization */ void proto_reg_handoff_ieee802154(void) { static gboolean prefs_initialized = FALSE; static dissector_handle_t ieee802154_handle; static dissector_handle_t ieee802154_nonask_phy_handle; static dissector_handle_t ieee802154_nofcs_handle; static unsigned int old_ieee802154_ethertype; GByteArray *bytes; gboolean res; if (!prefs_initialized){ /* Get the dissector handles. */ ieee802154_handle = find_dissector(IEEE802154_PROTOABBREV_WPAN); ieee802154_nonask_phy_handle = find_dissector("wpan-nonask-phy"); ieee802154_nofcs_handle = find_dissector("wpan_nofcs"); data_handle = find_dissector("data"); dissector_add_uint("wtap_encap", WTAP_ENCAP_IEEE802_15_4, ieee802154_handle); dissector_add_uint("wtap_encap", WTAP_ENCAP_IEEE802_15_4_NONASK_PHY, ieee802154_nonask_phy_handle); dissector_add_uint("wtap_encap", WTAP_ENCAP_IEEE802_15_4_NOFCS, ieee802154_nofcs_handle); dissector_add_uint("sll.ltype", LINUX_SLL_P_IEEE802154, ieee802154_handle); prefs_initialized = TRUE; } else { dissector_delete_uint("ethertype", old_ieee802154_ethertype, ieee802154_handle); } old_ieee802154_ethertype = ieee802154_ethertype; /* Get the IEEE 802.15.4 decryption key. */ bytes = g_byte_array_new(); res = hex_str_to_bytes(ieee802154_key_str, bytes, FALSE); ieee802154_key_valid = (res && bytes->len >= IEEE802154_CIPHER_SIZE); if (ieee802154_key_valid) { memcpy(ieee802154_key, bytes->data, IEEE802154_CIPHER_SIZE); } g_byte_array_free(bytes, TRUE); /* Register dissector handles. */ dissector_add_uint("ethertype", ieee802154_ethertype, ieee802154_handle); } /* proto_reg_handoff_ieee802154 */