/* packet-ieee80211.c * Routines for Wireless LAN (IEEE 802.11) dissection * Copyright 2000, Axis Communications AB * Inquiries/bugreports should be sent to Johan.Jorgensen@axis.com * * $Id$ * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * Copied from README.developer * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Credits: * * The following people helped me by pointing out bugs etc. Thank you! * * Marco Molteni * Lena-Marie Nilsson * Magnus Hultman-Persson */ /* * 09/12/2003 - Added dissection of country information tag * * Ritchietipsybottle.com * * 03/22/2004 - Added dissection of RSN IE * Jouni Malinen * * 10/24/2005 - Add dissection for 802.11e * Zhu Yi * * Dutin Johnson - 802.11n and portions of 802.11k and 802.11ma * dustin@dustinj.us & dustin.johnson@cacetech.com * * 01/31/2008 - Added dissection of 802.11s * Javier Cardona * * 04/21/2008 - Added dissection for 802.11p * Arada Systems */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include "packet-ipx.h" #include "packet-llc.h" #include "packet-ieee80211.h" #include #include #include #include #include #include #include #include #include #include "isprint.h" #include "packet-wps.h" #include "packet-wifi-p2p.h" #ifndef roundup2 #define roundup2(x, y) (((x)+((y)-1))&(~((y)-1))) /* if y is powers of two */ #endif /* Defragment fragmented 802.11 datagrams */ static gboolean wlan_defragment = TRUE; /* call subdissector for retransmitted frames */ static gboolean wlan_subdissector = TRUE; /* Check for the presence of the 802.11 FCS */ static gboolean wlan_check_fcs = FALSE; /* Ignore vendor-specific HT elements */ static gboolean wlan_ignore_draft_ht = FALSE; /* Ignore the WEP bit; assume packet is decrypted */ #define WLAN_IGNORE_WEP_NO 0 #define WLAN_IGNORE_WEP_WO_IV 1 #define WLAN_IGNORE_WEP_W_IV 2 static gint wlan_ignore_wep = WLAN_IGNORE_WEP_NO; /* Tables for reassembly of fragments. */ static GHashTable *wlan_fragment_table = NULL; static GHashTable *wlan_reassembled_table = NULL; /* Statistical data */ static struct _wlan_stats wlan_stats; /* Stuff for the WEP decoder */ static gboolean enable_decryption = FALSE; static void init_wepkeys(void); #ifndef HAVE_AIRPDCAP static gint num_wepkeys = 0; static guint8 **wep_keys = NULL; static int *wep_keylens = NULL; static tvbuff_t *try_decrypt_wep(tvbuff_t *tvb, guint32 offset, guint32 len); static int wep_decrypt(guint8 *buf, guint32 len, int key_override); #else /* Davide Schiera (2006-11-26): created function to decrypt WEP and WPA/WPA2 */ static tvbuff_t *try_decrypt(tvbuff_t *tvb, guint32 offset, guint32 len, guint8 *algorithm, guint32 *sec_header, guint32 *sec_trailer); #endif static int weak_iv(guchar *iv); #define SSWAP(a,b) {guint8 tmp = s[a]; s[a] = s[b]; s[b] = tmp;} /* #define USE_ENV */ /* When this is set, an unlimited number of WEP keys can be set in the environment: WIRESHARK_WEPKEYNUM=## WIRESHARK_WEPKEY1=aa:bb:cc:dd:... WIRESHARK_WEPKEY2=aa:bab:cc:dd:ee:... ... you get the idea. otherwise you're limited to specifying four keys in the preference system. */ #ifndef USE_ENV static char *wep_keystr[MAX_ENCRYPTION_KEYS]; #endif typedef struct mimo_control { guint8 nc; guint8 nr; gboolean chan_width; guint8 grouping; guint8 coefficient_size; guint8 codebook_info; guint8 remaining_matrix_segment; } mimo_control_t; mimo_control_t get_mimo_control (tvbuff_t *tvb, int offset); int add_mimo_csi_matrices_report (proto_tree *tree, tvbuff_t *tvb, int offset, mimo_control_t mimo_cntrl); int add_mimo_beamforming_feedback_report (proto_tree *tree, tvbuff_t *tvb, int offset, mimo_control_t mimo_cntrl); int add_mimo_compressed_beamforming_feedback_report (proto_tree *tree, tvbuff_t *tvb, int offset, mimo_control_t mimo_cntrl); /* ************************************************************************* */ /* Miscellaneous Constants */ /* ************************************************************************* */ #define SHORT_STR 256 /* ************************************************************************* */ /* Define some very useful macros that are used to analyze frame types etc. */ /* ************************************************************************* */ /* * Fetch the frame control field and swap it if needed. "fcf" and "tvb" * must be valid variables. */ #define FETCH_FCF(off) (wlan_broken_fc ? \ BSWAP16(tvb_get_letohs(tvb, off)) : \ tvb_get_letohs(tvb, off)) /* * Extract the protocol version from the frame control field */ #define FCF_PROT_VERSION(x) ((x) & 0x3) /* * Extract the frame type from the frame control field. */ #define FCF_FRAME_TYPE(x) (((x) & 0xC) >> 2) /* * Extract the frame subtype from the frame control field. */ #define FCF_FRAME_SUBTYPE(x) (((x) & 0xF0) >> 4) /* * Convert the frame type and subtype from the frame control field into * one of the MGT_, CTRL_, or DATA_ values. */ #define COMPOSE_FRAME_TYPE(x) (((x & 0x0C)<< 2)+FCF_FRAME_SUBTYPE(x)) /* Create key to (sub)type */ /* * The subtype field of a data frame is, in effect, composed of 4 flag * bits - CF-Ack, CF-Poll, Null (means the frame doesn't actually have * any data), and QoS. */ #define DATA_FRAME_IS_CF_ACK(x) ((x) & 0x01) #define DATA_FRAME_IS_CF_POLL(x) ((x) & 0x02) #define DATA_FRAME_IS_NULL(x) ((x) & 0x04) #define DATA_FRAME_IS_QOS(x) ((x) & 0x08) /* * Extract the flags from the frame control field. */ #define FCF_FLAGS(x) (((x) & 0xFF00) >> 8) /* * Bits from the flags field. */ #define FLAG_TO_DS 0x01 #define FLAG_FROM_DS 0x02 #define FLAG_MORE_FRAGMENTS 0x04 #define FLAG_RETRY 0x08 #define FLAG_POWER_MGT 0x10 #define FLAG_MORE_DATA 0x20 #define FLAG_PROTECTED 0x40 #define FLAG_ORDER 0x80 /* * Test bits in the flags field. */ /* * XXX - Only HAVE_FRAGMENTS, IS_PROTECTED, and IS_STRICTLY_ORDERED * are in use. Should the rest be removed? */ #define IS_TO_DS(x) ((x) & FLAG_TO_DS) #define IS_FROM_DS(x) ((x) & FLAG_FROM_DS) #define HAVE_FRAGMENTS(x) ((x) & FLAG_MORE_FRAGMENTS) #define IS_RETRY(x) ((x) & FLAG_RETRY) #define POWER_MGT_STATUS(x) ((x) & FLAG_POWER_MGT) #define HAS_MORE_DATA(x) ((x) & FLAG_MORE_DATA) #define IS_PROTECTED(x) ((x) & FLAG_PROTECTED) #define IS_STRICTLY_ORDERED(x) ((x) & FLAG_ORDER) /* * Extract subfields from the flags field. */ #define FLAGS_DS_STATUS(x) ((x) & (FLAG_FROM_DS|FLAG_TO_DS)) /* * Extract an indication of the types of addresses in a data frame from * the frame control field. */ #define FCF_ADDR_SELECTOR(x) ((x) & ((FLAG_TO_DS|FLAG_FROM_DS) << 8)) #define DATA_ADDR_T1 0 #define DATA_ADDR_T2 (FLAG_FROM_DS << 8) #define DATA_ADDR_T3 (FLAG_TO_DS << 8) #define DATA_ADDR_T4 ((FLAG_TO_DS|FLAG_FROM_DS) << 8) /* * Extract the fragment number and sequence number from the sequence * control field. */ #define SEQCTL_FRAGMENT_NUMBER(x) ((x) & 0x000F) #define SEQCTL_SEQUENCE_NUMBER(x) (((x) & 0xFFF0) >> 4) /* * Extract subfields from the QoS control field. */ #define QOS_TID(x) ((x) & 0x000F) #define QOS_PRIORITY(x) ((x) & 0x0007) #define QOS_EOSP(x) (((x) & 0x0010) >> 4) /* end of service period */ #define QOS_ACK_POLICY(x) (((x) & 0x0060) >> 5) #define QOS_AMSDU_PRESENT(x) (((x) & 0x0080) >> 6) #define QOS_FIELD_CONTENT(x) (((x) & 0xFF00) >> 8) #define QOS_FLAG_EOSP 0x10 /* * Extract subfields from the result of QOS_FIELD_CONTENT(). */ #define QOS_PS_BUF_STATE_INDICATED(x) (((x) & 0x02) >> 1) #define QOS_PS_HIGHEST_PRI_BUF_AC(x) (((x) & 0x0C) >> 2) #define QOS_PS_QAP_BUF_LOAD(x) (((x) & 0xF0) >> 4) /* * Extract subfields from the HT Control field. * .11n D-1.10 & D-2.0, 7.1.3.5a, 32 bits. */ #define HTC_LAC(htc) ((htc) & 0xFF) #define HTC_LAC_MAI(htc) (((htc) >> 2) & 0xF) #define HTC_IS_ASELI(htc) (HTC_LAC_MAI(htc) == 0xE) #define HTC_LAC_MAI_MRQ(htc) ((HTC_LAC_MAI(htc)) & 0x1) #define HTC_LAC_MAI_MSI(htc) ((HTC_LAC_MAI(htc) >> 1) & 0x7) #define HTC_LAC_MFSI(htc) (((htc) >> 4) & 0x7) #define HTC_LAC_ASEL_CMD(htc) (((htc) >> 9) & 0x7) #define HTC_LAC_ASEL_DATA(htc) (((htc) >> 12) & 0xF) #define HTC_LAC_MFB(htc) (((htc) >> 9) & 0x7F) #define HTC_CAL_POS(htc) (((htc) >> 16) & 0x3) #define HTC_CAL_SEQ(htc) (((htc) >> 18) & 0x3) #define HTC_CSI_STEERING(htc) (((htc) >> 22) & 0x3) #define HTC_NDP_ANN(htc) (((htc) >> 24) & 0x1) #define HTC_AC_CONSTRAINT(htc) (((htc) >> 30) & 0x1) #define HTC_RDG_MORE_PPDU(htc) (((htc) >> 31) & 0x1) /* * Extract the association ID from the value in an association ID field. */ #define ASSOC_ID(x) ((x) & 0x3FFF) /* * Extract subfields from the key octet in WEP-encrypted frames. */ #define KEY_OCTET_WEP_KEY(x) (((x) & 0xC0) >> 6) /* * Extract subfields from TS Info field. */ #define TSI_TYPE(x) (((x) & 0x000001) >> 0) #define TSI_TSID(x) (((x) & 0x00001E) >> 1) #define TSI_DIR(x) (((x) & 0x000060) >> 5) #define TSI_ACCESS(x) (((x) & 0x000180) >> 7) #define TSI_AGG(x) (((x) & 0x000200) >> 9) #define TSI_APSD(x) (((x) & 0x000400) >> 10) #define TSI_UP(x) (((x) & 0x003800) >> 11) #define TSI_ACK(x) (((x) & 0x00C000) >> 14) #define TSI_SCHED(x) (((x) & 0x010000) >> 16) #define TSI_RESERVED(x) (((x) & 0xFE0000) >> 17) #define KEY_EXTIV 0x20 #define EXTIV_LEN 8 /* Uncomment for 802.11s draft (mesh) support */ /* #define MESH_OVERRIDES 1 */ #ifdef MESH_OVERRIDES /* * Bits from the Mesh Flags field */ #define MESH_FLAGS_ADDRESS_EXTENSION 0x3 #endif /* MESH_OVERRIDES */ /* ************************************************************************* */ /* Constants used to identify cooked frame types */ /* ************************************************************************* */ #define MGT_FRAME 0x00 /* Frame type is management */ #define CONTROL_FRAME 0x01 /* Frame type is control */ #define DATA_FRAME 0x02 /* Frame type is Data */ #define DATA_SHORT_HDR_LEN 24 #define DATA_LONG_HDR_LEN 30 #define MGT_FRAME_HDR_LEN 24 /* Length of Managment frame-headers */ /* * COMPOSE_FRAME_TYPE() values for management frames. */ #define MGT_ASSOC_REQ 0x00 /* association request */ #define MGT_ASSOC_RESP 0x01 /* association response */ #define MGT_REASSOC_REQ 0x02 /* reassociation request */ #define MGT_REASSOC_RESP 0x03 /* reassociation response */ #define MGT_PROBE_REQ 0x04 /* Probe request */ #define MGT_PROBE_RESP 0x05 /* Probe response */ #define MGT_MEASUREMENT_PILOT 0x06 /* Measurement Pilot */ #define MGT_BEACON 0x08 /* Beacon frame */ #define MGT_ATIM 0x09 /* ATIM */ #define MGT_DISASS 0x0A /* Disassociation */ #define MGT_AUTHENTICATION 0x0B /* Authentication */ #define MGT_DEAUTHENTICATION 0x0C /* Deauthentication */ #define MGT_ACTION 0x0D /* Action */ #define MGT_ACTION_NO_ACK 0x0E /* Action No Ack */ #define MGT_ARUBA_WLAN 0x0F /* Aruba WLAN Specific */ /* * COMPOSE_FRAME_TYPE() values for control frames. */ #define CTRL_CONTROL_WRAPPER 0x17 /* Control Wrapper */ #define CTRL_BLOCK_ACK_REQ 0x18 /* Block ack Request */ #define CTRL_BLOCK_ACK 0x19 /* Block ack */ #define CTRL_PS_POLL 0x1A /* power-save poll */ #define CTRL_RTS 0x1B /* request to send */ #define CTRL_CTS 0x1C /* clear to send */ #define CTRL_ACKNOWLEDGEMENT 0x1D /* acknowledgement */ #define CTRL_CFP_END 0x1E /* contention-free period end */ #define CTRL_CFP_ENDACK 0x1F /* contention-free period end/ack */ /* * COMPOSE_FRAME_TYPE() values for data frames. */ #define DATA 0x20 /* Data */ #define DATA_CF_ACK 0x21 /* Data + CF-Ack */ #define DATA_CF_POLL 0x22 /* Data + CF-Poll */ #define DATA_CF_ACK_POLL 0x23 /* Data + CF-Ack + CF-Poll */ #define DATA_NULL_FUNCTION 0x24 /* Null function (no data) */ #define DATA_CF_ACK_NOD 0x25 /* CF-Ack (no data) */ #define DATA_CF_POLL_NOD 0x26 /* CF-Poll (No data) */ #define DATA_CF_ACK_POLL_NOD 0x27 /* CF-Ack + CF-Poll (no data) */ #define DATA_QOS_DATA 0x28 /* QoS Data */ #define DATA_QOS_DATA_CF_ACK 0x29 /* QoS Data + CF-Ack */ #define DATA_QOS_DATA_CF_POLL 0x2A /* QoS Data + CF-Poll */ #define DATA_QOS_DATA_CF_ACK_POLL 0x2B /* QoS Data + CF-Ack + CF-Poll */ #define DATA_QOS_NULL 0x2C /* QoS Null */ #define DATA_QOS_CF_POLL_NOD 0x2E /* QoS CF-Poll (No Data) */ #define DATA_QOS_CF_ACK_POLL_NOD 0x2F /* QoS CF-Ack + CF-Poll (No Data) */ /* ************************************************************************* */ /* Macros used to extract information about fixed fields */ /* ************************************************************************* */ #define ESS_SET(x) ((x) & 0x0001) #define IBSS_SET(x) ((x) & 0x0002) /* ************************************************************************* */ /* Logical field codes (dissector's encoding of fixed fields) */ /* ************************************************************************* */ #define FIELD_TIMESTAMP 0x01 /* 64-bit timestamp */ #define FIELD_BEACON_INTERVAL 0x02 /* 16-bit beacon interval */ #define FIELD_CAP_INFO 0x03 /* Add capability information tree */ #define FIELD_AUTH_ALG 0x04 /* Authentication algorithm used */ #define FIELD_AUTH_TRANS_SEQ 0x05 /* Authentication sequence number */ #define FIELD_CURRENT_AP_ADDR 0x06 #define FIELD_LISTEN_IVAL 0x07 #define FIELD_REASON_CODE 0x08 #define FIELD_ASSOC_ID 0x09 #define FIELD_STATUS_CODE 0x0A #define FIELD_CATEGORY_CODE 0x0B /* Management action category */ #define FIELD_ACTION_CODE 0x0C /* Management action code */ #define FIELD_DIALOG_TOKEN 0x0D /* Management action dialog token */ #define FIELD_WME_ACTION_CODE 0x0E /* Management notification action code */ #define FIELD_WME_DIALOG_TOKEN 0x0F /* Management notification dialog token */ #define FIELD_WME_STATUS_CODE 0x10 /* Management notification setup response status code */ #define FIELD_QOS_ACTION_CODE 0x11 #define FIELD_QOS_TS_INFO 0x12 #define FIELD_DLS_ACTION_CODE 0x13 #define FIELD_DST_MAC_ADDR 0X14 /* DLS destination MAC address */ #define FIELD_SRC_MAC_ADDR 0X15 /* DLS source MAC address */ #define FIELD_DLS_TIMEOUT 0X16 /* DLS timeout value */ #define FIELD_SCHEDULE_INFO 0X17 /* Schedule Info field */ #define FIELD_ACTION 0X18 /* Action field */ #define FIELD_BLOCK_ACK_ACTION_CODE 0x19 #define FIELD_QOS_INFO_AP 0x1A #define FIELD_QOS_INFO_STA 0x1B #define FIELD_BLOCK_ACK_PARAM 0x1C #define FIELD_BLOCK_ACK_TIMEOUT 0x1D #define FIELD_BLOCK_ACK_SSC 0x1E #define FIELD_DELBA_PARAM_SET 0x1F #define FIELD_MAX_REG_PWR 0x20 #define FIELD_MEASUREMENT_PILOT_INT 0x21 #define FIELD_COUNTRY_STR 0x22 #define FIELD_MAX_TX_PWR 0x23 #define FIELD_TX_PWR_USED 0x24 #define FIELD_TRANSCEIVER_NOISE_FLOOR 0x25 #define FIELD_DS_PARAM_SET 0x26 #define FIELD_CHANNEL_WIDTH 0x27 #define FIELD_SM_PWR_CNTRL 0x28 #define FIELD_PCO_PHASE_CNTRL 0x29 #define FIELD_PSMP_PARAM_SET 0x2A #define FIELD_PSMP_STA_INFO 0x2B #define FIELD_MIMO_CNTRL 0x2C #define FIELD_ANT_SELECTION 0x2D #define FIELD_EXTENDED_CHANNEL_SWITCH_ANNOUNCEMENT 0x2E #define FIELD_HT_INFORMATION 0x2F #define FIELD_HT_ACTION_CODE 0x30 #define FIELD_PA_ACTION_CODE 0x31 #define FIELD_FT_ACTION_CODE 0x32 #define FIELD_STA_ADDRESS 0x33 #define FIELD_TARGET_AP_ADDRESS 0x34 #define FIELD_MESH_MGT_ACTION_PS_CODE 0x35 /* Mesh Management action peer link code */ #define FIELD_MESH_MGT_ACTION_PL_CODE 0x36 /* Mesh Management action peer link code */ #define FIELD_GAS_COMEBACK_DELAY 0x37 #define FIELD_GAS_FRAGMENT_ID 0x38 #define FIELD_SA_QUERY_ACTION_CODE 0x39 #define FIELD_TRANSACTION_ID 0x3A #define FIELD_TDLS_ACTION_CODE 0x3B #define FIELD_TARGET_CHANNEL 0x3C #define FIELD_REGULATORY_CLASS 0x3D /* ************************************************************************* */ /* Logical field codes (IEEE 802.11 encoding of tags) */ /* ************************************************************************* */ #define TAG_SSID 0x00 #define TAG_SUPP_RATES 0x01 #define TAG_FH_PARAMETER 0x02 #define TAG_DS_PARAMETER 0x03 #define TAG_CF_PARAMETER 0x04 #define TAG_TIM 0x05 #define TAG_IBSS_PARAMETER 0x06 #define TAG_COUNTRY_INFO 0x07 #define TAG_FH_HOPPING_PARAMETER 0x08 #define TAG_FH_HOPPING_TABLE 0x09 #define TAG_REQUEST 0x0A #define TAG_QBSS_LOAD 0x0B #define TAG_EDCA_PARAM_SET 0x0C #define TAG_TSPEC 0x0D #define TAG_TCLAS 0x0E #define TAG_SCHEDULE 0x0F #define TAG_CHALLENGE_TEXT 0x10 #define TAG_POWER_CONSTRAINT 0x20 #define TAG_POWER_CAPABILITY 0x21 #define TAG_TPC_REQUEST 0x22 #define TAG_TPC_REPORT 0x23 /* 0x24 - 0x29 below */ #define TAG_ERP_INFO 0x2A #define TAG_TS_DELAY 0x2B #define TAG_TCLAS_PROCESS 0x2C #define TAG_HT_CAPABILITY 0x2D /* IEEE Stc 802.11n/D2.0 */ #define TAG_QOS_CAPABILITY 0x2E #define TAG_ERP_INFO_OLD 0x2F /* IEEE Std 802.11g/D4.0 */ #define TAG_RSN_IE 0x30 /* Reserved 49 */ #define TAG_EXT_SUPP_RATES 0x32 #define TAG_AP_CHANNEL_REPORT 0x33 /* 0x34 below */ #define TAG_MOBILITY_DOMAIN 0x36 /* IEEE Std 802.11r-2008 */ /* 0x37 below */ #define TAG_TIMEOUT_INTERVAL 0x38 /* 56 IEEE Std 802.11r-2008 */ #define TAG_RIC_DATA 0x39 /* 57 IEEE Std 802.11r-2008 */ #define TAG_SUPPORTED_REGULATORY_CLASSES 59 /* IEEE Std 802.11w-2009 */ #define TAG_EXTENDED_CHANNEL_SWITCH_ANNOUNCEMENT 60 /* IEEE Std 802.11w-2009 */ #define TAG_HT_INFO 0x3D /* IEEE Stc 802.11n/D2.0 */ #define TAG_SECONDARY_CHANNEL_OFFSET 0x3E /* IEEE Stc 802.11n/D1.10/D2.0 */ /* 0x45 below */ #define TAG_20_40_BSS_CO_EX 0x48 /* IEEE P802.11n/D6.0 */ #define TAG_20_40_BSS_INTOL_CH_REP 0x49 /* IEEE P802.11n/D6.0 */ #define TAG_OVERLAP_BSS_SCAN_PAR 0x49 /* IEEE P802.11n/D6.0 */ #define TAG_RIC_DESCRIPTOR 0x4B /* IEEE Std 802.11r-2008 */ #define TAG_MMIE 0x4C /* IEEE Std 802.11w-2009 */ #define TAG_LINK_IDENTIFIER 0x65 /* IEEE Std 802.11z-2010 */ #define TAG_WAKEUP_SCHEDULE 0x66 /* IEEE Std 802.11z-2010 */ #define TAG_CHANNEL_SWITCH_TIMING 0x68 /* IEEE Std 802.11z-2010 */ #define TAG_PTI_CONTROL 0x69 /* IEEE Std 802.11z-2010 */ #define TAG_PU_BUFFER_STATUS 0x6A /* IEEE Std 802.11z-2010 */ #define TAG_ADVERTISEMENT_PROTOCOL 0x6C /* IEEE P802.11u/D10.0 */ #define TAG_EXTENDED_CAPABILITIES 0X7F /* IEEE Stc 802.11n/D1.10/D2.0 */ #define TAG_AGERE_PROPRIETARY 0x80 #define TAG_CISCO_CCX1_CKIP 0x85 /* Cisco Compatible eXtensions */ #define TAG_CISCO_UNKNOWN_88 0x88 /* Cisco Compatible eXtensions? */ #define TAG_CISCO_UNKNOWN_95 0x95 /* Cisco Compatible eXtensions */ #define TAG_CISCO_UNKNOWN_96 0x96 /* Cisco Compatible eXtensions */ #define TAG_VENDOR_SPECIFIC_IE 0xDD #define TAG_SYMBOL_PROPRIETARY 0xAD #ifndef MESH_OVERRIDES #define TAG_SUPPORTED_CHANNELS 0x24 #define TAG_CHANNEL_SWITCH_ANN 0x25 #define TAG_MEASURE_REQ 0x26 #define TAG_MEASURE_REP 0x27 #define TAG_QUIET 0x28 #define TAG_IBSS_DFS 0x29 #define TAG_NEIGHBOR_REPORT 0x34 #define TAG_FAST_BSS_TRANSITION 0x37 /* IEEE Std 802.11r-2008 */ #define TAG_WSIE 0x45 /* tag of the Wave Service Information (802.11p) */ #else /* MESH_OVERRIDES */ #define TAG_SUPPORTED_CHANNELS 0xE0 #define TAG_CHANNEL_SWITCH_ANN 0xE1 #define TAG_MEASURE_REQ 0xE2 #define TAG_MEASURE_REP 0xE3 #define TAG_QUIET 0xE4 #define TAG_IBSS_DFS 0xE5 /* Not yet assigned by ANA */ #define TAG_MESH_CONFIGURATION 51 /* 36 */ #define TAG_MESH_ID 52 /* 37 */ #define TAG_MESH_PEER_LINK_MGMT 55 /* 40 */ #define TAG_MESH_PREQ 68 /* 53 */ #define TAG_MESH_PREP 69 /* 54 */ #define TAG_MESH_PERR 70 /* 55 */ #endif /* MESH_OVERRIDES */ static const value_string tag_num_vals[] = { { TAG_SSID, "SSID parameter set" }, { TAG_SUPP_RATES, "Supported Rates" }, { TAG_FH_PARAMETER, "FH Parameter set" }, { TAG_DS_PARAMETER, "DS Parameter set" }, { TAG_CF_PARAMETER, "CF Parameter set" }, { TAG_TIM, "Traffic Indication Map (TIM)" }, { TAG_IBSS_PARAMETER, "IBSS Parameter set" }, { TAG_COUNTRY_INFO, "Country Information" }, { TAG_FH_HOPPING_PARAMETER, "Hopping Pattern Parameters" }, { TAG_CHALLENGE_TEXT, "Challenge text" }, { TAG_ERP_INFO, "ERP Information" }, { TAG_ERP_INFO_OLD, "ERP Information" }, { TAG_RSN_IE, "RSN Information" }, { TAG_EXT_SUPP_RATES, "Extended Supported Rates" }, { TAG_AP_CHANNEL_REPORT, "AP Channel Report" }, { TAG_CISCO_CCX1_CKIP, "Cisco CCX1 CKIP + Device Name" }, { TAG_CISCO_UNKNOWN_88, "Cisco Unknown 88" }, { TAG_CISCO_UNKNOWN_95, "Cisco Unknown 95" }, { TAG_CISCO_UNKNOWN_96, "Cisco Unknown 96" }, { TAG_VENDOR_SPECIFIC_IE, "Vendor Specific" }, { TAG_SYMBOL_PROPRIETARY, "Symbol Proprietary"}, { TAG_AGERE_PROPRIETARY, "Agere Proprietary"}, { TAG_REQUEST, "Request"}, { TAG_QBSS_LOAD, "QBSS Load Element"}, { TAG_EDCA_PARAM_SET, "EDCA Parameter Set"}, { TAG_TSPEC, "Traffic Specification"}, { TAG_TCLAS, "Traffic Classification"}, { TAG_SCHEDULE, "Schedule"}, { TAG_TS_DELAY, "TS Delay"}, { TAG_TCLAS_PROCESS, "TCLAS Processing"}, { TAG_HT_CAPABILITY, "HT Capabilities (802.11n D1.10)"}, #ifndef MESH_OVERRIDES { TAG_NEIGHBOR_REPORT, "Neighbor Report"}, #endif { TAG_HT_INFO, "HT Information (802.11n D1.10)"}, { TAG_SECONDARY_CHANNEL_OFFSET, "Secondary Channel Offset (802.11n D1.10)"}, #ifndef MESH_OVERRIDES { TAG_WSIE, "Wave Service Information"}, /* www.aradasystems.com */ #endif { TAG_20_40_BSS_CO_EX, "20/40 BSS Coexistence"}, { TAG_20_40_BSS_INTOL_CH_REP, "20/40 BSS Intolerant Channel Report"}, /* IEEE P802.11n/D6.0 */ { TAG_OVERLAP_BSS_SCAN_PAR, "Overlapping BSS Scan Parameters"}, /* IEEE P802.11n/D6.0 */ { TAG_QOS_CAPABILITY, "QoS Capability"}, { TAG_POWER_CONSTRAINT, "Power Constraint"}, { TAG_POWER_CAPABILITY, "Power Capability"}, { TAG_TPC_REQUEST, "TPC Request"}, { TAG_TPC_REPORT, "TPC Report"}, { TAG_SUPPORTED_CHANNELS, "Supported Channels"}, { TAG_CHANNEL_SWITCH_ANN, "Channel Switch Announcement"}, { TAG_MEASURE_REQ, "Measurement Request"}, { TAG_MEASURE_REP, "Measurement Report"}, { TAG_QUIET, "Quiet"}, { TAG_IBSS_DFS, "IBSS DFS"}, { TAG_EXTENDED_CAPABILITIES, "Extended Capabilities"}, { TAG_MOBILITY_DOMAIN, "Mobility Domain"}, #ifndef MESH_OVERRIDES { TAG_FAST_BSS_TRANSITION, "Fast BSS Transition"}, #endif { TAG_TIMEOUT_INTERVAL, "Timeout Interval"}, { TAG_RIC_DATA, "RIC Data"}, { TAG_SUPPORTED_REGULATORY_CLASSES, "Supported Regulatory Classes"}, { TAG_EXTENDED_CHANNEL_SWITCH_ANNOUNCEMENT, "Extended Channel Switch Announcement"}, { TAG_RIC_DESCRIPTOR, "RIC Descriptor"}, { TAG_MMIE, "Management MIC"}, { TAG_LINK_IDENTIFIER, "Link Identifier"}, { TAG_WAKEUP_SCHEDULE, "Wakeup Schedule"}, { TAG_CHANNEL_SWITCH_TIMING, "Channel Switch Timing"}, { TAG_PTI_CONTROL, "PTI Control"}, { TAG_PU_BUFFER_STATUS, "PU Buffer Status"}, { TAG_ADVERTISEMENT_PROTOCOL, "Advertisement Protocol"}, #ifdef MESH_OVERRIDES { TAG_MESH_ID, "Mesh ID"}, { TAG_MESH_CONFIGURATION, "Mesh Configuration"}, { TAG_MESH_PEER_LINK_MGMT, "Mesh Peer Link Management"}, { TAG_MESH_PREQ, "Mesh Path Request"}, { TAG_MESH_PREP, "Mesh Path Response"}, { TAG_MESH_PERR, "Mesh Path Error"}, #endif /* MESH_OVERRIDES */ { 0, NULL } }; #define WPA_OUI (const guint8 *) "\x00\x50\xF2" #define RSN_OUI (const guint8 *) "\x00\x0F\xAC" #define WME_OUI (const guint8 *) "\x00\x50\xF2" #define PRE_11N_OUI (const guint8 *) "\x00\x90\x4c" /* 802.11n pre 1 oui */ #define WFA_OUI (const guint8 *) "\x50\x6f\x9a" /* WFA vendor specific subtypes */ #define WFA_SUBTYPE_P2P 9 #define PMKID_LEN 16 /* ************************************************************************* */ /* Wireless Access in Vehicular Environment IEEE 802.11p */ /* ************************************************************************* */ #define WAVE_ACID 0x0001 #define WAVE_ACM 0x0002 #define WAVE_ACF 0x0004 #define WAVE_PRIORITY 0x0008 #define WAVE_CHANNEL 0x0010 #define WAVE_IPV6ADDR 0x0020 #define WAVE_PEERMAC 0x0040 /* ************************************************************************* */ /* Frame types, and their names */ /* ************************************************************************* */ static const value_string frame_type_subtype_vals[] = { {MGT_ASSOC_REQ, "Association Request"}, {MGT_ASSOC_RESP, "Association Response"}, {MGT_REASSOC_REQ, "Reassociation Request"}, {MGT_REASSOC_RESP, "Reassociation Response"}, {MGT_PROBE_REQ, "Probe Request"}, {MGT_PROBE_RESP, "Probe Response"}, {MGT_MEASUREMENT_PILOT, "Measurement Pilot"}, {MGT_BEACON, "Beacon frame"}, {MGT_ATIM, "ATIM"}, {MGT_DISASS, "Disassociate"}, {MGT_AUTHENTICATION, "Authentication"}, {MGT_DEAUTHENTICATION, "Deauthentication"}, {MGT_ACTION, "Action"}, {MGT_ACTION_NO_ACK, "Action No Ack"}, {MGT_ARUBA_WLAN, "Aruba Management"}, {CTRL_CONTROL_WRAPPER, "Control Wrapper"}, {CTRL_BLOCK_ACK_REQ, "802.11 Block Ack Req"}, {CTRL_BLOCK_ACK, "802.11 Block Ack"}, {CTRL_PS_POLL, "Power-Save poll"}, {CTRL_RTS, "Request-to-send"}, {CTRL_CTS, "Clear-to-send"}, {CTRL_ACKNOWLEDGEMENT, "Acknowledgement"}, {CTRL_CFP_END, "CF-End (Control-frame)"}, {CTRL_CFP_ENDACK, "CF-End + CF-Ack (Control-frame)"}, {DATA, "Data"}, {DATA_CF_ACK, "Data + CF-Ack"}, {DATA_CF_POLL, "Data + CF-Poll"}, {DATA_CF_ACK_POLL, "Data + CF-Ack + CF-Poll"}, {DATA_NULL_FUNCTION, "Null function (No data)"}, {DATA_CF_ACK_NOD, "Acknowledgement (No data)"}, {DATA_CF_POLL_NOD, "CF-Poll (No data)"}, {DATA_CF_ACK_POLL_NOD, "CF-Ack/Poll (No data)"}, {DATA_QOS_DATA, "QoS Data"}, {DATA_QOS_DATA_CF_ACK, "QoS Data + CF-Acknowledgment"}, {DATA_QOS_DATA_CF_POLL, "QoS Data + CF-Poll"}, {DATA_QOS_DATA_CF_ACK_POLL, "QoS Data + CF-Ack + CF-Poll"}, {DATA_QOS_NULL, "QoS Null function (No data)"}, {DATA_QOS_CF_POLL_NOD, "QoS CF-Poll (No Data)"}, {DATA_QOS_CF_ACK_POLL_NOD, "QoS CF-Ack + CF-Poll (No data)"}, {0, NULL} }; /* ************************************************************************* */ /* 802.1D Tag Names */ /* ************************************************************************* */ static const char *qos_tags[8] = { "Best Effort", "Background", "Spare", "Excellent Effort", "Controlled Load", "Video", "Voice", "Network Control" }; /* ************************************************************************* */ /* WME Access Category Names (by 802.1D Tag) */ /* ************************************************************************* */ static const char *qos_acs[8] = { "Best Effort", "Background", "Background", "Video", "Video", "Video", "Voice", "Voice" }; /* ************************************************************************* */ /* WME Access Category Names (by WME ACI) */ /* ************************************************************************* */ static const value_string wme_acs[] = { { 0, "Best Effort" }, { 1, "Background" }, { 2, "Video" }, { 3, "Voice" }, { 0, NULL } }; /* ************************************************************************* */ /* Aruba Management Type */ /* ************************************************************************* */ static const value_string aruba_mgt_typevals[] = { { 0x0001, "Hello" }, { 0x0002, "Probe" }, { 0x0003, "MTU" }, { 0x0004, "Ageout" }, { 0x0005, "Heartbeat" }, { 0x0006, "Deauth" }, { 0x0007, "Disassoc" }, { 0x0008, "Probe response" }, { 0x0009, "Tunnel update" }, { 0x000A, "Laser beam active" }, { 0x000B, "Client IP" }, { 0x000C, "Laser beam active v2" }, { 0x000D, "AP statistics" }, { 0, NULL } }; /*** Begin: Action Fixed Parameter ***/ #define CAT_SPECTRUM_MGMT 0 #define CAT_QOS 1 #define CAT_DLS 2 #define CAT_BLOCK_ACK 3 #define CAT_PUBLIC 4 #define CAT_RADIO_MEASUREMENT 5 #define CAT_FAST_BSS_TRANSITION 6 #define CAT_HT 7 #define CAT_SA_QUERY 8 #define CAT_PUBLIC_PROTECTED 9 #define CAT_TDLS 12 #define CAT_MGMT_NOTIFICATION 17 #define CAT_VENDOR_SPECIFIC_PROTECTED 126 #define CAT_VENDOR_SPECIFIC 127 #ifdef MESH_OVERRIDES #define CAT_MESH_PEER_LINK 30 /* Per 802.11s draft 1.08. ANA will probably revise this */ #define CAT_MESH_LINK_METRIC 31 #define CAT_MESH_PATH_SELECTION 32 #define CAT_MESH_INTERWORKING 33 #define CAT_MESH_RESOURCE_COORDINATION 34 #define CAT_MESH_SECURITY_ARCHITECTURE 35 #endif /* MESH_OVERRIDES */ #define SM_ACTION_MEASUREMENT_REQUEST 0 #define SM_ACTION_MEASUREMENT_REPORT 1 #define SM_ACTION_TPC_REQUEST 2 #define SM_ACTION_TPC_REPORT 3 #define SM_ACTION_CHAN_SWITCH_ANNC 4 #define SM_ACTION_EXT_CHAN_SWITCH_ANNC 5 #define SM_ACTION_ADDTS_REQUEST 0 #define SM_ACTION_ADDTS_RESPONSE 1 #define SM_ACTION_DELTS 2 #define SM_ACTION_QOS_SCHEDULE 3 #define SM_ACTION_DLS_REQUEST 0 #define SM_ACTION_DLS_RESPONSE 1 #define SM_ACTION_DLS_TEARDOWN 2 #define BA_ADD_BLOCK_ACK_REQUEST 0 #define BA_ADD_BLOCK_ACK_RESPONSE 1 #define BA_DELETE_BLOCK_ACK 2 #define PA_DSE_ENABLEMENT 1 #define PA_DSE_DEENABLEMENT 2 #define PA_DSE_REG_LOC_ANNOUNCEMENT 3 #define PA_EXT_CHANNEL_SWITCH_ANNOUNCEMENT 4 #define PA_DSE_MEASUREMENT_REQUEST 5 #define PA_DSE_MEASUREMENT_REPORT 6 #define PA_MEASUREMENT_PILOT 7 #define PA_DSE_POWER_CONSTRAINT 8 #define PA_VENDOR_SPECIFIC 9 #define PA_GAS_INITIAL_REQUEST 10 #define PA_GAS_INITIAL_RESPONSE 11 #define PA_GAS_COMEBACK_REQUEST 12 #define PA_GAS_COMEBACK_RESPONSE 13 #define PA_TDLS_DISCOVERY_RESPONSE 14 #define HT_ACTION_NOTIFY_CHAN_WIDTH 0 #define HT_ACTION_SM_PWR_SAVE 1 #define HT_ACTION_PSMP_ACTION 2 #define HT_ACTION_SET_PCO_PHASE 3 #define HT_ACTION_MIMO_CSI 4 #define HT_ACTION_MIMO_BEAMFORMING 5 #define HT_ACTION_MIMO_COMPRESSED_BEAMFORMING 6 #define HT_ACTION_ANT_SEL_FEEDBACK 7 #define HT_ACTION_HT_INFO_EXCHANGE 8 /* IEEE Std 802.11r-2008, 7.4.8, Table 7-57g */ #define FT_ACTION_REQUEST 1 #define FT_ACTION_RESPONSE 2 #define FT_ACTION_CONFIRM 3 #define FT_ACTION_ACK 4 /* SA Query Action frame codes (IEEE 802.11w-2009, 7.4.9) */ #define SA_QUERY_REQUEST 0 #define SA_QUERY_RESPONSE 1 /* IEEE Std 802.11z-2010, 7.4.11, Table 7-57v1 */ #define TDLS_SETUP_REQUEST 0 #define TDLS_SETUP_RESPONSE 1 #define TDLS_SETUP_CONFIRM 2 #define TDLS_TEARDOWN 3 #define TDLS_PEER_TRAFFIC_INDICATION 4 #define TDLS_CHANNEL_SWITCH_REQUEST 5 #define TDLS_CHANNEL_SWITCH_RESPONSE 6 #define TDLS_PEER_PSM_REQUEST 7 #define TDLS_PEER_PSM_RESPONSE 8 #define TDLS_PEER_TRAFFIC_RESPONSE 9 #define TDLS_DISCOVERY_REQUEST 10 #ifdef MESH_OVERRIDES #define MESH_PL_PEER_LINK_OPEN 0 #define MESH_PL_PEER_LINK_CONFIRM 1 #define MESH_PL_PEER_LINK_CLOSE 2 #define MESH_PS_PATH_REQUEST 0 #define MESH_PS_PATH_REPLY 1 #define MESH_PS_PATH_ERROR 2 #define MESH_PS_ROOT_ANNOUNCEMENT 3 #endif /* MESH_OVERRIDES */ /* 11s draft, table 7-22 */ #define MESH_LINK_CANCELLED 2 #define MESH_MAX_NEIGHBORS 3 #define MESH_CONFIG_POLICY_VIOLATION 4 #define MESH_CLOSE_RCVD 5 #define MESH_MAX_RETRIES 6 #define MESH_CONFIRM_TIMEOUT 7 #define MESH_MGMT_IE_CONFIGURATION 36 #define MESH_MGMT_IE_ID 37 #define MESH_MGMT_IE_PEER_LINK 40 #define MESH_MGMT_IE_PREQ 53 #define MESH_MGMT_IE_PREP 54 #define MESH_MGMT_IE_PERR 55 /* Vendor actions */ /* MARVELL */ #define MRVL_ACTION_MESH_MANAGEMENT 1 #define MRVL_MESH_MGMT_ACTION_RREQ 0 #define MRVL_MESH_MGMT_ACTION_RREP 1 #define MRVL_MESH_MGMT_ACTION_RERR 2 #define MRVL_MESH_MGMT_ACTION_PLDM 3 /*** End: Action Fixed Parameter ***/ static int proto_wlan = -1; static int proto_aggregate = -1; static packet_info * g_pinfo; static int proto_radio = -1; static int proto_wlancap = -1; static int proto_prism = -1; /* ************************************************************************* */ /* Header field info values for radio information */ /* ************************************************************************* */ static int hf_mactime = -1; static int hf_hosttime = -1; static int hf_data_rate = -1; static int hf_channel = -1; static int hf_channel_frequency = -1; static int hf_normrssi_antsignal = -1; static int hf_dbm_antsignal = -1; static int hf_rawrssi_antsignal = -1; static int hf_normrssi_antnoise = -1; static int hf_dbm_antnoise = -1; static int hf_rawrssi_antnoise = -1; static int hf_signal_strength = -1; /* Prism radio header */ static int hf_prism_msgcode = -1; static int hf_prism_msglen = -1; static int hf_prism_rssi_data = -1; static int hf_prism_sq_data = -1; static int hf_prism_signal_data = -1; static int hf_prism_noise_data = -1; static int hf_prism_rate_data = -1; static int hf_prism_istx_data = -1; static int hf_prism_frmlen_data = -1; /* AVS WLANCAP radio header */ static int hf_wlan_magic = -1; static int hf_wlan_version = -1; static int hf_wlan_length = -1; static int hf_wlan_phytype = -1; static int hf_wlan_antenna = -1; static int hf_wlan_priority = -1; static int hf_wlan_ssi_type = -1; static int hf_wlan_ssi_signal = -1; static int hf_wlan_ssi_noise = -1; static int hf_wlan_preamble = -1; static int hf_wlan_encoding = -1; static int hf_wlan_sequence = -1; static int hf_wlan_drops = -1; static int hf_wlan_receiver_addr = -1; static int hf_wlan_padding = -1; /* ************************************************************************* */ /* Header field info values for FC-field */ /* ************************************************************************* */ static int hf_fc_field = -1; static int hf_fc_proto_version = -1; static int hf_fc_frame_type = -1; static int hf_fc_frame_subtype = -1; static int hf_fc_frame_type_subtype = -1; static int hf_fc_flags = -1; static int hf_fc_to_ds = -1; static int hf_fc_from_ds = -1; static int hf_fc_data_ds = -1; static int hf_fc_more_frag = -1; static int hf_fc_retry = -1; static int hf_fc_pwr_mgt = -1; static int hf_fc_more_data = -1; static int hf_fc_protected = -1; static int hf_fc_order = -1; typedef struct retransmit_key { guint8 bssid[6]; guint8 src[6]; guint16 seq_control; guint fnum; } retransmit_key; static GHashTable *fc_analyse_retransmit_table = NULL; static GHashTable *fc_first_frame_table = NULL; static int hf_fc_analysis_retransmission = -1; static int hf_fc_analysis_retransmission_frame = -1; /* ************************************************************************* */ /* Header values for Duration/ID field */ /* ************************************************************************* */ static int hf_did_duration = -1; static int hf_assoc_id = -1; /* ************************************************************************* */ /* Header values for different address-fields (all 4 of them) */ /* ************************************************************************* */ static int hf_addr_da = -1; /* Destination address subfield */ static int hf_addr_sa = -1; /* Source address subfield */ static int hf_addr_ra = -1; /* Receiver address subfield */ static int hf_addr_ta = -1; /* Transmitter address subfield */ static int hf_addr_addr1 = -1; static int hf_addr_bssid = -1; /* address is bssid */ static int hf_addr = -1; /* Source or destination address subfield */ /* ************************************************************************* */ /* Header values for QoS control field */ /* ************************************************************************* */ static int hf_qos_priority = -1; static int hf_qos_ack_policy = -1; static int hf_qos_amsdu_present = -1; static int hf_qos_eosp = -1; static int hf_qos_bit4 = -1; static int hf_qos_txop_limit = -1; static int hf_qos_buf_state_indicated = -1; static int hf_qos_highest_pri_buf_ac = -1; static int hf_qos_qap_buf_load = -1; static int hf_qos_txop_dur_req = -1; static int hf_qos_queue_size = -1; /* ************************************************************************* */ /* Header values for HT control field (+HTC) */ /* ************************************************************************* */ /* 802.11nD-1.10 & 802.11nD-2.0 7.1.3.5a */ static int hf_htc = -1; static int hf_htc_lac = -1; static int hf_htc_lac_reserved = -1; static int hf_htc_lac_trq = -1; static int hf_htc_lac_mai_aseli = -1; static int hf_htc_lac_mai_mrq = -1; static int hf_htc_lac_mai_msi = -1; static int hf_htc_lac_mai_reserved = -1; static int hf_htc_lac_mfsi = -1; static int hf_htc_lac_mfb = -1; static int hf_htc_lac_asel_command = -1; static int hf_htc_lac_asel_data = -1; static int hf_htc_cal_pos = -1; static int hf_htc_cal_seq = -1; static int hf_htc_reserved1 = -1; static int hf_htc_csi_steering = -1; static int hf_htc_ndp_announcement = -1; static int hf_htc_reserved2 = -1; static int hf_htc_ac_constraint = -1; static int hf_htc_rdg_more_ppdu = -1; /* ************************************************************************* */ /* Header values for sequence number field */ /* ************************************************************************* */ static int hf_frag_number = -1; static int hf_seq_number = -1; /* ************************************************************************* */ /* Header values for Frame Check field */ /* ************************************************************************* */ static int hf_fcs = -1; static int hf_fcs_good = -1; static int hf_fcs_bad = -1; /* ************************************************************************* */ /* Header values for reassembly */ /* ************************************************************************* */ static int hf_fragments = -1; static int hf_fragment = -1; static int hf_fragment_overlap = -1; static int hf_fragment_overlap_conflict = -1; static int hf_fragment_multiple_tails = -1; static int hf_fragment_too_long_fragment = -1; static int hf_fragment_error = -1; static int hf_reassembled_in = -1; static int hf_reassembled_length = -1; static int proto_wlan_mgt = -1; /* ************************************************************************* */ /* Header values for WAVE */ /* ************************************************************************* */ static int hf_pst_timingquality = -1; static int hf_pst_providercount = -1; static int hf_pst_length = -1; static int hf_pst_contents = -1; static int hf_pst_acid = -1; static int hf_pst_acm_length = -1; static int hf_pst_acm = -1; static int hf_pst_acm_contents =-1; static int hf_pst_acf = -1; static int hf_pst_priority = -1; static int hf_pst_ipv6addr = -1; static int hf_pst_serviceport = -1; static int hf_pst_addressing = -1; static int hf_pst_macaddr = -1; static int hf_pst_channel = -1; static int hf_chan_noc = -1; static int hf_chan_length = -1; static int hf_chan_content = -1; static int hf_chan_channel = -1; static int hf_chan_adapt = -1; static int hf_chan_rate = -1; static int hf_chan_tx_pow = -1; #ifdef MESH_OVERRIDES /* ************************************************************************* */ /* Header values for Mesh Header field */ /* ************************************************************************* */ static int hf_mesh_ttl = -1; static int hf_mesh_seq = -1; static int hf_mesh_flags = -1; static int hf_mesh_ae1 = -1; static int hf_mesh_ae2 = -1; static int hf_mesh_ae3 = -1; #endif /* MESH_OVERRIDES */ /* ************************************************************************* */ /* Fixed fields found in mgt frames */ /* ************************************************************************* */ static int hf_ieee80211_ff_auth_alg = -1; /* Authentication algorithm field */ static int hf_ieee80211_ff_auth_seq = -1; /* Authentication transaction sequence */ static int hf_ieee80211_ff_current_ap = -1; /* Current AP MAC address */ static int hf_ieee80211_ff_listen_ival = -1; /* Listen interval fixed field */ static int hf_ieee80211_ff_timestamp = -1; /* 64 bit timestamp */ static int hf_ieee80211_ff_beacon_interval = -1; /* 16 bit Beacon interval */ static int hf_ieee80211_ff_assoc_id = -1; /* 16 bit AID field */ static int hf_ieee80211_ff_reason = -1; /* 16 bit reason code */ static int hf_ieee80211_ff_status_code = -1; /* Status code */ static int hf_ieee80211_ff_category_code = -1; /* 8 bit Category code */ static int hf_ieee80211_ff_action_code = -1; /* 8 bit Action code */ static int hf_ieee80211_ff_dialog_token = -1; /* 8 bit Dialog token */ static int hf_ieee80211_ff_wme_action_code = -1; /* Management notification action code */ static int hf_ieee80211_ff_wme_status_code = -1; /* Management notification setup response status code */ static int hf_ieee80211_ff_qos_action_code = -1; static int hf_ieee80211_ff_dls_action_code = -1; static int hf_ieee80211_ff_dst_mac_addr = -1; /* DLS destination MAC addressi */ static int hf_ieee80211_ff_src_mac_addr = -1; /* DLS source MAC addressi */ static int hf_ieee80211_ff_dls_timeout = -1; /* DLS timeout value */ static int hf_ieee80211_ff_ft_action_code = -1; /* 8 bit FT Action code */ static int hf_ieee80211_ff_sta_address = -1; static int hf_ieee80211_ff_target_ap_address = -1; static int hf_ieee80211_ff_gas_comeback_delay = -1; static int hf_ieee80211_ff_gas_fragment_id = -1; static int hf_ieee80211_ff_more_gas_fragments = -1; static int hf_ieee80211_ff_query_request_length = -1; static int hf_ieee80211_ff_query_request = -1; static int hf_ieee80211_ff_query_response_length = -1; static int hf_ieee80211_ff_query_response = -1; static int hf_ieee80211_ff_anqp_info_id = -1; static int hf_ieee80211_ff_anqp_info_length = -1; static int hf_ieee80211_ff_anqp_info = -1; static int hf_ieee80211_ff_tdls_action_code = -1; static int hf_ieee80211_ff_target_channel = -1; static int hf_ieee80211_ff_regulatory_class = -1; static int hf_ieee80211_ff_sa_query_action_code = -1; static int hf_ieee80211_ff_transaction_id = -1; /* Vendor specific */ static int ff_marvell_action_type = -1; static int ff_marvell_mesh_mgt_action_code = -1; static int ff_mesh_mgt_length = -1; /* Mesh Management length */ static int ff_mesh_mgt_mode = -1; /* Mesh Management mode */ static int ff_mesh_mgt_ttl = -1; /* Mesh Management TTL */ static int ff_mesh_mgt_dstcount = -1; /* Mesh Management dst count */ static int ff_mesh_mgt_hopcount = -1; /* Mesh Management hop count */ static int ff_mesh_mgt_rreqid = -1; /* Mesh Management RREQ ID */ static int ff_mesh_mgt_sa = -1; /* Mesh Management src addr */ static int ff_mesh_mgt_ssn = -1; /* Mesh Management src sequence number */ static int ff_mesh_mgt_metric = -1; /* Mesh Management metric */ static int ff_mesh_mgt_flags = -1; /* Mesh Management RREQ flags */ static int ff_mesh_mgt_da = -1; /* Mesh Management dst addr */ static int ff_mesh_mgt_dsn = -1; /* Mesh Management dst sequence number */ static int ff_mesh_mgt_lifetime = -1; /* Mesh Management lifetime */ static int ff_ba_action = -1; static int hf_ieee80211_ff_block_ack_params = -1; static int hf_ieee80211_ff_block_ack_params_amsdu_permitted = -1; static int hf_ieee80211_ff_block_ack_params_policy = -1; static int hf_ieee80211_ff_block_ack_params_tid = -1; static int hf_ieee80211_ff_block_ack_params_buffer_size = -1; static int hf_ieee80211_ff_block_ack_timeout = -1; static int hf_ieee80211_ff_block_ack_ssc = -1; static int hf_ieee80211_ff_block_ack_ssc_fragment = -1; static int hf_ieee80211_ff_block_ack_ssc_sequence = -1; static int hf_ieee80211_ff_delba_param = -1; static int hf_ieee80211_ff_delba_param_reserved = -1; static int hf_ieee80211_ff_delba_param_init = -1; static int hf_ieee80211_ff_delba_param_tid = -1; static int ff_max_reg_pwr = -1; static int ff_measurement_pilot_int = -1; static int ff_country_str = -1; static int ff_max_tx_pwr = -1; static int ff_tx_pwr_used = -1; static int ff_transceiver_noise_floor = -1; static int ff_channel_width = -1; static int hf_ieee80211_ff_qos_info_ap = -1; static int hf_ieee80211_ff_qos_info_ap_edca_param_set_counter = -1; static int hf_ieee80211_ff_qos_info_ap_q_ack = -1; static int hf_ieee80211_ff_qos_info_ap_queue_req = -1; static int hf_ieee80211_ff_qos_info_ap_txop_request = -1; static int hf_ieee80211_ff_qos_info_ap_reserved = -1; static int hf_ieee80211_ff_qos_info_sta = -1; static int hf_ieee80211_ff_qos_info_sta_ac_vo = -1; static int hf_ieee80211_ff_qos_info_sta_ac_vi = -1; static int hf_ieee80211_ff_qos_info_sta_ac_bk = -1; static int hf_ieee80211_ff_qos_info_sta_ac_be = -1; static int hf_ieee80211_ff_qos_info_sta_q_ack = -1; static int hf_ieee80211_ff_qos_info_sta_max_sp_len = -1; static int hf_ieee80211_ff_qos_info_sta_more_data_ack = -1; static int ff_sm_pwr_save = -1; static int ff_sm_pwr_save_enabled = -1; static int ff_sm_pwr_save_sm_mode = -1; static int ff_sm_pwr_save_reserved = -1; static int ff_pco_phase_cntrl = -1; static int ff_psmp_param_set = -1; static int ff_psmp_param_set_n_sta = -1; static int ff_psmp_param_set_more_psmp = -1; static int ff_psmp_param_set_psmp_sequence_duration = -1; static int ff_mimo_cntrl_nc_index = -1; static int ff_mimo_cntrl_nr_index = -1; static int ff_mimo_cntrl_channel_width = -1; static int ff_mimo_cntrl_grouping = -1; static int ff_mimo_cntrl_coefficient_size = -1; static int ff_mimo_cntrl_codebook_info = -1; static int ff_mimo_cntrl_remaining_matrix_segment = -1; static int ff_mimo_cntrl_reserved = -1; static int ff_mimo_cntrl_sounding_timestamp = -1; static int ff_ant_selection = -1; static int ff_ant_selection_0 = -1; static int ff_ant_selection_1 = -1; static int ff_ant_selection_2 = -1; static int ff_ant_selection_3 = -1; static int ff_ant_selection_4 = -1; static int ff_ant_selection_5 = -1; static int ff_ant_selection_6 = -1; static int ff_ant_selection_7 = -1; static int ff_ext_channel_switch_announcement = -1; static int ff_ht_info = -1; static int ff_ht_info_information_request = -1; static int ff_ht_info_40_mhz_intolerant = -1; static int ff_ht_info_sta_chan_width = -1; static int ff_ht_info_reserved = -1; static int ff_ht_action = -1; static int ff_psmp_sta_info = -1; static int ff_psmp_sta_info_dtt_start_offset = -1; static int ff_psmp_sta_info_dtt_duration = -1; static int ff_psmp_sta_info_sta_id = -1; static int ff_psmp_sta_info_utt_start_offset = -1; static int ff_psmp_sta_info_utt_duration = -1; static int ff_psmp_sta_info_reserved_small= -1; static int ff_psmp_sta_info_reserved_large = -1; static int ff_psmp_sta_info_psmp_multicast_id = -1; static int ff_mimo_csi_snr = -1; #ifdef MESH_OVERRIDES /*** Begin: Mesh Frame Format ***/ static int ff_mesh_mgt_action_ps_code = -1;/* Mesh Management path selection action code */ static int ff_mesh_mgt_action_pl_code = -1;/* Mesh Management peer link action code */ static int ff_mesh_mgt_ie_id = -1; /* Mesh Management ID */ /* NB: see above for more items */ static int ff_mesh_mgt_dest_flags= -1; /* Mesh Management destination flags */ static int ff_mesh_mgt_srccount = -1; /* Mesh Management src count */ static int ff_mesh_mgt_dest_do_flags = -1; /* Mesh Management Destination Only flag */ static int ff_mesh_mgt_dest_rf_flags = -1; /* Mesh Management Reply and Forward flag */ /* variable header fields */ static int hf_mesh_mgt_pl_subtype = -1;/* Mesh Management peer link frame subtype */ static int hf_mesh_mgt_pl_local_link_id = -1;/* Mesh Management local link id */ static int hf_mesh_mgt_pl_peer_link_id = -1;/* Mesh Management peer link id */ static int hf_mesh_mgt_pl_reason_code = -1;/* Mesh Management peer link reason code */ static int hf_mesh_config_version = -1; static int hf_mesh_config_path_sel_protocol = -1; static int hf_mesh_config_path_sel_metric = -1; static int hf_mesh_config_congestion_control = -1; static int hf_mesh_config_channel_prec = -1; static int hf_mesh_config_capability = -1; /*** End: Mesh Frame Format ***/ #endif /* MESH_OVERRIDES */ static int ff_public_action = -1; /* ************************************************************************* */ /* Flags found in the capability field (fixed field) */ /* ************************************************************************* */ static int ff_capture = -1; static int ff_cf_ess = -1; static int ff_cf_ibss = -1; static int ff_cf_sta_poll = -1; /* CF pollable status for a STA */ static int ff_cf_ap_poll = -1; /* CF pollable status for an AP */ static int ff_cf_privacy = -1; static int ff_cf_preamble = -1; static int ff_cf_pbcc = -1; static int ff_cf_agility = -1; static int ff_short_slot_time = -1; static int ff_dsss_ofdm = -1; static int ff_cf_spec_man = -1; static int ff_cf_apsd = -1; static int ff_cf_del_blk_ack = -1; static int ff_cf_imm_blk_ack = -1; /* ************************************************************************* */ /* A-MSDU fields */ /* ************************************************************************* */ static int amsdu_msdu_header_text = -1; /* ************************************************************************* */ /* Tagged value format fields */ /* ************************************************************************* */ static int tag_number = -1; static int tag_length = -1; static int tag_interpretation = -1; static int tag_oui = -1; static int hf_ieee80211_tag_ds_param_channel = -1; static int tim_length = -1; static int tim_dtim_count = -1; static int tim_dtim_period = -1; static int tim_bmapctl = -1; static int hf_ieee80211_fixed_parameters = -1; /* Protocol payload for management frames */ static int hf_ieee80211_tagged_parameters = -1; /* Fixed payload item */ static int hf_ieee80211_tagged_ssid = -1; static int hf_wep_iv = -1; static int hf_wep_iv_weak = -1; static int hf_tkip_extiv = -1; static int hf_ccmp_extiv = -1; static int hf_wep_key = -1; static int hf_wep_icv = -1; static int hf_block_ack_request_control = -1; static int hf_block_ack_control = -1; static int hf_block_ack_control_ack_policy = -1; static int hf_block_ack_control_multi_tid = -1; static int hf_block_ack_control_compressed_bitmap = -1; static int hf_block_ack_control_reserved = -1; static int hf_block_ack_control_basic_tid_info = -1; static int hf_block_ack_control_compressed_tid_info = -1; static int hf_block_ack_control_multi_tid_info = -1; static int hf_tag_measure_request_measurement_mode = -1; static int hf_tag_measure_request_bssid = -1; static int hf_tag_measure_request_reporting_condition = -1; static int hf_tag_measure_request_threshold_offset_unsigned = -1; static int hf_tag_measure_request_threshold_offset_signed = -1; static int hf_tag_measure_request_report_mac = -1; static int hf_tag_measure_request_group_id = -1; static int hf_block_ack_multi_tid_info = -1; static int hf_block_ack_request_type = -1; static int hf_block_ack_multi_tid_reserved = -1; static int hf_block_ack_multi_tid_value = -1; static int hf_block_ack_type = -1; static int hf_block_ack_bitmap = -1; static int ht_cap = -1; static int ht_vs_cap = -1; static int ht_ldpc_coding = -1; static int ht_chan_width = -1; static int ht_sm_pwsave = -1; static int ht_green = -1; static int ht_short20 = -1; static int ht_short40 = -1; static int ht_tx_stbc = -1; static int ht_rx_stbc = -1; static int ht_delayed_block_ack = -1; static int ht_max_amsdu = -1; static int ht_dss_cck_40 = -1; static int ht_psmp = -1; static int ht_40_mhz_intolerant = -1; static int ht_l_sig = -1; static int ampduparam = -1; static int ampduparam_vs = -1; static int ampduparam_mpdu = -1; static int ampduparam_mpdu_start_spacing = -1; static int ampduparam_reserved = -1; static int mcsset = -1; static int mcsset_vs = -1; static int mcsset_rx_bitmask_0to7 = -1; static int mcsset_rx_bitmask_8to15 = -1; static int mcsset_rx_bitmask_16to23 = -1; static int mcsset_rx_bitmask_24to31 = -1; static int mcsset_rx_bitmask_32 = -1; static int mcsset_rx_bitmask_33to38 = -1; static int mcsset_rx_bitmask_39to52 = -1; static int mcsset_rx_bitmask_53to76 = -1; static int mcsset_highest_data_rate = -1; static int mcsset_tx_mcs_set_defined = -1; static int mcsset_tx_rx_mcs_set_not_equal = -1; static int mcsset_tx_max_spatial_streams = -1; static int mcsset_tx_unequal_modulation = -1; static int htex_cap = -1; static int htex_vs_cap = -1; static int htex_pco = -1; static int htex_transtime = -1; static int htex_mcs = -1; static int htex_htc_support = -1; static int htex_rd_responder = -1; static int txbf = -1; static int txbf_vs = -1; static int txbf_cap = -1; static int txbf_rcv_ssc = -1; static int txbf_tx_ssc = -1; static int txbf_rcv_ndp = -1; static int txbf_tx_ndp = -1; static int txbf_impl_txbf = -1; static int txbf_calib = -1; static int txbf_expl_csi = -1; static int txbf_expl_uncomp_fm = -1; static int txbf_expl_comp_fm = -1; static int txbf_expl_bf_csi = -1; static int txbf_expl_uncomp_fm_feed = -1; static int txbf_expl_comp_fm_feed = -1; static int txbf_csi_num_bf_ant = -1; static int txbf_min_group = -1; static int txbf_uncomp_sm_bf_ant = -1; static int txbf_comp_sm_bf_ant = -1; static int txbf_csi_max_rows_bf = -1; static int txbf_chan_est = -1; static int txbf_resrv = -1; /*** Begin: 802.11n D1.10 - HT Information IE ***/ static int ht_info_primary_channel = -1; static int ht_info_delimiter1 = -1; static int ht_info_secondary_channel_offset = -1; static int ht_info_channel_width = -1; static int ht_info_rifs_mode = -1; static int ht_info_psmp_stas_only = -1; static int ht_info_service_interval_granularity = -1; static int ht_info_delimiter2 = -1; static int ht_info_operating_mode = -1; static int ht_info_non_greenfield_sta_present = -1; static int ht_info_transmit_burst_limit = -1; static int ht_info_obss_non_ht_stas_present = -1; static int ht_info_reserved_1 = -1; static int ht_info_delimiter3 = -1; static int ht_info_reserved_2 = -1; static int ht_info_dual_beacon = -1; static int ht_info_dual_cts_protection = -1; static int ht_info_secondary_beacon = -1; static int ht_info_lsig_txop_protection_full_support = -1; static int ht_info_pco_active = -1; static int ht_info_pco_phase = -1; static int ht_info_reserved_3 = -1; /*** End: 802.11n D1.10 - HT Information IE ***/ static int hf_tag_secondary_channel_offset = -1; static int hf_tag_power_capability_min = -1; static int hf_tag_power_capability_max = -1; static int hf_tag_tpc_report_trsmt_pow = -1; static int hf_tag_tpc_report_link_mrg = -1; static int hf_tag_supported_channels = -1; static int hf_tag_supported_channels_first = -1; static int hf_tag_supported_channels_range = -1; static int hf_tag_measure_request_measurement_token = -1; static int hf_tag_measure_request_mode = -1; static int hf_tag_measure_request_mode_reserved1 = -1; static int hf_tag_measure_request_mode_enable = -1; static int hf_tag_measure_request_mode_request = -1; static int hf_tag_measure_request_mode_report = -1; static int hf_tag_measure_request_mode_reserved2 = -1; static int hf_tag_measure_request_type = -1; static int hf_tag_measure_request_channel_number = -1; static int hf_tag_measure_request_start_time = -1; static int hf_tag_measure_request_duration = -1; static int hf_tag_measure_request_regulatory_class = -1; static int hf_tag_measure_request_randomization_interval = -1; static int hf_tag_measure_report_measurement_token = -1; static int hf_tag_measure_report_mode = -1; static int hf_tag_measure_report_mode_late = -1; static int hf_tag_measure_report_mode_incapable = -1; static int hf_tag_measure_report_mode_refused = -1; static int hf_tag_measure_report_mode_reserved = -1; static int hf_tag_measure_report_type = -1; static int hf_tag_measure_report_channel_number = -1; static int hf_tag_measure_report_start_time = -1; static int hf_tag_measure_report_duration = -1; static int hf_tag_measure_basic_map_field = -1; static int hf_tag_measure_map_field_bss = -1; static int hf_tag_measure_map_field_odfm = -1; static int hf_tag_measure_map_field_unident_signal = -1; static int hf_tag_measure_map_field_radar = -1; static int hf_tag_measure_map_field_unmeasured = -1; static int hf_tag_measure_map_field_reserved = -1; static int hf_tag_measure_cca_busy_fraction = -1; static int hf_tag_measure_rpi_histogram_report = -1; static int hf_tag_measure_rpi_histogram_report_0 = -1; static int hf_tag_measure_rpi_histogram_report_1 = -1; static int hf_tag_measure_rpi_histogram_report_2 = -1; static int hf_tag_measure_rpi_histogram_report_3 = -1; static int hf_tag_measure_rpi_histogram_report_4 = -1; static int hf_tag_measure_rpi_histogram_report_5 = -1; static int hf_tag_measure_rpi_histogram_report_6 = -1; static int hf_tag_measure_rpi_histogram_report_7 = -1; static int hf_tag_measure_report_regulatory_class = -1; static int hf_tag_measure_report_channel_load = -1; static int hf_tag_measure_report_frame_info = -1; static int hf_tag_measure_report_frame_info_phy_type = -1; static int hf_tag_measure_report_frame_info_frame_type = -1; static int hf_tag_measure_report_rcpi = -1; static int hf_tag_measure_report_rsni = -1; static int hf_tag_measure_report_bssid = -1; static int hf_tag_measure_report_ant_id = -1; static int hf_tag_measure_report_parent_tsf = -1; static int hf_tag_extended_capabilities = -1; static int hf_tag_extended_capabilities_b0 = -1; static int hf_tag_extended_capabilities_b1 = -1; static int hf_tag_extended_capabilities_b2 = -1; static int hf_tag_extended_capabilities_b3 = -1; static int hf_tag_extended_capabilities_b4 = -1; static int hf_tag_extended_capabilities_b6 = -1; static int hf_tag_extended_capabilities_b28 = -1; static int hf_tag_extended_capabilities_b29 = -1; static int hf_tag_extended_capabilities_b30 = -1; static int hf_tag_extended_capabilities_b37 = -1; static int hf_tag_extended_capabilities_b38 = -1; static int hf_tag_extended_capabilities_b39 = -1; static int hf_tag_extended_capabilities_b40 = -1; static int hf_tag_extended_capabilities_serv_int_granularity = -1; static int hf_tag_neighbor_report_bssid = -1; static int hf_tag_neighbor_report_bssid_info = -1; static int hf_tag_neighbor_report_bssid_info_reachability = -1; static int hf_tag_neighbor_report_bssid_info_security = -1; static int hf_tag_neighbor_report_bssid_info_key_scope = -1; /*static int hf_tag_neighbor_report_bssid_info_capability = -1; */ /* TODO Make this the parent tree item */ static int hf_tag_neighbor_report_bssid_info_capability_spec_mng = -1; static int hf_tag_neighbor_report_bssid_info_capability_qos = -1; static int hf_tag_neighbor_report_bssid_info_capability_apsd = -1; static int hf_tag_neighbor_report_bssid_info_capability_radio_msnt = -1; static int hf_tag_neighbor_report_bssid_info_capability_dback = -1; static int hf_tag_neighbor_report_bssid_info_capability_iback = -1; static int hf_tag_neighbor_report_bssid_info_mobility_domain = -1; static int hf_tag_neighbor_report_bssid_info_high_throughput = -1; static int hf_tag_neighbor_report_bssid_info_reserved = -1; static int hf_tag_neighbor_report_reg_class = -1; static int hf_tag_neighbor_report_channel_number = -1; static int hf_tag_neighbor_report_phy_type = -1; static int hf_tag_ext_channel_switch_announcement_switch_mode = -1; static int hf_tag_ext_channel_switch_announcement_new_reg_class = -1; static int hf_tag_ext_channel_switch_announcement_new_chan_number = -1; static int hf_tag_ext_channel_switch_announcement_switch_count = -1; static int hf_tag_supported_reg_classes_current = -1; static int hf_tag_supported_reg_classes_alternate = -1; /* IEEE Std 802.11r-2008 7.3.2.47 */ static int hf_ieee80211_tag_mobility_domain_mdid = -1; static int hf_ieee80211_tag_mobility_domain_ft_capab = -1; static int hf_ieee80211_tag_mobility_domain_ft_capab_ft_over_ds = -1; static int hf_ieee80211_tag_mobility_domain_ft_capab_resource_req = -1; /* IEEE Std 802.11r-2008 7.3.2.48 */ static int hf_ieee80211_tag_ft_mic_control = -1; static int hf_ieee80211_tag_ft_element_count = -1; static int hf_ieee80211_tag_ft_mic = -1; static int hf_ieee80211_tag_ft_anonce = -1; static int hf_ieee80211_tag_ft_snonce = -1; static int hf_ieee80211_tag_ft_subelem_id = -1; static int hf_ieee80211_tag_ft_subelem_len = -1; static int hf_ieee80211_tag_ft_subelem_data = -1; static int hf_ieee80211_tag_ft_subelem_r1kh_id = -1; static int hf_ieee80211_tag_ft_subelem_gtk_key_info = -1; static int hf_ieee80211_tag_ft_subelem_gtk_key_id = -1; static int hf_ieee80211_tag_ft_subelem_gtk_key_length = -1; static int hf_ieee80211_tag_ft_subelem_gtk_rsc = -1; static int hf_ieee80211_tag_ft_subelem_gtk_key = -1; static int hf_ieee80211_tag_ft_subelem_r0kh_id = -1; static int hf_ieee80211_tag_ft_subelem_igtk_key_id = -1; static int hf_ieee80211_tag_ft_subelem_igtk_ipn = -1; static int hf_ieee80211_tag_ft_subelem_igtk_key_length = -1; static int hf_ieee80211_tag_ft_subelem_igtk_key = -1; /* IEEE Std 802.11w-2009 7.3.2.55 */ static int hf_ieee80211_tag_mmie_keyid = -1; static int hf_ieee80211_tag_mmie_ipn = -1; static int hf_ieee80211_tag_mmie_mic = -1; /* IEEE P802.11u/D10.0, 7.3.2.91 */ static int hf_ieee80211_tag_adv_proto_resp_len_limit = -1; static int hf_ieee80211_tag_adv_proto_pame_bi = -1; static int hf_ieee80211_tag_adv_proto_id = -1; /* 802.11n 7.3.2.48 */ static int hta_cap = -1; static int hta_ext_chan_offset = -1; static int hta_rec_tx_width = -1; static int hta_rifs_mode = -1; static int hta_controlled_access = -1; static int hta_service_interval = -1; static int hta_operating_mode = -1; static int hta_non_gf_devices = -1; static int hta_basic_stbc_mcs = -1; static int hta_dual_stbc_protection = -1; static int hta_secondary_beacon = -1; static int hta_lsig_txop_protection = -1; static int hta_pco_active = -1; static int hta_pco_phase = -1; static int antsel = -1; static int antsel_vs = -1; static int antsel_b0 = -1; static int antsel_b1 = -1; static int antsel_b2 = -1; static int antsel_b3 = -1; static int antsel_b4 = -1; static int antsel_b5 = -1; static int antsel_b6 = -1; static int antsel_b7 = -1; static int hf_ieee80211_rsn_cap = -1; static int hf_ieee80211_rsn_cap_preauth = -1; static int hf_ieee80211_rsn_cap_no_pairwise = -1; static int hf_ieee80211_rsn_cap_ptksa_replay_counter = -1; static int hf_ieee80211_rsn_cap_gtksa_replay_counter = -1; static int hf_ieee80211_rsn_cap_mfpr = -1; static int hf_ieee80211_rsn_cap_mfpc = -1; static int hf_ieee80211_rsn_cap_peerkey = -1; static int hf_aironet_ie_type = -1; static int hf_aironet_ie_version = -1; static int hf_aironet_ie_data = -1; static int hf_aironet_ie_qos_unk1 = -1; static int hf_aironet_ie_qos_paramset = -1; static int hf_aironet_ie_qos_val = -1; static int hf_marvell_ie_type = -1; static int hf_marvell_ie_mesh_subtype = -1; static int hf_marvell_ie_mesh_version = -1; static int hf_marvell_ie_mesh_active_proto_id = -1; static int hf_marvell_ie_mesh_active_metric_id = -1; static int hf_marvell_ie_mesh_cap = -1; static int hf_marvell_ie_data = -1; /*QBSS - Version 1,2,802.11e*/ static int hf_qbss2_cal = -1; static int hf_qbss2_gl = -1; static int hf_qbss_cu = -1; static int hf_qbss2_cu = -1; static int hf_qbss_scount = -1; static int hf_qbss2_scount = -1; static int hf_qbss_version = -1; static int hf_qbss_adc = -1; static int hf_ts_info = -1; static int hf_tsinfo_type = -1; static int hf_tsinfo_tsid = -1; static int hf_tsinfo_dir = -1; static int hf_tsinfo_access = -1; static int hf_tsinfo_agg = -1; static int hf_tsinfo_apsd = -1; static int hf_tsinfo_up = -1; static int hf_tsinfo_ack = -1; static int hf_tsinfo_sched = -1; static int tspec_nor_msdu = -1; static int tspec_max_msdu = -1; static int tspec_min_srv = -1; static int tspec_max_srv = -1; static int tspec_inact_int = -1; static int tspec_susp_int = -1; static int tspec_srv_start = -1; static int tspec_min_data = -1; static int tspec_mean_data = -1; static int tspec_peak_data = -1; static int tspec_burst_size = -1; static int tspec_delay_bound = -1; static int tspec_min_phy = -1; static int tspec_surplus = -1; static int tspec_medium = -1; static int ts_delay = -1; static int hf_class_type = -1; static int hf_class_mask = -1; static int hf_ether_type = -1; static int hf_tclas_process = -1; static int hf_sched_info = -1; static int hf_sched_srv_start = -1; static int hf_sched_srv_int = -1; static int hf_sched_spec_int = -1; static int hf_action = -1; static int cf_version = -1; static int cf_ipv4_src = -1; static int cf_ipv4_dst = -1; static int cf_src_port = -1; static int cf_dst_port = -1; static int cf_dscp = -1; static int cf_protocol = -1; static int cf_ipv6_src = -1; static int cf_ipv6_dst = -1; static int cf_flow = -1; static int cf_tag_type = -1; static int cf_aruba = -1; static int cf_aruba_hb_seq = -1; static int cf_aruba_mtu = -1; static int hf_ieee80211_tag_vendor_oui_type = -1; /* IEEE Std 802.11z-2010 7.3.2.62 */ static int hf_ieee80211_tag_link_id_bssid = -1; static int hf_ieee80211_tag_link_id_init_sta = -1; static int hf_ieee80211_tag_link_id_resp_sta = -1; /* IEEE Std 802.11z-2010 7.3.2.63 */ static int hf_ieee80211_tag_wakeup_schedule_offset = -1; static int hf_ieee80211_tag_wakeup_schedule_interval = -1; static int hf_ieee80211_tag_wakeup_schedule_awake_window_slots = -1; static int hf_ieee80211_tag_wakeup_schedule_max_awake_dur = -1; static int hf_ieee80211_tag_wakeup_schedule_idle_count = -1; /* IEEE Std 802.11z-2010 7.3.2.64 */ static int hf_ieee80211_tag_channel_switch_timing_switch_time = -1; static int hf_ieee80211_tag_channel_switch_timing_switch_timeout = -1; /* IEEE Std 802.11z-2010 7.3.2.65 */ static int hf_ieee80211_tag_pti_control_tid = -1; static int hf_ieee80211_tag_pti_control_sequence_control = -1; /* IEEE Std 802.11z-2010 7.3.2.66 */ static int hf_ieee80211_tag_pu_buffer_status_ac_bk = -1; static int hf_ieee80211_tag_pu_buffer_status_ac_be = -1; static int hf_ieee80211_tag_pu_buffer_status_ac_vi = -1; static int hf_ieee80211_tag_pu_buffer_status_ac_vo = -1; /* IEEE Std 802.11r-2008 7.3.2.49 */ static int hf_ieee80211_tag_timeout_int_type = -1; static int hf_ieee80211_tag_timeout_int_value = -1; /* Ethertype 89-0d */ static int hf_ieee80211_data_encap_payload_type = -1; /* ************************************************************************* */ /* Protocol trees */ /* ************************************************************************* */ static gint ett_80211 = -1; static gint ett_proto_flags = -1; static gint ett_cap_tree = -1; static gint ett_fc_tree = -1; static gint ett_cntrl_wrapper_fc = -1; static gint ett_cntrl_wrapper_payload = -1; static gint ett_fragments = -1; static gint ett_fragment = -1; static gint ett_block_ack = -1; static gint ett_80211_mgt = -1; static gint ett_fixed_parameters = -1; static gint ett_tagged_parameters = -1; static gint ett_qos_parameters = -1; static gint ett_qos_ps_buf_state = -1; static gint ett_wep_parameters = -1; #ifdef MESH_OVERRIDES static gint ett_msh_parameters = -1; static gint ett_msh_dest_flags_tree = -1; #endif /* MESH_OVERRIDES */ static gint ett_rsn_cap_tree = -1; static gint ett_ht_cap_tree = -1; static gint ett_ampduparam_tree = -1; static gint ett_mcsset_tree = -1; static gint ett_mcsbit_tree = -1; static gint ett_htex_cap_tree = -1; static gint ett_txbf_tree = -1; static gint ett_antsel_tree = -1; static gint ett_hta_cap_tree = -1; static gint ett_hta_cap1_tree = -1; static gint ett_hta_cap2_tree = -1; static gint ett_htc_tree = -1; static gint ett_ht_info_delimiter1_tree = -1; static gint ett_ht_info_delimiter2_tree = -1; static gint ett_ht_info_delimiter3_tree = -1; static gint ett_tag_measure_request_tree = -1; static gint ett_tag_ex_cap = -1; static gint ett_tag_supported_channels = -1; static gint ett_tag_neighbor_report_bssid_info_tree = -1; static gint ett_tag_neighbor_report_bssid_info_capability_tree = -1; static gint ett_tag_neighbor_report_sub_tag_tree = -1; static gint ett_ff_ba_param_tree = -1; static gint ett_ff_ba_ssc_tree = -1; static gint ett_ff_delba_param_tree = -1; static gint ett_ff_qos_info = -1; static gint ett_ff_sm_pwr_save = -1; static gint ett_ff_psmp_param_set = -1; static gint ett_ff_mimo_cntrl = -1; static gint ett_ff_ant_sel = -1; static gint ett_mimo_report = -1; static gint ett_ff_chan_switch_announce = -1; static gint ett_ff_ht_info = -1; static gint ett_ff_psmp_sta_info = -1; static gint ett_msdu_aggregation_parent_tree = -1; static gint ett_msdu_aggregation_subframe_tree = -1; /*** Begin: WAVE Service information element Dissection - IEEE 802.11p Draft 4.0 ***/ static gint ett_pst_tree = -1; static gint ett_pst_cap_tree = -1; static gint ett_chan_noc_tree = -1; static gint ett_wave_chnl_tree = -1; /*** End: WAVE Service information element Dissection - IEEE 802.11p Draft 4.0 ***/ static gint ett_80211_mgt_ie = -1; static gint ett_tsinfo_tree = -1; static gint ett_sched_tree = -1; static gint ett_fcs = -1; static gint ett_radio = -1; static gint ett_adv_proto = -1; static gint ett_adv_proto_tuple = -1; static gint ett_gas_query = -1; static gint ett_gas_anqp = -1; static const fragment_items frag_items = { &ett_fragment, &ett_fragments, &hf_fragments, &hf_fragment, &hf_fragment_overlap, &hf_fragment_overlap_conflict, &hf_fragment_multiple_tails, &hf_fragment_too_long_fragment, &hf_fragment_error, &hf_reassembled_in, &hf_reassembled_length, "fragments" }; static enum_val_t wlan_ignore_wep_options[] = { { "no", "No", WLAN_IGNORE_WEP_NO }, { "without_iv", "Yes - without IV", WLAN_IGNORE_WEP_WO_IV }, { "with_iv", "Yes - with IV", WLAN_IGNORE_WEP_W_IV }, { NULL, NULL, 0 } }; static dissector_handle_t ieee80211_handle; static dissector_handle_t llc_handle; static dissector_handle_t ipx_handle; static dissector_handle_t eth_withoutfcs_handle; static dissector_handle_t data_handle; static dissector_handle_t wlancap_handle; static int wlan_tap = -1; static const value_string adv_proto_id_vals[] = { {0, "Access Network Query Protocol"}, {1, "MIH Information Service"}, {2, "MIH Command and Event Services Capability Discovery"}, {3, "Emergency Alert System (EAS)"}, {4, "Location-to-Service Translation Protocol"}, {221, "Vendor Specific"}, {0, NULL} }; static const value_string timeout_int_types[] = { {1, "Reassociation deadline interval (TUs)"}, {2, "Key lifetime interval (seconds)"}, {3, "Association Comeback time (TUs)"}, {0, NULL} }; static const value_string tdls_action_codes[] ={ {TDLS_SETUP_REQUEST, "TDLS Setup Request"}, {TDLS_SETUP_RESPONSE, "TDLS Setup Response"}, {TDLS_SETUP_CONFIRM, "TDLS Setup Confirm"}, {TDLS_TEARDOWN, "TDLS Teardown"}, {TDLS_PEER_TRAFFIC_INDICATION, "TDLS Peer Traffic Indication"}, {TDLS_CHANNEL_SWITCH_REQUEST, "TDLS Channel Switch Request"}, {TDLS_CHANNEL_SWITCH_RESPONSE, "TDLS Channel Switch Response"}, {TDLS_PEER_PSM_REQUEST, "TDLS Peer PSM Request"}, {TDLS_PEER_PSM_RESPONSE, "TDLS Peer PSM Response"}, {TDLS_PEER_TRAFFIC_RESPONSE, "TDLS Peer Traffic Response"}, {TDLS_DISCOVERY_REQUEST, "TDLS Discovery Request"}, {0, NULL} }; /* Davide Schiera (2006-11-22): including AirPDcap project */ #ifdef HAVE_AIRPDCAP #include AIRPDCAP_CONTEXT airpdcap_ctx; #else int airpdcap_ctx; #endif /* Davide Schiera (2006-11-22) ---------------------------------------------- */ /* ************************************************************************* */ /* Return the length of the current header (in bytes) */ /* ************************************************************************* */ static int find_header_length (guint16 fcf, guint16 ctrl_fcf, gboolean is_ht) { int len; guint16 cw_fcf; switch (FCF_FRAME_TYPE (fcf)) { case MGT_FRAME: if (is_ht && IS_STRICTLY_ORDERED(FCF_FLAGS(fcf))) return MGT_FRAME_HDR_LEN + 4; return MGT_FRAME_HDR_LEN; case CONTROL_FRAME: if (COMPOSE_FRAME_TYPE(fcf) == CTRL_CONTROL_WRAPPER) { len = 6; cw_fcf = ctrl_fcf; } else { len = 0; cw_fcf = fcf; } switch (COMPOSE_FRAME_TYPE (cw_fcf)) { case CTRL_CTS: case CTRL_ACKNOWLEDGEMENT: return len + 10; case CTRL_RTS: case CTRL_PS_POLL: case CTRL_CFP_END: case CTRL_CFP_ENDACK: case CTRL_BLOCK_ACK_REQ: case CTRL_BLOCK_ACK: return len + 16; } return len + 4; /* XXX */ case DATA_FRAME: len = (FCF_ADDR_SELECTOR(fcf) == DATA_ADDR_T4) ? DATA_LONG_HDR_LEN : DATA_SHORT_HDR_LEN; if (DATA_FRAME_IS_QOS(COMPOSE_FRAME_TYPE(fcf))) { len += 2; if (is_ht && IS_STRICTLY_ORDERED(FCF_FLAGS(fcf))) { len += 4; } } return len; default: return 4; /* XXX */ } } #ifdef MESH_OVERRIDES /* ************************************************************************* */ /* Return the length of the mesh header if any (in bytes) * * Per IEEE 802.11-07/0799r8: * 7.1.3.5a.1 The Mesh Header field (...) is present in Data frames if and * only if they are transmitted between peer MPs with an established peer * link. Data frames including the Mesh Header field are referred to as * Mesh Data frames. * * We need a stateful sniffer for that. For now, use heuristics: If we * find valid mesh flags (currently, only MESH_FLAGS_ADDRESS_EXTENSION) at the * offset where mesh flags should be, assume we're dealing with a mesh header. * ************************************************************************* */ static int find_mesh_header_length(const guchar * pd, int offset, guint16 fcf) { guint8 mesh_flags; switch (FCF_FRAME_TYPE (fcf)) { case MGT_FRAME: /* TODO: Multihop Action Frames */ return 0; case DATA_FRAME: mesh_flags = pd[offset]; /* heuristics: */ /* asume mesh if all reserved bits in the mesh_flags field are zero */ if ((mesh_flags & ~MESH_FLAGS_ADDRESS_EXTENSION) == 0) return 6 + 6*(mesh_flags & MESH_FLAGS_ADDRESS_EXTENSION); break; } return 0; } #endif /* MESH_OVERRIDES */ mimo_control_t get_mimo_control (tvbuff_t *tvb, int offset) { guint16 mimo; mimo_control_t output; mimo = tvb_get_letohs (tvb, offset); output.nc = (mimo & 0x0003) + 1; output.nr = ((mimo & 0x000C) >> 2) + 1; output.chan_width = (mimo & 0x0010) >> 4; output.coefficient_size = 4; /* XXX - Is this a good default? */ switch ((mimo & 0x0060) >> 5) { case 0: output.grouping = 1; break; case 1: output.grouping = 2; break; case 2: output.grouping = 4; break; default: output.grouping = 1; break; } switch ((mimo & 0x0180) >> 7) { case 0: output.coefficient_size = 4; break; case 1: output.coefficient_size = 5; break; case 2: output.coefficient_size = 6; break; case 3: output.coefficient_size = 8; break; } output.codebook_info = (mimo & 0x0600) >> 9; output.remaining_matrix_segment = (mimo & 0x3800) >> 11; return output; } int get_mimo_na (guint8 nr, guint8 nc) { if (nr == 2 && nc == 1){ return 2; }else if (nr == 2 && nc == 2){ return 2; }else if (nr == 3 && nc == 1){ return 4; }else if (nr == 3 && nc == 2){ return 6; }else if (nr == 3 && nc == 3){ return 6; }else if (nr == 4 && nc == 1){ return 6; }else if (nr == 4 && nc == 2){ return 10; }else if (nr == 4 && nc == 3){ return 12; }else if (nr == 4 && nc == 4){ return 12; }else{ return 0; } } int get_mimo_ns (gboolean chan_width, guint8 output_grouping) { int ns = 0; if (chan_width) { switch (output_grouping) { case 1: ns = 114; break; case 2: ns = 58; break; case 4: ns = 30; break; default: ns = 0; } } else { switch (output_grouping) { case 1: ns = 56; break; case 2: ns = 30; break; case 4: ns = 16; break; default: ns = 0; } } return ns; } int add_mimo_csi_matrices_report (proto_tree *tree, tvbuff_t *tvb, int offset, mimo_control_t mimo_cntrl) { proto_item *snr_item; proto_tree *snr_tree; int csi_matrix_size, start_offset; int ns, i; start_offset = offset; snr_item = proto_tree_add_text(tree, tvb, offset, mimo_cntrl.nc, "Signal to Noise Ratio"); snr_tree = proto_item_add_subtree (snr_item, ett_mimo_report); for (i=1; i <= mimo_cntrl.nr; i++) { guint8 snr; snr = tvb_get_guint8(tvb, offset); proto_tree_add_uint_format(snr_tree, ff_mimo_csi_snr, tvb, offset, 1, snr, "Channel %d - Signal to Noise Ratio: 0x%02X", i, snr); offset++; } ns = get_mimo_ns(mimo_cntrl.chan_width, mimo_cntrl.grouping); csi_matrix_size = ns*(3+(2*mimo_cntrl.nc*mimo_cntrl.nr*mimo_cntrl.coefficient_size)); csi_matrix_size = roundup2(csi_matrix_size, 8) / 8; proto_tree_add_text(tree, tvb, offset, csi_matrix_size, "CSI Matrices"); offset += csi_matrix_size; return offset - start_offset; } int add_mimo_beamforming_feedback_report (proto_tree *tree, tvbuff_t *tvb, int offset, mimo_control_t mimo_cntrl) { proto_item *snr_item; proto_tree *snr_tree; int csi_matrix_size, start_offset; int ns, i; start_offset = offset; snr_item = proto_tree_add_text(tree, tvb, offset, mimo_cntrl.nc, "Signal to Noise Ratio"); snr_tree = proto_item_add_subtree (snr_item, ett_mimo_report); for (i=1; i <= mimo_cntrl.nc; i++) { guint8 snr; snr = tvb_get_guint8(tvb, offset); proto_tree_add_uint_format(snr_tree, ff_mimo_csi_snr, tvb, offset, 1, snr, "Stream %d - Signal to Noise Ratio: 0x%02X", i, snr); offset++; } ns = get_mimo_ns(mimo_cntrl.chan_width, mimo_cntrl.grouping); csi_matrix_size = ns*(2*mimo_cntrl.nc*mimo_cntrl.nr*mimo_cntrl.coefficient_size); csi_matrix_size = roundup2(csi_matrix_size, 8) / 8; proto_tree_add_text(tree, tvb, offset, csi_matrix_size, "Beamforming Feedback Matrices"); offset += csi_matrix_size; return offset - start_offset; } int add_mimo_compressed_beamforming_feedback_report (proto_tree *tree, tvbuff_t *tvb, int offset, mimo_control_t mimo_cntrl) { proto_item *snr_item; proto_tree *snr_tree; int csi_matrix_size, start_offset; int ns, na, i; start_offset = offset; snr_item = proto_tree_add_text(tree, tvb, offset, mimo_cntrl.nc, "Signal to Noise Ratio"); snr_tree = proto_item_add_subtree (snr_item, ett_mimo_report); for (i=1; i <= mimo_cntrl.nc; i++) { guint8 snr; snr = tvb_get_guint8(tvb, offset); proto_tree_add_uint_format(snr_tree, ff_mimo_csi_snr, tvb, offset, 1, snr, "Stream %d - Signal to Noise Ratio: 0x%02X", i, snr); offset++; } na = get_mimo_na(mimo_cntrl.nr, mimo_cntrl.nc); ns = get_mimo_ns(mimo_cntrl.chan_width, mimo_cntrl.grouping); csi_matrix_size = ns*(na*((mimo_cntrl.codebook_info+1)*2 + 2)/2); csi_matrix_size = roundup2(csi_matrix_size, 8) / 8; proto_tree_add_text(tree, tvb, offset, csi_matrix_size, "Compressed Beamforming Feedback Matrices"); offset += csi_matrix_size; return offset - start_offset; } /* ************************************************************************* */ /* This is the capture function used to update packet counts */ /* ************************************************************************* */ static void capture_ieee80211_common (const guchar * pd, int offset, int len, packet_counts * ld, gboolean fixed_length_header, gboolean datapad, gboolean is_ht) { guint16 fcf, hdr_length; #ifdef MESH_OVERRIDES guint16 meshdr_length; #endif /* MESH_OVERRIDES */ if (!BYTES_ARE_IN_FRAME(offset, len, 2)) { ld->other++; return; } fcf = pletohs (&pd[offset]); if (IS_PROTECTED(FCF_FLAGS(fcf)) && wlan_ignore_wep == WLAN_IGNORE_WEP_NO) { ld->other++; return; } switch (COMPOSE_FRAME_TYPE (fcf)) { case DATA: /* We got a data frame */ case DATA_CF_ACK: /* Data with ACK */ case DATA_CF_POLL: case DATA_CF_ACK_POLL: case DATA_QOS_DATA: { if (fixed_length_header) { hdr_length = DATA_LONG_HDR_LEN; #ifdef MESH_OVERRIDES meshdr_length = 0; #endif /* MESH_OVERRIDES */ } else { hdr_length = find_header_length (fcf, 0, is_ht); #ifdef MESH_OVERRIDES if (datapad) hdr_length = roundup2(hdr_length, 4); meshdr_length = find_mesh_header_length(pd, offset + hdr_length, fcf); g_warning("mesh hdr_length %d hdr_length %d\n", meshdr_length, hdr_length); hdr_length += meshdr_length; } #else /* MESH_OVERRIDES */ } if (datapad) hdr_length = roundup2(hdr_length, 4); #endif /* MESH_OVERRIDES */ /* I guess some bridges take Netware Ethernet_802_3 frames, which are 802.3 frames (with a length field rather than a type field, but with no 802.2 header in the payload), and just stick the payload into an 802.11 frame. I've seen captures that show frames of that sort. We also handle some odd form of encapsulation in which a complete Ethernet frame is encapsulated within an 802.11 data frame, with no 802.2 header. This has been seen from some hardware. On top of that, at least at some point it appeared that the OLPC XO sent out frames with two bytes of 0 between the "end" of the 802.11 header and the beginning of the payload. So, if the packet doesn't start with 0xaa 0xaa: we first use the same scheme that linux-wlan-ng does to detect those encapsulated Ethernet frames, namely looking to see whether the frame either starts with 6 octets that match the destination address from the 802.11 header or has 6 octets that match the source address from the 802.11 header following the first 6 octets, and, if so, treat it as an encapsulated Ethernet frame; otherwise, we use the same scheme that we use in the Ethernet dissector to recognize Netware 802.3 frames, namely checking whether the packet starts with 0xff 0xff and, if so, treat it as an encapsulated IPX frame, and then check whether the packet starts with 0x00 0x00 and, if so, treat it as an OLPC frame. */ if (!BYTES_ARE_IN_FRAME(offset+hdr_length, len, 2)) { ld->other++; return; } if (pd[offset+hdr_length] != 0xaa && pd[offset+hdr_length+1] != 0xaa) { #if 0 /* XXX - this requires us to parse the header to find the source and destination addresses. */ if (BYTES_ARE_IN_FRAME(offset+hdr_length, len, 12) { /* We have two MAC addresses after the header. */ if (memcmp(&pd[offset+hdr_length+6], pinfo->dl_src.data, 6) == 0 || memcmp(&pd[offset+hdr_length+6], pinfo->dl_dst.data, 6) == 0) { capture_eth (pd, offset + hdr_length, len, ld); return; } } #endif if (pd[offset+hdr_length] == 0xff && pd[offset+hdr_length+1] == 0xff) capture_ipx (ld); else if (pd[offset+hdr_length] == 0x00 && pd[offset+hdr_length+1] == 0x00) capture_llc (pd, offset + hdr_length + 2, len, ld); } else { capture_llc (pd, offset + hdr_length, len, ld); } break; } default: ld->other++; break; } } /* * Handle 802.11 with a variable-length link-layer header. */ void capture_ieee80211 (const guchar * pd, int offset, int len, packet_counts * ld) { capture_ieee80211_common (pd, offset, len, ld, FALSE, FALSE, FALSE); } /* * Handle 802.11 with a variable-length link-layer header and data padding. */ void capture_ieee80211_datapad (const guchar * pd, int offset, int len, packet_counts * ld) { capture_ieee80211_common (pd, offset, len, ld, FALSE, TRUE, FALSE); } /* * Handle 802.11 with a fixed-length link-layer header (padded to the * maximum length). */ void capture_ieee80211_fixed (const guchar * pd, int offset, int len, packet_counts * ld) { capture_ieee80211_common (pd, offset, len, ld, TRUE, FALSE, FALSE); } /* * Handle an HT 802.11 with a variable-length link-layer header. */ void capture_ieee80211_ht (const guchar * pd, int offset, int len, packet_counts * ld) { capture_ieee80211_common (pd, offset, len, ld, FALSE, FALSE, TRUE); } #define WLANCAP_MAGIC_COOKIE_BASE 0x80211000 #define WLANCAP_MAGIC_COOKIE_V1 0x80211001 #define WLANCAP_MAGIC_COOKIE_V2 0x80211002 /* * Prism II-based wlan devices have a monitoring mode that sticks * a proprietary header on each packet with lots of good * information. This file is responsible for decoding that * data. * * Support by Tim Newsham * * A value from the header. * * It appears from looking at the linux-wlan-ng and Prism II HostAP * drivers, and various patches to the orinoco_cs drivers to add * Prism headers, that: * * the "did" identifies what the value is (i.e., what it's the value * of); * * "status" is 0 if the value is present or 1 if it's absent; * * "len" is the length of the value (always 4, in that code); * * "data" is the value of the data (or 0 if not present). * * Note: all of those values are in the *host* byte order of the machine * on which the capture was written. */ struct val_80211 { unsigned int did; unsigned short status, len; unsigned int data; }; /* * Header attached during Prism monitor mode. * * At least according to one paper I've seen, the Prism 2.5 chip set * provides: * * RSSI (receive signal strength indication) is "the total power * received by the radio hardware while receiving the frame, * including signal, interfereence, and background noise"; * * "silence value" is "the total power observed just before the * start of the frame". * * None of the drivers I looked at supply the "rssi" or "sq" value, * but they do supply "signal" and "noise" values, along with a "rate" * value that's 1/5 of the raw value from what is presumably a raw * HFA384x frame descriptor, with the comment "set to 802.11 units", * which presumably means the units are 500 Kb/s. * * I infer from the current NetBSD "wi" driver that "signal" and "noise" * are adjusted dBm values, with the dBm value having 100 added to it * for the Prism II cards (although the NetBSD code has an XXX comment * for the #define for WI_PRISM_DBM_OFFSET) and 149 (with no XXX comment) * for the Orinoco cards. * * XXX - what about other drivers that supply Prism headers, such as * old versions of the MadWifi driver? */ struct prism_hdr { unsigned int msgcode, msglen; char devname[16]; struct val_80211 hosttime, mactime, channel, rssi, sq, signal, noise, rate, istx, frmlen; }; void capture_prism(const guchar *pd, int offset, int len, packet_counts *ld) { guint32 cookie; if (!BYTES_ARE_IN_FRAME(offset, len, sizeof(guint32))) { ld->other++; return; } /* Some captures with DLT_PRISM have the AVS WLAN header */ cookie = pntohl(pd); if ((cookie == WLANCAP_MAGIC_COOKIE_V1) || (cookie == WLANCAP_MAGIC_COOKIE_V2)) { capture_wlancap(pd, offset, len, ld); return; } /* Prism header */ if (!BYTES_ARE_IN_FRAME(offset, len, (int)sizeof(struct prism_hdr))) { ld->other++; return; } offset += sizeof(struct prism_hdr); /* 802.11 header follows */ capture_ieee80211(pd, offset, len, ld); } void capture_wlancap(const guchar *pd, int offset, int len, packet_counts *ld) { guint32 length; if (!BYTES_ARE_IN_FRAME(offset, len, sizeof(guint32)*2)) { ld->other++; return; } length = pntohl(pd+sizeof(guint32)); if (!BYTES_ARE_IN_FRAME(offset, len, length)) { ld->other++; return; } offset += length; /* 802.11 header follows */ capture_ieee80211(pd, offset, len, ld); } /* ************************************************************************* */ /* Add the subtree used to store the fixed parameters */ /* ************************************************************************* */ static proto_tree * get_fixed_parameter_tree (proto_tree * tree, tvbuff_t *tvb, int start, int size) { proto_item *fixed_fields; fixed_fields = proto_tree_add_uint_format (tree, hf_ieee80211_fixed_parameters, tvb, start, size, size, "Fixed parameters (%d bytes)", size); return proto_item_add_subtree (fixed_fields, ett_fixed_parameters); } /* ************************************************************************* */ /* Add the subtree used to store tagged parameters */ /* ************************************************************************* */ static proto_tree * get_tagged_parameter_tree (proto_tree * tree, tvbuff_t *tvb, int start, int size) { proto_item *tagged_fields; tagged_fields = proto_tree_add_uint_format (tree, hf_ieee80211_tagged_parameters, tvb, start, 2, size, "Tagged parameters (%d bytes)", size); return proto_item_add_subtree (tagged_fields, ett_tagged_parameters); } static int dissect_vendor_action_marvell (proto_tree *tree, tvbuff_t *tvb, int offset) { guint8 octet; octet = tvb_get_guint8(tvb, offset); proto_tree_add_item (tree, ff_marvell_action_type, tvb, offset, 1, TRUE); offset++; switch (octet) { case MRVL_ACTION_MESH_MANAGEMENT: octet = tvb_get_guint8(tvb, offset); proto_tree_add_item (tree, ff_marvell_mesh_mgt_action_code, tvb, offset, 1, TRUE); offset++; switch (octet) { case MRVL_MESH_MGMT_ACTION_RREQ: proto_tree_add_item (tree, ff_mesh_mgt_length, tvb, offset, 1, TRUE); offset++; proto_tree_add_item (tree, ff_mesh_mgt_mode, tvb, offset, 1, TRUE); offset++; proto_tree_add_item (tree, ff_mesh_mgt_hopcount, tvb, offset, 1, TRUE); offset++; proto_tree_add_item (tree, ff_mesh_mgt_ttl, tvb, offset, 1, TRUE); offset++; proto_tree_add_item (tree, ff_mesh_mgt_rreqid, tvb, offset, 4, TRUE); offset+= 4; proto_tree_add_item (tree, ff_mesh_mgt_sa, tvb, offset, 6, FALSE); offset+= 6; proto_tree_add_item (tree, ff_mesh_mgt_ssn, tvb, offset, 4, TRUE); offset+= 4; proto_tree_add_item (tree, ff_mesh_mgt_lifetime, tvb, offset, 4, TRUE); offset+= 4; proto_tree_add_item (tree, ff_mesh_mgt_metric, tvb, offset, 4, TRUE); offset+= 4; proto_tree_add_item (tree, ff_mesh_mgt_dstcount, tvb, offset, 1, TRUE); offset++; proto_tree_add_item (tree, ff_mesh_mgt_flags, tvb, offset, 1, TRUE); offset++; proto_tree_add_item (tree, ff_mesh_mgt_da, tvb, offset, 6, FALSE); offset+= 6; proto_tree_add_item (tree, ff_mesh_mgt_dsn, tvb, offset, 4, TRUE); offset+= 4; break; case MRVL_MESH_MGMT_ACTION_RREP: proto_tree_add_item (tree, ff_mesh_mgt_length, tvb, offset, 1, TRUE); offset++; proto_tree_add_item (tree, ff_mesh_mgt_mode, tvb, offset, 1, TRUE); offset++; proto_tree_add_item (tree, ff_mesh_mgt_hopcount, tvb, offset, 1, TRUE); offset++; proto_tree_add_item (tree, ff_mesh_mgt_ttl, tvb, offset, 1, TRUE); offset++; proto_tree_add_item (tree, ff_mesh_mgt_da, tvb, offset, 6, FALSE); offset+= 6; proto_tree_add_item (tree, ff_mesh_mgt_dsn, tvb, offset, 4, TRUE); offset+= 4; proto_tree_add_item (tree, ff_mesh_mgt_lifetime, tvb, offset, 4, TRUE); offset+= 4; proto_tree_add_item (tree, ff_mesh_mgt_metric, tvb, offset, 4, TRUE); offset+= 4; proto_tree_add_item (tree, ff_mesh_mgt_sa, tvb, offset, 6, FALSE); offset+= 6; proto_tree_add_item (tree, ff_mesh_mgt_ssn, tvb, offset, 4, TRUE); offset+= 4; break; case MRVL_MESH_MGMT_ACTION_RERR: proto_tree_add_item (tree, ff_mesh_mgt_length, tvb, offset, 1, TRUE); offset++; proto_tree_add_item (tree, ff_mesh_mgt_mode, tvb, offset, 1, TRUE); offset++; proto_tree_add_item (tree, ff_mesh_mgt_dstcount, tvb, offset, 1, TRUE); offset++; proto_tree_add_item (tree, ff_mesh_mgt_da, tvb, offset, 6, FALSE); offset+= 6; proto_tree_add_item (tree, ff_mesh_mgt_dsn, tvb, offset, 4, TRUE); offset+= 4; break; default: break; } break; default: break; } return offset; } static guint dissect_advertisement_protocol(packet_info *pinfo, proto_tree *tree, tvbuff_t *tvb, int offset, gboolean *anqp) { guint8 tag_no, tag_len, left; proto_item *item = NULL; proto_tree *adv_tree, *adv_tuple_tree; if (anqp) *anqp = FALSE; tag_no = tvb_get_guint8(tvb, offset); item = proto_tree_add_uint_format(tree, tag_number, tvb, offset, 1, tag_no, "Tag Number: %u (%s)", tag_no, val_to_str(tag_no, tag_num_vals, "Unknown (%d)")); tag_len = tvb_get_guint8(tvb, offset + 1); if (tag_no != TAG_ADVERTISEMENT_PROTOCOL) { expert_add_info_format(pinfo, item, PI_MALFORMED, PI_ERROR, "Unexpected IE %d (expected Advertisement " "Protocol)", tag_no); return 2 + tag_len; } item = proto_tree_add_uint(tree, tag_length, tvb, offset + 1, 1, tag_len); if (tag_len < 2) { expert_add_info_format(pinfo, item, PI_MALFORMED, PI_ERROR, "Advertisement Protocol: IE must be at least 2 " "octets long"); return 2 + tag_len; } left = tag_len; offset += 2; item = proto_tree_add_text(tree, tvb, offset, left, "Advertisement Protocol element"); adv_tree = proto_item_add_subtree(item, ett_adv_proto); while (left >= 2) { guint8 id; id = tvb_get_guint8(tvb, offset + 1); item = proto_tree_add_text(adv_tree, tvb, offset, 2, "Advertisement Protocol Tuple: %s", val_to_str(id, adv_proto_id_vals, "Unknown (%d)")); adv_tuple_tree = proto_item_add_subtree(item, ett_adv_proto_tuple); proto_tree_add_item(adv_tuple_tree, hf_ieee80211_tag_adv_proto_resp_len_limit, tvb, offset, 1, FALSE); proto_tree_add_item(adv_tuple_tree, hf_ieee80211_tag_adv_proto_pame_bi, tvb, offset, 1, FALSE); offset++; left--; proto_tree_add_item(adv_tuple_tree, hf_ieee80211_tag_adv_proto_id, tvb, offset, 1, FALSE); offset++; left--; if (id == 0 && anqp) *anqp = TRUE; if (id == 221) { /* Vendor specific */ guint8 len = tvb_get_guint8(tvb, offset); offset++; left--; if (len > left) { expert_add_info_format(pinfo, item, PI_MALFORMED, PI_ERROR, "Vendor specific info length error"); return 2 + tag_len; } proto_tree_add_text(adv_tuple_tree, tvb, offset, len, "Vendor Specific Advertisement Protocol info"); offset += len; left -= len; } } if (left) { expert_add_info_format(pinfo, item, PI_MALFORMED, PI_ERROR, "Unexpected extra data in the end"); } return 2 + tag_len; } static void dissect_anqp(proto_tree *tree, tvbuff_t *tvb, int offset, gboolean request) { guint16 id, len; proto_tree_add_text(tree, tvb, offset, 4, request ? "Access Network Query Protocol Request" : "Access Network Query Protocol Response"); proto_tree_add_item(tree, hf_ieee80211_ff_anqp_info_id, tvb, offset, 2, TRUE); id = tvb_get_letohs(tvb, offset); offset += 2; proto_tree_add_item(tree, hf_ieee80211_ff_anqp_info_length, tvb, offset, 2, TRUE); len = tvb_get_letohs(tvb, offset); offset += 2; proto_tree_add_item(tree, hf_ieee80211_ff_anqp_info, tvb, offset, len, FALSE); if (id == 56797) { /* ANQP vendor-specific list */ guint32 oui; guint8 subtype; const guint8 *tag_data_ptr; oui = tvb_get_ntoh24(tvb, offset); tag_data_ptr = tvb_get_ptr(tvb, offset, 3); proto_tree_add_bytes_format(tree, tag_oui, tvb, offset, 3, tag_data_ptr, "Vendor: %s", get_manuf_name(tag_data_ptr)); offset += 3; switch (oui) { case OUI_WFA: subtype = tvb_get_guint8(tvb, offset); if (subtype == WFA_SUBTYPE_P2P) { proto_tree_add_text(tree, tvb, offset, 1, "Subtype %u: P2P ANQP", subtype); dissect_wifi_p2p_anqp(g_pinfo, tree, tvb, offset + 1, request); } else { proto_tree_add_text(tree, tvb, offset, 1, "Subtype %u", subtype); } } } } static guint dissect_gas_initial_request(proto_tree *tree, tvbuff_t *tvb, int offset, gboolean anqp) { guint16 req_len; int start = offset; proto_item *item; proto_tree *query, *anqp_tree; /* Query Request Length (2 octets) */ req_len = tvb_get_letohs(tvb, offset); item = proto_tree_add_text(tree, tvb, offset, 2 + req_len, "Query Request"); query = proto_item_add_subtree(item, ett_gas_query); proto_tree_add_item(query, hf_ieee80211_ff_query_request_length, tvb, offset, 2, TRUE); offset += 2; /* * Query Request (GAS query; formatted per protocol specified in the * Advertisement Protocol IE) */ item = proto_tree_add_item(query, hf_ieee80211_ff_query_request, tvb, offset, req_len, FALSE); if (anqp) { anqp_tree = proto_item_add_subtree(item, ett_gas_anqp); dissect_anqp(anqp_tree, tvb, offset, TRUE); } offset += req_len; return offset - start; } static guint dissect_gas_initial_response(proto_tree *tree, tvbuff_t *tvb, int offset, gboolean anqp) { guint16 resp_len; int start = offset; proto_item *item; proto_tree *query, *anqp_tree; /* Query Response Length (2 octets) */ resp_len = tvb_get_letohs(tvb, offset); item = proto_tree_add_text(tree, tvb, offset, 2 + resp_len, "Query Response"); query = proto_item_add_subtree(item, ett_gas_query); proto_tree_add_item(query, hf_ieee80211_ff_query_response_length, tvb, offset, 2, TRUE); offset += 2; /* Query Response (optional) */ if (resp_len) { item = proto_tree_add_item(query, hf_ieee80211_ff_query_response, tvb, offset, resp_len, FALSE); if (anqp) { anqp_tree = proto_item_add_subtree(item, ett_gas_anqp); dissect_anqp(anqp_tree, tvb, offset, FALSE); } offset += resp_len; } return offset - start; } static guint dissect_gas_comeback_response(proto_tree *tree, tvbuff_t *tvb, int offset, gboolean anqp, guint8 frag) { guint16 resp_len; int start = offset; proto_item *item; proto_tree *query, *anqp_tree; /* Query Response Length (2 octets) */ resp_len = tvb_get_letohs(tvb, offset); item = proto_tree_add_text(tree, tvb, offset, 2 + resp_len, "Query Response"); query = proto_item_add_subtree(item, ett_gas_query); proto_tree_add_item(query, hf_ieee80211_ff_query_response_length, tvb, offset, 2, TRUE); offset += 2; /* Query Response (optional) */ if (resp_len) { item = proto_tree_add_item(query, hf_ieee80211_ff_query_response, tvb, offset, resp_len, FALSE); if (anqp && frag == 0) { anqp_tree = proto_item_add_subtree(item, ett_gas_anqp); dissect_anqp(anqp_tree, tvb, offset, FALSE); } offset += resp_len; } return offset - start; } /* ************************************************************************* */ /* Dissect and add fixed mgmt fields to protocol tree */ /* ************************************************************************* */ static guint add_fixed_field(proto_tree * tree, tvbuff_t * tvb, int offset, int lfcode) { const guint8 *dataptr; char out_buff[SHORT_STR]; guint16 capability; proto_item *cap_item; static proto_tree *cap_tree; double temp_double; guint length = 0; switch (lfcode) { case FIELD_TIMESTAMP: dataptr = tvb_get_ptr (tvb, offset, 8); memset (out_buff, 0, SHORT_STR); g_snprintf (out_buff, SHORT_STR, "0x%02X%02X%02X%02X%02X%02X%02X%02X", dataptr[7], dataptr[6], dataptr[5], dataptr[4], dataptr[3], dataptr[2], dataptr[1], dataptr[0]); proto_tree_add_string (tree, hf_ieee80211_ff_timestamp, tvb, offset, 8, out_buff); length += 8; break; case FIELD_BEACON_INTERVAL: { capability = tvb_get_letohs (tvb, offset); temp_double = (double)capability; temp_double = temp_double * 1024 / 1000000; proto_tree_add_double_format (tree, hf_ieee80211_ff_beacon_interval, tvb, offset, 2, temp_double,"Beacon Interval: %f [Seconds]", temp_double); if (check_col (g_pinfo->cinfo, COL_INFO)) { col_append_fstr(g_pinfo->cinfo, COL_INFO, ", BI=%d", capability); } length += 2; break; } case FIELD_CAP_INFO: { capability = tvb_get_letohs (tvb, offset); cap_item = proto_tree_add_uint_format (tree, ff_capture, tvb, offset, 2, capability, "Capability Information: 0x%04X", capability); cap_tree = proto_item_add_subtree (cap_item, ett_cap_tree); proto_tree_add_boolean (cap_tree, ff_cf_ess, tvb, offset, 2, capability); proto_tree_add_boolean (cap_tree, ff_cf_ibss, tvb, offset, 2, capability); if (ESS_SET (capability) != 0) /* This is an AP */ proto_tree_add_uint (cap_tree, ff_cf_ap_poll, tvb, offset, 2, capability); else /* This is a STA */ proto_tree_add_uint (cap_tree, ff_cf_sta_poll, tvb, offset, 2, capability); proto_tree_add_boolean (cap_tree, ff_cf_privacy, tvb, offset, 2, capability); proto_tree_add_boolean (cap_tree, ff_cf_preamble, tvb, offset, 2, capability); proto_tree_add_boolean (cap_tree, ff_cf_pbcc, tvb, offset, 2, capability); proto_tree_add_boolean (cap_tree, ff_cf_agility, tvb, offset, 2, capability); proto_tree_add_boolean (cap_tree, ff_cf_spec_man, tvb, offset, 2, capability); proto_tree_add_boolean (cap_tree, ff_short_slot_time, tvb, offset, 2, capability); proto_tree_add_boolean (cap_tree, ff_cf_apsd, tvb, offset, 2, capability); proto_tree_add_boolean (cap_tree, ff_dsss_ofdm, tvb, offset, 2, capability); proto_tree_add_boolean (cap_tree, ff_cf_del_blk_ack, tvb, offset, 2, capability); proto_tree_add_boolean (cap_tree, ff_cf_imm_blk_ack, tvb, offset, 2, capability); length += 2; break; } case FIELD_AUTH_ALG: proto_tree_add_item (tree, hf_ieee80211_ff_auth_alg, tvb, offset, 2, TRUE); length += 2; break; case FIELD_AUTH_TRANS_SEQ: proto_tree_add_item (tree, hf_ieee80211_ff_auth_seq, tvb, offset, 2, TRUE); length += 2; break; case FIELD_CURRENT_AP_ADDR: proto_tree_add_item (tree, hf_ieee80211_ff_current_ap, tvb, offset, 6, FALSE); length += 6; break; case FIELD_LISTEN_IVAL: proto_tree_add_item (tree, hf_ieee80211_ff_listen_ival, tvb, offset, 2, TRUE); length += 2; break; case FIELD_REASON_CODE: proto_tree_add_item (tree, hf_ieee80211_ff_reason, tvb, offset, 2, TRUE); length += 2; break; case FIELD_ASSOC_ID: proto_tree_add_uint(tree, hf_ieee80211_ff_assoc_id, tvb, offset, 2, ASSOC_ID(tvb_get_letohs(tvb,offset))); /* proto_tree_add_item (tree, hf_ieee80211_ff_assoc_id, tvb, offset, 2, TRUE); */ length += 2; break; case FIELD_STATUS_CODE: proto_tree_add_item (tree, hf_ieee80211_ff_status_code, tvb, offset, 2, TRUE); length += 2; break; case FIELD_CATEGORY_CODE: proto_tree_add_item (tree, hf_ieee80211_ff_category_code, tvb, offset, 1, TRUE); length += 1; break; case FIELD_ACTION_CODE: proto_tree_add_item (tree, hf_ieee80211_ff_action_code, tvb, offset, 1, TRUE); length += 1; break; case FIELD_DIALOG_TOKEN: proto_tree_add_item (tree, hf_ieee80211_ff_dialog_token, tvb, offset, 1, TRUE); length += 1; break; case FIELD_WME_ACTION_CODE: proto_tree_add_item (tree, hf_ieee80211_ff_wme_action_code, tvb, offset, 1, TRUE); length += 1; break; case FIELD_WME_STATUS_CODE: proto_tree_add_item (tree, hf_ieee80211_ff_wme_status_code, tvb, offset, 1, TRUE); length += 1; break; case FIELD_QOS_ACTION_CODE: proto_tree_add_item (tree, hf_ieee80211_ff_qos_action_code, tvb, offset, 1, TRUE); length += 1; break; case FIELD_BLOCK_ACK_ACTION_CODE: proto_tree_add_item (tree, ff_ba_action, tvb, offset, 1, TRUE); length += 1; break; case FIELD_BLOCK_ACK_PARAM: { guint16 params; proto_item *param_item; proto_tree *param_tree; params = tvb_get_letohs (tvb, offset); param_item = proto_tree_add_uint(tree, hf_ieee80211_ff_block_ack_params, tvb, offset, 2, params); param_tree = proto_item_add_subtree (param_item, ett_ff_ba_param_tree); proto_tree_add_boolean(param_tree, hf_ieee80211_ff_block_ack_params_amsdu_permitted, tvb, offset, 1, params); proto_tree_add_boolean(param_tree, hf_ieee80211_ff_block_ack_params_policy, tvb, offset, 1, params); proto_tree_add_uint(param_tree, hf_ieee80211_ff_block_ack_params_tid, tvb, offset, 1, params); proto_tree_add_uint(param_tree, hf_ieee80211_ff_block_ack_params_buffer_size, tvb, offset, 2, params); length += 2; break; } case FIELD_BLOCK_ACK_TIMEOUT: { guint16 timeout; timeout = tvb_get_letohs (tvb, offset); proto_tree_add_uint(tree, hf_ieee80211_ff_block_ack_timeout, tvb, offset, 2, timeout); length += 2; break; } case FIELD_BLOCK_ACK_SSC: { guint16 ssc; proto_item *ssc_item; proto_tree *ssc_tree; ssc = tvb_get_letohs (tvb, offset); ssc_item = proto_tree_add_uint(tree, hf_ieee80211_ff_block_ack_ssc, tvb, offset, 2, ssc); ssc_tree = proto_item_add_subtree (ssc_item, ett_ff_ba_ssc_tree); proto_tree_add_uint(ssc_tree, hf_ieee80211_ff_block_ack_ssc_fragment, tvb, offset, 1, ssc); proto_tree_add_uint(ssc_tree, hf_ieee80211_ff_block_ack_ssc_sequence, tvb, offset, 2, ssc); length += 2; break; } case FIELD_QOS_TS_INFO: { proto_item *tsinfo_item; proto_tree *tsinfo_tree; guint32 tsi; tsinfo_item = proto_tree_add_item(tree, hf_ts_info, tvb, offset, 3, TRUE); tsinfo_tree = proto_item_add_subtree(tsinfo_item, ett_tsinfo_tree); tsi = tvb_get_letoh24(tvb, offset); proto_tree_add_uint(tsinfo_tree, hf_tsinfo_type, tvb, offset, 3, TSI_TYPE (tsi)); if (TSI_TSID (tsi) < 8) { proto_tree_add_text(tsinfo_tree, tvb, offset, 3, "TSID: %u (< 8 is invalid)", TSI_TSID (tsi)); } else { proto_tree_add_uint(tsinfo_tree, hf_tsinfo_tsid, tvb, offset, 3, TSI_TSID (tsi)); } proto_tree_add_uint(tsinfo_tree, hf_tsinfo_dir, tvb, offset, 3, TSI_DIR (tsi)); proto_tree_add_uint(tsinfo_tree, hf_tsinfo_access, tvb, offset, 3, TSI_ACCESS (tsi)); proto_tree_add_uint(tsinfo_tree, hf_tsinfo_agg, tvb, offset, 3, TSI_AGG (tsi)); proto_tree_add_uint(tsinfo_tree, hf_tsinfo_apsd, tvb, offset, 3, TSI_APSD (tsi)); proto_tree_add_uint(tsinfo_tree, hf_tsinfo_up, tvb, offset, 3, TSI_UP (tsi)); proto_tree_add_uint(tsinfo_tree, hf_tsinfo_ack, tvb, offset, 3, TSI_ACK (tsi)); proto_tree_add_uint(tsinfo_tree, hf_tsinfo_sched, tvb, offset, 3, TSI_SCHED (tsi)); length += 3; break; } #ifdef MESH_OVERRIDES /* Mesh Management */ case FIELD_MESH_MGT_ACTION_PS_CODE: proto_tree_add_item (tree, ff_mesh_mgt_action_ps_code, tvb, offset, 1, TRUE); length += 1; break; case FIELD_MESH_MGT_ACTION_PL_CODE: proto_tree_add_item (tree, ff_mesh_mgt_action_pl_code, tvb, offset, 1, TRUE); length += 1; break; #endif /* MESH_OVERRIDES */ case FIELD_DLS_ACTION_CODE: proto_tree_add_item (tree, hf_ieee80211_ff_dls_action_code, tvb, offset, 1, TRUE); length += 1; break; case FIELD_DST_MAC_ADDR: proto_tree_add_item (tree, hf_ieee80211_ff_dst_mac_addr, tvb, offset, 6, TRUE); length += 6; break; case FIELD_SRC_MAC_ADDR: proto_tree_add_item (tree, hf_ieee80211_ff_src_mac_addr, tvb, offset, 6, TRUE); length += 6; break; case FIELD_DLS_TIMEOUT: proto_tree_add_item (tree, hf_ieee80211_ff_dls_timeout, tvb, offset, 2, TRUE); length += 2; break; case FIELD_DELBA_PARAM_SET: { guint16 params; proto_item *param_item; proto_tree *param_tree; params = tvb_get_letohs (tvb, offset); param_item = proto_tree_add_uint(tree, hf_ieee80211_ff_delba_param, tvb, offset, 2, params); param_tree = proto_item_add_subtree (param_item, ett_ff_ba_param_tree); proto_tree_add_uint(param_tree, hf_ieee80211_ff_delba_param_reserved, tvb, offset, 2, params); proto_tree_add_boolean(param_tree, hf_ieee80211_ff_delba_param_init, tvb, offset+1, 1, params); proto_tree_add_uint(param_tree, hf_ieee80211_ff_delba_param_tid, tvb, offset+1, 1, params); length +=2; break; } case FIELD_MAX_REG_PWR: proto_tree_add_uint(tree, ff_max_reg_pwr, tvb, offset, 2, tvb_get_letohs (tvb, offset)); length +=2; break; case FIELD_MEASUREMENT_PILOT_INT: proto_tree_add_uint(tree, ff_measurement_pilot_int, tvb, offset, 2, tvb_get_letohs (tvb, offset)); length +=2; break; case FIELD_COUNTRY_STR: { guint8 *country_string; country_string = tvb_get_ephemeral_string(tvb, offset, 3); proto_tree_add_string (tree, ff_country_str, tvb, offset, 3, (char *) country_string); break; } case FIELD_MAX_TX_PWR: proto_tree_add_uint(tree, ff_max_tx_pwr, tvb, offset, 1, tvb_get_guint8 (tvb, offset)); length +=1; break; case FIELD_TX_PWR_USED: proto_tree_add_uint(tree, ff_tx_pwr_used, tvb, offset, 1, tvb_get_guint8 (tvb, offset)); length +=1; break; case FIELD_TRANSCEIVER_NOISE_FLOOR: proto_tree_add_uint(tree, ff_transceiver_noise_floor, tvb, offset, 1, tvb_get_guint8 (tvb, offset)); length +=1; break; case FIELD_CHANNEL_WIDTH: proto_tree_add_item(tree, ff_channel_width, tvb, offset, 1, TRUE); length +=1; break; case FIELD_QOS_INFO_AP: { guint8 info; proto_item *info_item; proto_tree *info_tree; info = tvb_get_guint8 (tvb, offset); info_item = proto_tree_add_uint(tree, hf_ieee80211_ff_qos_info_ap, tvb, offset, 1, info); info_tree = proto_item_add_subtree (info_item, ett_ff_qos_info); proto_tree_add_uint(info_tree, hf_ieee80211_ff_qos_info_ap_edca_param_set_counter, tvb, offset, 1, info); proto_tree_add_uint(info_tree, hf_ieee80211_ff_qos_info_ap_q_ack, tvb, offset, 1, info); proto_tree_add_boolean(info_tree, hf_ieee80211_ff_qos_info_ap_queue_req, tvb, offset, 1, info); proto_tree_add_boolean(info_tree, hf_ieee80211_ff_qos_info_ap_txop_request, tvb, offset, 1, info); proto_tree_add_boolean(info_tree, hf_ieee80211_ff_qos_info_ap_reserved, tvb, offset, 1, info); length +=1; break; } case FIELD_QOS_INFO_STA: { guint8 info; proto_item *info_item; proto_tree *info_tree; info = tvb_get_guint8 (tvb, offset); info_item = proto_tree_add_uint(tree, hf_ieee80211_ff_qos_info_sta, tvb, offset, 1, info); info_tree = proto_item_add_subtree (info_item, ett_ff_qos_info); proto_tree_add_boolean(info_tree, hf_ieee80211_ff_qos_info_sta_ac_vo, tvb, offset, 1, info); proto_tree_add_boolean(info_tree, hf_ieee80211_ff_qos_info_sta_ac_vi, tvb, offset, 1, info); proto_tree_add_boolean(info_tree, hf_ieee80211_ff_qos_info_sta_ac_bk, tvb, offset, 1, info); proto_tree_add_boolean(info_tree, hf_ieee80211_ff_qos_info_sta_ac_be, tvb, offset, 1, info); proto_tree_add_boolean(info_tree, hf_ieee80211_ff_qos_info_sta_q_ack, tvb, offset, 1, info); proto_tree_add_uint(info_tree, hf_ieee80211_ff_qos_info_sta_max_sp_len, tvb, offset, 1, info); proto_tree_add_boolean(info_tree, hf_ieee80211_ff_qos_info_sta_more_data_ack, tvb, offset, 1, info); length +=1; break; } case FIELD_SM_PWR_CNTRL: { guint8 info; proto_item *info_item; proto_tree *info_tree; info = tvb_get_guint8 (tvb, offset); info_item = proto_tree_add_uint(tree, ff_sm_pwr_save, tvb, offset, 1, info); info_tree = proto_item_add_subtree (info_item, ett_ff_sm_pwr_save); proto_tree_add_boolean(info_tree, ff_sm_pwr_save_enabled, tvb, offset, 1, info); proto_tree_add_boolean(info_tree, ff_sm_pwr_save_sm_mode, tvb, offset, 1, info); proto_tree_add_uint(info_tree, ff_sm_pwr_save_reserved, tvb, offset, 1, info); length +=1; break; } case FIELD_PCO_PHASE_CNTRL: proto_tree_add_item(tree, ff_pco_phase_cntrl, tvb, offset, 1, TRUE); length +=1; break; case FIELD_PSMP_PARAM_SET: { guint16 params; proto_item *param_item; proto_tree *param_tree; params = tvb_get_letohs (tvb, offset); param_item = proto_tree_add_uint(tree, ff_psmp_param_set, tvb, offset, 2, params); param_tree = proto_item_add_subtree (param_item, ett_ff_psmp_param_set); proto_tree_add_uint(param_tree, ff_psmp_param_set_n_sta, tvb, offset, 1, params & 0x000F); proto_tree_add_boolean(param_tree, ff_psmp_param_set_more_psmp, tvb, offset, 1, (params & 0x0010) >> 4); proto_tree_add_uint_format(param_tree, ff_psmp_param_set_psmp_sequence_duration, tvb, offset, 2, (params & 0xFFE0) >> 5, "PSMP Sequence Duration: %u [us]", ((params & 0xFFE0) >> 5) * 8); length +=2; break; } case FIELD_MIMO_CNTRL: { guint16 mimo; guint32 timestamp; proto_item *mimo_item; proto_tree *mimo_tree; mimo = tvb_get_letohs (tvb, offset); mimo_item = proto_tree_add_text(tree, tvb, offset, 2, "MIMO Control"); mimo_tree = proto_item_add_subtree (mimo_item, ett_ff_mimo_cntrl); proto_tree_add_uint(mimo_tree, ff_mimo_cntrl_nc_index, tvb, offset, 1, mimo); proto_tree_add_uint(mimo_tree, ff_mimo_cntrl_nr_index, tvb, offset, 1, mimo); proto_tree_add_boolean(mimo_tree, ff_mimo_cntrl_channel_width, tvb, offset, 1, mimo); proto_tree_add_uint(mimo_tree, ff_mimo_cntrl_grouping, tvb, offset, 1, mimo); proto_tree_add_uint(mimo_tree, ff_mimo_cntrl_coefficient_size, tvb, offset, 2, mimo); proto_tree_add_uint(mimo_tree, ff_mimo_cntrl_codebook_info, tvb, offset+1, 1, mimo); proto_tree_add_uint(mimo_tree, ff_mimo_cntrl_remaining_matrix_segment, tvb, offset+1, 1, mimo); proto_tree_add_uint(mimo_tree, ff_mimo_cntrl_reserved, tvb, offset+1, 1, mimo); offset+=2; timestamp = tvb_get_letohl (tvb, offset); proto_tree_add_uint(mimo_tree, ff_mimo_cntrl_sounding_timestamp, tvb, offset, 4, timestamp); length +=6; break; } case FIELD_ANT_SELECTION: { guint8 ant; proto_item *ant_item; proto_tree *ant_tree; ant = tvb_get_guint8 (tvb, offset); ant_item = proto_tree_add_uint(tree, ff_ant_selection, tvb, offset, 1, ant); ant_tree = proto_item_add_subtree (ant_item, ett_ff_ant_sel); proto_tree_add_uint(ant_tree, ff_ant_selection_0, tvb, offset, 1, ant); proto_tree_add_uint(ant_tree, ff_ant_selection_1, tvb, offset, 1, ant); proto_tree_add_uint(ant_tree, ff_ant_selection_2, tvb, offset, 1, ant); proto_tree_add_uint(ant_tree, ff_ant_selection_3, tvb, offset, 1, ant); proto_tree_add_uint(ant_tree, ff_ant_selection_4, tvb, offset, 1, ant); proto_tree_add_uint(ant_tree, ff_ant_selection_5, tvb, offset, 1, ant); proto_tree_add_uint(ant_tree, ff_ant_selection_6, tvb, offset, 1, ant); proto_tree_add_uint(ant_tree, ff_ant_selection_7, tvb, offset, 1, ant); length +=1; break; } case FIELD_EXTENDED_CHANNEL_SWITCH_ANNOUNCEMENT: { guint32 ext_chan; proto_item *chan_item; proto_tree *chan_tree; ext_chan = tvb_get_letohl (tvb, offset); chan_item = proto_tree_add_uint(tree, ff_ext_channel_switch_announcement, tvb, offset, 1, ext_chan); chan_tree = proto_item_add_subtree (chan_item, ett_ff_chan_switch_announce); proto_tree_add_uint(chan_tree, hf_tag_ext_channel_switch_announcement_switch_mode, tvb, offset++, 1, (ext_chan & 0x000000FF)); proto_tree_add_uint(chan_tree, hf_tag_ext_channel_switch_announcement_new_reg_class, tvb, offset++, 1, (ext_chan & 0x0000FF00) >> 8); proto_tree_add_uint(chan_tree, hf_tag_ext_channel_switch_announcement_new_chan_number, tvb, offset++, 1, (ext_chan & 0x00FF0000) >> 16); proto_tree_add_uint(chan_tree, hf_tag_ext_channel_switch_announcement_switch_count, tvb, offset++, 1, (ext_chan & 0xFF000000) >> 24); length += 4; break; } case FIELD_HT_INFORMATION: { guint8 info; proto_item *ht_item; proto_tree *ht_tree; info = tvb_get_guint8 (tvb, offset); ht_item = proto_tree_add_uint(tree, ff_ht_info, tvb, offset, 1, info); ht_tree = proto_item_add_subtree (ht_item, ett_ff_ht_info); proto_tree_add_boolean(ht_tree, ff_ht_info_information_request, tvb, offset, 1, info); proto_tree_add_boolean(ht_tree, ff_ht_info_40_mhz_intolerant, tvb, offset, 1, info); proto_tree_add_boolean(ht_tree, ff_ht_info_sta_chan_width, tvb, offset, 1, info); proto_tree_add_uint(ht_tree, ff_ht_info_reserved, tvb, offset, 1, info); length += 1; break; } case FIELD_HT_ACTION_CODE: proto_tree_add_uint(tree, ff_ht_action, tvb, offset, 1, tvb_get_guint8 (tvb, offset)); length +=1; break; case FIELD_PSMP_STA_INFO: { #define BROADCAST 0 #define MULTICAST 1 #define INDIVIDUALLY_ADDRESSED 2 guint64 info_large; guint32 info_medium; guint16 info_small; guint8 type; proto_item *psmp_item; proto_tree *psmp_tree; info_medium = tvb_get_letohl (tvb, offset); type = info_medium & 0x3; psmp_item = proto_tree_add_uint(tree, ff_psmp_sta_info, tvb, offset, 8, type); psmp_tree = proto_item_add_subtree (psmp_item, ett_ff_psmp_sta_info); switch (type) { case BROADCAST: { proto_tree_add_uint(psmp_tree, ff_psmp_sta_info_dtt_start_offset, tvb, offset, 2, (info_medium & 0x00001FFC) >> 2); proto_tree_add_uint(psmp_tree, ff_psmp_sta_info_dtt_duration, tvb, offset+1, 2, (info_medium & 0x001FE000) >> 13); info_large = tvb_get_letoh64 (tvb, offset); proto_tree_add_uint64(psmp_tree, ff_psmp_sta_info_reserved_large, tvb, offset, 6, (info_large & G_GINT64_CONSTANT(0xFFFFFFFFFFE00000)) >> 21); break; } case MULTICAST: { proto_tree_add_uint(psmp_tree, ff_psmp_sta_info_dtt_start_offset, tvb, offset, 2, (info_medium & 0x00001FFC) >> 2); proto_tree_add_uint(psmp_tree, ff_psmp_sta_info_dtt_duration, tvb, offset+1, 2, (info_medium & 0x001FE000) >> 13); info_large = tvb_get_letoh64 (tvb, offset); proto_tree_add_uint64(psmp_tree, ff_psmp_sta_info_psmp_multicast_id, tvb, offset, 6, (info_large & G_GINT64_CONSTANT(0xFFFFFFFFFFE00000)) >> 21); break; } case INDIVIDUALLY_ADDRESSED: { proto_tree_add_uint(psmp_tree, ff_psmp_sta_info_dtt_start_offset, tvb, offset, 2, (info_medium & 0x00001FFC) >> 2); proto_tree_add_uint(psmp_tree, ff_psmp_sta_info_dtt_duration, tvb, offset+1, 2, (info_medium & 0x001FE000) >> 13); offset+=2; info_medium = tvb_get_letohl (tvb, offset); proto_tree_add_uint(psmp_tree, ff_psmp_sta_info_sta_id, tvb, offset, 3, (info_medium & 0x001FFFE0) >> 5); proto_tree_add_uint(psmp_tree, ff_psmp_sta_info_utt_start_offset, tvb, offset+2, 2, (info_medium & 0xFFE00000) >> 21); offset+=4; info_small = tvb_get_letohs (tvb, offset); proto_tree_add_uint(psmp_tree, ff_psmp_sta_info_utt_duration, tvb, offset, 2, info_small & 0x03FF); proto_tree_add_uint(psmp_tree, ff_psmp_sta_info_reserved_small, tvb, offset+1, 1, (info_small & 0xFC00) >> 10); break; } } length +=8; break; } case FIELD_SCHEDULE_INFO: { proto_item *sched_item; proto_tree *sched_tree; guint16 sched; sched_item = proto_tree_add_item(tree, hf_sched_info, tvb, offset, 2, TRUE); sched_tree = proto_item_add_subtree(sched_item, ett_sched_tree); sched = tvb_get_letohs(tvb, offset); proto_tree_add_uint(sched_tree, hf_tsinfo_agg, tvb, offset, 2, sched & 0x0001); if (sched & 0x0001) { proto_tree_add_uint(sched_tree, hf_tsinfo_tsid, tvb, offset, 2, (sched & 0x001E) >> 1); proto_tree_add_uint(sched_tree, hf_tsinfo_dir, tvb, offset, 2, (sched & 0x0060) >> 5); } length += 2; break; } case FIELD_PA_ACTION_CODE: proto_tree_add_item(tree, ff_public_action, tvb, offset, 1, FALSE); length += 1; break; case FIELD_ACTION: { proto_item *action_item; proto_tree *action_tree; action_item = proto_tree_add_item(tree, hf_action, tvb, offset, 1, TRUE); action_tree = proto_item_add_subtree(action_item, ett_sched_tree); switch (tvb_get_guint8(tvb, offset) & 0x7f) { case CAT_SPECTRUM_MGMT: { switch (tvb_get_guint8(tvb, offset+1)) { case SM_ACTION_MEASUREMENT_REQUEST: case SM_ACTION_MEASUREMENT_REPORT: case SM_ACTION_TPC_REQUEST: case SM_ACTION_TPC_REPORT: add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); add_fixed_field(action_tree, tvb, offset+1, FIELD_ACTION_CODE); add_fixed_field(action_tree, tvb, offset+2, FIELD_DIALOG_TOKEN); length += 3; /* Size of fixed fields */ break; case SM_ACTION_CHAN_SWITCH_ANNC: case SM_ACTION_EXT_CHAN_SWITCH_ANNC: add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); add_fixed_field(action_tree, tvb, offset+1, FIELD_ACTION_CODE); length += 2; /* Size of fixed fields */ break; default: add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); add_fixed_field(action_tree, tvb, offset+1, FIELD_ACTION_CODE); length += 2; /* Size of fixed fields */ break; } break; } case CAT_QOS: { switch (tvb_get_guint8(tvb, offset+1)) { case SM_ACTION_ADDTS_REQUEST: add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); add_fixed_field(action_tree, tvb, offset+1, FIELD_QOS_ACTION_CODE); add_fixed_field(action_tree, tvb, offset+2, FIELD_DIALOG_TOKEN); length += 3; break; case SM_ACTION_ADDTS_RESPONSE: add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); add_fixed_field(action_tree, tvb, offset+1, FIELD_QOS_ACTION_CODE); add_fixed_field(action_tree, tvb, offset+2, FIELD_DIALOG_TOKEN); add_fixed_field(action_tree, tvb, offset+3, FIELD_STATUS_CODE); length += 5; break; case SM_ACTION_DELTS: add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); add_fixed_field(action_tree, tvb, offset+1, FIELD_QOS_ACTION_CODE); add_fixed_field(action_tree, tvb, offset+2, FIELD_QOS_TS_INFO); add_fixed_field(action_tree, tvb, offset+5, FIELD_REASON_CODE); length += 7; break; case SM_ACTION_QOS_SCHEDULE: add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); add_fixed_field(action_tree, tvb, offset+1, FIELD_QOS_ACTION_CODE); length += 2; break; default: add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); length += 2; /* Size of fixed fields */ break; } break; } case CAT_DLS: { switch (tvb_get_guint8(tvb, offset+1)) { case SM_ACTION_DLS_REQUEST: add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); add_fixed_field(action_tree, tvb, offset+1, FIELD_DLS_ACTION_CODE); add_fixed_field(action_tree, tvb, offset+2, FIELD_DST_MAC_ADDR); add_fixed_field(action_tree, tvb, offset+8, FIELD_SRC_MAC_ADDR); add_fixed_field(action_tree, tvb, offset+14, FIELD_CAP_INFO); add_fixed_field(action_tree, tvb, offset+16, FIELD_DLS_TIMEOUT); length += 18; break; case SM_ACTION_DLS_RESPONSE: add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); add_fixed_field(action_tree, tvb, offset+1, FIELD_DLS_ACTION_CODE); add_fixed_field(action_tree, tvb, offset+2, FIELD_STATUS_CODE); add_fixed_field(action_tree, tvb, offset+4, FIELD_DST_MAC_ADDR); add_fixed_field(action_tree, tvb, offset+10, FIELD_SRC_MAC_ADDR); length += 16; if (!hf_ieee80211_ff_status_code) add_fixed_field(action_tree, tvb, offset+16, FIELD_CAP_INFO); break; case SM_ACTION_DLS_TEARDOWN: add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); add_fixed_field(action_tree, tvb, offset+1, FIELD_DLS_ACTION_CODE); add_fixed_field(action_tree, tvb, offset+2, FIELD_DST_MAC_ADDR); add_fixed_field(action_tree, tvb, offset+8, FIELD_SRC_MAC_ADDR); add_fixed_field(action_tree, tvb, offset+14, FIELD_REASON_CODE); length += 16; break; default: add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); length += 2; /* Size of fixed fields */ break; } break; } case CAT_BLOCK_ACK: { switch (tvb_get_guint8(tvb, offset+1)) { case BA_ADD_BLOCK_ACK_REQUEST: { guint start = offset; offset += add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); offset += add_fixed_field(action_tree, tvb, offset, FIELD_BLOCK_ACK_ACTION_CODE); offset += add_fixed_field(action_tree, tvb, offset, FIELD_DIALOG_TOKEN); offset += add_fixed_field(action_tree, tvb, offset, FIELD_BLOCK_ACK_PARAM); offset += add_fixed_field(action_tree, tvb, offset, FIELD_BLOCK_ACK_TIMEOUT); offset += add_fixed_field(action_tree, tvb, offset, FIELD_BLOCK_ACK_SSC); length = offset - start; /* Size of fixed fields */ break; } case BA_ADD_BLOCK_ACK_RESPONSE: { guint start = offset; offset += add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); offset += add_fixed_field(action_tree, tvb, offset, FIELD_BLOCK_ACK_ACTION_CODE); offset += add_fixed_field(action_tree, tvb, offset, FIELD_DIALOG_TOKEN); offset += add_fixed_field(action_tree, tvb, offset, FIELD_STATUS_CODE); offset += add_fixed_field(action_tree, tvb, offset, FIELD_BLOCK_ACK_PARAM); offset += add_fixed_field(action_tree, tvb, offset, FIELD_BLOCK_ACK_TIMEOUT); length = offset - start; /* Size of fixed fields */ break; } case BA_DELETE_BLOCK_ACK: { guint start = offset; offset += add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); offset += add_fixed_field(action_tree, tvb, offset, FIELD_BLOCK_ACK_ACTION_CODE); offset += add_fixed_field(action_tree, tvb, offset, FIELD_DELBA_PARAM_SET); offset += add_fixed_field(action_tree, tvb, offset, FIELD_REASON_CODE); length = offset - start; /* Size of fixed fields */ break; } } break; } case CAT_PUBLIC: { guint start = offset; guint32 oui; const guint8 *tag_data_ptr; guint8 code; guint8 subtype; offset += add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); code = tvb_get_guint8(tvb, offset); offset += add_fixed_field(action_tree, tvb, offset, FIELD_PA_ACTION_CODE); switch (code) { case PA_VENDOR_SPECIFIC: oui = tvb_get_ntoh24(tvb, offset); tag_data_ptr = tvb_get_ptr(tvb, offset, 3); proto_tree_add_bytes_format(action_tree, tag_oui, tvb, offset, 3, tag_data_ptr, "Vendor: %s", get_manuf_name(tag_data_ptr)); offset += 3; switch (oui) { case OUI_WFA: subtype = tvb_get_guint8(tvb, offset); proto_tree_add_text(action_tree, tvb, offset, 1, "Subtype %u", subtype); offset++; if (subtype == WFA_SUBTYPE_P2P) offset = dissect_wifi_p2p_public_action(action_tree, tvb, offset); break; default: /* Don't know how to handle this vendor */ break; } break; case PA_GAS_INITIAL_REQUEST: { gboolean anqp; offset += add_fixed_field(action_tree, tvb, offset, FIELD_DIALOG_TOKEN); offset += dissect_advertisement_protocol(g_pinfo, action_tree, tvb, offset, &anqp); offset += dissect_gas_initial_request(action_tree, tvb, offset, anqp); break; } case PA_GAS_INITIAL_RESPONSE: { gboolean anqp; offset += add_fixed_field(action_tree, tvb, offset, FIELD_DIALOG_TOKEN); offset += add_fixed_field(action_tree, tvb, offset, FIELD_STATUS_CODE); offset += add_fixed_field(action_tree, tvb, offset, FIELD_GAS_COMEBACK_DELAY); offset += dissect_advertisement_protocol(g_pinfo, action_tree, tvb, offset, &anqp); offset += dissect_gas_initial_response(action_tree, tvb, offset, anqp); break; } case PA_GAS_COMEBACK_REQUEST: offset += add_fixed_field(action_tree, tvb, offset, FIELD_DIALOG_TOKEN); break; case PA_GAS_COMEBACK_RESPONSE: { gboolean anqp; guint8 frag; offset += add_fixed_field(action_tree, tvb, offset, FIELD_DIALOG_TOKEN); offset += add_fixed_field(action_tree, tvb, offset, FIELD_STATUS_CODE); frag = tvb_get_guint8(tvb, offset) & 0x7f; offset += add_fixed_field(action_tree, tvb, offset, FIELD_GAS_FRAGMENT_ID); offset += add_fixed_field(action_tree, tvb, offset, FIELD_GAS_COMEBACK_DELAY); offset += dissect_advertisement_protocol(g_pinfo, action_tree, tvb, offset, &anqp); offset += dissect_gas_comeback_response(action_tree, tvb, offset, anqp, frag); break; } case PA_TDLS_DISCOVERY_RESPONSE: col_set_str(g_pinfo->cinfo, COL_PROTOCOL, "TDLS"); col_set_str(g_pinfo->cinfo, COL_INFO, "TDLS Discovery Response"); offset += add_fixed_field(action_tree, tvb, offset, FIELD_DIALOG_TOKEN); offset += add_fixed_field(action_tree, tvb, offset, FIELD_CAP_INFO); break; } length += offset - start; /* Size of fixed fields */ break; } case CAT_FAST_BSS_TRANSITION: { guint start = offset; guint8 code; offset += add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); code = tvb_get_guint8(tvb, offset); offset += add_fixed_field(action_tree, tvb, offset, FIELD_FT_ACTION_CODE); switch (code) { case FT_ACTION_REQUEST: offset += add_fixed_field(action_tree, tvb, offset, FIELD_STA_ADDRESS); offset += add_fixed_field(action_tree, tvb, offset, FIELD_TARGET_AP_ADDRESS); /* Followed by FT Request frame body (IEs) */ break; case FT_ACTION_RESPONSE: offset += add_fixed_field(action_tree, tvb, offset, FIELD_STA_ADDRESS); offset += add_fixed_field(action_tree, tvb, offset, FIELD_TARGET_AP_ADDRESS); offset += add_fixed_field(action_tree, tvb, offset, FIELD_STATUS_CODE); /* Followed by FT Response frame body (IEs) */ break; case FT_ACTION_CONFIRM: offset += add_fixed_field(action_tree, tvb, offset, FIELD_STA_ADDRESS); offset += add_fixed_field(action_tree, tvb, offset, FIELD_TARGET_AP_ADDRESS); /* Followed by FT Confirm frame body (IEs) */ break; case FT_ACTION_ACK: offset += add_fixed_field(action_tree, tvb, offset, FIELD_STA_ADDRESS); offset += add_fixed_field(action_tree, tvb, offset, FIELD_TARGET_AP_ADDRESS); offset += add_fixed_field(action_tree, tvb, offset, FIELD_STATUS_CODE); /* Followed by FT Ack frame body (IEs) */ break; } length += offset - start; /* Size of fixed fields */ break; } case CAT_SA_QUERY: { guint start = offset; guint8 code; offset += add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); code = tvb_get_guint8(tvb, offset); offset += add_fixed_field(action_tree, tvb, offset, FIELD_SA_QUERY_ACTION_CODE); switch (code) { case SA_QUERY_REQUEST: offset += add_fixed_field(action_tree, tvb, offset, FIELD_TRANSACTION_ID); break; case SA_QUERY_RESPONSE: offset += add_fixed_field(action_tree, tvb, offset, FIELD_TRANSACTION_ID); break; } length += offset - start; /* Size of fixed fields */ break; } #ifdef MESH_OVERRIDES case CAT_MESH_PEER_LINK: /* Non-IE fixed fields here. edit TAG_MESH_* for IE fields */ switch (tvb_get_guint8(tvb, 1)) { guint offset; case MESH_PL_PEER_LINK_OPEN: offset = 0; offset += add_fixed_field (action_tree, tvb, offset, FIELD_CATEGORY_CODE); offset += add_fixed_field (action_tree, tvb, offset, FIELD_MESH_MGT_ACTION_PL_CODE); offset += add_fixed_field (action_tree, tvb, offset, FIELD_CAP_INFO); length = offset; break; case MESH_PL_PEER_LINK_CONFIRM: offset = 0; offset += add_fixed_field (action_tree, tvb, offset, FIELD_CATEGORY_CODE); offset += add_fixed_field (action_tree, tvb, offset, FIELD_MESH_MGT_ACTION_PL_CODE); offset += add_fixed_field (action_tree, tvb, offset, FIELD_CAP_INFO); offset += add_fixed_field (action_tree, tvb, offset, FIELD_STATUS_CODE); offset += add_fixed_field (action_tree, tvb, offset, FIELD_ASSOC_ID); length = offset; break; case MESH_PL_PEER_LINK_CLOSE: offset = 0; offset += add_fixed_field (action_tree, tvb, offset, FIELD_CATEGORY_CODE); offset += add_fixed_field (action_tree, tvb, offset, FIELD_MESH_MGT_ACTION_PL_CODE); offset += add_fixed_field (action_tree, tvb, offset, FIELD_REASON_CODE); length = offset; /* Size of fixed fields */ break; default: offset = 0; offset += add_fixed_field (action_tree, tvb, offset, FIELD_CATEGORY_CODE); offset += add_fixed_field (action_tree, tvb, offset, FIELD_MESH_MGT_ACTION_PL_CODE); length = offset; /* Size of fixed fields */ break; } break; case CAT_MESH_PATH_SELECTION: switch (tvb_get_guint8(tvb, 1)) { guint offset; /* defined values */ case MESH_PS_PATH_REQUEST: offset = 0; offset += add_fixed_field (action_tree, tvb, offset, FIELD_CATEGORY_CODE); offset += add_fixed_field (action_tree, tvb, offset, FIELD_MESH_MGT_ACTION_PS_CODE); length = offset; break; case MESH_PS_PATH_REPLY: offset = 0; offset += add_fixed_field (action_tree, tvb, offset, FIELD_CATEGORY_CODE); offset += add_fixed_field (action_tree, tvb, offset, FIELD_MESH_MGT_ACTION_PS_CODE); length = offset; break; case MESH_PS_PATH_ERROR: offset = 0; offset += add_fixed_field (action_tree, tvb, offset, FIELD_CATEGORY_CODE); offset += add_fixed_field (action_tree, tvb, offset, FIELD_MESH_MGT_ACTION_PS_CODE); length = offset; break; case MESH_PS_ROOT_ANNOUNCEMENT: offset = 0; offset += add_fixed_field (action_tree, tvb, 0, FIELD_CATEGORY_CODE); offset += add_fixed_field (action_tree, tvb, 1, FIELD_MESH_MGT_ACTION_PS_CODE); length = offset; break; /* undefined values */ default: offset = 0; offset += add_fixed_field (action_tree, tvb, 0, FIELD_CATEGORY_CODE); offset += add_fixed_field (action_tree, tvb, 1, FIELD_MESH_MGT_ACTION_PS_CODE); length = offset; break; } break; #endif /* MESH_OVERRIDES */ case CAT_TDLS: { guint8 code; guint start = offset; offset += add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); code = tvb_get_guint8(tvb, offset); offset += add_fixed_field(action_tree, tvb, offset, FIELD_TDLS_ACTION_CODE); switch (code) { case TDLS_SETUP_REQUEST: offset += add_fixed_field(action_tree, tvb, offset, FIELD_DIALOG_TOKEN); offset += add_fixed_field(action_tree, tvb, offset, FIELD_CAP_INFO); break; case TDLS_SETUP_RESPONSE: offset += add_fixed_field(action_tree, tvb, offset, FIELD_STATUS_CODE); offset += add_fixed_field(action_tree, tvb, offset, FIELD_DIALOG_TOKEN); offset += add_fixed_field(action_tree, tvb, offset, FIELD_CAP_INFO); break; case TDLS_SETUP_CONFIRM: offset += add_fixed_field(action_tree, tvb, offset, FIELD_STATUS_CODE); offset += add_fixed_field(action_tree, tvb, offset, FIELD_DIALOG_TOKEN); break; case TDLS_TEARDOWN: offset += add_fixed_field(action_tree, tvb, offset, FIELD_REASON_CODE); break; case TDLS_PEER_TRAFFIC_INDICATION: offset += add_fixed_field(action_tree, tvb, offset, FIELD_DIALOG_TOKEN); break; case TDLS_CHANNEL_SWITCH_REQUEST: offset += add_fixed_field(action_tree, tvb, offset, FIELD_TARGET_CHANNEL); offset += add_fixed_field(action_tree, tvb, offset, FIELD_REGULATORY_CLASS); break; case TDLS_CHANNEL_SWITCH_RESPONSE: offset += add_fixed_field(action_tree, tvb, offset, FIELD_STATUS_CODE); break; case TDLS_PEER_PSM_REQUEST: offset += add_fixed_field(action_tree, tvb, offset, FIELD_DIALOG_TOKEN); break; case TDLS_PEER_PSM_RESPONSE: offset += add_fixed_field(action_tree, tvb, offset, FIELD_DIALOG_TOKEN); offset += add_fixed_field(action_tree, tvb, offset, FIELD_STATUS_CODE); break; case TDLS_PEER_TRAFFIC_RESPONSE: offset += add_fixed_field(action_tree, tvb, offset, FIELD_DIALOG_TOKEN); break; case TDLS_DISCOVERY_REQUEST: offset += add_fixed_field(action_tree, tvb, offset, FIELD_DIALOG_TOKEN); break; } length = offset - start; /* Size of fixed fields */ break; } case CAT_MGMT_NOTIFICATION: /* Management notification frame */ { guint start = offset; offset += add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); offset += add_fixed_field(action_tree, tvb, offset, FIELD_WME_ACTION_CODE); offset += add_fixed_field(action_tree, tvb, offset, FIELD_DIALOG_TOKEN); offset += add_fixed_field(action_tree, tvb, offset, FIELD_WME_STATUS_CODE); length = offset - start; /* Size of fixed fields */ break; } case CAT_VENDOR_SPECIFIC: /* Vendor Specific Category */ { guint start = offset; guint32 oui; const guint8 *tag_data_ptr; guint8 subtype; offset += add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); oui = tvb_get_ntoh24(tvb, offset); tag_data_ptr = tvb_get_ptr(tvb, offset, 3); proto_tree_add_bytes_format (action_tree, tag_oui, tvb, offset, 3, tag_data_ptr, "Vendor: %s", get_manuf_name(tag_data_ptr)); offset += 3; switch (oui) { case OUI_MARVELL: offset = dissect_vendor_action_marvell (action_tree, tvb, offset); break; case OUI_WFA: subtype = tvb_get_guint8(tvb, offset); proto_tree_add_text(action_tree, tvb, offset, 1, "Subtype %u", subtype); offset++; if (subtype == WFA_SUBTYPE_P2P) offset = dissect_wifi_p2p_action(action_tree, tvb, offset); break; default: /* Don't know how to handle this vendor */ break; }/* switch(oui) */ length = offset - start; /* Size of fixed fields */ break; }/* Case vendor specific */ case CAT_HT: { guint start = 0; start = offset; offset += add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); offset += add_fixed_field(action_tree, tvb, offset, FIELD_HT_ACTION_CODE); switch (tvb_get_guint8(tvb, offset-1)) { case HT_ACTION_NOTIFY_CHAN_WIDTH: offset += add_fixed_field(action_tree, tvb, offset, FIELD_CHANNEL_WIDTH); break; case HT_ACTION_SM_PWR_SAVE: offset += add_fixed_field(action_tree, tvb, offset, FIELD_SM_PWR_CNTRL); break; case HT_ACTION_PSMP_ACTION: { guint8 n_sta, i; n_sta = tvb_get_guint8(tvb, offset); offset += add_fixed_field(action_tree, tvb, offset, FIELD_PSMP_PARAM_SET); for (i=0; i< (n_sta & 0x0F); i++) offset += add_fixed_field(action_tree, tvb, offset, FIELD_PSMP_STA_INFO); break; } case HT_ACTION_SET_PCO_PHASE: offset += add_fixed_field(action_tree, tvb, offset, FIELD_PCO_PHASE_CNTRL); break; case HT_ACTION_MIMO_CSI: { mimo_control_t mimo_cntrl; mimo_cntrl = get_mimo_control (tvb, offset); offset += add_fixed_field(action_tree, tvb, offset, FIELD_MIMO_CNTRL); offset += add_mimo_csi_matrices_report (action_tree, tvb, offset, mimo_cntrl); break; } case HT_ACTION_MIMO_BEAMFORMING: { mimo_control_t mimo_cntrl; mimo_cntrl = get_mimo_control (tvb, offset); offset += add_fixed_field(action_tree, tvb, offset, FIELD_MIMO_CNTRL); offset += add_mimo_beamforming_feedback_report (action_tree, tvb, offset, mimo_cntrl); break; } case HT_ACTION_MIMO_COMPRESSED_BEAMFORMING: { mimo_control_t mimo_cntrl; mimo_cntrl = get_mimo_control (tvb, offset); offset += add_fixed_field(action_tree, tvb, offset, FIELD_MIMO_CNTRL); offset += add_mimo_compressed_beamforming_feedback_report (action_tree, tvb, offset, mimo_cntrl); break; } case HT_ACTION_ANT_SEL_FEEDBACK: offset += add_fixed_field(action_tree, tvb, offset, FIELD_ANT_SELECTION); break; case HT_ACTION_HT_INFO_EXCHANGE: offset += add_fixed_field(action_tree, tvb, offset, FIELD_HT_INFORMATION); break; default: /* Unknown */ break; } length = offset - start; break; } default: add_fixed_field(action_tree, tvb, offset, FIELD_CATEGORY_CODE); length += 1; /* Size of fixed fields */ break; } break; } case FIELD_FT_ACTION_CODE: proto_tree_add_item(tree, hf_ieee80211_ff_ft_action_code, tvb, offset, 1, FALSE); length += 1; break; case FIELD_STA_ADDRESS: proto_tree_add_item(tree, hf_ieee80211_ff_sta_address, tvb, offset, 6, FALSE); length += 6; break; case FIELD_TARGET_AP_ADDRESS: proto_tree_add_item(tree, hf_ieee80211_ff_target_ap_address, tvb, offset, 6, FALSE); length += 6; break; case FIELD_GAS_COMEBACK_DELAY: proto_tree_add_item(tree, hf_ieee80211_ff_gas_comeback_delay, tvb, offset, 2, TRUE); length += 2; break; case FIELD_GAS_FRAGMENT_ID: proto_tree_add_item(tree, hf_ieee80211_ff_gas_fragment_id, tvb, offset, 1, FALSE); proto_tree_add_item(tree, hf_ieee80211_ff_more_gas_fragments, tvb, offset, 1, FALSE); length += 1; break; case FIELD_SA_QUERY_ACTION_CODE: proto_tree_add_item(tree, hf_ieee80211_ff_sa_query_action_code, tvb, offset, 1, FALSE); length += 1; break; case FIELD_TRANSACTION_ID: proto_tree_add_item(tree, hf_ieee80211_ff_transaction_id, tvb, offset, 2, TRUE); length += 2; break; case FIELD_TDLS_ACTION_CODE: { guint8 code; code = tvb_get_guint8(tvb, offset); col_set_str(g_pinfo->cinfo, COL_INFO, val_to_str_const(code, tdls_action_codes, "Unknown TDLS Action")); proto_tree_add_item(tree, hf_ieee80211_ff_tdls_action_code, tvb, offset, 1, FALSE); length += 1; break; } case FIELD_TARGET_CHANNEL: proto_tree_add_item(tree, hf_ieee80211_ff_target_channel, tvb, offset, 1, FALSE); length += 1; break; case FIELD_REGULATORY_CLASS: proto_tree_add_item(tree, hf_ieee80211_ff_regulatory_class, tvb, offset, 1, FALSE); length += 1; break; } return length; } static const value_string wpa_cipher_vals[] = { {0, "NONE"}, {1, "WEP (40-bit)"}, {2, "TKIP"}, {3, "AES (OCB)"}, {4, "AES (CCM)"}, {5, "WEP (104-bit)"}, {6, "BIP"}, {7, "Group addressed traffic not allowed"}, {0, NULL} }; static const value_string wpa_keymgmt_vals[] = { {0, "NONE"}, {1, "WPA"}, {2, "PSK"}, {3, "FT over IEEE 802.1X"}, {4, "FT using PSK"}, {5, "WPA (SHA256)"}, {6, "PSK (SHA256)"}, {7, "TDLS / TPK Handshake"}, {0, NULL} }; static const value_string ft_subelem_id_vals[] = { {0, "Reserved"}, {1, "PMK-R1 key holder identifier (R1KH-ID)"}, {2, "GTK subelement"}, {3, "PMK-R0 key holder identifier (R0KH-ID)"}, {4, "IGTK"}, {0, NULL} }; static const value_string anqp_info_id_vals[] = { {256, "ANQP Query list"}, {257, "ANQP Capability list"}, {258, "Venue Name information"}, {259, "Emergency Call Number information"}, {260, "Network Authentication Type information"}, {261, "Roaming Consortium list"}, {262, "IP Address Type Availability information"}, {263, "NAI Realm list"}, {264, "3GPP Cellular Network information"}, {265, "AP Geospatial Location"}, {266, "AP Civic Location"}, {267, "AP Location Public Identifier URI"}, {268, "Domain Name list"}, {269, "Emergency Alert Identifier URI"}, {270, "TDLS Discovery"}, {56797, "ANQP vendor-specific list"}, {0, NULL} }; static void dissect_vendor_ie_wpawme(proto_item * item, proto_tree * tree, tvbuff_t * tag_tvb) { gint tag_off = 0; gint tag_len = tvb_length(tag_tvb); gchar out_buff[SHORT_STR]; guint i, byte1, byte2; /* Wi-Fi Protected Access (WPA) Information Element */ if (tag_off + 6 <= tag_len && !tvb_memeql(tag_tvb, tag_off, WPA_OUI"\x01", 4)) { g_snprintf(out_buff, SHORT_STR, "WPA IE, type %u, version %u", tvb_get_guint8(tag_tvb, tag_off + 3), tvb_get_letohs(tag_tvb, tag_off + 4)); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 6, out_buff); tag_off += 6; if (tag_off + 4 <= tag_len) { /* multicast cipher suite */ if (!tvb_memeql(tag_tvb, tag_off, WPA_OUI, 3)) { g_snprintf(out_buff, SHORT_STR, "Multicast cipher suite: %s", val_to_str(tvb_get_guint8(tag_tvb, tag_off + 3), wpa_cipher_vals, "UNKNOWN")); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 4, out_buff); tag_off += 4; /* unicast cipher suites */ if (tag_off + 2 <= tag_len) { g_snprintf(out_buff, SHORT_STR, "# of unicast cipher suites: %u", tvb_get_letohs(tag_tvb, tag_off)); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 2, out_buff); tag_off += 2; i = 1; while (tag_off + 4 <= tag_len) { if (!tvb_memeql(tag_tvb, tag_off, WPA_OUI, 3)) { g_snprintf(out_buff, SHORT_STR, "Unicast cipher suite %u: %s", i, val_to_str(tvb_get_guint8(tag_tvb, tag_off + 3), wpa_cipher_vals, "UNKNOWN")); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 4, out_buff); tag_off += 4; i ++; } else break; } /* authenticated key management suites */ if (tag_off + 2 <= tag_len) { g_snprintf(out_buff, SHORT_STR, "# of auth key management suites: %u", tvb_get_letohs(tag_tvb, tag_off)); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 2, out_buff); tag_off += 2; i = 1; while (tag_off + 4 <= tag_len) { if (!tvb_memeql(tag_tvb, tag_off, WPA_OUI, 3)) { g_snprintf(out_buff, SHORT_STR, "auth key management suite %u: %s", i, val_to_str(tvb_get_guint8(tag_tvb, tag_off + 3), wpa_keymgmt_vals, "UNKNOWN")); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 4, out_buff); tag_off += 4; i ++; } else break; } } } } } if (tag_off < tag_len) proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, tag_len - tag_off, "Not interpreted"); proto_item_append_text(item, ": WPA"); } else if (tag_off + 7 <= tag_len && !tvb_memeql(tag_tvb, tag_off, WME_OUI"\x02\x00", 5)) { /* Wireless Multimedia Enhancements (WME) Information Element */ g_snprintf(out_buff, SHORT_STR, "WME IE: type %u, subtype %u, version %u, parameter set %u", tvb_get_guint8(tag_tvb, tag_off+3), tvb_get_guint8(tag_tvb, tag_off+4), tvb_get_guint8(tag_tvb, tag_off+5), tvb_get_guint8(tag_tvb, tag_off+6)); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 7, out_buff); proto_item_append_text(item, ": WME"); } else if (tag_off + 24 <= tag_len && !tvb_memeql(tag_tvb, tag_off, WME_OUI"\x02\x01", 5)) { /* Wireless Multimedia Enhancements (WME) Parameter Element */ g_snprintf(out_buff, SHORT_STR, "WME PE: type %u, subtype %u, version %u, parameter set %u", tvb_get_guint8(tag_tvb, tag_off+3), tvb_get_guint8(tag_tvb, tag_off+4), tvb_get_guint8(tag_tvb, tag_off+5), tvb_get_guint8(tag_tvb, tag_off+6)); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 7, out_buff); tag_off += 8; for (i = 0; i < 4; i++) { byte1 = tvb_get_guint8(tag_tvb, tag_off); byte2 = tvb_get_guint8(tag_tvb, tag_off + 1); g_snprintf(out_buff, SHORT_STR, "WME AC Parameters: ACI %u (%s), Admission Control %sMandatory, AIFSN %u, ECWmin %u, ECWmax %u, TXOP %u", (byte1 & 0x60) >> 5, match_strval((byte1 & 0x60) >> 5, wme_acs), (byte1 & 0x10) ? "" : "not ", byte1 & 0x0f, byte2 & 0x0f, (byte2 & 0xf0) >> 4, tvb_get_letohs(tag_tvb, tag_off + 2)); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 4, out_buff); tag_off += 4; } proto_item_append_text(item, ": WME"); } else if (tag_off + 56 <= tag_len && !tvb_memeql(tag_tvb, tag_off, WME_OUI"\x02\x02", 5)) { /* Wireless Multimedia Enhancements (WME) TSPEC Element */ guint16 ts_info, msdu_size, surplus_bandwidth; const char *direction[] = { "Uplink", "Downlink", "Reserved", "Bi-directional" }; const value_string fields[] = { {13, "Minimum Service Interval"}, {17, "Maximum Service Interval"}, {21, "Inactivity Interval"}, {25, "Suspension Interval"}, {29, "Service Start Time"}, {33, "Minimum Data Rate"}, {37, "Mean Data Rate"}, {41, "Peak Data Rate"}, {45, "Maximum Burst Size"}, {49, "Delay Bound"}, {53, "Minimum PHY Rate"}, {0, NULL} }; const char *field; g_snprintf(out_buff, SHORT_STR, "WME TSPEC: type %u, subtype %u, version %u", tvb_get_guint8(tag_tvb, tag_off+3), tvb_get_guint8(tag_tvb, tag_off+4), tvb_get_guint8(tag_tvb, tag_off+5)); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 6, out_buff); tag_off += 6; ts_info = tvb_get_letohs(tag_tvb, tag_off); byte1 = (ts_info >> 11) & 0x7; g_snprintf(out_buff, SHORT_STR, "WME TS Info: Priority %u (%s) (%s), Contention-based access %sset, %s", byte1, qos_tags[byte1], qos_acs[byte1], (ts_info & 0x0080) ? "" : "not ", direction[(ts_info >> 5) & 0x3]); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 3, out_buff); tag_off += 3; msdu_size = tvb_get_letohs(tag_tvb, tag_off); g_snprintf(out_buff, SHORT_STR, "WME TSPEC: %s MSDU Size %u", (msdu_size & 0x8000) ? "Fixed" : "Nominal", msdu_size & 0x7fff); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 2, out_buff); tag_off += 2; g_snprintf(out_buff, SHORT_STR, "WME TSPEC: Maximum MSDU Size %u", tvb_get_letohs(tag_tvb, tag_off)); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 2, out_buff); tag_off += 2; while ((field = val_to_str(tag_off, fields, "Unknown"))) { g_snprintf(out_buff, SHORT_STR, "WME TSPEC: %s %u", field, tvb_get_letohl(tag_tvb, tag_off)); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 4, out_buff); tag_off += 4; if (tag_off == 57) break; } surplus_bandwidth = tvb_get_letohs(tag_tvb, tag_off); g_snprintf(out_buff, SHORT_STR, "WME TSPEC: Surplus Bandwidth Allowance Factor %u.%u", (surplus_bandwidth >> 13) & 0x7, (surplus_bandwidth & 0x1fff)); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 2, out_buff); tag_off += 2; g_snprintf(out_buff, SHORT_STR, "WME TSPEC: Medium Time %u", tvb_get_letohs(tag_tvb, tag_off)); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 2, out_buff); tag_off += 2; proto_item_append_text(item, ": WME"); } else if (tag_off + 6 <= tag_len && !tvb_memeql(tag_tvb, tag_off, WPA_OUI"\x04", 4)) { dissect_wps_tlvs(item, tag_tvb, tag_off+4, tag_len-4, NULL); proto_item_append_text(item, ": WPS"); } } static void dissect_vendor_ie_wfa(packet_info *pinfo, proto_item *item, tvbuff_t *tag_tvb) { gint tag_len = tvb_length(tag_tvb); if (tag_len < 4) return; switch (tvb_get_guint8(tag_tvb, 3)) { case WFA_SUBTYPE_P2P: dissect_wifi_p2p_ie(pinfo, item, tag_tvb, 4, tag_len - 4); proto_item_append_text(item, ": P2P"); break; } } static void dissect_vendor_ie_rsn(proto_item * item, proto_tree * tree, tvbuff_t * tag_tvb) { guint tag_off = 0; guint tag_len = tvb_length(tag_tvb); guint pmkid_len = tag_len - 4; char out_buff[SHORT_STR], valid_str[SHORT_STR] = ""; if (tag_len >= 4 && !tvb_memeql(tag_tvb, tag_off, RSN_OUI"\x04", 4)) { /* IEEE 802.11i / Key Data Encapsulation / Data Type=4 - PMKID. * This is only used within EAPOL-Key frame Key Data. */ if (pmkid_len != PMKID_LEN) { g_snprintf(valid_str, SHORT_STR, "(invalid PMKID len=%d, expected 16) ", pmkid_len); } g_snprintf(out_buff, SHORT_STR, "RSN PMKID: %s%s", valid_str, tvb_bytes_to_str(tag_tvb, 4, pmkid_len)); proto_tree_add_string(tree, tag_interpretation, tag_tvb, 0, tag_len, out_buff); } proto_item_append_text(item, ": RSN"); } typedef enum { MARVELL_IE_MESH = 4 } marvell_ie_type_t; static void dissect_vendor_ie_marvell(proto_item * item _U_, proto_tree * ietree, tvbuff_t * tvb, int offset, guint32 tag_len) { guint8 type; type = tvb_get_guint8(tvb, offset); proto_tree_add_item (ietree, hf_marvell_ie_type, tvb, offset, 1, TRUE); offset += 1; switch (type) { case MARVELL_IE_MESH: proto_tree_add_item (ietree, hf_marvell_ie_mesh_subtype, tvb, offset++, 1, TRUE ); proto_tree_add_item (ietree, hf_marvell_ie_mesh_version, tvb, offset++, 1, TRUE ); proto_tree_add_item (ietree, hf_marvell_ie_mesh_active_proto_id, tvb, offset++, 1, TRUE ); proto_tree_add_item (ietree, hf_marvell_ie_mesh_active_metric_id, tvb, offset++, 1, TRUE ); proto_tree_add_item (ietree, hf_marvell_ie_mesh_cap, tvb, offset++, 1, TRUE ); break; default: proto_tree_add_item(ietree, hf_marvell_ie_data, tvb, offset, tag_len - 1, FALSE); break; } } typedef enum { AIRONET_IE_VERSION = 3, AIRONET_IE_QOS, AIRONET_IE_QBSS_V2 = 14 } aironet_ie_type_t; static const value_string aironet_ie_type_vals[] = { { AIRONET_IE_VERSION, "CCX version"}, { AIRONET_IE_QOS, "Qos"}, { AIRONET_IE_QBSS_V2, "QBSS V2 - CCA"}, { 0, NULL } }; static void dissect_vendor_ie_aironet(proto_item * aironet_item, proto_tree * ietree, tvbuff_t * tvb, int offset, guint32 tag_len) { guint8 type; int i; gboolean dont_change = FALSE; /* Don't change the IE item text to default */ type = tvb_get_guint8(tvb, offset); proto_tree_add_item (ietree, hf_aironet_ie_type, tvb, offset, 1, TRUE); offset += 1; switch (type) { case AIRONET_IE_VERSION: proto_tree_add_item (ietree, hf_aironet_ie_version, tvb, offset, 1, TRUE); proto_item_append_text(aironet_item, ": Aironet CCX version = %d", tvb_get_guint8(tvb, offset)); dont_change = TRUE; break; case AIRONET_IE_QOS: proto_tree_add_item (ietree, hf_aironet_ie_qos_unk1, tvb, offset, 1, TRUE); offset += 1; proto_tree_add_item (ietree, hf_aironet_ie_qos_paramset, tvb, offset, 1, TRUE); offset += 1; /* XXX: just copied over from WME. Maybe "Best Effort" and "Background" * need to be swapped. Also, the "TXOP" may be TXOP - or not. */ for (i = 0; i < 4; i++) { guint8 byte1, byte2; guint16 txop; byte1 = tvb_get_guint8(tvb, offset); byte2 = tvb_get_guint8(tvb, offset + 1); txop = tvb_get_letohs(tvb, offset + 2); proto_tree_add_bytes_format(ietree, hf_aironet_ie_qos_val, tvb, offset, 4, tvb_get_ptr(tvb, offset, 4), "CCX QoS Parameters??: ACI %u (%s), Admission Control %sMandatory, AIFSN %u, ECWmin %u, ECWmax %u, TXOP %u", (byte1 & 0x60) >> 5, match_strval((byte1 & 0x60) >> 5, wme_acs), (byte1 & 0x10) ? "" : "not ", byte1 & 0x0f, byte2 & 0x0f, (byte2 & 0xf0) >> 4, txop); offset += 4; } break; case AIRONET_IE_QBSS_V2: /* Extract Values */ proto_tree_add_item (ietree, hf_qbss2_scount, tvb, offset, 2, TRUE); proto_tree_add_item (ietree, hf_qbss2_cu, tvb, offset + 2, 1, FALSE); proto_tree_add_item (ietree, hf_qbss2_cal, tvb, offset + 3, 1, FALSE); proto_tree_add_item (ietree, hf_qbss2_gl, tvb, offset + 4, 1, FALSE); break; default: proto_tree_add_item(ietree, hf_aironet_ie_data, tvb, offset, tag_len - 1, FALSE); break; } if (!dont_change) { proto_item_append_text(aironet_item, ": Aironet %s", val_to_str(type, aironet_ie_type_vals, "Unknown")); } } static void dissect_rsn_ie(proto_tree * tree, tvbuff_t * tag_tvb) { guint tag_off = 0; guint tag_len = tvb_length(tag_tvb); char out_buff[SHORT_STR]; int i, count; proto_item *cap_item; proto_tree *cap_tree; if (tag_off + 2 > tag_len) { proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, tag_len, "Not interpreted"); return; } g_snprintf(out_buff, SHORT_STR, "RSN IE, version %u", tvb_get_letohs(tag_tvb, tag_off)); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 2, out_buff); tag_off += 2; if (tag_off + 4 > tag_len) goto done; /* multicast cipher suite */ if (!tvb_memeql(tag_tvb, tag_off, RSN_OUI, 3)) { g_snprintf(out_buff, SHORT_STR, "Multicast cipher suite: %s", val_to_str(tvb_get_guint8(tag_tvb, tag_off + 3), wpa_cipher_vals, "UNKNOWN")); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 4, out_buff); tag_off += 4; } if (tag_off + 2 > tag_len) goto done; /* unicast cipher suites */ count = tvb_get_letohs(tag_tvb, tag_off); g_snprintf(out_buff, SHORT_STR, "# of unicast cipher suites: %u", count); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 2, out_buff); tag_off += 2; i = 1; while (tag_off + 4 <= tag_len && i <= count) { if (tvb_memeql(tag_tvb, tag_off, RSN_OUI, 3) != 0) goto done; g_snprintf(out_buff, SHORT_STR, "Unicast cipher suite %u: %s", i, val_to_str(tvb_get_guint8(tag_tvb, tag_off + 3), wpa_cipher_vals, "UNKNOWN")); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 4, out_buff); tag_off += 4; i++; } if (i <= count || tag_off + 2 > tag_len) goto done; /* authenticated key management suites */ count = tvb_get_letohs(tag_tvb, tag_off); g_snprintf(out_buff, SHORT_STR, "# of auth key management suites: %u", count); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 2, out_buff); tag_off += 2; i = 1; while (tag_off + 4 <= tag_len && i <= count) { if (tvb_memeql(tag_tvb, tag_off, RSN_OUI, 3) != 0) goto done; g_snprintf(out_buff, SHORT_STR, "auth key management suite %u: %s", i, val_to_str(tvb_get_guint8(tag_tvb, tag_off + 3), wpa_keymgmt_vals, "UNKNOWN")); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 4, out_buff); tag_off += 4; i++; } if (i <= count || tag_off + 2 > tag_len) goto done; cap_item = proto_tree_add_item(tree, hf_ieee80211_rsn_cap, tag_tvb, tag_off, 2, ENC_LITTLE_ENDIAN); cap_tree = proto_item_add_subtree(cap_item, ett_rsn_cap_tree); proto_tree_add_item(cap_tree, hf_ieee80211_rsn_cap_preauth, tag_tvb, tag_off, 2, ENC_LITTLE_ENDIAN); proto_tree_add_item(cap_tree, hf_ieee80211_rsn_cap_no_pairwise, tag_tvb, tag_off, 2, ENC_LITTLE_ENDIAN); proto_tree_add_item(cap_tree, hf_ieee80211_rsn_cap_ptksa_replay_counter, tag_tvb, tag_off, 2, ENC_LITTLE_ENDIAN); proto_tree_add_item(cap_tree, hf_ieee80211_rsn_cap_gtksa_replay_counter, tag_tvb, tag_off, 2, ENC_LITTLE_ENDIAN); proto_tree_add_item(cap_tree, hf_ieee80211_rsn_cap_mfpr, tag_tvb, tag_off, 2, ENC_LITTLE_ENDIAN); proto_tree_add_item(cap_tree, hf_ieee80211_rsn_cap_mfpc, tag_tvb, tag_off, 2, ENC_LITTLE_ENDIAN); proto_tree_add_item(cap_tree, hf_ieee80211_rsn_cap_peerkey, tag_tvb, tag_off, 2, ENC_LITTLE_ENDIAN); tag_off += 2; if (tag_off + 2 > tag_len) goto done; count = tvb_get_letohs(tag_tvb, tag_off); g_snprintf(out_buff, SHORT_STR, "# of PMKIDs: %u", count); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 2, out_buff); tag_off += 2; /* PMKID List (16 * n octets) */ for (i = 0; i < count; i++) { if (tag_off + PMKID_LEN > tag_len) break; g_snprintf(out_buff, SHORT_STR, "PMKID %u: %s", i, tvb_bytes_to_str(tag_tvb, tag_off, PMKID_LEN)); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, PMKID_LEN, out_buff); tag_off += PMKID_LEN; } if (tag_off + 4 > tag_len) goto done; if (!tvb_memeql(tag_tvb, tag_off, RSN_OUI, 3)) { g_snprintf(out_buff, SHORT_STR, "Group management cipher suite: %s", val_to_str(tvb_get_guint8(tag_tvb, tag_off + 3), wpa_cipher_vals, "UNKNOWN")); proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, 4, out_buff); tag_off += 4; } done: if (tag_off < tag_len) proto_tree_add_string(tree, tag_interpretation, tag_tvb, tag_off, tag_len - tag_off, "Not interpreted"); } static void dissect_mobility_domain(proto_tree *tree, tvbuff_t *tvb, int offset, guint32 tag_len) { if (tag_len < 3) { proto_tree_add_string(tree, tag_interpretation, tvb, offset, tag_len, "MDIE content length must be at least 3 bytes"); return; } proto_tree_add_item(tree, hf_ieee80211_tag_mobility_domain_mdid, tvb, offset, 2, ENC_LITTLE_ENDIAN); proto_tree_add_item(tree, hf_ieee80211_tag_mobility_domain_ft_capab, tvb, offset + 2, 1, FALSE); proto_tree_add_item(tree, hf_ieee80211_tag_mobility_domain_ft_capab_ft_over_ds, tvb, offset + 2, 1, FALSE); proto_tree_add_item(tree, hf_ieee80211_tag_mobility_domain_ft_capab_resource_req, tvb, offset + 2, 1, FALSE); } #ifndef MESH_OVERRIDES static void dissect_fast_bss_transition(proto_tree *tree, tvbuff_t *tvb, int offset, guint32 tag_len) { int end = offset + tag_len; if (tag_len < 82) { proto_tree_add_string(tree, tag_interpretation, tvb, offset, tag_len, "FTIE content length must be at least 82 bytes"); return; } proto_tree_add_item(tree, hf_ieee80211_tag_ft_mic_control, tvb, offset, 2, TRUE); proto_tree_add_item(tree, hf_ieee80211_tag_ft_element_count, tvb, offset, 2, TRUE); offset += 2; proto_tree_add_item(tree, hf_ieee80211_tag_ft_mic, tvb, offset, 16, FALSE); offset += 16; proto_tree_add_item(tree, hf_ieee80211_tag_ft_anonce, tvb, offset, 32, FALSE); offset += 32; proto_tree_add_item(tree, hf_ieee80211_tag_ft_snonce, tvb, offset, 32, FALSE); offset += 32; while (offset + 2 <= end) { guint8 id, len; int s_end; proto_tree_add_item(tree, hf_ieee80211_tag_ft_subelem_id, tvb, offset, 1, FALSE); id = tvb_get_guint8(tvb, offset); offset++; proto_tree_add_item(tree, hf_ieee80211_tag_ft_subelem_len, tvb, offset, 1, FALSE); len = tvb_get_guint8(tvb, offset); offset++; if (offset + len > end) { proto_tree_add_string(tree, tag_interpretation, tvb, offset, end - offset, "Invalid FTIE subelement"); return; } s_end = offset + len; switch (id) { case 1: proto_tree_add_item(tree, hf_ieee80211_tag_ft_subelem_r1kh_id, tvb, offset, len, FALSE); break; case 2: proto_tree_add_item(tree, hf_ieee80211_tag_ft_subelem_gtk_key_info, tvb, offset, 2, TRUE); proto_tree_add_item(tree, hf_ieee80211_tag_ft_subelem_gtk_key_id, tvb, offset, 2, TRUE); offset += 2; if (offset > s_end) break; proto_tree_add_item(tree, hf_ieee80211_tag_ft_subelem_gtk_key_length, tvb, offset, 1, FALSE); offset++; if (offset > s_end) break; proto_tree_add_item(tree, hf_ieee80211_tag_ft_subelem_gtk_rsc, tvb, offset, 8, FALSE); offset += 8; if (offset > s_end) break; proto_tree_add_item(tree, hf_ieee80211_tag_ft_subelem_gtk_key, tvb, offset, s_end - offset, FALSE); break; case 3: proto_tree_add_item(tree, hf_ieee80211_tag_ft_subelem_r0kh_id, tvb, offset, len, FALSE); break; case 4: proto_tree_add_item(tree, hf_ieee80211_tag_ft_subelem_igtk_key_id, tvb, offset, 2, TRUE); offset += 2; if (offset > s_end) break; proto_tree_add_item(tree, hf_ieee80211_tag_ft_subelem_igtk_ipn, tvb, offset, 6, FALSE); offset += 6; if (offset > s_end) break; proto_tree_add_item(tree, hf_ieee80211_tag_ft_subelem_igtk_key_length, tvb, offset, 1, FALSE); offset++; if (offset > s_end) break; proto_tree_add_item(tree, hf_ieee80211_tag_ft_subelem_igtk_key, tvb, offset, 24, FALSE); break; default: proto_tree_add_item(tree, hf_ieee80211_tag_ft_subelem_data, tvb, offset, len, FALSE); break; } offset = s_end; } } #endif /* MESH_OVERRIDES */ static void dissect_mmie(proto_tree *tree, tvbuff_t *tvb, int offset, guint32 tag_len) { if (tag_len < 16) { proto_tree_add_string(tree, tag_interpretation, tvb, offset, tag_len, "MMIE content length must be at least 16 bytes"); return; } proto_tree_add_item(tree, hf_ieee80211_tag_mmie_keyid, tvb, offset, 2, TRUE); proto_tree_add_item(tree, hf_ieee80211_tag_mmie_ipn, tvb, offset + 2, 6, TRUE); proto_tree_add_item(tree, hf_ieee80211_tag_mmie_mic, tvb, offset + 8, 8, FALSE); } static void dissect_link_identifier(proto_tree *tree, tvbuff_t *tvb, int offset, guint32 tag_len) { if (tag_len < 18) { proto_tree_add_string(tree, tag_interpretation, tvb, offset, tag_len, "Link Identifier content length must be at least " "18 bytes"); return; } proto_tree_add_item(tree, hf_ieee80211_tag_link_id_bssid, tvb, offset, 6, FALSE); proto_tree_add_item(tree, hf_ieee80211_tag_link_id_init_sta, tvb, offset + 6, 6, FALSE); proto_tree_add_item(tree, hf_ieee80211_tag_link_id_resp_sta, tvb, offset + 12, 6, FALSE); } static void dissect_wakeup_schedule(proto_tree *tree, tvbuff_t *tvb, int offset, guint32 tag_len) { if (tag_len < 18) { proto_tree_add_string(tree, tag_interpretation, tvb, offset, tag_len, "Wakeup Schedule content length must be at least " "18 bytes"); return; } proto_tree_add_item(tree, hf_ieee80211_tag_wakeup_schedule_offset, tvb, offset, 4, TRUE); offset += 4; proto_tree_add_item(tree, hf_ieee80211_tag_wakeup_schedule_interval, tvb, offset, 4, TRUE); offset += 4; proto_tree_add_item(tree, hf_ieee80211_tag_wakeup_schedule_awake_window_slots, tvb, offset, 4, TRUE); offset += 4; proto_tree_add_item(tree, hf_ieee80211_tag_wakeup_schedule_max_awake_dur, tvb, offset, 4, TRUE); offset += 4; proto_tree_add_item(tree, hf_ieee80211_tag_wakeup_schedule_idle_count, tvb, offset, 2, TRUE); } static void dissect_channel_switch_timing(proto_tree *tree, tvbuff_t *tvb, int offset, guint32 tag_len) { if (tag_len < 4) { proto_tree_add_string(tree, tag_interpretation, tvb, offset, tag_len, "Channel Switch Timing content length must be at " "least 4 bytes"); return; } proto_tree_add_item(tree, hf_ieee80211_tag_channel_switch_timing_switch_time, tvb, offset, 2, TRUE); offset += 2; proto_tree_add_item(tree, hf_ieee80211_tag_channel_switch_timing_switch_timeout, tvb, offset, 2, TRUE); } static void dissect_pti_control(proto_tree *tree, tvbuff_t *tvb, int offset, guint32 tag_len) { if (tag_len < 3) { proto_tree_add_string(tree, tag_interpretation, tvb, offset, tag_len, "PTI Control content length must be at least " "3 bytes"); return; } proto_tree_add_item(tree, hf_ieee80211_tag_pti_control_tid, tvb, offset, 1, FALSE); offset++; proto_tree_add_item(tree, hf_ieee80211_tag_pti_control_sequence_control, tvb, offset, 2, TRUE); } static void dissect_pu_buffer_status(proto_tree *tree, tvbuff_t *tvb, int offset, guint32 tag_len) { if (tag_len < 1) { proto_tree_add_string(tree, tag_interpretation, tvb, offset, tag_len, "PU Buffer Status content length must be at least " "1 byte"); return; } proto_tree_add_item(tree, hf_ieee80211_tag_pu_buffer_status_ac_bk, tvb, offset, 1, FALSE); proto_tree_add_item(tree, hf_ieee80211_tag_pu_buffer_status_ac_be, tvb, offset, 1, FALSE); proto_tree_add_item(tree, hf_ieee80211_tag_pu_buffer_status_ac_vi, tvb, offset, 1, FALSE); proto_tree_add_item(tree, hf_ieee80211_tag_pu_buffer_status_ac_vo, tvb, offset, 1, FALSE); } static void dissect_timeout_interval(proto_tree *tree, tvbuff_t *tvb, int offset, guint32 tag_len) { proto_item *pi; pi = proto_tree_add_item(tree, hf_ieee80211_tag_timeout_int_type, tvb, offset, 1, FALSE); if (tag_len < 5) { expert_add_info_format(g_pinfo, pi, PI_MALFORMED, PI_ERROR, "Timeout Interval content length must be at least " "5 bytes"); return; } proto_tree_add_item(tree, hf_ieee80211_tag_timeout_int_value, tvb, offset + 1, 4, TRUE); } static void dissect_mcs_set(proto_tree *tree, tvbuff_t *tvb, int offset, gboolean basic, gboolean vs) { proto_item *ti; proto_tree *mcs_tree, *bit_tree; guint16 capability; /* 16 byte Supported MCS set */ ti = proto_tree_add_string(tree, vs ? mcsset_vs : mcsset, tvb, offset, 16, basic ? "Basic MCS Set" : "MCS Set"); mcs_tree = proto_item_add_subtree(ti, ett_mcsset_tree); /* Rx MCS Bitmask */ ti = proto_tree_add_string(mcs_tree, tag_interpretation, tvb, offset, 10, "Rx Modulation and Coding Scheme (One bit per modulation)"); bit_tree = proto_item_add_subtree(ti, ett_mcsbit_tree); /* Bits 0 - 31 */ proto_tree_add_item(bit_tree, mcsset_rx_bitmask_0to7, tvb, offset, 4, TRUE); proto_tree_add_item(bit_tree, mcsset_rx_bitmask_8to15, tvb, offset, 4, TRUE); proto_tree_add_item(bit_tree, mcsset_rx_bitmask_16to23, tvb, offset, 4, TRUE); proto_tree_add_item(bit_tree, mcsset_rx_bitmask_24to31, tvb, offset, 4, TRUE); /* Bits 32 - 52 */ proto_tree_add_item(bit_tree, mcsset_rx_bitmask_32, tvb, offset + 4, 4, TRUE); proto_tree_add_item(bit_tree, mcsset_rx_bitmask_33to38, tvb, offset + 4, 4, TRUE); proto_tree_add_item(bit_tree, mcsset_rx_bitmask_39to52, tvb, offset + 4, 4, TRUE); /* Bits 53 - 76 */ proto_tree_add_item(bit_tree, mcsset_rx_bitmask_53to76, tvb, offset + 6, 4, TRUE); capability = tvb_get_letohs (tvb, offset+10); proto_tree_add_uint_format(mcs_tree, mcsset_highest_data_rate, tvb, offset + 10, 2, capability, "Highest Supported Data Rate: 0x%04X", capability); capability = tvb_get_letohs (tvb, offset+12); proto_tree_add_boolean(mcs_tree, mcsset_tx_mcs_set_defined, tvb, offset + 12, 1, capability); proto_tree_add_boolean(mcs_tree, mcsset_tx_rx_mcs_set_not_equal, tvb, offset + 12, 1, capability); proto_tree_add_uint(mcs_tree, mcsset_tx_max_spatial_streams, tvb, offset + 12, 1, capability); proto_tree_add_boolean(mcs_tree, mcsset_tx_unequal_modulation, tvb, offset + 12, 1, capability); } /* 802.11n D1.10 - HT Information IE */ static void dissect_ht_info_ie_1_1(proto_tree * tree, tvbuff_t * tvb, int offset, guint32 tag_len) { proto_item *cap_item; proto_tree *cap_tree; guint32 tag_val_init_off = 0; guint16 info = 0; tag_val_init_off = offset; cap_tree = tree; if (tag_len < 22) { proto_tree_add_string(tree, tag_interpretation, tvb, offset, tag_len, "HT Information IE content length must be at least 22 bytes"); return; } info = tvb_get_guint8 (tvb, offset); proto_tree_add_item(cap_tree, ht_info_primary_channel, tvb, offset, 1, TRUE); info = tvb_get_guint8 (tvb, ++offset); cap_item = proto_tree_add_uint_format(tree, ht_info_delimiter1, tvb, offset, 1, info, "HT Information Subset (1 of 3): 0x%02X", info); cap_tree = proto_item_add_subtree(cap_item, ett_ht_info_delimiter1_tree); proto_tree_add_uint(cap_tree, ht_info_secondary_channel_offset, tvb, offset, 1, info); proto_tree_add_boolean(cap_tree, ht_info_channel_width, tvb, offset, 1, info); proto_tree_add_boolean(cap_tree, ht_info_rifs_mode, tvb, offset, 1, info); proto_tree_add_boolean(cap_tree, ht_info_psmp_stas_only, tvb, offset, 1, info); proto_tree_add_uint(cap_tree, ht_info_service_interval_granularity, tvb, offset, 1, info); info = tvb_get_letohs (tvb, ++offset); cap_item = proto_tree_add_uint_format(tree, ht_info_delimiter2, tvb, offset, 2, info, "HT Information Subset (2 of 3): 0x%04X", info); cap_tree = proto_item_add_subtree(cap_item, ett_ht_info_delimiter2_tree); proto_tree_add_uint(cap_tree, ht_info_operating_mode, tvb, offset, 1, info); proto_tree_add_boolean(cap_tree, ht_info_non_greenfield_sta_present, tvb, offset, 1, info); proto_tree_add_boolean(cap_tree, ht_info_transmit_burst_limit, tvb, offset, 1, info); proto_tree_add_boolean(cap_tree, ht_info_obss_non_ht_stas_present, tvb, offset, 1, info); proto_tree_add_uint(cap_tree, ht_info_reserved_1, tvb, offset, 2, info); offset += 2; info = tvb_get_letohs (tvb, offset); cap_item = proto_tree_add_uint_format(tree, ht_info_delimiter3, tvb, offset, 2, info, "HT Information Subset (3 of 3): 0x%04X", info); cap_tree = proto_item_add_subtree(cap_item, ett_ht_info_delimiter3_tree); proto_tree_add_uint(cap_tree, ht_info_reserved_2, tvb, offset, 1, info); proto_tree_add_boolean(cap_tree, ht_info_dual_beacon, tvb, offset, 1, info); proto_tree_add_boolean(cap_tree, ht_info_dual_cts_protection, tvb, offset, 1, info); proto_tree_add_boolean(cap_tree, ht_info_secondary_beacon, tvb, offset+1, 1, info); proto_tree_add_boolean(cap_tree, ht_info_lsig_txop_protection_full_support, tvb, offset+1, 1, info); proto_tree_add_boolean(cap_tree, ht_info_pco_active, tvb, offset+1, 1, info); proto_tree_add_boolean(cap_tree, ht_info_pco_phase, tvb, offset+1, 1, info); proto_tree_add_uint(cap_tree, ht_info_reserved_3, tvb, offset+1, 1, info); offset += 2; cap_tree = tree; dissect_mcs_set(cap_tree, tvb, offset, TRUE, FALSE); offset += 16; if (tag_val_init_off - offset < tag_len){ proto_tree_add_string(cap_tree, tag_interpretation, tvb, offset, tag_len + tag_val_init_off - offset, "Unparsed Extra Data"); } } #ifndef MESH_OVERRIDES /*** WAVE Service information element Dissection - IEEE 802.11p Draft 4.0 ***/ static void dissect_wsie_ie(proto_tree * tree, tvbuff_t * tvb, int offset, guint32 tag_len _U_) { proto_item *pst_item, *cap_item, *chan_noc_item, *chnl_item; proto_tree *pst_tree, *cap_tree, *chan_noc_tree, *chnl_tree; guint8 providercount, pst_contents, pst_acm_length; int i; guint16 pst_length = 0; guint16 chan_noc; guint8 chan_length = 0; int local_offset; proto_tree_add_item(tree, hf_pst_timingquality, tvb, offset, 2, TRUE); offset+=2; providercount = tvb_get_guint8 (tvb, offset); pst_item = proto_tree_add_item(tree, hf_pst_providercount, tvb, offset, 1, TRUE); pst_tree = proto_item_add_subtree(pst_item,ett_pst_tree); offset++; for (i=0;i 0) { proto_tree_add_text (tree, tvb, offset, tag_len - (offset-tag_offset), "Unknown Data"); return; } } static void dissect_ht_capability_ie(proto_tree * tree, tvbuff_t * tvb, int offset, guint32 tag_len, gboolean vs) { proto_item *cap_item; proto_tree *cap_tree; guint16 capability; guint32 txbfcap; guint32 tag_val_off = 0; if (tag_val_off + 2 > tag_len) { proto_tree_add_string(tree, tag_interpretation, tvb, offset, tag_len, "Not interpreted"); return; } if (tag_len != 26) { proto_tree_add_string(tree, tag_interpretation, tvb, offset, tag_len, "HT Capabilities IE content length must be exactly 26 bytes"); return; } if (wlan_ignore_draft_ht && vs) return; /* 2 byte HT Capabilities Info*/ capability = tvb_get_letohs (tvb, offset); cap_item = proto_tree_add_item(tree, vs ? ht_vs_cap : ht_cap, tvb, offset, 2, TRUE); cap_tree = proto_item_add_subtree(cap_item, ett_ht_cap_tree); proto_tree_add_boolean(cap_tree, ht_ldpc_coding, tvb, offset, 1, capability); proto_tree_add_boolean(cap_tree, ht_chan_width, tvb, offset, 1, capability); proto_tree_add_uint(cap_tree, ht_sm_pwsave, tvb, offset, 1, capability); proto_tree_add_boolean(cap_tree, ht_green, tvb, offset, 1, capability); proto_tree_add_boolean(cap_tree, ht_short20, tvb, offset, 1, capability); proto_tree_add_boolean(cap_tree, ht_short40, tvb, offset, 1, capability); proto_tree_add_boolean(cap_tree, ht_tx_stbc, tvb, offset, 1, capability); proto_tree_add_uint(cap_tree, ht_rx_stbc, tvb, offset+1, 1, capability); proto_tree_add_boolean(cap_tree, ht_delayed_block_ack, tvb, offset+1, 1, capability); proto_tree_add_boolean(cap_tree, ht_max_amsdu, tvb, offset+1, 1, capability); proto_tree_add_boolean(cap_tree, ht_dss_cck_40, tvb, offset+1, 1, capability); proto_tree_add_boolean(cap_tree, ht_psmp, tvb, offset+1, 1, capability); proto_tree_add_boolean(cap_tree, ht_40_mhz_intolerant, tvb, offset+1, 1, capability); proto_tree_add_boolean(cap_tree, ht_l_sig, tvb, offset+1, 1, capability); offset += 2; tag_val_off += 2; /* 1 byte A-MPDU Parameters */ capability = tvb_get_guint8 (tvb, offset); cap_item = proto_tree_add_item(tree, vs ? ampduparam_vs : ampduparam, tvb, offset, 1, TRUE); cap_tree = proto_item_add_subtree(cap_item, ett_ampduparam_tree); proto_tree_add_uint_format(cap_tree, ampduparam_mpdu, tvb, offset, 1, capability, "%sMaximum Rx A-MPDU Length: %04.0f [Bytes]", decode_numeric_bitfield(capability, 0x03, 8, ""), pow(2,13+(capability & 0x3))-1); proto_tree_add_uint(cap_tree, ampduparam_mpdu_start_spacing, tvb, offset, 1, capability); proto_tree_add_uint(cap_tree, ampduparam_reserved, tvb, offset, 1, capability); offset += 1; tag_val_off += 1; /* 16 byte MCS set */ dissect_mcs_set(tree, tvb, offset, FALSE, vs); offset += 16; tag_val_off += 16; /* 2 byte HT Extended Capabilities */ capability = tvb_get_letohs (tvb, offset); cap_item = proto_tree_add_item(tree, vs ? htex_vs_cap : htex_cap, tvb, offset, 2, TRUE); cap_tree = proto_item_add_subtree(cap_item, ett_htex_cap_tree); proto_tree_add_boolean(cap_tree, htex_pco, tvb, offset, 1, capability); proto_tree_add_uint(cap_tree, htex_transtime, tvb, offset, 1, capability); proto_tree_add_uint(cap_tree, htex_mcs, tvb, offset+1, 1, capability); proto_tree_add_boolean(cap_tree, htex_htc_support, tvb, offset+1, 1, capability); proto_tree_add_boolean(cap_tree, htex_rd_responder, tvb, offset+1, 1, capability); offset += 2; tag_val_off += 2; /* 4 byte TxBF capabilities */ txbfcap = tvb_get_letohl (tvb, offset); cap_item = proto_tree_add_item(tree, vs ? txbf_vs : txbf, tvb, offset, 4, TRUE); cap_tree = proto_item_add_subtree(cap_item, ett_txbf_tree); proto_tree_add_boolean(cap_tree, txbf_cap, tvb, offset, 1, txbfcap); proto_tree_add_boolean(cap_tree, txbf_rcv_ssc, tvb, offset, 1, txbfcap); proto_tree_add_boolean(cap_tree, txbf_tx_ssc, tvb, offset, 1, txbfcap); proto_tree_add_boolean(cap_tree, txbf_rcv_ndp, tvb, offset, 1, txbfcap); proto_tree_add_boolean(cap_tree, txbf_tx_ndp, tvb, offset, 1, txbfcap); proto_tree_add_boolean(cap_tree, txbf_impl_txbf, tvb, offset, 1, txbfcap); proto_tree_add_uint(cap_tree, txbf_calib, tvb, offset, 1, txbfcap); proto_tree_add_boolean(cap_tree, txbf_expl_csi, tvb, offset+1, 1, txbfcap); proto_tree_add_boolean(cap_tree, txbf_expl_uncomp_fm, tvb, offset+1, 1, txbfcap); proto_tree_add_boolean(cap_tree, txbf_expl_comp_fm, tvb, offset+1, 1, txbfcap); proto_tree_add_uint(cap_tree, txbf_expl_bf_csi, tvb, offset+1, 1, txbfcap); proto_tree_add_uint(cap_tree, txbf_expl_uncomp_fm_feed, tvb, offset+1, 1, txbfcap); proto_tree_add_uint(cap_tree, txbf_expl_comp_fm_feed, tvb, offset+1, 2, txbfcap); proto_tree_add_uint(cap_tree, txbf_min_group, tvb, offset+2, 1, txbfcap); proto_tree_add_uint(cap_tree, txbf_csi_num_bf_ant, tvb, offset+2, 1, txbfcap); proto_tree_add_uint(cap_tree, txbf_uncomp_sm_bf_ant, tvb, offset+2, 1, txbfcap); proto_tree_add_uint(cap_tree, txbf_comp_sm_bf_ant, tvb, offset+2, 2, txbfcap); proto_tree_add_uint(cap_tree, txbf_csi_max_rows_bf, tvb, offset+3, 1, txbfcap); proto_tree_add_uint(cap_tree, txbf_chan_est, tvb, offset+3, 1, txbfcap); proto_tree_add_uint(cap_tree, txbf_resrv, tvb, offset+3, 1, txbfcap); offset += 4; tag_val_off += 4; /* 1 byte Antenna Selection (ASEL) capabilities */ capability = tvb_get_guint8 (tvb, offset); cap_item = proto_tree_add_item(tree, vs ? antsel_vs : antsel, tvb, offset, 1, TRUE); cap_tree = proto_item_add_subtree(cap_item, ett_antsel_tree); proto_tree_add_boolean(cap_tree, antsel_b0, tvb, offset, 1, capability); proto_tree_add_boolean(cap_tree, antsel_b1, tvb, offset, 1, capability); proto_tree_add_boolean(cap_tree, antsel_b2, tvb, offset, 1, capability); proto_tree_add_boolean(cap_tree, antsel_b3, tvb, offset, 1, capability); proto_tree_add_boolean(cap_tree, antsel_b4, tvb, offset, 1, capability); proto_tree_add_boolean(cap_tree, antsel_b5, tvb, offset, 1, capability); proto_tree_add_boolean(cap_tree, antsel_b6, tvb, offset, 1, capability); proto_tree_add_uint(cap_tree, antsel_b7, tvb, offset, 1, capability); offset += 1; tag_val_off += 1; if (tag_val_off < tag_len) proto_tree_add_string(tree, tag_interpretation, tvb, offset, tag_len - tag_val_off, "Not interpreted"); } static void dissect_ht_info_ie_1_0(proto_tree * tree, tvbuff_t * tvb, int offset, guint32 tag_len) { proto_item *cap_item; proto_tree *cap_tree; guint16 capability; guint32 tag_val_off = 0; gchar out_buff[SHORT_STR]; if (tag_val_off + 2 > tag_len) { proto_tree_add_string(tree, tag_interpretation, tvb, offset, tag_len, "Not interpreted"); return; } if (tag_len < 22) { proto_tree_add_string(tree, tag_interpretation, tvb, offset, tag_len, "HT Additional Capabilities IE content length must be 22"); return; } if (wlan_ignore_draft_ht) return; g_snprintf(out_buff, SHORT_STR, "Control Channel %d", tvb_get_guint8(tvb, offset)); proto_tree_add_string(tree, tag_interpretation, tvb, offset, 1, out_buff); offset += 1; tag_val_off += 1; /* 1 byte HT additional capabilities */ capability = tvb_get_guint8 (tvb, offset); cap_item = proto_tree_add_uint_format(tree, hta_cap, tvb, offset, 1, capability, "HT Additional Capabilities: 0x%04X", capability); cap_tree = proto_item_add_subtree(cap_item, ett_hta_cap_tree); proto_tree_add_uint(cap_tree, hta_ext_chan_offset, tvb, offset, 1, capability); proto_tree_add_boolean(cap_tree, hta_rec_tx_width, tvb, offset, 1, capability); proto_tree_add_boolean(cap_tree, hta_rifs_mode, tvb, offset, 1, capability); proto_tree_add_boolean(cap_tree, hta_controlled_access, tvb, offset, 1, capability); proto_tree_add_uint(cap_tree, hta_service_interval, tvb, offset, 1, capability); offset += 1; tag_val_off += 1; /* 2 byte HT additional capabilities */ capability = tvb_get_letohs (tvb, offset); cap_item = proto_tree_add_uint_format(tree, hta_cap, tvb, offset, 2, capability, "HT Additional Capabilities: 0x%04X", capability); cap_tree = proto_item_add_subtree(cap_item, ett_hta_cap1_tree); proto_tree_add_uint(cap_tree, hta_operating_mode, tvb, offset, 2, capability); proto_tree_add_boolean(cap_tree, hta_non_gf_devices, tvb, offset, 2, capability); offset += 2; tag_val_off += 2; /* 2 byte HT additional capabilities */ capability = tvb_get_letohs (tvb, offset); cap_item = proto_tree_add_uint_format(tree, hta_cap, tvb, offset, 2, capability, "HT Additional Capabilities: 0x%04X", capability); cap_tree = proto_item_add_subtree(cap_item, ett_hta_cap2_tree); proto_tree_add_uint(cap_tree, hta_basic_stbc_mcs, tvb, offset, 2, capability); proto_tree_add_boolean(cap_tree, hta_dual_stbc_protection, tvb, offset, 2, capability); proto_tree_add_boolean(cap_tree, hta_secondary_beacon, tvb, offset, 2, capability); proto_tree_add_boolean(cap_tree, hta_lsig_txop_protection, tvb, offset, 2, capability); proto_tree_add_boolean(cap_tree, hta_pco_active, tvb, offset, 2, capability); proto_tree_add_boolean(cap_tree, hta_pco_phase, tvb, offset, 2, capability); offset += 2; tag_val_off += 2; /* 16 byte Supported MCS set */ dissect_mcs_set(tree, tvb, offset, FALSE, TRUE); offset += 16; tag_val_off += 16; if (tag_val_off < tag_len) proto_tree_add_string(tree, tag_interpretation, tvb, offset, tag_len - tag_val_off, "Not interpreted"); } /* 802.11n-D1.10 and 802.11n-D2.0, 7.1.3.5a */ /* * 7.1.3.1.10 says: * "The Order field is 1 bit in length and is set to 1 in any non-QoS Data * frame that contains an MSDU, or fragment thereof, which is being * transferred using the StrictlyOrdered service class. The presence of the * HT Control field in frames is indicated by setting the Order field to 1 * in any Data type or Management type frame that is transmitted with a * value of HT_GF or HT_MM for the FORMAT parameter of the TXVECTOR except * a non-QoS Data frame or a Control Wrapper frame. The Order field is set * to 0 in all other frames. All non-HT QoS STAs set the Order field to 0." * * ...so does this mean that we can check for the presence of +HTC by * looking for QoS frames with the Order bit set, or do we need extra * information from the PHY (which would be monumentally silly)? * * At any rate, it doesn't look like any equipment we have produces * +HTC frames, so the code is completely untested. */ static void dissect_ht_control(proto_tree *tree, tvbuff_t * tvb, int offset) { proto_item *ti; proto_tree *htc_tree, *lac_subtree; guint16 htc; htc = tvb_get_letohs(tvb, offset); ti = proto_tree_add_item(tree, hf_htc, tvb, offset, 4, TRUE); htc_tree = proto_item_add_subtree(ti, ett_htc_tree); /* Start: Link Adaptation Control */ ti = proto_tree_add_item(htc_tree, hf_htc_lac, tvb, offset, 2, TRUE); lac_subtree = proto_item_add_subtree(ti, ett_htc_tree); proto_tree_add_item(lac_subtree, hf_htc_lac_reserved, tvb, offset, 1, htc); proto_tree_add_item(lac_subtree, hf_htc_lac_trq, tvb, offset, 1, TRUE); if (HTC_IS_ASELI(htc)) { proto_tree_add_uint(lac_subtree, hf_htc_lac_mai_aseli, tvb, offset, 1, htc); } else { proto_tree_add_item(lac_subtree, hf_htc_lac_mai_mrq, tvb, offset, 1, TRUE); if (HTC_LAC_MAI_MRQ(htc)){ proto_tree_add_uint(lac_subtree, hf_htc_lac_mai_msi, tvb, offset, 1, htc); } else { proto_tree_add_uint(lac_subtree, hf_htc_lac_mai_reserved, tvb, offset, 1, htc); } } proto_tree_add_uint(lac_subtree, hf_htc_lac_mfsi, tvb, offset, 2, htc); offset++; if (HTC_IS_ASELI(htc)) { proto_tree_add_uint(lac_subtree, hf_htc_lac_asel_command, tvb, offset, 1, htc); proto_tree_add_uint(lac_subtree, hf_htc_lac_asel_data, tvb, offset, 1, htc); } else { proto_tree_add_uint(lac_subtree, hf_htc_lac_mfb, tvb, offset, 1, htc); } /* End: Link Adaptation Control */ offset++; htc = tvb_get_letohs(tvb, offset); proto_tree_add_uint(htc_tree, hf_htc_cal_pos, tvb, offset, 1, htc); proto_tree_add_uint(htc_tree, hf_htc_cal_seq, tvb, offset, 1, htc); proto_tree_add_uint(htc_tree, hf_htc_reserved1, tvb, offset, 1, htc); proto_tree_add_uint(htc_tree, hf_htc_csi_steering, tvb, offset, 1, htc); offset++; proto_tree_add_boolean(htc_tree, hf_htc_ndp_announcement, tvb, offset, 1, htc); proto_tree_add_uint(htc_tree, hf_htc_reserved2, tvb, offset, 1, htc); proto_tree_add_boolean(htc_tree, hf_htc_ac_constraint, tvb, offset, 1, htc); proto_tree_add_boolean(htc_tree, hf_htc_rdg_more_ppdu, tvb, offset, 1, htc); } static void dissect_frame_control(proto_tree * tree, tvbuff_t * tvb, gboolean wlan_broken_fc, guint32 offset) { guint16 fcf, flags, frame_type_subtype; proto_tree *fc_tree, *flag_tree; proto_item *fc_item, *flag_item, *hidden_item; fcf = FETCH_FCF(offset); flags = FCF_FLAGS(fcf); frame_type_subtype = COMPOSE_FRAME_TYPE(fcf); proto_tree_add_uint (tree, hf_fc_frame_type_subtype, tvb, wlan_broken_fc?offset+1:offset, 1, frame_type_subtype); fc_item = proto_tree_add_uint_format (tree, hf_fc_field, tvb, offset, 2, fcf, "Frame Control: 0x%04X (%s)", fcf, wlan_broken_fc?"Swapped":"Normal"); fc_tree = proto_item_add_subtree (fc_item, ett_fc_tree); proto_tree_add_uint (fc_tree, hf_fc_proto_version, tvb, wlan_broken_fc?offset+1:offset, 1, FCF_PROT_VERSION (fcf)); proto_tree_add_uint (fc_tree, hf_fc_frame_type, tvb, wlan_broken_fc?offset+1:offset, 1, FCF_FRAME_TYPE (fcf)); proto_tree_add_uint (fc_tree, hf_fc_frame_subtype, tvb, wlan_broken_fc?offset+1:offset, 1, FCF_FRAME_SUBTYPE (fcf)); flag_item = proto_tree_add_uint_format (fc_tree, hf_fc_flags, tvb, wlan_broken_fc?offset:offset+1, 1, flags, "Flags: 0x%X", flags); flag_tree = proto_item_add_subtree (flag_item, ett_proto_flags); proto_tree_add_uint (flag_tree, hf_fc_data_ds, tvb, wlan_broken_fc?offset:offset+1, 1, FLAGS_DS_STATUS (flags)); hidden_item = proto_tree_add_boolean (flag_tree, hf_fc_to_ds, tvb, offset+1, 1, flags); PROTO_ITEM_SET_HIDDEN(hidden_item); hidden_item = proto_tree_add_boolean (flag_tree, hf_fc_from_ds, tvb, offset+1, 1, flags); PROTO_ITEM_SET_HIDDEN(hidden_item); proto_tree_add_boolean (flag_tree, hf_fc_more_frag, tvb, wlan_broken_fc?offset:offset+1, 1, flags); proto_tree_add_boolean (flag_tree, hf_fc_retry, tvb, wlan_broken_fc?offset:offset+1, 1, flags); proto_tree_add_boolean (flag_tree, hf_fc_pwr_mgt, tvb, wlan_broken_fc?offset:offset+1, 1, flags); proto_tree_add_boolean (flag_tree, hf_fc_more_data, tvb, wlan_broken_fc?offset:offset+1, 1, flags); proto_tree_add_boolean (flag_tree, hf_fc_protected, tvb, wlan_broken_fc?offset:offset+1, 1, flags); proto_tree_add_boolean (flag_tree, hf_fc_order, tvb, wlan_broken_fc?offset:offset+1, 1, flags); } static void dissect_vendor_ie_ht(proto_item * item, proto_tree * tree, tvbuff_t * tag_tvb) { gint tag_len = tvb_length(tag_tvb); proto_tree_add_string(tree, tag_interpretation, tag_tvb, 0, 3, "802.11n (Pre) OUI"); /* 802.11n OUI Information Element */ if (4 <= tag_len && !tvb_memeql(tag_tvb, 0, PRE_11N_OUI"\x33", 4)) { proto_tree_add_string(tree, tag_interpretation, tag_tvb, 3, 1,"802.11n (Pre) HT information" ); dissect_ht_capability_ie(tree, tag_tvb, 4, tag_len - 4, TRUE); proto_item_append_text(item, ": HT Capabilities (802.11n D1.10)"); } else { if (4 <= tag_len && !tvb_memeql(tag_tvb, 0, PRE_11N_OUI"\x34", 4)) { proto_tree_add_string(tree, tag_interpretation, tag_tvb, 3, 1, "HT additional information (802.11n D1.00)"); dissect_ht_info_ie_1_0(tree, tag_tvb, 4, tag_len - 4); proto_item_append_text(item, ": HT Additional Capabilities (802.11n D1.00)"); } else { proto_tree_add_string(tree, tag_interpretation, tag_tvb, 3, 1, "Unknown type"); proto_item_append_text(item, ": 802.11n (pre) Unknown type"); proto_tree_add_string(tree, tag_interpretation, tag_tvb, 4, tag_len - 4, "Not interpreted"); } } } /* ************************************************************************* */ /* Dissect and add tagged (optional) fields to proto tree */ /* ************************************************************************* */ static const value_string environment_vals[] = { { 0x20, "Any" }, { 0x4f, "Outdoor" }, { 0x49, "Indoor" }, { 0, NULL } }; static int beacon_padding = 0; /* beacon padding bug */ static int add_tagged_field (packet_info * pinfo, proto_tree * tree, tvbuff_t * tvb, int offset) { guint32 oui; tvbuff_t *tag_tvb; const guint8 *tag_data_ptr; guint32 tag_no, tag_len; unsigned int ii; int n, ret; char out_buff[SHORT_STR]; char print_buff[SHORT_STR]; proto_tree * orig_tree=tree; proto_item *ti = NULL, *en; guint8 tag_len_len; /* The length of the length parameter in bytes*/ tag_no = tvb_get_guint8(tvb, offset); #ifndef MESH_OVERRIDES if(tag_no == TAG_WSIE){ tag_len_len = 2; tag_len = tvb_get_letohl(tvb, offset + 1); } else #endif /* MESH_OVERRIDES */ { tag_len_len = 1; tag_len = tvb_get_guint8(tvb, offset + 1); } if (tree) { ti=proto_tree_add_text(orig_tree,tvb,offset,tag_len+1+tag_len_len,"%s", val_to_str(tag_no, tag_num_vals, (tag_no >= 17 && tag_no <= 31) ? "Reserved for challenge text" : "Reserved tag number" )); tree=proto_item_add_subtree(ti,ett_80211_mgt_ie); proto_tree_add_uint_format (tree, tag_number, tvb, offset, 1, tag_no, "Tag Number: %u (%s)", tag_no, val_to_str(tag_no, tag_num_vals, (tag_no >= 17 && tag_no <= 31) ? "Reserved for challenge text" : "Reserved tag number")); } proto_tree_add_uint (tree, (tag_no==TAG_TIM ? tim_length : tag_length), tvb, offset + 1, tag_len_len, tag_len); switch (tag_no) { case TAG_SSID: if(beacon_padding == 0) /* padding bug */ { guint8 *ssid; /* The SSID may consist of arbitrary bytes */ ssid = tvb_get_ephemeral_string(tvb, offset + 2, tag_len); #ifdef HAVE_AIRPDCAP AirPDcapSetLastSSID(&airpdcap_ctx, (CHAR *) ssid, tag_len); #endif ti = proto_tree_add_string (tree, tag_interpretation, tvb, offset + 2, tag_len, (char *) ssid); if (check_col (pinfo->cinfo, COL_INFO)) { if (tag_len > 0) { col_append_fstr(pinfo->cinfo, COL_INFO, ", SSID=\"%s\"", format_text(ssid, tag_len)); } else { col_append_str(pinfo->cinfo, COL_INFO, ", SSID=Broadcast"); } } if (tag_len > MAX_SSID_LEN) { expert_add_info_format(pinfo, ti, PI_MALFORMED, PI_ERROR, "SSID length (%u) greater than maximum (%u)", tag_len, MAX_SSID_LEN); } if (tag_len > 0) { proto_item_append_text(ti, ": \"%s\"", format_text(ssid, tag_len)); memcpy(wlan_stats.ssid, ssid, MIN(tag_len, MAX_SSID_LEN)); wlan_stats.ssid_len = tag_len; } else { proto_item_append_text(ti, ": Broadcast"); } en = proto_tree_add_string_format (tree, hf_ieee80211_tagged_ssid, tvb, offset + 2, tag_len, format_text(ssid, tag_len), "SSID: %s", format_text(ssid, tag_len)); PROTO_ITEM_SET_HIDDEN (en); beacon_padding++; /* padding bug */ } break; case TAG_SUPP_RATES: case TAG_EXT_SUPP_RATES: if (tag_len < 1) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Tag length %u too short, must be greater than 0", tag_len); break; } tag_data_ptr = tvb_get_ptr (tvb, offset + 2, tag_len); for (ii = 0, n = 0; ii < tag_len && n < SHORT_STR; ii++) { if (tag_data_ptr[ii] == 0xFF){ proto_tree_add_string (tree, tag_interpretation, tvb, offset + 2 + ii, 1, "BSS requires support for mandatory features of HT PHY (IEEE 802.11 - Clause 20)"); } else { ret = g_snprintf (print_buff + n, SHORT_STR - n, "%2.1f%s ", (tag_data_ptr[ii] & 0x7F) * 0.5, (tag_data_ptr[ii] & 0x80) ? "(B)" : ""); if (ret >= SHORT_STR - n) { /* ret = or greater. means buffer truncated */ break; } n += ret; } } g_snprintf (out_buff, SHORT_STR, "Supported rates: %s [Mbit/sec]", print_buff); proto_tree_add_string (tree, tag_interpretation, tvb, offset + 2, tag_len, out_buff); proto_item_append_text(ti, ": %s", print_buff); break; case TAG_FH_PARAMETER: if (tag_len < 5) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Tag length %u too short, must be >= 5", tag_len); break; } g_snprintf (out_buff, SHORT_STR, "Dwell time 0x%04X, Hop Set %2d, Hop Pattern %2d, Hop Index %2d", tvb_get_letohs(tvb, offset + 2), tvb_get_guint8(tvb, offset + 4), tvb_get_guint8(tvb, offset + 5), tvb_get_guint8(tvb, offset + 6)); proto_tree_add_string (tree, tag_interpretation, tvb, offset + 2, tag_len, out_buff); break; case TAG_DS_PARAMETER: /* The length of the dot11CurrentChannelNumber parameter is 1 octet */ if (tag_len != 1) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Tag length %u wrong, must be = 1", tag_len); break; } g_snprintf (out_buff, SHORT_STR, "Current Channel: %u", tvb_get_guint8(tvb, offset + 2)); proto_tree_add_string (tree, tag_interpretation, tvb, offset + 2, tag_len, out_buff); proto_item_append_text(ti, ": %s", out_buff); wlan_stats.channel = tvb_get_guint8(tvb, offset + 2); proto_tree_add_item(tree, hf_ieee80211_tag_ds_param_channel, tvb, offset + 2, 1, FALSE); break; case TAG_CF_PARAMETER: if (tag_len < 6) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Tag length %u too short, must be >= 6", tag_len); break; } g_snprintf (out_buff, SHORT_STR, "CFP count: %u", tvb_get_guint8(tvb, offset + 2)); proto_tree_add_string_format(tree, tag_interpretation, tvb, offset + 2, 1, out_buff, "%s", out_buff); g_snprintf (out_buff, SHORT_STR, "CFP period: %u", tvb_get_guint8(tvb, offset + 3)); proto_tree_add_string_format(tree, tag_interpretation, tvb, offset + 3, 1, out_buff, "%s", out_buff); g_snprintf (out_buff, SHORT_STR, "CFP max duration: %u", tvb_get_letohs(tvb, offset + 4)); proto_tree_add_string_format(tree, tag_interpretation, tvb, offset + 4, 2, out_buff, "%s", out_buff); g_snprintf (out_buff, SHORT_STR, "CFP Remaining: %u", tvb_get_letohs(tvb, offset + 6)); proto_tree_add_string_format(tree, tag_interpretation, tvb, offset + 6, 2, out_buff, "%s", out_buff); proto_item_append_text(ti, ": CFP count %u, CFP period %u, CFP max duration %u, " "CFP Remaining %u", tvb_get_guint8(tvb, offset + 2), tvb_get_guint8(tvb, offset + 3), tvb_get_letohs(tvb, offset + 4), tvb_get_letohs(tvb, offset + 6)); break; case TAG_TIM: if (tag_len < 4) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Tag length %u too short, must be >= 4", tag_len); break; } { guint8 bmapctl; guint8 bmapoff; guint8 bmaplen; const guint8* bmap; proto_tree_add_item(tree, tim_dtim_count, tvb, offset + 2, 1, TRUE); proto_tree_add_item(tree, tim_dtim_period, tvb, offset + 3, 1, TRUE); proto_item_append_text(ti, ": DTIM %u of %u bitmap", tvb_get_guint8(tvb, offset + 2), tvb_get_guint8(tvb, offset + 3)); bmapctl = tvb_get_guint8(tvb, offset + 4); bmapoff = bmapctl>>1; proto_tree_add_uint_format(tree, tim_bmapctl, tvb, offset + 4, 1, bmapctl, "Bitmap Control: 0x%02X (mcast:%u, bitmap offset %u)", bmapctl, bmapctl&1, bmapoff); bmaplen = tag_len - 3; bmap = tvb_get_ptr(tvb, offset + 5, bmaplen); if (bmaplen==1 && 0==bmap[0] && !(bmapctl&1)) { proto_item_append_text(ti, " empty"); } else { if (bmapctl&1) { proto_item_append_text(ti, " mcast"); } } if (bmaplen>1 || bmap[0]) { int len=g_snprintf (out_buff, SHORT_STR, "Bitmap: traffic for AID's:"); int i=0; for (i=0;i=SHORT_STR) { break; } } } proto_tree_add_string_format (tree, tag_interpretation, tvb, offset + 5, bmaplen, out_buff, "%s", out_buff); } } break; case TAG_IBSS_PARAMETER: if (tag_len < 2) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Tag length %u too short, must be >= 2", tag_len); break; } g_snprintf (out_buff, SHORT_STR, "ATIM window 0x%X", tvb_get_letohs(tvb, offset + 2)); proto_tree_add_string (tree, tag_interpretation, tvb, offset + 2, tag_len, out_buff); proto_item_append_text(ti, ": %s", out_buff); break; case TAG_COUNTRY_INFO: /* IEEE 802.11d-2001 and IEEE 802.11j-2004 */ { guint8 ccode[2+1]; if (tag_len < 3) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Tag length %u too short, must be >= 3", tag_len); break; } tvb_memcpy(tvb, ccode, offset + 2, 2); ccode[2] = '\0'; g_snprintf (out_buff, SHORT_STR, "Country Code: %s, %s Environment", format_text(ccode, 2), val_to_str(tvb_get_guint8(tvb, offset + 4), environment_vals,"Unknown (0x%02x)")); proto_item_append_text(ti, ": %s", out_buff); proto_tree_add_string (tree, tag_interpretation, tvb, offset + 2,3, out_buff); for (ii = 3; (ii + 3) <= tag_len; ii += 3) { guint8 val1, val2, val3; val1 = tvb_get_guint8(tvb, offset + 2 + ii); val2 = tvb_get_guint8(tvb, offset + 3 + ii); val3 = tvb_get_guint8(tvb, offset + 4 + ii); if (val1 <= 200) { /* 802.11d */ proto_tree_add_string_format(tree, tag_interpretation, tvb, offset + 2+ii,3, out_buff, " Start Channel: %u, Channels: %u, Max TX Power: %d dBm", val1, val2, (gint) val3); } else { /* 802.11j */ proto_tree_add_string_format(tree, tag_interpretation, tvb, offset + 2+ii,3, out_buff, " Reg Extension Id: %u, Regulatory Class: %u, Coverage Class: %u", val1, val2, val3); } } } break; case TAG_QBSS_LOAD: if (tag_len < 4 || tag_len >5) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Wrong QBSS Tag Length %u", tag_len); break; } if (tag_len == 4) { /* QBSS Version 1 */ proto_tree_add_string (tree, tag_interpretation, tvb, offset + 1, tag_len, "Cisco QBSS Version 1 - non CCA"); /* Extract Values */ proto_tree_add_uint (tree, hf_qbss_version, tvb, offset + 2, tag_len, 1); proto_tree_add_item (tree, hf_qbss_scount, tvb, offset + 2, 2, TRUE); proto_tree_add_item (tree, hf_qbss_cu, tvb, offset + 4, 1, FALSE); proto_tree_add_item (tree, hf_qbss_adc, tvb, offset + 5, 1, FALSE); } else if (tag_len == 5) { /* QBSS Version 2 */ proto_tree_add_string (tree, tag_interpretation, tvb, offset + 2, tag_len, "802.11e CCA Version"); /* Extract Values */ proto_tree_add_uint (tree, hf_qbss_version, tvb, offset + 2, tag_len, 2); proto_tree_add_item (tree, hf_qbss_scount, tvb, offset + 2, 2, TRUE); proto_tree_add_item (tree, hf_qbss_cu, tvb, offset + 4, 1, FALSE); proto_tree_add_item (tree, hf_qbss_adc, tvb, offset + 5, 2, TRUE); } break; case TAG_FH_HOPPING_PARAMETER: if (tag_len < 2) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Tag length %u too short, must be >= 2", tag_len); break; } g_snprintf (out_buff, SHORT_STR, "Prime Radix: %u, Number of Channels: %u", tvb_get_guint8(tvb, offset + 2), tvb_get_guint8(tvb, offset + 3)); proto_tree_add_string (tree, tag_interpretation, tvb, offset + 2, tag_len, out_buff); proto_item_append_text(ti, ": %s", out_buff); break; case TAG_TSPEC: if (tag_len != 55) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "TSPEC tag length %u != 55", tag_len); break; } add_fixed_field(tree, tvb, offset + 2, FIELD_QOS_TS_INFO); proto_tree_add_item(tree, tspec_nor_msdu, tvb, offset + 5, 2, TRUE); proto_tree_add_item(tree, tspec_max_msdu, tvb, offset + 7, 2, TRUE); proto_tree_add_item(tree, tspec_min_srv, tvb, offset + 9, 4, TRUE); proto_tree_add_item(tree, tspec_max_srv, tvb, offset + 13, 4, TRUE); proto_tree_add_item(tree, tspec_inact_int, tvb, offset + 17, 4, TRUE); proto_tree_add_item(tree, tspec_susp_int, tvb, offset + 21, 4, TRUE); proto_tree_add_item(tree, tspec_srv_start, tvb, offset + 25, 4, TRUE); proto_tree_add_item(tree, tspec_min_data, tvb, offset + 29, 4, TRUE); proto_tree_add_item(tree, tspec_mean_data, tvb, offset + 33, 4, TRUE); proto_tree_add_item(tree, tspec_peak_data, tvb, offset + 37, 4, TRUE); proto_tree_add_item(tree, tspec_burst_size, tvb, offset + 41, 4, TRUE); proto_tree_add_item(tree, tspec_delay_bound, tvb, offset + 45, 4, TRUE); proto_tree_add_item(tree, tspec_min_phy, tvb, offset + 49, 4, TRUE); proto_tree_add_item(tree, tspec_surplus, tvb, offset + 53, 2, TRUE); proto_tree_add_item(tree, tspec_medium, tvb, offset + 55, 2, TRUE); break; case TAG_TS_DELAY: if (tag_len != 4) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "TS_DELAY tag length %u != 4", tag_len); break; } proto_tree_add_item(tree, ts_delay, tvb, offset + 2, 4, TRUE); break; case TAG_TCLAS: if (tag_len < 6) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "TCLAS element is too small %u", tag_len); break; } { guint8 type; guint8 version; type = tvb_get_guint8(tvb, offset + 2); proto_tree_add_item(tree, hf_tsinfo_up, tvb, offset + 2, 1, TRUE); proto_tree_add_item(tree, hf_class_type, tvb, offset + 3, 1, TRUE); proto_tree_add_item(tree, hf_class_mask, tvb, offset + 4, 1, TRUE); switch (type) { case 0: proto_tree_add_item(tree, hf_ieee80211_ff_src_mac_addr, tvb, offset + 5, 6, TRUE); proto_tree_add_item(tree, hf_ieee80211_ff_dst_mac_addr, tvb, offset + 11, 6, TRUE); proto_tree_add_item(tree, hf_ether_type, tvb, offset + 17, 2, TRUE); break; case 1: version = tvb_get_guint8(tvb, offset + 5); proto_tree_add_item(tree, cf_version, tvb, offset + 5, 1, TRUE); if (version == 4) { proto_tree_add_item(tree, cf_ipv4_src, tvb, offset + 6, 4, FALSE); proto_tree_add_item(tree, cf_ipv4_dst, tvb, offset + 10, 4, FALSE); proto_tree_add_item(tree, cf_src_port, tvb, offset + 14, 2, FALSE); proto_tree_add_item(tree, cf_dst_port, tvb, offset + 16, 2, FALSE); proto_tree_add_item(tree, cf_dscp, tvb, offset + 18, 1, FALSE); proto_tree_add_item(tree, cf_protocol, tvb, offset + 19, 1, FALSE); } else if (version == 6) { proto_tree_add_item(tree, cf_ipv6_src, tvb, offset + 6, 16, FALSE); proto_tree_add_item(tree, cf_ipv6_dst, tvb, offset + 22, 16, FALSE); proto_tree_add_item(tree, cf_src_port, tvb, offset + 38, 2, FALSE); proto_tree_add_item(tree, cf_dst_port, tvb, offset + 40, 2, FALSE); proto_tree_add_item(tree, cf_flow, tvb, offset + 42, 3, FALSE); } break; case 2: proto_tree_add_item(tree, cf_tag_type, tvb, offset + 5, 2, TRUE); break; default: break; } } break; case TAG_TCLAS_PROCESS: if (tag_len != 1) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "TCLAS_PROCESS element length %u != 1", tag_len); break; } proto_tree_add_item(tree, hf_tclas_process, tvb, offset + 2, 1, TRUE); break; case TAG_SCHEDULE: if (tag_len != 14) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "TCLAS_PROCESS element length %u != 14", tag_len); break; } add_fixed_field(tree, tvb, offset + 2, FIELD_SCHEDULE_INFO); proto_tree_add_item(tree, hf_sched_srv_start, tvb, offset + 4, 4, TRUE); proto_tree_add_item(tree, hf_sched_srv_int, tvb, offset + 8, 4, TRUE); proto_tree_add_item(tree, hf_sched_spec_int, tvb, offset + 12, 2, TRUE); break; case TAG_CHALLENGE_TEXT: g_snprintf (out_buff, SHORT_STR, "Challenge text: %s", tvb_bytes_to_str(tvb, offset + 2, tag_len)); proto_tree_add_string (tree, tag_interpretation, tvb, offset + 2, tag_len, out_buff); break; case TAG_ERP_INFO: case TAG_ERP_INFO_OLD: { guint8 erp_info; if (tag_len < 1) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Tag length %u too short, must be >= 1", tag_len); break; } erp_info = tvb_get_guint8 (tvb, offset + 2); g_snprintf (print_buff, SHORT_STR, "%sNon-ERP STAs, %suse protection, %s preambles", erp_info & 0x01 ? "" : "no ", erp_info & 0x02 ? "" : "do not ", /* 802.11g, 7.3.2.13: 1 means "one or more ... STAs * are not short preamble capable" */ erp_info & 0x04 ? "long": "short or long"); g_snprintf (out_buff, SHORT_STR, "ERP info: 0x%x (%s)",erp_info,print_buff); proto_tree_add_string (tree, tag_interpretation, tvb, offset + 2, tag_len, out_buff); proto_item_append_text(ti, ": %s", print_buff); } break; case TAG_CISCO_CCX1_CKIP: /* From WCS manual: * If Aironet IE support is enabled, the access point sends an Aironet * IE 0x85 (which contains the access point name, load, number of * associated clients, and so on) in the beacon and probe responses of * this WLAN, and the controller sends Aironet IEs 0x85 and 0x95 * (which contains the management IP address of the controller and * the IP address of the access point) in the reassociation response * if it receives Aironet IE 0x85 in the reassociation request. */ /* The Name of the sending device starts at offset 10 and is up to 15 or 16 bytes in length, \0 padded */ if (tag_len < 26) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Tag length %u too short, must be >= 26", tag_len); break; } /* A cisco AP transmits the first 15 bytes of the AP name, probably followed by '\0' for ASCII termination */ g_snprintf (out_buff, SHORT_STR, "%.16s", tvb_format_stringzpad(tvb, offset + 12, 16)); proto_tree_add_string_format (tree, tag_interpretation, tvb, offset + 2, tag_len, "", "Tag interpretation: Unknown + Name: %s #Clients: %u", out_buff, /* Total number off associated clients and repeater access points */ tvb_get_guint8(tvb, offset + 28)); if (check_col (pinfo->cinfo, COL_INFO)) { col_append_fstr(pinfo->cinfo, COL_INFO, ", Name=\"%s\"", out_buff); } break; /* Std 802.11-2007 * 7.3.2.26 Vendor Specific information element * The * information element is in the format shown in Figure 7-75 and requires that the first 3 octets of the * information field contain the OUI of the entity that has defined the content of the particular Vendor Specific * information element. The length of the information field (n) is 3 >= n =< 255. The OUI field shall be a public * OUI assigned by the IEEE. It is 3 octets in length. The length of the vendor-specific content is n-3 octets. * * Element ID Length OUI Vendor-specific content * Octets 1 1 3 n-3 */ case TAG_VENDOR_SPECIFIC_IE: tvb_ensure_bytes_exist (tvb, offset + 2, tag_len); if (tag_len >= 3) { oui = tvb_get_ntoh24(tvb, offset + 2); tag_tvb = tvb_new_subset(tvb, offset + 2, tag_len, tag_len); tag_data_ptr = tvb_get_ptr(tag_tvb, 0, 3); proto_tree_add_bytes_format (tree, tag_oui, tvb, offset + 2, 3, tag_data_ptr, "Vendor: %s", get_manuf_name(tag_data_ptr)); proto_item_append_text(ti, ": %s", get_manuf_name(tag_data_ptr)); if (tag_len > 3) { proto_tree_add_item(ti, hf_ieee80211_tag_vendor_oui_type, tag_tvb, 3, 1, FALSE); } #define WPAWME_OUI 0x0050F2 #define RSNOUI_VAL 0x000FAC #define PRE11N_OUI 0x00904c switch (oui) { case WPAWME_OUI: dissect_vendor_ie_wpawme(ti, tree, tag_tvb); break; case RSNOUI_VAL: dissect_vendor_ie_rsn(ti, tree, tag_tvb); break; case OUI_CISCOWL: /* Cisco Wireless (Aironet) */ dissect_vendor_ie_aironet(ti, tree, tvb, offset + 5, tag_len - 3); break; case PRE11N_OUI: dissect_vendor_ie_ht(ti, tree, tag_tvb); break; case OUI_MARVELL: dissect_vendor_ie_marvell(ti, tree, tvb, offset + 5, tag_len - 3); break; case OUI_WFA: dissect_vendor_ie_wfa(pinfo, ti, tag_tvb); break; default: proto_tree_add_string (tree, tag_interpretation, tvb, offset + 5, tag_len - 3, "Not interpreted"); break; } } break; case TAG_RSN_IE: tag_tvb = tvb_new_subset(tvb, offset + 2, tag_len, tag_len); dissect_rsn_ie(tree, tag_tvb); break; case TAG_MOBILITY_DOMAIN: dissect_mobility_domain(tree, tvb, offset + 2, tag_len); break; #ifndef MESH_OVERRIDES case TAG_FAST_BSS_TRANSITION: dissect_fast_bss_transition(tree, tvb, offset + 2, tag_len); break; #endif /* MESH_OVERRIDES */ case TAG_MMIE: dissect_mmie(tree, tvb, offset + 2, tag_len); break; case TAG_TIMEOUT_INTERVAL: dissect_timeout_interval(tree, tvb, offset + 2, tag_len); break; case TAG_LINK_IDENTIFIER: dissect_link_identifier(tree, tvb, offset + 2, tag_len); break; case TAG_WAKEUP_SCHEDULE: dissect_wakeup_schedule(tree, tvb, offset + 2, tag_len); break; case TAG_CHANNEL_SWITCH_TIMING: dissect_channel_switch_timing(tree, tvb, offset + 2, tag_len); break; case TAG_PTI_CONTROL: dissect_pti_control(tree, tvb, offset + 2, tag_len); break; case TAG_PU_BUFFER_STATUS: dissect_pu_buffer_status(tree, tvb, offset + 2, tag_len); break; case TAG_HT_CAPABILITY: dissect_ht_capability_ie(tree, tvb, offset + 2, tag_len, FALSE); break; case TAG_HT_INFO: dissect_ht_info_ie_1_1(tree, tvb, offset + 2, tag_len); break; case TAG_SECONDARY_CHANNEL_OFFSET: secondary_channel_offset_ie(tree, tvb, offset + 2, tag_len); break; #ifndef MESH_OVERRIDES /*** Begin: WAVE Service information element Dissection - IEEE 802.11p Draft 4.0 ***/ case TAG_WSIE: dissect_wsie_ie(tree, tvb, offset + 3, tag_len); break; /*** End: WAVE Service information element Dissection - IEEE 802.11p Draft 4.0 ***/ #endif /* MESH_OVERRIDES */ case TAG_POWER_CAPABILITY: { offset += 2; if (tag_len != 2) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Power Capability: Error: Tag length must be exactly 2 bytes long"); } proto_tree_add_item(tree, hf_tag_power_capability_min, tvb, offset, 1, TRUE); proto_tree_add_item(tree, hf_tag_power_capability_max, tvb, offset+1, 1, TRUE); break; } /* * 7.3.2.18 TPC Report element * */ case TAG_TPC_REPORT: if(tag_len !=2) proto_tree_add_text (tree, tvb, offset + 2, tag_len, "TPC Report: Error: Tag length must be 2 bytes long"); /* Transmit Power field * The field is coded as a signed integer in units of decibels relative to 1 mW */ offset += 2; proto_tree_add_item(tree, hf_tag_tpc_report_trsmt_pow, tvb, offset, 1, TRUE); offset++; /* Link Margin */ proto_tree_add_item(tree, hf_tag_tpc_report_link_mrg, tvb, offset, 1, TRUE); offset++; break; #ifdef MESH_OVERRIDES case TAG_MESH_PEER_LINK_MGMT: { offset += 2; proto_tree_add_item (tree, hf_mesh_mgt_pl_subtype, tvb, offset, 1, TRUE); offset += 1; switch (tvb_get_guint8(tvb, 1)) { /* IE subtype */ case MESH_PL_PEER_LINK_OPEN: proto_tree_add_item (tree, hf_mesh_mgt_pl_local_link_id, tvb, offset, 2, TRUE); break; case MESH_PL_PEER_LINK_CONFIRM: proto_tree_add_item (tree, hf_mesh_mgt_pl_local_link_id, tvb, offset, 2, TRUE); proto_tree_add_item (tree, hf_mesh_mgt_pl_peer_link_id, tvb, offset + 2, 2, TRUE); break; case MESH_PL_PEER_LINK_CLOSE: proto_tree_add_item (tree, hf_mesh_mgt_pl_local_link_id, tvb, offset, 2, TRUE); proto_tree_add_item (tree, hf_mesh_mgt_pl_peer_link_id, tvb, offset + 2, 2, TRUE); proto_tree_add_item (tree, hf_mesh_mgt_pl_reason_code, tvb, offset + 4, 2, TRUE); break; /* undefined values */ default: proto_tree_add_text (tree, tvb, offset, tag_len, "Unknown Peer Link Message Subtype"); break; } break; } case TAG_MESH_CONFIGURATION: { offset += 2; proto_tree_add_item (tree, hf_mesh_config_version, tvb, offset, 1, TRUE); proto_tree_add_item (tree, hf_mesh_config_path_sel_protocol, tvb, offset + 1, 4, TRUE); proto_tree_add_item (tree, hf_mesh_config_path_sel_metric, tvb, offset + 5, 4, TRUE); proto_tree_add_item (tree, hf_mesh_config_congestion_control, tvb, offset + 9, 4, TRUE); proto_tree_add_item (tree, hf_mesh_config_channel_prec, tvb, offset + 13, 4, TRUE); proto_tree_add_item (tree, hf_mesh_config_capability, tvb, offset + 17, 2, TRUE); break; } case TAG_MESH_ID: { guint8 *id; offset += 2; id = tvb_get_ephemeral_string(tvb, offset, tag_len); proto_tree_add_string (tree, tag_interpretation, tvb, offset, tag_len, (char *) id); if (check_col (pinfo->cinfo, COL_INFO)) { if (tag_len > 0) { col_append_fstr(pinfo->cinfo, COL_INFO, ", MESHID=\"%s\"", format_text(id, tag_len)); } } break; } case TAG_MESH_PREQ: { guint8 flags; proto_item *item; proto_tree *subtree; offset += 2; proto_tree_add_item (tree, ff_mesh_mgt_flags, tvb, offset, 1, TRUE); proto_tree_add_item (tree, ff_mesh_mgt_hopcount, tvb, offset + 1, 1, TRUE); proto_tree_add_item (tree, ff_mesh_mgt_ttl, tvb, offset + 2, 1, TRUE); proto_tree_add_item (tree, ff_mesh_mgt_rreqid, tvb, offset + 3, 4, TRUE); proto_tree_add_item (tree, ff_mesh_mgt_sa, tvb, offset + 7, 6, FALSE); proto_tree_add_item (tree, ff_mesh_mgt_ssn, tvb, offset + 13, 4, TRUE); /* TODO: display proxied address if present */ proto_tree_add_item (tree, ff_mesh_mgt_lifetime, tvb, offset + 17, 4, TRUE); proto_tree_add_item (tree, ff_mesh_mgt_metric, tvb, offset + 21, 4, TRUE); proto_tree_add_item (tree, ff_mesh_mgt_dstcount, tvb, offset + 25, 1, TRUE); flags = tvb_get_letohs (tvb, offset + 26); item = proto_tree_add_item (tree, ff_mesh_mgt_dest_flags, tvb, offset + 26, 1, TRUE); subtree = proto_item_add_subtree(item, ett_msh_dest_flags_tree); proto_tree_add_boolean(subtree, ff_mesh_mgt_dest_do_flags, tvb, offset + 26, 1, flags); proto_tree_add_boolean(subtree, ff_mesh_mgt_dest_rf_flags, tvb, offset + 26, 1, flags); proto_tree_add_item (tree, ff_mesh_mgt_da, tvb, offset + 27, 6, FALSE); proto_tree_add_item (tree, ff_mesh_mgt_dsn, tvb, offset + 33, 4, TRUE); break; } case TAG_MESH_PREP: { offset += 2; proto_tree_add_item (tree, ff_mesh_mgt_flags, tvb, offset, 1, TRUE); proto_tree_add_item (tree, ff_mesh_mgt_hopcount, tvb, offset + 1, 1, TRUE); proto_tree_add_item (tree, ff_mesh_mgt_ttl, tvb, offset + 2, 1, TRUE); proto_tree_add_item (tree, ff_mesh_mgt_da, tvb, offset + 3, 6, FALSE); proto_tree_add_item (tree, ff_mesh_mgt_dsn, tvb, offset + 9, 4, TRUE); /* TODO: display proxied address if present */ proto_tree_add_item (tree, ff_mesh_mgt_lifetime, tvb, offset + 13, 4, TRUE); proto_tree_add_item (tree, ff_mesh_mgt_metric, tvb, offset + 17, 4, TRUE); proto_tree_add_item (tree, ff_mesh_mgt_sa, tvb, offset + 21, 6, FALSE); proto_tree_add_item (tree, ff_mesh_mgt_ssn, tvb, offset + 27, 4, TRUE); break; } case TAG_MESH_PERR: { offset += 2; proto_tree_add_item (tree, ff_mesh_mgt_flags, tvb, offset, 1, TRUE); proto_tree_add_item (tree, ff_mesh_mgt_srccount, tvb, offset + 1, 1, FALSE); proto_tree_add_item (tree, ff_mesh_mgt_sa, tvb, offset + 2, 6, FALSE); proto_tree_add_item (tree, ff_mesh_mgt_ssn, tvb, offset + 8, 4, TRUE); break; } #endif /* MESH_OVERRIDES */ case TAG_SUPPORTED_CHANNELS: /* 7.3.2.19 Supported Channels element */ { proto_item *chan_item; proto_tree *chan_tree; guint i; offset += 2; if (tag_len % 2 == 1) { proto_tree_add_text (tree, tvb, offset -1, 1, "Supported Channels: Error: Tag length %u must be even",tag_len); } for (i=0; i<(tag_len/2); i++) { chan_item = proto_tree_add_uint_format(tree, hf_tag_supported_channels, tvb, offset, 2, i, "Supported Channels Set #%d", i+1); chan_tree = proto_item_add_subtree(chan_item , ett_tag_supported_channels); proto_tree_add_item(chan_tree, hf_tag_supported_channels_first, tvb, offset++, 1, TRUE); proto_tree_add_item(chan_tree, hf_tag_supported_channels_range, tvb, offset++, 1, TRUE); } break; } case TAG_MEASURE_REQ: if (tag_len < 3) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Measurement Request: Error: Tag length must be at least 3 bytes long"); } else { guint8 info, request_type; guint tag_offset; proto_item *parent_item; proto_tree *sub_tree; offset += 2; tag_offset = offset; info = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(tree, hf_tag_measure_request_measurement_token, tvb, offset, 1, info, "Measurement Token: 0x%02X", info); info = tvb_get_guint8 (tvb, ++offset); parent_item = proto_tree_add_uint_format(tree, hf_tag_measure_request_mode, tvb, offset, 1, info, "Measurement Request Mode: 0x%02X", info); sub_tree = proto_item_add_subtree(parent_item, ett_tag_measure_request_tree); proto_tree_add_uint(sub_tree, hf_tag_measure_request_mode_reserved1, tvb, offset, 1, info); proto_tree_add_boolean(sub_tree, hf_tag_measure_request_mode_enable, tvb, offset, 1, info); proto_tree_add_boolean(sub_tree, hf_tag_measure_request_mode_request, tvb, offset, 1, info); proto_tree_add_boolean(sub_tree, hf_tag_measure_request_mode_report, tvb, offset, 1, info); proto_tree_add_uint(sub_tree, hf_tag_measure_request_mode_reserved2, tvb, offset, 1, info); request_type = tvb_get_guint8 (tvb, ++offset); parent_item = proto_tree_add_uint(tree, hf_tag_measure_request_type, tvb, offset, 1, request_type); sub_tree = proto_item_add_subtree(parent_item, ett_tag_measure_request_tree); offset++; switch (request_type) { case 0: /* Basic Request */ case 1: /* Clear channel assessment (CCA) request */ case 2: /* Receive power indication (RPI) histogram request */ { guint8 channel_number; guint64 start_time; guint16 duration; channel_number = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_request_channel_number, tvb, offset, 1, channel_number, "Measurement Channel Number: 0x%02X", channel_number); start_time = tvb_get_letoh64 (tvb, offset); proto_tree_add_uint64_format(sub_tree, hf_tag_measure_request_start_time, tvb, offset, 8, start_time, "Measurement Start Time: 0x%016" G_GINT64_MODIFIER "X", start_time); offset += 8; duration = tvb_get_letohs (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_request_duration, tvb, offset, 2, duration, "Measurement Duration: 0x%04X TU (1 TU = 1024 us)", duration); break; } case 3: /* Channel Load Request */ case 4: /* Noise Histogram Request */ { guint8 regulatory_class, channel_number; guint16 rand_interval, duration; regulatory_class = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_request_regulatory_class, tvb, offset, 1, regulatory_class, "Regulatory Class: 0x%02X", regulatory_class); offset++; channel_number = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_request_channel_number, tvb, offset, 1, channel_number, "Measurement Channel Number: 0x%02X", channel_number); offset++; rand_interval = tvb_get_letohs (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_request_randomization_interval, tvb, offset, 2, rand_interval, "Randomization Interval: 0x%02X TU (1 TU = 1024 us)", rand_interval); offset += 2; duration = tvb_get_letohs (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_request_duration, tvb, offset, 2, duration, "Measurement Duration: 0x%04X TU (1 TU = 1024 us)", duration); break; } case 5: /* Beacon Request */ { guint8 regulatory_class, channel_number, measurement_mode, reporting_condition, threshold_offset; guint16 rand_interval, duration; const guint8 *bssid = NULL; regulatory_class = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_request_regulatory_class, tvb, offset, 1, regulatory_class, "Regulatory Class: 0x%02X", regulatory_class); offset++; channel_number = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_request_channel_number, tvb, offset, 1, channel_number, "Measurement Channel Number: 0x%02X", channel_number); offset++; rand_interval = tvb_get_letohs (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_request_randomization_interval, tvb, offset, 2, rand_interval, "Randomization Interval: 0x%02X TU (1 TU = 1024 us)", rand_interval); offset += 2; duration = tvb_get_letohs (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_request_duration, tvb, offset, 2, duration, "Measurement Duration: 0x%04X TU (1 TU = 1024 us)", duration); offset+=2; measurement_mode = tvb_get_guint8 (tvb, offset); proto_tree_add_uint(sub_tree, hf_tag_measure_request_measurement_mode, tvb, offset, 1, measurement_mode); offset++; bssid = tvb_get_ptr (tvb, offset, 6); proto_tree_add_ether(sub_tree, hf_tag_measure_request_bssid, tvb, offset, 6, bssid); offset+=6; reporting_condition = tvb_get_guint8 (tvb, offset); proto_tree_add_uint(sub_tree, hf_tag_measure_request_reporting_condition, tvb, offset, 1, reporting_condition); offset++; threshold_offset = tvb_get_guint8 (tvb, offset); if (reporting_condition == 0) { /* XXX ? */ } else if (reporting_condition >= 1 && reporting_condition <= 4){ /* Unsigned dBm */ proto_tree_add_uint_format(sub_tree, hf_tag_measure_request_threshold_offset_unsigned, tvb, offset, 1, threshold_offset, "Threshold/Offset: 0x%02X dBm", threshold_offset); } else if (reporting_condition == 5 || reporting_condition == 6 || reporting_condition == 9){ /* Signed dBm */ proto_tree_add_int_format(sub_tree, hf_tag_measure_request_threshold_offset_signed, tvb, offset, 1, threshold_offset, "Threshold/Offset: 0x%02X dBm", threshold_offset); } else if (reporting_condition == 7 || reporting_condition == 8 || reporting_condition == 10){ /* Signed dB */ proto_tree_add_int_format(sub_tree, hf_tag_measure_request_threshold_offset_signed, tvb, offset, 1, threshold_offset, "Threshold/Offset: 0x%02X dB", threshold_offset); } else { /* Not Defined */ } offset++; add_tagged_field (pinfo, sub_tree, tvb, offset); break; } case 6: /* Frame Request */ { guint8 regulatory_class, channel_number; guint16 rand_interval, duration; const guint8 *mac = NULL; regulatory_class = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_request_regulatory_class, tvb, offset, 1, regulatory_class, "Regulatory Class: 0x%02X", regulatory_class); offset++; channel_number = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_request_channel_number, tvb, offset, 1, channel_number, "Measurement Channel Number: 0x%02X", channel_number); offset++; rand_interval = tvb_get_letohs (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_request_randomization_interval, tvb, offset, 2, rand_interval, "Randomization Interval: 0x%02X TU (1 TU = 1024 us)", rand_interval); offset += 2; duration = tvb_get_letohs (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_request_duration, tvb, offset, 2, duration, "Measurement Duration: 0x%04X TU (1 TU = 1024 us)", duration); offset += 2; if (tag_len >= ((offset-tag_offset)+6)){ mac = tvb_get_ptr (tvb, offset, 6); proto_tree_add_ether(sub_tree, hf_tag_measure_request_bssid, tvb, offset, 6, mac); } break; } case 7: /* BSTA Statistics Request */ { guint8 group_id; guint16 rand_interval, duration; offset++; rand_interval = tvb_get_letohs (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_request_randomization_interval, tvb, offset, 2, rand_interval, "Randomization Interval: 0x%02X TU (1 TU = 1024 us)", rand_interval); offset += 2; duration = tvb_get_letohs (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_request_duration, tvb, offset, 2, duration, "Measurement Duration: 0x%04X TU (1 TU = 1024 us)", duration); offset++; group_id = tvb_get_guint8 (tvb, offset); proto_tree_add_uint(sub_tree, hf_tag_measure_request_group_id, tvb, offset, 1, group_id); break; } case 8: /* Location Configuration Indication (LCI) Request */ /* TODO */ case 9: /* Transmit Stream Measurement Request */ /* TODO */ case 255: /* Measurement Pause Request*/ /* TODO */ default: /* unknown */ proto_tree_add_text (tree, tvb, offset, tag_len - (offset - tag_offset), "Undissected Data"); break; } } break; /* 7.3.2.22 Measurement Report element * The Length field is variable and depends on the length of the * Measurement Report field. The minimum value of the Length field is 3. */ case TAG_MEASURE_REP: if (tag_len < 3) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Measurement Report: Error: Tag length must be at least 3 bytes long"); } else { guint8 info, report_type, channel_number; guint16 duration; guint64 start_time; proto_item *parent_item; proto_tree *sub_tree; guint tag_offset; offset += 2; tag_offset = offset; info = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(tree, hf_tag_measure_report_measurement_token, tvb, offset, 1, info, "Measurement Token: 0x%02X", info); offset++; info = tvb_get_guint8 (tvb, offset); parent_item = proto_tree_add_uint_format(tree, hf_tag_measure_report_mode, tvb, offset, 1, info, "Measurement Report Mode: 0x%02X", info); sub_tree = proto_item_add_subtree(parent_item, ett_tag_measure_request_tree); proto_tree_add_boolean(sub_tree, hf_tag_measure_report_mode_late, tvb, offset, 1, info); proto_tree_add_boolean(sub_tree, hf_tag_measure_report_mode_incapable, tvb, offset, 1, info); proto_tree_add_boolean(sub_tree, hf_tag_measure_report_mode_refused, tvb, offset, 1, info); proto_tree_add_uint(sub_tree, hf_tag_measure_report_mode_reserved, tvb, offset, 1, info); offset++; report_type = tvb_get_guint8 (tvb, offset); parent_item = proto_tree_add_uint(tree, hf_tag_measure_report_type, tvb, offset, 1, report_type); sub_tree = proto_item_add_subtree(parent_item, ett_tag_measure_request_tree); offset++; if (tag_len == 3) break; switch (report_type) { case 0: /* Basic Report */ { proto_tree *sub_tree_map_field; channel_number = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_report_channel_number, tvb, offset, 1, channel_number, "Measurement Channel Number: 0x%02X", channel_number); offset++; start_time = tvb_get_letoh64 (tvb, offset); proto_tree_add_uint64_format(sub_tree, hf_tag_measure_report_start_time, tvb, offset, 8, start_time, "Measurement Start Time: 0x%016" G_GINT64_MODIFIER "x", start_time); offset += 8; duration = tvb_get_letohs (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_report_duration, tvb, offset, 2, duration, "Measurement Duration in TUs (1TU = 1024 us): 0x%04X", duration); offset+=2; info = tvb_get_guint8 (tvb, offset); parent_item = proto_tree_add_uint_format(tree, hf_tag_measure_basic_map_field, tvb, offset, 1, info, "Map Field: 0x%02X", info); sub_tree_map_field = proto_item_add_subtree(parent_item, ett_tag_measure_request_tree); proto_tree_add_boolean(sub_tree_map_field, hf_tag_measure_map_field_bss, tvb, offset, 1, info); proto_tree_add_boolean(sub_tree_map_field, hf_tag_measure_map_field_odfm, tvb, offset, 1, info); proto_tree_add_boolean(sub_tree_map_field, hf_tag_measure_map_field_unident_signal, tvb, offset, 1, info); proto_tree_add_boolean(sub_tree_map_field, hf_tag_measure_map_field_radar, tvb, offset, 1, info); proto_tree_add_boolean(sub_tree_map_field, hf_tag_measure_map_field_unmeasured, tvb, offset, 1, info); proto_tree_add_uint(sub_tree_map_field, hf_tag_measure_map_field_reserved, tvb, offset, 1, info); break; } case 1: /* Clear channel assessment (CCA) report */ channel_number = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_report_channel_number, tvb, offset, 1, channel_number, "Measurement Channel Number: 0x%02X", channel_number); offset++; start_time = tvb_get_letoh64 (tvb, offset); proto_tree_add_uint64_format(sub_tree, hf_tag_measure_report_start_time, tvb, offset, 8, start_time, "Measurement Start Time: 0x%016" G_GINT64_MODIFIER "X", start_time); offset += 8; duration = tvb_get_letohs (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_report_duration, tvb, offset, 2, duration, "Measurement Duration in TUs (1TU = 1024 us): 0x%04X", duration); offset+=2; info = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_cca_busy_fraction, tvb, offset, 1, info, "CCA Busy Fraction: 0x%02X", info); break; case 2: /* Receive power indication (RPI) histogram report */ channel_number = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_report_channel_number, tvb, offset, 1, channel_number, "Measurement Channel Number: 0x%02X", channel_number); offset++; start_time = tvb_get_letoh64 (tvb, offset); proto_tree_add_uint64_format(sub_tree, hf_tag_measure_report_start_time, tvb, offset, 8, start_time, "Measurement Start Time: 0x%016" G_GINT64_MODIFIER "X", start_time); offset += 8; duration = tvb_get_letohs (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_report_duration, tvb, offset, 2, duration, "Measurement Duration in TUs (1TU = 1024 us): 0x%04X", duration); offset+=2; parent_item = proto_tree_add_string(sub_tree, hf_tag_measure_rpi_histogram_report, tvb, offset, 8, "RPI Histogram Report"); sub_tree = proto_item_add_subtree(parent_item, ett_tag_measure_request_tree); info = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_rpi_histogram_report_0, tvb, offset, 1, info, "RPI 0 Density: 0x%02X", info); info = tvb_get_guint8 (tvb, ++offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_rpi_histogram_report_1, tvb, offset, 1, info, "RPI 1 Density: 0x%02X", info); info = tvb_get_guint8 (tvb, ++offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_rpi_histogram_report_2, tvb, offset, 1, info, "RPI 2 Density: 0x%02X", info); info = tvb_get_guint8 (tvb, ++offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_rpi_histogram_report_3, tvb, offset, 1, info, "RPI 3 Density: 0x%02X", info); info = tvb_get_guint8 (tvb, ++offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_rpi_histogram_report_4, tvb, offset, 1, info, "RPI 4 Density: 0x%02X", info); info = tvb_get_guint8 (tvb, ++offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_rpi_histogram_report_5, tvb, offset, 1, info, "RPI 5 Density: 0x%02X", info); info = tvb_get_guint8 (tvb, ++offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_rpi_histogram_report_6, tvb, offset, 1, info, "RPI 6 Density: 0x%02X", info); info = tvb_get_guint8 (tvb, ++offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_rpi_histogram_report_7, tvb, offset, 1, info, "RPI 7 Density: 0x%02X", info); break; case 3: /* Channel Load Report */ { guint8 regulatory_class, channel_load; regulatory_class = tvb_get_guint8 (tvb, offset); proto_tree_add_uint(sub_tree, hf_tag_measure_report_regulatory_class, tvb, offset, 1, regulatory_class); offset++; channel_number = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_report_channel_number, tvb, offset, 1, channel_number, "Measurement Channel Number: 0x%02X", channel_number); offset++; start_time = tvb_get_letoh64 (tvb, offset); proto_tree_add_uint64_format(sub_tree, hf_tag_measure_report_start_time, tvb, offset, 8, start_time, "Measurement Start Time: 0x%016" G_GINT64_MODIFIER "X", start_time); offset += 8; duration = tvb_get_letohs (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_report_duration, tvb, offset, 2, duration, "Measurement Duration in TUs (1TU = 1024 us): 0x%04X", duration); offset+=2; channel_load = tvb_get_guint8 (tvb, offset); proto_tree_add_uint(sub_tree, hf_tag_measure_report_channel_load, tvb, offset, 1, channel_load); break; } case 4: /* Noise Histogram Report */ /* TODO */ proto_tree_add_text (sub_tree, tvb, offset, tag_len - (offset - tag_offset), "Undissected Data"); break; case 5: /* Beacon Report */ { guint8 regulatory_class, reported_frame_info, rcpi, rsni, ant_id; guint32 parent_tsf; proto_tree *sub_tree_frame_info; const guint8 *bssid = NULL; regulatory_class = tvb_get_guint8 (tvb, offset); proto_tree_add_uint(sub_tree, hf_tag_measure_report_regulatory_class, tvb, offset, 1, regulatory_class); offset++; channel_number = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_report_channel_number, tvb, offset, 1, channel_number, "Measurement Channel Number: 0x%02X", channel_number); offset++; start_time = tvb_get_letoh64 (tvb, offset); proto_tree_add_uint64_format(sub_tree, hf_tag_measure_report_start_time, tvb, offset, 8, start_time, "Measurement Start Time: 0x%016" G_GINT64_MODIFIER "X", start_time); offset += 8; duration = tvb_get_letohs (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_report_duration, tvb, offset, 2, duration, "Measurement Duration in TUs (1TU = 1024 us): 0x%04X", duration); offset+=2; reported_frame_info = tvb_get_guint8 (tvb, offset); parent_item = proto_tree_add_uint(sub_tree, hf_tag_measure_report_frame_info, tvb, offset, 1, reported_frame_info); sub_tree_frame_info = proto_item_add_subtree(parent_item, ett_tag_measure_request_tree); proto_tree_add_uint(sub_tree_frame_info, hf_tag_measure_report_frame_info_phy_type, tvb, offset, 1, reported_frame_info); proto_tree_add_uint(sub_tree_frame_info, hf_tag_measure_report_frame_info_frame_type, tvb, offset, 1, reported_frame_info); offset++; rcpi = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_report_rcpi, tvb, offset, 1, rcpi, "Received Channel Power Indicator (RCPI): 0x%02X dBm", rcpi); offset++; rsni = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(sub_tree, hf_tag_measure_report_rsni, tvb, offset, 1, rsni, "Received Signal to Noise Indicator (RSNI): 0x%02X dB", rsni); offset++; bssid = tvb_get_ptr (tvb, offset, 6); proto_tree_add_ether(sub_tree, hf_tag_measure_request_bssid, tvb, offset, 6, bssid); offset+=6; ant_id = tvb_get_guint8 (tvb, offset); proto_tree_add_uint(sub_tree, hf_tag_measure_report_ant_id, tvb, offset, 1, ant_id); offset++; parent_tsf = tvb_get_letohl (tvb, offset); proto_tree_add_uint(sub_tree, hf_tag_measure_report_parent_tsf, tvb, offset, 4, parent_tsf); offset+=4; /* TODO - Must determine frame type and dissect this */ if (tag_len > (offset - tag_offset)) { proto_tree_add_text (sub_tree, tvb, offset, tag_len - (offset - tag_offset), "Reported Frame Body"); } break; } case 6: /* Frame Report */ /* TODO */ case 7: /* BSTA Statistics Report */ /* TODO */ case 8: /* Location Configuration Information Report element */ /* TODO */ case 9: /* Transmit Stream Measurement Report */ /* TODO */ default: /* unknown */ proto_tree_add_text (tree, tvb, offset, tag_len - (offset - tag_offset), "Undissected Data"); break; } } break; /* The Capabilities field is a bit field indicating the capabilities being advertised * by the STA transmitting the information element */ case TAG_EXTENDED_CAPABILITIES: { guint tag_offset; guint8 info_exchange; proto_item *tii; proto_tree *ex_cap_tree; if (tag_len < 1) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Extended Capabilities: Error: Tag length must be at least 1 byte long"); break; } offset+=2; tag_offset = offset; /* Extended Capability octet 0 */ info_exchange = tvb_get_guint8 (tvb, offset); tii = proto_tree_add_item (tree, hf_tag_extended_capabilities, tvb, offset, 1, FALSE); ex_cap_tree = proto_item_add_subtree (tii, ett_tag_ex_cap); proto_tree_add_item (ex_cap_tree, hf_tag_extended_capabilities_b0, tvb, offset, 1, FALSE); proto_tree_add_item (ex_cap_tree, hf_tag_extended_capabilities_b1, tvb, offset, 1, FALSE); proto_tree_add_item (ex_cap_tree, hf_tag_extended_capabilities_b2, tvb, offset, 1, FALSE); proto_tree_add_item (ex_cap_tree, hf_tag_extended_capabilities_b3, tvb, offset, 1, FALSE); proto_tree_add_item (ex_cap_tree, hf_tag_extended_capabilities_b4, tvb, offset, 1, FALSE); proto_tree_add_item (ex_cap_tree, hf_tag_extended_capabilities_b6, tvb, offset, 1, FALSE); offset++; if (tag_len > offset - tag_offset) { /* Extended Capability octet 1 */ offset++; } if (tag_len > offset - tag_offset) { /* Extended Capability octet 2 */ offset++; } if (tag_len > offset - tag_offset) { /* Extended Capability octet 3 */ tii = proto_tree_add_item(tree, hf_tag_extended_capabilities, tvb, offset, 1, FALSE); ex_cap_tree = proto_item_add_subtree(tii, ett_tag_ex_cap); proto_tree_add_item(ex_cap_tree, hf_tag_extended_capabilities_b28, tvb, offset, 1, FALSE); proto_tree_add_item(ex_cap_tree, hf_tag_extended_capabilities_b29, tvb, offset, 1, FALSE); proto_tree_add_item(ex_cap_tree, hf_tag_extended_capabilities_b30, tvb, offset, 1, FALSE); offset++; } if (tag_len > offset - tag_offset) { /* Extended Capability octet 4 */ tii = proto_tree_add_item(tree, hf_tag_extended_capabilities, tvb, offset, 1, FALSE); ex_cap_tree = proto_item_add_subtree(tii, ett_tag_ex_cap); proto_tree_add_item(ex_cap_tree, hf_tag_extended_capabilities_b37, tvb, offset, 1, FALSE); proto_tree_add_item(ex_cap_tree, hf_tag_extended_capabilities_b38, tvb, offset, 1, FALSE); proto_tree_add_item(ex_cap_tree, hf_tag_extended_capabilities_b39, tvb, offset, 1, FALSE); offset++; } if (tag_len > offset - tag_offset) { /* Extended Capability octet 5 */ tii = proto_tree_add_item(tree, hf_tag_extended_capabilities, tvb, offset, 1, FALSE); ex_cap_tree = proto_item_add_subtree(tii, ett_tag_ex_cap); proto_tree_add_item(ex_cap_tree, hf_tag_extended_capabilities_b40, tvb, offset, 1, FALSE); proto_tree_add_item(ex_cap_tree, hf_tag_extended_capabilities_serv_int_granularity, tvb, offset, 1, FALSE); offset++; } if (tag_len > (offset - tag_offset)) { proto_tree_add_text (tree, tvb, offset, tag_len - (offset - tag_offset), "Unknown Data"); break; } break; } case TAG_ADVERTISEMENT_PROTOCOL: { dissect_advertisement_protocol(pinfo, tree, tvb, offset, NULL); break; } #ifndef MESH_OVERRIDES case TAG_NEIGHBOR_REPORT: { #define SUB_TAG_TSF_INFO 0x01 #define SUB_TAG_MEASUREMENT_PILOT_INFO 0x02 #define SUB_TAG_HT_CAPABILITIES 0x03 #define SUB_TAG_HT_INFO 0x04 #define SUB_TAG_SEC_CHANNEL_OFFSET 0x05 #define SUB_TAG_VENDOR_SPECIFIC 0xDD guint tag_offset; guint8 sub_tag_id; guint32 bssid_info, info, sub_tag_length; const guint8 *bssid = NULL; proto_item *parent_item; proto_tree *bssid_info_subtree, *sub_tag_tree; tvbuff_t *volatile sub_tag_tvb = NULL; if (tag_len < 13) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Neighbor Report: Error: Tag length must be at least 13 bytes long"); break; } offset+=2; tag_offset = offset; bssid = tvb_get_ptr (tvb, offset, 6); proto_tree_add_ether(tree, hf_tag_neighbor_report_bssid, tvb, offset, 6, bssid); /*** Begin: BSSID Information ***/ offset+=6; bssid_info = tvb_get_letohl (tvb, offset); parent_item = proto_tree_add_uint_format(tree, hf_tag_neighbor_report_bssid_info, tvb, offset, 4, bssid_info, "BSSID Information: 0x%08X", bssid_info); bssid_info_subtree = proto_item_add_subtree(parent_item, ett_tag_neighbor_report_bssid_info_tree); proto_tree_add_uint(bssid_info_subtree, hf_tag_neighbor_report_bssid_info_reachability, tvb, offset, 1, bssid_info); proto_tree_add_uint(bssid_info_subtree, hf_tag_neighbor_report_bssid_info_security, tvb, offset, 1, bssid_info); proto_tree_add_uint(bssid_info_subtree, hf_tag_neighbor_report_bssid_info_key_scope, tvb, offset, 1, bssid_info); proto_tree_add_uint(bssid_info_subtree, hf_tag_neighbor_report_bssid_info_capability_spec_mng, tvb, offset, 1, bssid_info); proto_tree_add_uint(bssid_info_subtree, hf_tag_neighbor_report_bssid_info_capability_qos, tvb, offset, 1, bssid_info); proto_tree_add_uint(bssid_info_subtree, hf_tag_neighbor_report_bssid_info_capability_apsd, tvb, offset, 1, bssid_info); proto_tree_add_uint(bssid_info_subtree, hf_tag_neighbor_report_bssid_info_capability_radio_msnt, tvb, offset, 1, bssid_info); proto_tree_add_uint(bssid_info_subtree, hf_tag_neighbor_report_bssid_info_capability_dback, tvb, offset+1, 1, bssid_info); proto_tree_add_uint(bssid_info_subtree, hf_tag_neighbor_report_bssid_info_capability_iback, tvb, offset+1, 1, bssid_info); proto_tree_add_uint(bssid_info_subtree, hf_tag_neighbor_report_bssid_info_mobility_domain, tvb, offset+1, 1, bssid_info); proto_tree_add_uint(bssid_info_subtree, hf_tag_neighbor_report_bssid_info_high_throughput, tvb, offset+1, 1, bssid_info); proto_tree_add_uint(bssid_info_subtree, hf_tag_neighbor_report_bssid_info_reserved, tvb, offset+1, 3, (bssid_info & 0xfffff000) >> 12); /*** End: BSSID Information ***/ offset+=4; info = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(tree, hf_tag_neighbor_report_reg_class, tvb, offset, 1, info, "Regulatory Class: 0x%02X", info); offset++; info = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(tree, hf_tag_neighbor_report_channel_number, tvb, offset, 1, info, "Channel Number: 0x%02X", info); offset++; info = tvb_get_guint8 (tvb, offset); proto_tree_add_uint_format(tree, hf_tag_neighbor_report_phy_type, tvb, offset, 1, info, "PHY Type: 0x%02X", info); offset++; sub_tag_id = tvb_get_guint8 (tvb, offset); offset++; sub_tag_length = tvb_get_guint8 (tvb, offset); offset++; sub_tag_tvb = tvb_new_subset(tvb, offset, sub_tag_length, -1); switch (sub_tag_id) { case SUB_TAG_TSF_INFO: /* TODO */ break; case SUB_TAG_MEASUREMENT_PILOT_INFO: /* TODO */ break; case SUB_TAG_HT_CAPABILITIES: parent_item = proto_tree_add_text (tree, tvb, offset, sub_tag_length, "HT Capabilities"); sub_tag_tree = proto_item_add_subtree(parent_item, ett_tag_neighbor_report_sub_tag_tree); dissect_ht_capability_ie(sub_tag_tree, sub_tag_tvb, 0, sub_tag_length, FALSE); break; case SUB_TAG_HT_INFO: parent_item = proto_tree_add_text (tree, tvb, offset, sub_tag_length, "HT Information"); sub_tag_tree = proto_item_add_subtree(parent_item, ett_tag_neighbor_report_sub_tag_tree); dissect_ht_info_ie_1_1(sub_tag_tree, sub_tag_tvb, 0, sub_tag_length); break; case SUB_TAG_SEC_CHANNEL_OFFSET: parent_item = proto_tree_add_text (tree, tvb, offset, sub_tag_length, "Secondary Channel Offset"); sub_tag_tree = proto_item_add_subtree(parent_item, ett_tag_neighbor_report_sub_tag_tree); secondary_channel_offset_ie(sub_tag_tree, sub_tag_tvb, 0, sub_tag_length); break; case SUB_TAG_VENDOR_SPECIFIC: default: break; } offset += sub_tag_length; if (tag_len > (offset - tag_offset)) { proto_tree_add_text (tree, tvb, offset, tag_len - (offset - tag_offset), "Unknown Data"); break; } break; } #endif /* MESH_OVERRIDES */ case TAG_EXTENDED_CHANNEL_SWITCH_ANNOUNCEMENT: { guint tag_offset; if (tag_len != 4) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Extended Channel Switch Announcement: Error: Tag length must be exactly 4 bytes long"); break; } offset+=2; tag_offset = offset; offset+= add_fixed_field(tree, tvb, offset, FIELD_EXTENDED_CHANNEL_SWITCH_ANNOUNCEMENT); if (tag_len > (offset - tag_offset)) { proto_tree_add_text (tree, tvb, offset, tag_len - (offset - tag_offset), "Unknown Data"); break; } break; } case TAG_SUPPORTED_REGULATORY_CLASSES: { guint tag_offset; guint8 current_field; guint i; if (tag_len < 2) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Supported Regulatory Classes: Error: Tag length must be at least 2 bytes long"); break; } else if (tag_len > 32) { proto_tree_add_text (tree, tvb, offset + 2, tag_len, "Supported Regulatory Classes: Error: Tag length must be no more than 32 bytes long"); break; } offset+=2; tag_offset = offset; current_field = tvb_get_guint8 (tvb, offset); proto_tree_add_uint(tree, hf_tag_supported_reg_classes_current, tvb, offset, 1, current_field); offset++; /* Partially taken from the ssid section */ tag_data_ptr = tvb_get_ptr (tvb, offset, tag_len); for (i = 0, n = 0; i < tag_len && n < SHORT_STR; i++) { ret = g_snprintf (print_buff + n, SHORT_STR - n, (i == tag_len-1)?"%d":"%d, ", tag_data_ptr[i]); if (ret >= SHORT_STR - n) { /* ret >= means buffer truncated */ break; } n += ret; } proto_tree_add_string (tree, hf_tag_supported_reg_classes_alternate, tvb, offset, tag_len, print_buff); break; } default: tvb_ensure_bytes_exist (tvb, offset + 2, tag_len); proto_tree_add_string (tree, tag_interpretation, tvb, offset + 1 + tag_len_len, tag_len, "Not interpreted"); proto_item_append_text(ti, ": Tag %u Len %u", tag_no, tag_len); break; } return tag_len + 1 + tag_len_len; } void ieee_80211_add_tagged_parameters (tvbuff_t * tvb, int offset, packet_info * pinfo, proto_tree * tree, int tagged_parameters_len) { int next_len; beacon_padding = 0; /* this is for the beacon padding confused with ssid fix */ while (tagged_parameters_len > 0) { if ((next_len=add_tagged_field (pinfo, tree, tvb, offset))==0) break; if (next_len > tagged_parameters_len) { /* XXX - flag this as an error? */ next_len = tagged_parameters_len; } offset += next_len; tagged_parameters_len -= next_len; } } /* ************************************************************************* */ /* Dissect 802.11 management frame */ /* ************************************************************************* */ static void dissect_ieee80211_mgt (guint16 fcf, tvbuff_t * tvb, packet_info * pinfo, proto_tree * tree) { proto_item *ti = NULL; proto_tree *mgt_tree; proto_tree *fixed_tree; proto_tree *tagged_tree; int offset = 0; int tagged_parameter_tree_len; g_pinfo = pinfo; CHECK_DISPLAY_AS_X(data_handle,proto_wlan_mgt, tvb, pinfo, tree); ti = proto_tree_add_item (tree, proto_wlan_mgt, tvb, 0, -1, FALSE); mgt_tree = proto_item_add_subtree (ti, ett_80211_mgt); switch (COMPOSE_FRAME_TYPE(fcf)) { case MGT_ASSOC_REQ: fixed_tree = get_fixed_parameter_tree (mgt_tree, tvb, 0, 4); add_fixed_field(fixed_tree, tvb, 0, FIELD_CAP_INFO); add_fixed_field(fixed_tree, tvb, 2, FIELD_LISTEN_IVAL); offset = 4; /* Size of fixed fields */ tagged_parameter_tree_len = tvb_reported_length_remaining(tvb, offset); tagged_tree = get_tagged_parameter_tree (mgt_tree, tvb, offset, tagged_parameter_tree_len); ieee_80211_add_tagged_parameters (tvb, offset, pinfo, tagged_tree, tagged_parameter_tree_len); break; case MGT_ASSOC_RESP: fixed_tree = get_fixed_parameter_tree (mgt_tree, tvb, 0, 6); add_fixed_field(fixed_tree, tvb, 0, FIELD_CAP_INFO); add_fixed_field(fixed_tree, tvb, 2, FIELD_STATUS_CODE); add_fixed_field(fixed_tree, tvb, 4, FIELD_ASSOC_ID); offset = 6; /* Size of fixed fields */ tagged_parameter_tree_len = tvb_reported_length_remaining(tvb, offset); tagged_tree = get_tagged_parameter_tree (mgt_tree, tvb, offset, tagged_parameter_tree_len); ieee_80211_add_tagged_parameters (tvb, offset, pinfo, tagged_tree, tagged_parameter_tree_len); break; case MGT_REASSOC_REQ: fixed_tree = get_fixed_parameter_tree (mgt_tree, tvb, 0, 10); add_fixed_field(fixed_tree, tvb, 0, FIELD_CAP_INFO); add_fixed_field(fixed_tree, tvb, 2, FIELD_LISTEN_IVAL); add_fixed_field(fixed_tree, tvb, 4, FIELD_CURRENT_AP_ADDR); offset = 10; /* Size of fixed fields */ tagged_parameter_tree_len = tvb_reported_length_remaining(tvb, offset); tagged_tree = get_tagged_parameter_tree (mgt_tree, tvb, offset, tagged_parameter_tree_len); ieee_80211_add_tagged_parameters (tvb, offset, pinfo, tagged_tree, tagged_parameter_tree_len); break; case MGT_REASSOC_RESP: fixed_tree = get_fixed_parameter_tree (mgt_tree, tvb, 0, 6); add_fixed_field(fixed_tree, tvb, 0, FIELD_CAP_INFO); add_fixed_field(fixed_tree, tvb, 2, FIELD_STATUS_CODE); add_fixed_field(fixed_tree, tvb, 4, FIELD_ASSOC_ID); offset = 6; /* Size of fixed fields */ tagged_parameter_tree_len = tvb_reported_length_remaining(tvb, offset); tagged_tree = get_tagged_parameter_tree (mgt_tree, tvb, offset, tagged_parameter_tree_len); ieee_80211_add_tagged_parameters (tvb, offset, pinfo, tagged_tree, tagged_parameter_tree_len); break; case MGT_PROBE_REQ: offset = 0; tagged_parameter_tree_len = tvb_reported_length_remaining(tvb, offset); tagged_tree = get_tagged_parameter_tree (mgt_tree, tvb, offset, tagged_parameter_tree_len); ieee_80211_add_tagged_parameters (tvb, offset, pinfo, tagged_tree, tagged_parameter_tree_len); break; case MGT_PROBE_RESP: { fixed_tree = get_fixed_parameter_tree (mgt_tree, tvb, 0, 12); add_fixed_field(fixed_tree, tvb, 0, FIELD_TIMESTAMP); add_fixed_field(fixed_tree, tvb, 8, FIELD_BEACON_INTERVAL); add_fixed_field(fixed_tree, tvb, 10, FIELD_CAP_INFO); offset = 12; /* Size of fixed fields */ tagged_parameter_tree_len = tvb_reported_length_remaining(tvb, offset); tagged_tree = get_tagged_parameter_tree (mgt_tree, tvb, offset, tagged_parameter_tree_len); ieee_80211_add_tagged_parameters (tvb, offset, pinfo, tagged_tree, tagged_parameter_tree_len); break; } case MGT_MEASUREMENT_PILOT: { fixed_tree = get_fixed_parameter_tree (mgt_tree, tvb, 0, 12); offset += add_fixed_field(fixed_tree, tvb, offset, FIELD_TIMESTAMP); offset += add_fixed_field(fixed_tree, tvb, offset, FIELD_MEASUREMENT_PILOT_INT); offset += add_fixed_field(fixed_tree, tvb, offset, FIELD_BEACON_INTERVAL); offset += add_fixed_field(fixed_tree, tvb, offset, FIELD_CAP_INFO); offset += add_fixed_field(fixed_tree, tvb, offset, FIELD_COUNTRY_STR); offset += add_fixed_field(fixed_tree, tvb, offset, FIELD_MAX_REG_PWR); offset += add_fixed_field(fixed_tree, tvb, offset, FIELD_MAX_TX_PWR); offset += add_fixed_field(fixed_tree, tvb, offset, FIELD_TX_PWR_USED); offset += add_fixed_field(fixed_tree, tvb, offset, FIELD_TRANSCEIVER_NOISE_FLOOR); /* TODO DS Parameter Set ??? */ tagged_parameter_tree_len = tvb_reported_length_remaining(tvb, offset); tagged_tree = get_tagged_parameter_tree (mgt_tree, tvb, offset, tagged_parameter_tree_len); ieee_80211_add_tagged_parameters (tvb, offset, pinfo, tagged_tree, tagged_parameter_tree_len); break; } case MGT_BEACON: /* Dissect protocol payload fields */ fixed_tree = get_fixed_parameter_tree (mgt_tree, tvb, 0, 12); add_fixed_field(fixed_tree, tvb, 0, FIELD_TIMESTAMP); add_fixed_field(fixed_tree, tvb, 8, FIELD_BEACON_INTERVAL); add_fixed_field(fixed_tree, tvb, 10, FIELD_CAP_INFO); offset = 12; /* Size of fixed fields */ tagged_parameter_tree_len = tvb_reported_length_remaining(tvb, offset); tagged_tree = get_tagged_parameter_tree (mgt_tree, tvb, offset, tagged_parameter_tree_len); ieee_80211_add_tagged_parameters (tvb, offset, pinfo, tagged_tree, tagged_parameter_tree_len); break; case MGT_ATIM: break; case MGT_DISASS: fixed_tree = get_fixed_parameter_tree (mgt_tree, tvb, 0, 2); add_fixed_field(fixed_tree, tvb, 0, FIELD_REASON_CODE); offset = 2; /* Size of fixed fields */ tagged_parameter_tree_len = tvb_reported_length_remaining(tvb, offset); if (tagged_parameter_tree_len > 0) { tagged_tree = get_tagged_parameter_tree(mgt_tree, tvb, offset, tagged_parameter_tree_len); ieee_80211_add_tagged_parameters(tvb, offset, pinfo, tagged_tree, tagged_parameter_tree_len); } break; case MGT_AUTHENTICATION: fixed_tree = get_fixed_parameter_tree (mgt_tree, tvb, 0, 6); add_fixed_field(fixed_tree, tvb, 0, FIELD_AUTH_ALG); add_fixed_field(fixed_tree, tvb, 2, FIELD_AUTH_TRANS_SEQ); add_fixed_field(fixed_tree, tvb, 4, FIELD_STATUS_CODE); offset = 6; /* Size of fixed fields */ tagged_parameter_tree_len = tvb_reported_length_remaining(tvb, offset); if (tagged_parameter_tree_len != 0) { tagged_tree = get_tagged_parameter_tree (mgt_tree, tvb, offset, tagged_parameter_tree_len); ieee_80211_add_tagged_parameters (tvb, offset, pinfo, tagged_tree, tagged_parameter_tree_len); } break; case MGT_DEAUTHENTICATION: fixed_tree = get_fixed_parameter_tree (mgt_tree, tvb, 0, 2); add_fixed_field(fixed_tree, tvb, 0, FIELD_REASON_CODE); offset = 2; /* Size of fixed fields */ tagged_parameter_tree_len = tvb_reported_length_remaining(tvb, offset); if (tagged_parameter_tree_len > 0) { tagged_tree = get_tagged_parameter_tree(mgt_tree, tvb, offset, tagged_parameter_tree_len); ieee_80211_add_tagged_parameters(tvb, offset, pinfo, tagged_tree, tagged_parameter_tree_len); } break; case MGT_ACTION: { proto_item *lcl_fixed_hdr; proto_tree *lcl_fixed_tree; lcl_fixed_hdr = proto_tree_add_text(mgt_tree, tvb, 0, 0, "Fixed parameters"); lcl_fixed_tree = proto_item_add_subtree (lcl_fixed_hdr, ett_fixed_parameters); offset += add_fixed_field(lcl_fixed_tree, tvb, 0, FIELD_ACTION); proto_item_set_len(lcl_fixed_hdr, offset); tagged_parameter_tree_len = tvb_reported_length_remaining(tvb, offset); if (tagged_parameter_tree_len != 0) { tagged_tree = get_tagged_parameter_tree (mgt_tree, tvb, offset, tagged_parameter_tree_len); ieee_80211_add_tagged_parameters (tvb, offset, pinfo, tagged_tree, tagged_parameter_tree_len); } break; } case MGT_ACTION_NO_ACK: { proto_item *lcl_fixed_hdr; proto_tree *lcl_fixed_tree; lcl_fixed_hdr = proto_tree_add_text(mgt_tree, tvb, 0, 0, "Fixed parameters"); lcl_fixed_tree = proto_item_add_subtree (lcl_fixed_hdr, ett_fixed_parameters); offset += add_fixed_field(lcl_fixed_tree, tvb, 0, FIELD_ACTION); proto_item_set_len(lcl_fixed_hdr, offset); tagged_parameter_tree_len = tvb_reported_length_remaining(tvb, offset); if (tagged_parameter_tree_len != 0) { tagged_tree = get_tagged_parameter_tree (mgt_tree, tvb, offset, tagged_parameter_tree_len); ieee_80211_add_tagged_parameters (tvb, offset, pinfo, tagged_tree, tagged_parameter_tree_len); } break; } case MGT_ARUBA_WLAN: { proto_item *aruba_hdr; proto_tree *aruba_tree; guint16 type; type = tvb_get_ntohs(tvb, offset); aruba_hdr = proto_tree_add_text(mgt_tree, tvb, 0, 0, "Aruba Management"); aruba_tree = proto_item_add_subtree(aruba_hdr, ett_fixed_parameters); proto_tree_add_item(aruba_tree, cf_aruba, tvb, offset, 2, FALSE); offset += 2; /* HeartBeat Sequence */ if ( type == 0x0005 ) { proto_tree_add_item(aruba_tree, cf_aruba_hb_seq, tvb, offset, 8, FALSE); } /* MTU Size */ if ( type == 0x0003 ) { proto_tree_add_item(aruba_tree, cf_aruba_mtu, tvb, offset, 2, FALSE); } break; } } } static void set_src_addr_cols(packet_info *pinfo, const guint8 *addr, const char *type) { if (check_col(pinfo->cinfo, COL_RES_DL_SRC)) col_add_fstr(pinfo->cinfo, COL_RES_DL_SRC, "%s (%s)", get_ether_name(addr), type); if (check_col(pinfo->cinfo, COL_UNRES_DL_SRC)) col_add_str(pinfo->cinfo, COL_UNRES_DL_SRC, ether_to_str(addr)); } static void set_dst_addr_cols(packet_info *pinfo, const guint8 *addr, const char *type) { if (check_col(pinfo->cinfo, COL_RES_DL_DST)) col_add_fstr(pinfo->cinfo, COL_RES_DL_DST, "%s (%s)", get_ether_name(addr), type); if (check_col(pinfo->cinfo, COL_UNRES_DL_DST)) col_add_str(pinfo->cinfo, COL_UNRES_DL_DST, ether_to_str(addr)); } static guint32 crc32_802_tvb_padded(tvbuff_t *tvb, guint hdr_len, guint hdr_size, guint len) { guint32 c_crc; c_crc = crc32_ccitt_tvb(tvb, hdr_len); c_crc = crc32_ccitt_seed(tvb_get_ptr(tvb, hdr_size, len), len, ~c_crc); /* Byte reverse. */ c_crc = ((unsigned char)(c_crc>>0)<<24) | ((unsigned char)(c_crc>>8)<<16) | ((unsigned char)(c_crc>>16)<<8) | ((unsigned char)(c_crc>>24)<<0); return ( c_crc ); } typedef enum { ENCAP_802_2, ENCAP_IPX, ENCAP_ETHERNET } encap_t; /* ************************************************************************* */ /* Dissect 802.11 frame */ /* ************************************************************************* */ /* * The 802.11n specification makes some fairly significant changes to the * layout of the MAC header. The first two bits of the MAC header are the * protocol version. You'd think that the 802.11 committee would have * bumped the version to indicate a different MAC layout, but NOOOO -- we * have to go digging for bits in various locations instead. */ static void dissect_ieee80211_common (tvbuff_t * tvb, packet_info * pinfo, proto_tree * tree, gboolean fixed_length_header, gint fcs_len, gboolean wlan_broken_fc, gboolean datapad, gboolean is_ht) { guint16 fcf, flags, frame_type_subtype, ctrl_fcf, ctrl_type_subtype; guint16 seq_control; guint32 seq_number, frag_number; gboolean more_frags; const guint8 *src = NULL; const guint8 *dst = NULL; const guint8 *bssid = NULL; proto_item *ti = NULL; proto_item *fcs_item = NULL; proto_item *cw_item = NULL; proto_item *hidden_item; proto_tree *volatile hdr_tree = NULL; proto_tree *fcs_tree = NULL; proto_tree *cw_tree = NULL; guint16 hdr_len, ohdr_len, htc_len = 0; gboolean has_fcs, fcs_good, fcs_bad; gint len, reported_len, ivlen; gboolean is_amsdu = 0; gboolean save_fragmented; tvbuff_t *volatile next_tvb = NULL; guint32 addr_type; volatile encap_t encap_type; guint8 octet1, octet2; char out_buff[SHORT_STR]; gint is_iv_bad; guchar iv_buff[4]; const char *addr1_str = NULL; int addr1_hf = -1; guint offset; const gchar *fts_str; gchar flag_str[] = "opmPRMFTC"; gint ii; wlan_hdr *volatile whdr; static wlan_hdr whdrs[4]; gboolean retransmitted; whdr= &whdrs[0]; col_set_str (pinfo->cinfo, COL_PROTOCOL, "IEEE 802.11"); col_clear(pinfo->cinfo, COL_INFO); fcf = FETCH_FCF(0); frame_type_subtype = COMPOSE_FRAME_TYPE(fcf); if (frame_type_subtype == CTRL_CONTROL_WRAPPER) ctrl_fcf = FETCH_FCF(10); else ctrl_fcf = 0; if (fixed_length_header) hdr_len = DATA_LONG_HDR_LEN; else hdr_len = find_header_length (fcf, ctrl_fcf, is_ht); ohdr_len = hdr_len; if (datapad) hdr_len = roundup2(hdr_len, 4); fts_str = val_to_str_const(frame_type_subtype, frame_type_subtype_vals, "Unrecognized (Reserved frame)"); if (check_col (pinfo->cinfo, COL_INFO)) col_set_str (pinfo->cinfo, COL_INFO, fts_str); flags = FCF_FLAGS (fcf); more_frags = HAVE_FRAGMENTS (flags); for (ii = 0; ii < 8; ii++) { if (! (flags & 0x80 >> ii)) { flag_str[ii] = '.'; } } if (is_ht && IS_STRICTLY_ORDERED(flags) && ((FCF_FRAME_TYPE(fcf) == MGT_FRAME) || (FCF_FRAME_TYPE(fcf) == DATA_FRAME && DATA_FRAME_IS_QOS(frame_type_subtype)))) { htc_len = 4; } /* Add the FC to the current tree */ if (tree) { ti = proto_tree_add_protocol_format (tree, proto_wlan, tvb, 0, hdr_len, "IEEE 802.11 %s", fts_str); hdr_tree = proto_item_add_subtree (ti, ett_80211); dissect_frame_control(hdr_tree, tvb, wlan_broken_fc, 0); if (frame_type_subtype == CTRL_PS_POLL) proto_tree_add_uint(hdr_tree, hf_assoc_id,tvb,2,2, ASSOC_ID(tvb_get_letohs(tvb,2))); else proto_tree_add_uint (hdr_tree, hf_did_duration, tvb, 2, 2, tvb_get_letohs (tvb, 2)); } /* * Decode the part of the frame header that isn't the same for all * frame types. */ seq_control = 0; frag_number = 0; seq_number = 0; switch (FCF_FRAME_TYPE (fcf)) { case MGT_FRAME: /* * All management frame types have the same header. */ src = tvb_get_ptr (tvb, 10, 6); dst = tvb_get_ptr (tvb, 4, 6); SET_ADDRESS(&pinfo->dl_src, AT_ETHER, 6, src); SET_ADDRESS(&pinfo->src, AT_ETHER, 6, src); SET_ADDRESS(&pinfo->dl_dst, AT_ETHER, 6, dst); SET_ADDRESS(&pinfo->dst, AT_ETHER, 6, dst); /* for tap */ SET_ADDRESS(&whdr->bssid, AT_ETHER, 6, tvb_get_ptr(tvb, 16,6)); SET_ADDRESS(&whdr->src, AT_ETHER, 6, src); SET_ADDRESS(&whdr->dst, AT_ETHER, 6, dst); whdr->type = frame_type_subtype; seq_control = tvb_get_letohs(tvb, 22); frag_number = SEQCTL_FRAGMENT_NUMBER(seq_control); seq_number = SEQCTL_SEQUENCE_NUMBER(seq_control); if (check_col (pinfo->cinfo, COL_INFO)) { col_append_fstr(pinfo->cinfo, COL_INFO, ", SN=%d", seq_number); col_append_fstr(pinfo->cinfo, COL_INFO, ", FN=%d",frag_number); } if (tree) { proto_tree_add_ether (hdr_tree, hf_addr_da, tvb, 4, 6, dst); proto_tree_add_ether (hdr_tree, hf_addr_sa, tvb, 10, 6, src); /* add items for wlan.addr filter */ hidden_item = proto_tree_add_ether (hdr_tree, hf_addr, tvb, 4, 6, dst); PROTO_ITEM_SET_HIDDEN(hidden_item); hidden_item = proto_tree_add_ether (hdr_tree, hf_addr, tvb, 10, 6, src); PROTO_ITEM_SET_HIDDEN(hidden_item); proto_tree_add_ether (hdr_tree, hf_addr_bssid, tvb, 16, 6, tvb_get_ptr (tvb, 16, 6)); proto_tree_add_uint (hdr_tree, hf_frag_number, tvb, 22, 2, frag_number); proto_tree_add_uint (hdr_tree, hf_seq_number, tvb, 22, 2, seq_number); } break; case CONTROL_FRAME: { /* * Control Wrapper frames insert themselves between address 1 * and address 2 in a normal control frame. Process address 1 * first, then handle the rest of the frame in dissect_control. */ if (frame_type_subtype == CTRL_CONTROL_WRAPPER) { offset = 10; /* FC + D/ID + Address 1 + CFC + HTC */ ctrl_fcf = FETCH_FCF(10); ctrl_type_subtype = COMPOSE_FRAME_TYPE(ctrl_fcf); } else { offset = 10; /* FC + D/ID + Address 1 */ ctrl_fcf = fcf; ctrl_type_subtype = frame_type_subtype; } switch (ctrl_type_subtype) { case CTRL_PS_POLL: addr1_str = "BSSID"; addr1_hf = hf_addr_bssid; break; case CTRL_RTS: case CTRL_CTS: case CTRL_ACKNOWLEDGEMENT: case CTRL_CFP_END: case CTRL_CFP_ENDACK: case CTRL_BLOCK_ACK_REQ: case CTRL_BLOCK_ACK: addr1_str = "RA"; addr1_hf = hf_addr_ra; break; default: break; } if (!addr1_str) /* XXX - Should we throw some sort of error? */ break; /* Add address 1 */ dst = tvb_get_ptr(tvb, 4, 6); set_dst_addr_cols(pinfo, dst, addr1_str); if (tree) { proto_tree_add_item(hdr_tree, addr1_hf, tvb, 4, 6, FALSE); } /* * Start shoving in other fields if needed. * XXX - Should we look for is_ht as well? */ if (frame_type_subtype == CTRL_CONTROL_WRAPPER && tree) { cw_item = proto_tree_add_text(hdr_tree, tvb, offset, 2, "Contained Frame Control"); cw_tree = proto_item_add_subtree (cw_item, ett_cntrl_wrapper_fc); dissect_frame_control(cw_tree, tvb, FALSE, offset); dissect_ht_control(hdr_tree, tvb, offset + 2); offset+=6; cw_item = proto_tree_add_text(hdr_tree, tvb, offset, 2, "Carried Frame"); hdr_tree = proto_item_add_subtree (cw_item, ett_cntrl_wrapper_fc); } switch (ctrl_type_subtype) { case CTRL_PS_POLL: case CTRL_CFP_END: case CTRL_CFP_ENDACK: { src = tvb_get_ptr (tvb, offset, 6); set_src_addr_cols(pinfo, src, "BSSID"); if (tree) { proto_tree_add_item(hdr_tree, hf_addr_ta, tvb, offset, 6, FALSE); } break; } case CTRL_RTS: { src = tvb_get_ptr (tvb, offset, 6); set_src_addr_cols(pinfo, src, "TA"); if (tree) { proto_tree_add_item(hdr_tree, hf_addr_ta, tvb, offset, 6, FALSE); } break; } case CTRL_CONTROL_WRAPPER: { /* XXX - We shouldn't see this. Should we throw an error? */ break; } case CTRL_BLOCK_ACK_REQ: { src = tvb_get_ptr (tvb, offset, 6); set_src_addr_cols(pinfo, src, "TA"); if (tree) { guint16 bar_control; guint8 block_ack_type; proto_item *bar_parent_item; proto_tree *bar_sub_tree; proto_tree_add_item(hdr_tree, hf_addr_ta, tvb, offset, 6, FALSE); offset += 6; bar_control = tvb_get_letohs(tvb, offset); block_ack_type = (bar_control & 0x0006) >> 1; proto_tree_add_uint(hdr_tree, hf_block_ack_request_type, tvb, offset, 1, block_ack_type); bar_parent_item = proto_tree_add_uint_format(hdr_tree, hf_block_ack_request_control, tvb, offset, 2, bar_control, "Block Ack Request (BAR) Control: 0x%04X", bar_control); bar_sub_tree = proto_item_add_subtree(bar_parent_item, ett_block_ack); proto_tree_add_boolean(bar_sub_tree, hf_block_ack_control_ack_policy, tvb, offset, 1, bar_control); proto_tree_add_boolean(bar_sub_tree, hf_block_ack_control_multi_tid, tvb, offset, 1, bar_control); proto_tree_add_boolean(bar_sub_tree, hf_block_ack_control_compressed_bitmap, tvb, offset, 1, bar_control); proto_tree_add_uint(bar_sub_tree, hf_block_ack_control_reserved, tvb, offset, 2, bar_control); switch (block_ack_type) { case 0: /*Basic BlockAckReq */ { proto_tree_add_uint(bar_sub_tree, hf_block_ack_control_basic_tid_info, tvb, offset+1, 1, bar_control); offset += 2; offset += add_fixed_field(hdr_tree, tvb, offset, FIELD_BLOCK_ACK_SSC); break; } case 2: /* Compressed BlockAckReq */ { proto_tree_add_uint(bar_sub_tree, hf_block_ack_control_compressed_tid_info, tvb, offset+1, 1, bar_control); offset += 2; offset += add_fixed_field(hdr_tree, tvb, offset, FIELD_BLOCK_ACK_SSC); break; } case 3: /* Multi-TID BlockAckReq */ { guint8 tid_count, i; proto_tree *bar_mtid_tree, *bar_mtid_sub_tree; tid_count = ((bar_control & 0xF000) >> 12) + 1; proto_tree_add_uint_format(bar_sub_tree, hf_block_ack_control_compressed_tid_info, tvb, offset+1, 1, bar_control, decode_numeric_bitfield(bar_control, 0xF000, 16,"Number of TIDs Present: 0x%%X"), tid_count); offset += 2; bar_parent_item = proto_tree_add_text (hdr_tree, tvb, offset, tid_count*4, "Per TID Info"); bar_mtid_tree = proto_item_add_subtree(bar_parent_item, ett_block_ack); for (i = 1; i <= tid_count; i++) { bar_parent_item = proto_tree_add_uint(bar_mtid_tree, hf_block_ack_multi_tid_info, tvb, offset, 4, i); bar_mtid_sub_tree = proto_item_add_subtree(bar_parent_item, ett_block_ack); bar_control = tvb_get_letohs(tvb, offset); proto_tree_add_uint(bar_mtid_sub_tree, hf_block_ack_multi_tid_reserved, tvb, offset, 2, bar_control); proto_tree_add_uint(bar_mtid_sub_tree, hf_block_ack_multi_tid_value, tvb, offset+1, 1, bar_control); offset += 2; offset += add_fixed_field(bar_mtid_sub_tree, tvb, offset, FIELD_BLOCK_ACK_SSC); } break; } } } break; } case CTRL_BLOCK_ACK: { src = tvb_get_ptr (tvb, offset, 6); set_src_addr_cols(pinfo, src, "TA"); if (tree) { guint16 ba_control; guint8 block_ack_type; proto_item *ba_parent_item; proto_tree *ba_sub_tree; proto_tree_add_item(hdr_tree, hf_addr_ta, tvb, offset, 6, FALSE); offset += 6; ba_control = tvb_get_letohs(tvb, offset); block_ack_type = (ba_control & 0x0006) >> 1; proto_tree_add_uint(hdr_tree, hf_block_ack_type, tvb, offset, 1, block_ack_type); ba_parent_item = proto_tree_add_uint_format(hdr_tree, hf_block_ack_control, tvb, offset, 2, ba_control, "Block Ack (BA) Control: 0x%04X", ba_control); ba_sub_tree = proto_item_add_subtree(ba_parent_item, ett_block_ack); proto_tree_add_boolean(ba_sub_tree, hf_block_ack_control_ack_policy, tvb, offset, 1, ba_control); proto_tree_add_boolean(ba_sub_tree, hf_block_ack_control_multi_tid, tvb, offset, 1, ba_control); proto_tree_add_boolean(ba_sub_tree, hf_block_ack_control_compressed_bitmap, tvb, offset, 1, ba_control); proto_tree_add_uint(ba_sub_tree, hf_block_ack_control_reserved, tvb, offset, 2, ba_control); switch (block_ack_type) { case 0: /*Basic BlockAck */ { proto_tree_add_uint(ba_sub_tree, hf_block_ack_control_basic_tid_info, tvb, offset+1, 1, ba_control); offset += 2; offset += add_fixed_field(hdr_tree, tvb, offset, FIELD_BLOCK_ACK_SSC); proto_tree_add_item(hdr_tree, hf_block_ack_bitmap, tvb, offset, 128, FALSE); offset += 128; break; } case 2: /* Compressed BlockAck */ { proto_tree_add_uint(ba_sub_tree, hf_block_ack_control_basic_tid_info, tvb, offset+1, 1, ba_control); offset += 2; offset += add_fixed_field(hdr_tree, tvb, offset, FIELD_BLOCK_ACK_SSC); proto_tree_add_item(hdr_tree, hf_block_ack_bitmap, tvb, offset, 8, FALSE); offset += 8; break; } case 3: /* Multi-TID BlockAck */ { guint8 tid_count, i; proto_tree *ba_mtid_tree, *ba_mtid_sub_tree; tid_count = ((ba_control & 0xF000) >> 12) + 1; proto_tree_add_uint_format(ba_sub_tree, hf_block_ack_control_compressed_tid_info, tvb, offset+1, 1, ba_control, decode_numeric_bitfield(ba_control, 0xF000, 16,"Number of TIDs Present: 0x%%X"), tid_count); offset += 2; ba_parent_item = proto_tree_add_text (hdr_tree, tvb, offset, tid_count*4, "Per TID Info"); ba_mtid_tree = proto_item_add_subtree(ba_parent_item, ett_block_ack); for (i=1; i<=tid_count; i++) { ba_parent_item = proto_tree_add_uint(ba_mtid_tree, hf_block_ack_multi_tid_info, tvb, offset, 4, i); ba_mtid_sub_tree = proto_item_add_subtree(ba_parent_item, ett_block_ack); ba_control = tvb_get_letohs(tvb, offset); proto_tree_add_uint(ba_mtid_sub_tree, hf_block_ack_multi_tid_reserved, tvb, offset, 2, ba_control); proto_tree_add_uint(ba_mtid_sub_tree, hf_block_ack_multi_tid_value, tvb, offset+1, 1, ba_control); offset += 2; offset += add_fixed_field(ba_mtid_sub_tree, tvb, offset, FIELD_BLOCK_ACK_SSC); proto_tree_add_item(ba_mtid_sub_tree, hf_block_ack_bitmap, tvb, offset, 8, FALSE); offset += 8; } break; } } } break; } } break; } case DATA_FRAME: addr_type = FCF_ADDR_SELECTOR (fcf); /* In order to show src/dst address we must always do the following */ switch (addr_type) { case DATA_ADDR_T1: src = tvb_get_ptr (tvb, 10, 6); dst = tvb_get_ptr (tvb, 4, 6); bssid = tvb_get_ptr (tvb, 16, 6); break; case DATA_ADDR_T2: src = tvb_get_ptr (tvb, 16, 6); dst = tvb_get_ptr (tvb, 4, 6); bssid = tvb_get_ptr (tvb, 10, 6); break; case DATA_ADDR_T3: src = tvb_get_ptr (tvb, 10, 6); dst = tvb_get_ptr (tvb, 16, 6); bssid = tvb_get_ptr (tvb, 4, 6); break; case DATA_ADDR_T4: src = tvb_get_ptr (tvb, 24, 6); dst = tvb_get_ptr (tvb, 16, 6); bssid = tvb_get_ptr (tvb, 16, 6); break; } SET_ADDRESS(&pinfo->dl_src, AT_ETHER, 6, src); SET_ADDRESS(&pinfo->src, AT_ETHER, 6, src); SET_ADDRESS(&pinfo->dl_dst, AT_ETHER, 6, dst); SET_ADDRESS(&pinfo->dst, AT_ETHER, 6, dst); /* for tap */ SET_ADDRESS(&whdr->bssid, AT_ETHER, 6, bssid); SET_ADDRESS(&whdr->src, AT_ETHER, 6, src); SET_ADDRESS(&whdr->dst, AT_ETHER, 6, dst); whdr->type = frame_type_subtype; seq_control = tvb_get_letohs(tvb, 22); frag_number = SEQCTL_FRAGMENT_NUMBER(seq_control); seq_number = SEQCTL_SEQUENCE_NUMBER(seq_control); if (check_col (pinfo->cinfo, COL_INFO)) { col_append_fstr(pinfo->cinfo, COL_INFO, ", SN=%d, FN=%d", seq_number,frag_number); } /* Now if we have a tree we start adding stuff */ if (tree) { switch (addr_type) { case DATA_ADDR_T1: proto_tree_add_ether (hdr_tree, hf_addr_da, tvb, 4, 6, dst); proto_tree_add_ether (hdr_tree, hf_addr_sa, tvb, 10, 6, src); proto_tree_add_ether (hdr_tree, hf_addr_bssid, tvb, 16, 6, bssid); proto_tree_add_uint (hdr_tree, hf_frag_number, tvb, 22, 2, frag_number); proto_tree_add_uint (hdr_tree, hf_seq_number, tvb, 22, 2, seq_number); /* add items for wlan.addr filter */ hidden_item = proto_tree_add_ether (hdr_tree, hf_addr, tvb, 4, 6, dst); PROTO_ITEM_SET_HIDDEN(hidden_item); hidden_item = proto_tree_add_ether (hdr_tree, hf_addr, tvb, 10, 6, src); PROTO_ITEM_SET_HIDDEN(hidden_item); break; case DATA_ADDR_T2: proto_tree_add_ether (hdr_tree, hf_addr_da, tvb, 4, 6, dst); proto_tree_add_ether (hdr_tree, hf_addr_bssid, tvb, 10, 6, bssid); proto_tree_add_ether (hdr_tree, hf_addr_sa, tvb, 16, 6, src); proto_tree_add_uint (hdr_tree, hf_frag_number, tvb, 22, 2, frag_number); proto_tree_add_uint (hdr_tree, hf_seq_number, tvb, 22, 2, seq_number); /* add items for wlan.addr filter */ hidden_item = proto_tree_add_ether (hdr_tree, hf_addr, tvb, 4, 6, dst); PROTO_ITEM_SET_HIDDEN(hidden_item); hidden_item = proto_tree_add_ether (hdr_tree, hf_addr, tvb, 16, 6, src); PROTO_ITEM_SET_HIDDEN(hidden_item); break; case DATA_ADDR_T3: proto_tree_add_ether (hdr_tree, hf_addr_bssid, tvb, 4, 6, bssid); proto_tree_add_ether (hdr_tree, hf_addr_sa, tvb, 10, 6, src); proto_tree_add_ether (hdr_tree, hf_addr_da, tvb, 16, 6, dst); proto_tree_add_uint (hdr_tree, hf_frag_number, tvb, 22, 2, frag_number); proto_tree_add_uint (hdr_tree, hf_seq_number, tvb, 22, 2, seq_number); /* add items for wlan.addr filter */ hidden_item = proto_tree_add_ether (hdr_tree, hf_addr, tvb, 10, 6, src); PROTO_ITEM_SET_HIDDEN(hidden_item); hidden_item = proto_tree_add_ether (hdr_tree, hf_addr, tvb, 16, 6, dst); PROTO_ITEM_SET_HIDDEN(hidden_item); break; case DATA_ADDR_T4: proto_tree_add_ether (hdr_tree, hf_addr_ra, tvb, 4, 6, tvb_get_ptr (tvb, 4, 6)); proto_tree_add_ether (hdr_tree, hf_addr_ta, tvb, 10, 6, tvb_get_ptr (tvb, 10, 6)); proto_tree_add_ether (hdr_tree, hf_addr_da, tvb, 16, 6, dst); proto_tree_add_uint (hdr_tree, hf_frag_number, tvb, 22, 2, frag_number); proto_tree_add_uint (hdr_tree, hf_seq_number, tvb, 22, 2, seq_number); proto_tree_add_ether (hdr_tree, hf_addr_sa, tvb, 24, 6, src); /* add items for wlan.addr filter */ hidden_item = proto_tree_add_ether (hdr_tree, hf_addr, tvb, 16, 6, dst); PROTO_ITEM_SET_HIDDEN(hidden_item); hidden_item = proto_tree_add_ether (hdr_tree, hf_addr, tvb, 24, 6, src); PROTO_ITEM_SET_HIDDEN(hidden_item); break; } } #ifdef MESH_OVERRIDES if (tree && (FCF_ADDR_SELECTOR(fcf) == DATA_ADDR_T4 || FCF_ADDR_SELECTOR(fcf) == DATA_ADDR_T2)) { proto_item *msh_fields; proto_tree *msh_tree; guint16 mshoff; guint8 mesh_flags; guint8 mesh_ttl; guint32 mesh_seq_number; guint8 mesh_hdr_len; const guint8 *ptr; mshoff = hdr_len; mesh_flags = tvb_get_guint8(tvb, mshoff + 0); /* heuristic method to determine if this is a mesh frame */ if (mesh_flags & ~MESH_FLAGS_ADDRESS_EXTENSION) { #if 0 g_warning("Invalid mesh flags: %x. Interpreting as WDS frame.\n", mesh_flags); #endif break; } ptr = tvb_get_ptr(tvb, mshoff, 1); mesh_hdr_len = find_mesh_header_length(ptr, 0, fcf); mesh_ttl = tvb_get_guint8(tvb, mshoff + 1); mesh_seq_number = 0xffffff & tvb_get_letohl(tvb, mshoff + 2); msh_fields = proto_tree_add_text(hdr_tree, tvb, mshoff, mesh_hdr_len, "Mesh Header"); msh_tree = proto_item_add_subtree (msh_fields, ett_msh_parameters); proto_tree_add_boolean_format (msh_tree, hf_mesh_flags, tvb, mshoff, 1, mesh_flags, "Address Extension %x", mesh_flags & MESH_FLAGS_ADDRESS_EXTENSION); proto_tree_add_uint (msh_tree, hf_mesh_ttl, tvb, mshoff + 1, 1, mesh_ttl); proto_tree_add_uint (msh_tree, hf_mesh_seq, tvb, mshoff + 2, 4, mesh_seq_number); switch (mesh_hdr_len) { case 24: ptr = tvb_get_ptr (tvb, mshoff + 18, 6); proto_tree_add_ether(msh_tree, hf_mesh_ae3, tvb, mshoff + 18, 6, ptr); case 18: ptr = tvb_get_ptr (tvb, mshoff + 12, 6); proto_tree_add_ether(msh_tree, hf_mesh_ae2, tvb, mshoff + 12, 6, ptr); case 12: ptr = tvb_get_ptr (tvb, mshoff + 6, 6); proto_tree_add_ether(msh_tree, hf_mesh_ae1, tvb, mshoff + 6, 6, ptr); case 6: break; default: expert_add_info_format(pinfo, ti, PI_MALFORMED, PI_ERROR, "Invalid mesh header length (%d)\n", mesh_hdr_len); } hdr_len += mesh_hdr_len; } #endif /* MESH_OVERRIDES */ break; } len = tvb_length_remaining(tvb, hdr_len); reported_len = tvb_reported_length_remaining(tvb, hdr_len); switch (fcs_len) { case 0: /* Definitely has no FCS */ has_fcs = FALSE; break; case 4: /* Definitely has an FCS */ has_fcs = TRUE; break; default: /* Don't know - use "wlan_check_fcs" */ has_fcs = wlan_check_fcs; break; } if (has_fcs) { /* * Well, this packet should, in theory, have an FCS. * Do we have the entire packet, and does it have enough data for * the FCS? */ if (reported_len < 4) { /* * The packet is claimed not to even have enough data for a 4-byte * FCS. * Pretend it doesn't have an FCS. */ ; } else if (len < reported_len) { /* * The packet is claimed to have enough data for a 4-byte FCS, but * we didn't capture all of the packet. * Slice off the 4-byte FCS from the reported length, and trim the * captured length so it's no more than the reported length; that * will slice off what of the FCS, if any, is in the captured * length. */ reported_len -= 4; if (len > reported_len) len = reported_len; } else { /* * We have the entire packet, and it includes a 4-byte FCS. * Slice it off, and put it into the tree. */ len -= 4; reported_len -= 4; if (tree) { guint32 sent_fcs = tvb_get_ntohl(tvb, hdr_len + len); guint32 fcs; if (datapad) fcs = crc32_802_tvb_padded(tvb, ohdr_len, hdr_len, len); else fcs = crc32_802_tvb(tvb, hdr_len + len); if (fcs == sent_fcs) { fcs_good = TRUE; fcs_bad = FALSE; } else { fcs_good = FALSE; fcs_bad = TRUE; } if(fcs_good) { fcs_item = proto_tree_add_uint_format(hdr_tree, hf_fcs, tvb, hdr_len + len, 4, sent_fcs, "Frame check sequence: 0x%08x [correct]", sent_fcs); } else { fcs_item = proto_tree_add_uint_format(hdr_tree, hf_fcs, tvb, hdr_len + len, 4, sent_fcs, "Frame check sequence: 0x%08x [incorrect, should be 0x%08x]", sent_fcs, fcs); flag_str[8] = '.'; } proto_tree_set_appendix(hdr_tree, tvb, hdr_len + len, 4); fcs_tree = proto_item_add_subtree(fcs_item, ett_fcs); fcs_item = proto_tree_add_boolean(fcs_tree, hf_fcs_good, tvb, hdr_len + len, 4, fcs_good); PROTO_ITEM_SET_GENERATED(fcs_item); fcs_item = proto_tree_add_boolean(fcs_tree, hf_fcs_bad, tvb, hdr_len + len, 4, fcs_bad); PROTO_ITEM_SET_GENERATED(fcs_item); } } } else { flag_str[8] = '\0'; } proto_item_append_text(ti, ", Flags: %s", flag_str); if (check_col (pinfo->cinfo, COL_INFO)) col_append_fstr (pinfo->cinfo, COL_INFO, ", Flags=%s", flag_str); /* * Only management and data frames have a body, so we don't have * anything more to do for other types of frames. */ switch (FCF_FRAME_TYPE (fcf)) { case MGT_FRAME: if (htc_len == 4) { dissect_ht_control(hdr_tree, tvb, ohdr_len - 4); } break; case DATA_FRAME: if (tree && DATA_FRAME_IS_QOS(frame_type_subtype)) { proto_item *qos_fields; proto_tree *qos_tree; guint16 qosoff; guint16 qos_control; guint16 qos_priority; guint16 qos_ack_policy; guint16 qos_amsdu_present; guint16 qos_eosp; guint16 qos_field_content; /* * We calculate the offset to the QoS header data as * an offset relative to the end of the header. But * when the header has been padded to align the data * this must be done relative to true header size, not * the padded/aligned value. To simplify this work we * stash the original header size in ohdr_len instead * of recalculating it. */ qosoff = ohdr_len - htc_len - 2; qos_fields = proto_tree_add_text(hdr_tree, tvb, qosoff, 2, "QoS Control"); qos_tree = proto_item_add_subtree (qos_fields, ett_qos_parameters); qos_control = tvb_get_letohs(tvb, qosoff + 0); qos_priority = QOS_PRIORITY(qos_control); qos_ack_policy = QOS_ACK_POLICY(qos_control); qos_amsdu_present = QOS_AMSDU_PRESENT(qos_control); qos_eosp = QOS_EOSP(qos_control); qos_field_content = QOS_FIELD_CONTENT(qos_control); proto_tree_add_uint_format (qos_tree, hf_qos_priority, tvb, qosoff, 1, qos_priority, "Priority: %d (%s) (%s)", qos_priority, qos_tags[qos_priority], qos_acs[qos_priority]); if (flags & FLAG_FROM_DS) { proto_tree_add_boolean (qos_tree, hf_qos_eosp, tvb, qosoff, 1, qos_control); } else { proto_tree_add_boolean (qos_tree, hf_qos_bit4, tvb, qosoff, 1, qos_control); } proto_tree_add_uint (qos_tree, hf_qos_ack_policy, tvb, qosoff, 1, qos_ack_policy); if (flags & FLAG_FROM_DS) { if (!DATA_FRAME_IS_NULL(frame_type_subtype)) { proto_tree_add_boolean(qos_tree, hf_qos_amsdu_present, tvb, qosoff, 1, qos_amsdu_present); is_amsdu = qos_amsdu_present; } if (DATA_FRAME_IS_CF_POLL(frame_type_subtype)) { /* txop limit */ if (qos_field_content == 0) { proto_tree_add_uint_format_value (qos_tree, hf_qos_txop_limit, tvb, qosoff + 1, 1, qos_field_content, "transmit one frame immediately (0)"); } else { proto_tree_add_uint (qos_tree, hf_qos_txop_limit, tvb, qosoff + 1, 1, qos_field_content); } } else { /* qap ps buffer state */ proto_item *qos_ps_buf_state_fields; proto_tree *qos_ps_buf_state_tree; guint8 qap_buf_load; qos_ps_buf_state_fields = proto_tree_add_text(qos_tree, tvb, qosoff + 1, 1, "QAP PS Buffer State: 0x%x", qos_field_content); qos_ps_buf_state_tree = proto_item_add_subtree (qos_ps_buf_state_fields, ett_qos_ps_buf_state); proto_tree_add_boolean (qos_ps_buf_state_tree, hf_qos_buf_state_indicated, tvb, qosoff + 1, 1, qos_field_content); if (QOS_PS_BUF_STATE_INDICATED(qos_field_content)) { proto_tree_add_uint (qos_ps_buf_state_tree, hf_qos_highest_pri_buf_ac, tvb, qosoff + 1, 1, qos_field_content); qap_buf_load = QOS_PS_QAP_BUF_LOAD(qos_field_content); switch (qap_buf_load) { case 0: proto_tree_add_uint_format_value (qos_ps_buf_state_tree, hf_qos_qap_buf_load, tvb, qosoff + 1, 1, qos_field_content, "no buffered traffic (0)"); break; default: proto_tree_add_uint_format_value (qos_ps_buf_state_tree, hf_qos_qap_buf_load, tvb, qosoff + 1, 1, qos_field_content, "%d octets (%d)", qap_buf_load*4096, qap_buf_load); break; case 15: proto_tree_add_uint_format_value (qos_ps_buf_state_tree, hf_qos_qap_buf_load, tvb, qosoff + 1, 1, qos_field_content, "greater than 57344 octets (15)"); break; } } } } else { if (!DATA_FRAME_IS_NULL(frame_type_subtype)) { proto_tree_add_boolean(qos_tree, hf_qos_amsdu_present, tvb, qosoff, 1, qos_amsdu_present); is_amsdu = qos_amsdu_present; } if (qos_eosp) { /* queue size */ switch (qos_field_content) { case 0: proto_tree_add_uint_format_value (qos_tree, hf_qos_queue_size, tvb, qosoff + 1, 1, qos_field_content, "no buffered traffic in the queue (0)"); break; default: proto_tree_add_uint_format_value (qos_tree, hf_qos_queue_size, tvb, qosoff + 1, 1, qos_field_content, "%u bytes (%u)", qos_field_content*256, qos_field_content); break; case 254: proto_tree_add_uint_format_value (qos_tree, hf_qos_queue_size, tvb, qosoff + 1, 1, qos_field_content, "more than 64768 octets (254)"); break; case 255: proto_tree_add_uint_format_value (qos_tree, hf_qos_queue_size, tvb, qosoff + 1, 1, qos_field_content, "unspecified or unknown (256)"); break; } } else { /* txop duration requested */ if (qos_field_content == 0) { proto_tree_add_uint_format_value (qos_tree, hf_qos_txop_dur_req, tvb, qosoff + 1, 1, qos_field_content, "no TXOP requested (0)"); } else { proto_tree_add_uint (qos_tree, hf_qos_txop_dur_req, tvb, qosoff + 1, 1, qos_field_content); } } } /* Do we have +HTC? */ if (htc_len == 4) { dissect_ht_control(hdr_tree, tvb, ohdr_len - 4); } } /* end of qos control field */ #ifdef HAVE_AIRPDCAP /* Davide Schiera (2006-11-21): process handshake packet with AirPDcap */ /* the processing will take care of 4-way handshake sessions for WPA */ /* and WPA2 decryption */ if (enable_decryption && !pinfo->fd->flags.visited) { const guint8 *enc_data = tvb_get_ptr(tvb, 0, hdr_len+reported_len); AirPDcapPacketProcess(&airpdcap_ctx, enc_data, hdr_len, hdr_len+reported_len, NULL, 0, NULL, TRUE, FALSE); } /* Davide Schiera -------------------------------------------------------- */ #endif /* * No-data frames don't have a body. */ if (DATA_FRAME_IS_NULL(frame_type_subtype)) return; if (!wlan_subdissector) { guint fnum = 0; /* key: bssid:src * data: last seq_control seen and frame number */ retransmitted = FALSE; if(!pinfo->fd->flags.visited){ retransmit_key key; retransmit_key *result; memcpy(key.bssid, bssid, 6); memcpy(key.src, src, 6); key.seq_control = 0; result = (retransmit_key *)g_hash_table_lookup(fc_analyse_retransmit_table, &key); if (result && result->seq_control == seq_control) { /* keep a pointer to the first seen frame, could be done with proto data? */ fnum = result->fnum; g_hash_table_insert(fc_first_frame_table, GINT_TO_POINTER( pinfo->fd->num), GINT_TO_POINTER(fnum)); retransmitted = TRUE; } else { /* first time or new seq*/ if (!result) { result = se_alloc(sizeof(retransmit_key)); *result = key; g_hash_table_insert(fc_analyse_retransmit_table, result, result); } result->seq_control = seq_control; result->fnum = pinfo->fd->num; } } else if ((fnum = GPOINTER_TO_UINT(g_hash_table_lookup(fc_first_frame_table, GINT_TO_POINTER( pinfo->fd->num))))) { retransmitted = TRUE; } if (retransmitted) { col_append_str(pinfo->cinfo, COL_INFO, " [retransmitted]"); if (tree) { proto_item *item; item=proto_tree_add_none_format(hdr_tree, hf_fc_analysis_retransmission, tvb, 0, 0, "Retransmitted frame"); PROTO_ITEM_SET_GENERATED(item); item=proto_tree_add_uint(hdr_tree, hf_fc_analysis_retransmission_frame,tvb, 0, 0, fnum); PROTO_ITEM_SET_GENERATED(item); } next_tvb = tvb_new_subset (tvb, hdr_len, len, reported_len); call_dissector(data_handle, next_tvb, pinfo, tree); goto end_of_wlan; } } break; case CONTROL_FRAME: return; default: return; } if (IS_PROTECTED(FCF_FLAGS(fcf)) && wlan_ignore_wep != WLAN_IGNORE_WEP_WO_IV) { /* * It's a WEP or WPA encrypted frame; dissect the protections parameters * and decrypt the data, if we have a matching key. Otherwise display it as data. */ gboolean can_decrypt = FALSE; proto_tree *wep_tree = NULL; guint32 iv; guint8 key, keybyte; /* Davide Schiera (2006-11-27): define algorithms constants and macros */ #ifdef HAVE_AIRPDCAP #define PROTECTION_ALG_TKIP AIRPDCAP_KEY_TYPE_TKIP #define PROTECTION_ALG_CCMP AIRPDCAP_KEY_TYPE_CCMP #define PROTECTION_ALG_WEP AIRPDCAP_KEY_TYPE_WEP #define PROTECTION_ALG_RSNA PROTECTION_ALG_CCMP | PROTECTION_ALG_TKIP #else #define PROTECTION_ALG_WEP 0 #define PROTECTION_ALG_TKIP 1 #define PROTECTION_ALG_CCMP 2 #define PROTECTION_ALG_RSNA PROTECTION_ALG_CCMP | PROTECTION_ALG_TKIP #endif guint8 algorithm=G_MAXUINT8; /* Davide Schiera (2006-11-27): added macros to check the algorithm */ /* used could be TKIP or CCMP */ #define IS_TKIP(tvb, hdr_len) (tvb_get_guint8(tvb, hdr_len + 1) & 0x20) #define IS_CCMP(tvb, hdr_len) (tvb_get_guint8(tvb, hdr_len + 2) == 0) /* Davide Schiera ----------------------------------------------------- */ #ifdef HAVE_AIRPDCAP /* Davide Schiera (2006-11-21): recorded original lengths to pass them */ /* to the packets process function */ guint32 sec_header=0; guint32 sec_trailer=0; next_tvb = try_decrypt(tvb, hdr_len, reported_len, &algorithm, &sec_header, &sec_trailer); #endif /* Davide Schiera ----------------------------------------------------- */ keybyte = tvb_get_guint8(tvb, hdr_len + 3); key = KEY_OCTET_WEP_KEY(keybyte); if ((keybyte & KEY_EXTIV) && (len >= EXTIV_LEN)) { /* Extended IV; this frame is likely encrypted with TKIP or CCMP */ if (tree) { proto_item *extiv_fields; #ifdef HAVE_AIRPDCAP /* Davide Schiera (2006-11-27): differentiated CCMP and TKIP if */ /* it's possible */ if (algorithm==PROTECTION_ALG_TKIP) extiv_fields = proto_tree_add_text(hdr_tree, tvb, hdr_len, 8, "TKIP parameters"); else if (algorithm==PROTECTION_ALG_CCMP) extiv_fields = proto_tree_add_text(hdr_tree, tvb, hdr_len, 8, "CCMP parameters"); else { /* Davide Schiera -------------------------------------------- */ #endif /* Davide Schiera (2006-11-27): differentiated CCMP and TKIP if*/ /* it's possible */ if (IS_TKIP(tvb, hdr_len)) { algorithm=PROTECTION_ALG_TKIP; extiv_fields = proto_tree_add_text(hdr_tree, tvb, hdr_len, 8, "TKIP parameters"); } else if (IS_CCMP(tvb, hdr_len)) { algorithm=PROTECTION_ALG_CCMP; extiv_fields = proto_tree_add_text(hdr_tree, tvb, hdr_len, 8, "CCMP parameters"); } else extiv_fields = proto_tree_add_text(hdr_tree, tvb, hdr_len, 8, "TKIP/CCMP parameters"); #ifdef HAVE_AIRPDCAP } #endif proto_item_set_len (ti, hdr_len + 8); wep_tree = proto_item_add_subtree (extiv_fields, ett_wep_parameters); if (algorithm==PROTECTION_ALG_TKIP) { g_snprintf(out_buff, SHORT_STR, "0x%08X%02X%02X", tvb_get_letohl(tvb, hdr_len + 4), tvb_get_guint8(tvb, hdr_len), tvb_get_guint8(tvb, hdr_len + 2)); proto_tree_add_string(wep_tree, hf_tkip_extiv, tvb, hdr_len, EXTIV_LEN, out_buff); } else if (algorithm==PROTECTION_ALG_CCMP) { g_snprintf(out_buff, SHORT_STR, "0x%08X%02X%02X", tvb_get_letohl(tvb, hdr_len + 4), tvb_get_guint8(tvb, hdr_len + 1), tvb_get_guint8(tvb, hdr_len)); proto_tree_add_string(wep_tree, hf_ccmp_extiv, tvb, hdr_len, EXTIV_LEN, out_buff); } proto_tree_add_uint(wep_tree, hf_wep_key, tvb, hdr_len + 3, 1, key); } /* Subtract out the length of the IV. */ len -= EXTIV_LEN; reported_len -= EXTIV_LEN; ivlen = EXTIV_LEN; /* It is unknown whether this is TKIP or CCMP, so let's not even try to * parse TKIP Michael MIC+ICV or CCMP MIC. */ #ifdef HAVE_AIRPDCAP /* Davide Schiera (2006-11-21): enable TKIP and CCMP decryption */ /* checking for the trailer */ if (next_tvb!=NULL) { if (reported_len < (gint) sec_trailer) { /* There is no space for a trailer, ignore it and don't decrypt */ ; } else if (len < reported_len) { /* There is space for a trailer, but we haven't capture all the */ /* packet. Slice off the trailer, but don't try to decrypt */ reported_len -= sec_trailer; if (len > reported_len) len = reported_len; } else { /* Ok, we have a trailer and the whole packet. Decrypt it! */ /* TODO: At the moment we won't add the trailer to the tree, */ /* so don't remove the trailer from the packet */ len -= sec_trailer; reported_len -= sec_trailer; can_decrypt = TRUE; } } /* Davide Schiera -------------------------------------------------- */ #endif } else { /* No Ext. IV - WEP packet */ /* * XXX - pass the IV and key to "try_decrypt_wep()", and have it pass * them to "wep_decrypt()", rather than having "wep_decrypt()" extract * them itself. * * Also, just pass the data *following* the WEP parameters as the * buffer to decrypt. */ iv = tvb_get_ntoh24(tvb, hdr_len); if (tree) { proto_item *wep_fields; wep_fields = proto_tree_add_text(hdr_tree, tvb, hdr_len, 4, "WEP parameters"); wep_tree = proto_item_add_subtree (wep_fields, ett_wep_parameters); proto_tree_add_uint (wep_tree, hf_wep_iv, tvb, hdr_len, 3, iv); tvb_memcpy(tvb, iv_buff, hdr_len, 3); is_iv_bad = weak_iv(iv_buff); if (is_iv_bad != -1) { proto_tree_add_boolean_format (wep_tree, hf_wep_iv_weak, tvb, 0, 0, TRUE, "Weak IV for key byte %d", is_iv_bad); } } if (tree) proto_tree_add_uint (wep_tree, hf_wep_key, tvb, hdr_len + 3, 1, key); /* Subtract out the length of the IV. */ len -= 4; reported_len -= 4; ivlen = 4; /* Davide Schiera (2006-11-27): Even if the decryption was not */ /* successful, set the algorithm */ algorithm=PROTECTION_ALG_WEP; /* * Well, this packet should, in theory, have an ICV. * Do we have the entire packet, and does it have enough data for * the ICV? */ if (reported_len < 4) { /* * The packet is claimed not to even have enough data for a * 4-byte ICV. * Pretend it doesn't have an ICV. */ ; } else if (len < reported_len) { /* * The packet is claimed to have enough data for a 4-byte ICV, * but we didn't capture all of the packet. * Slice off the 4-byte ICV from the reported length, and trim * the captured length so it's no more than the reported length; * that will slice off what of the ICV, if any, is in the * captured length. */ reported_len -= 4; if (len > reported_len) len = reported_len; } else { /* * We have the entire packet, and it includes a 4-byte ICV. * Slice it off, and put it into the tree. * * We only support decrypting if we have the the ICV. * * XXX - the ICV is encrypted; we're putting the encrypted * value, not the decrypted value, into the tree. */ len -= 4; reported_len -= 4; can_decrypt = TRUE; } } if (algorithm == PROTECTION_ALG_WEP) { g_strlcpy (wlan_stats.protection, "WEP", MAX_PROTECT_LEN); } else if (algorithm == PROTECTION_ALG_TKIP) { g_strlcpy (wlan_stats.protection, "TKIP", MAX_PROTECT_LEN); } else if (algorithm == PROTECTION_ALG_CCMP) { g_strlcpy (wlan_stats.protection, "CCMP", MAX_PROTECT_LEN); } else { g_strlcpy (wlan_stats.protection, "Unknown", MAX_PROTECT_LEN); } #ifndef HAVE_AIRPDCAP if (can_decrypt) next_tvb = try_decrypt_wep(tvb, hdr_len, reported_len + 8); #else /* Davide Schiera (2006-11-26): decrypted before parsing header and */ /* protection header */ #endif if (!can_decrypt || next_tvb == NULL) { /* * WEP decode impossible or failed, treat payload as raw data * and don't attempt fragment reassembly or further dissection. */ next_tvb = tvb_new_subset(tvb, hdr_len + ivlen, len, reported_len); if (tree) { /* Davide Schiera (2006-11-21): added WEP or WPA separation */ if (algorithm==PROTECTION_ALG_WEP) { if (can_decrypt) proto_tree_add_uint_format (wep_tree, hf_wep_icv, tvb, hdr_len + ivlen + len, 4, tvb_get_ntohl(tvb, hdr_len + ivlen + len), "WEP ICV: 0x%08x (not verified)", tvb_get_ntohl(tvb, hdr_len + ivlen + len)); } else if (algorithm==PROTECTION_ALG_CCMP) { } else if (algorithm==PROTECTION_ALG_TKIP) { } } /* Davide Schiera (2006-11-21) ---------------------------------- */ if (pinfo->ethertype != ETHERTYPE_CENTRINO_PROMISC && wlan_ignore_wep == WLAN_IGNORE_WEP_NO) { /* Some wireless drivers (such as Centrino) WEP payload already decrypted */ call_dissector(data_handle, next_tvb, pinfo, tree); goto end_of_wlan; } } else { /* Davide Schiera (2006-11-21): added WEP or WPA separation */ if (algorithm==PROTECTION_ALG_WEP) { if (tree) proto_tree_add_uint_format (wep_tree, hf_wep_icv, tvb, hdr_len + ivlen + len, 4, tvb_get_ntohl(tvb, hdr_len + ivlen + len), "WEP ICV: 0x%08x (correct)", tvb_get_ntohl(tvb, hdr_len + ivlen + len)); add_new_data_source(pinfo, next_tvb, "Decrypted WEP data"); } else if (algorithm==PROTECTION_ALG_CCMP) { add_new_data_source(pinfo, next_tvb, "Decrypted CCMP data"); } else if (algorithm==PROTECTION_ALG_TKIP) { add_new_data_source(pinfo, next_tvb, "Decrypted TKIP data"); } /* Davide Schiera (2006-11-21) ------------------------------------- */ /* Davide Schiera (2006-11-27): undefine macros and definitions */ #undef IS_TKIP #undef IS_CCMP #undef PROTECTION_ALG_CCMP #undef PROTECTION_ALG_TKIP #undef PROTECTION_ALG_WEP /* Davide Schiera -------------------------------------------------- */ } /* * WEP decryption successful! * * Use the tvbuff we got back from the decryption; the data starts at * the beginning. The lengths are already correct for the decoded WEP * payload. */ hdr_len = 0; } else { /* * Not a WEP-encrypted frame; just use the data from the tvbuff * handed to us. * * The payload starts at "hdr_len" (i.e., just past the 802.11 * MAC header), the length of data in the tvbuff following the * 802.11 header is "len", and the length of data in the packet * following the 802.11 header is "reported_len". */ next_tvb = tvb; } /* * Do defragmentation if "wlan_defragment" is true, and we have more * fragments or this isn't the first fragment. * * We have to do some special handling to catch frames that * have the "More Fragments" indicator not set but that * don't show up as reassembled and don't have any other * fragments present. Some networking interfaces appear * to do reassembly even when you're capturing raw packets * *and* show the reassembled packet without the "More * Fragments" indicator set *but* with a non-zero fragment * number. * * "fragment_add_seq_802_11()" handles that; we want to call it * even if we have a short frame, so that it does those checks - if * the frame is short, it doesn't do reassembly on it. * * (This could get some false positives if we really *did* only * capture the last fragment of a fragmented packet, but that's * life.) */ save_fragmented = pinfo->fragmented; if (wlan_defragment && (more_frags || frag_number != 0)) { fragment_data *fd_head; /* * If we've already seen this frame, look it up in the * table of reassembled packets, otherwise add it to * whatever reassembly is in progress, if any, and see * if it's done. */ if (reported_len < 0) THROW(ReportedBoundsError); fd_head = fragment_add_seq_802_11(next_tvb, hdr_len, pinfo, seq_number, wlan_fragment_table, wlan_reassembled_table, frag_number, reported_len, more_frags); next_tvb = process_reassembled_data(tvb, hdr_len, pinfo, "Reassembled 802.11", fd_head, &frag_items, NULL, hdr_tree); } else { /* * If this is the first fragment, dissect its contents, otherwise * just show it as a fragment. */ if (frag_number != 0) { /* Not the first fragment - don't dissect it. */ next_tvb = NULL; } else { /* First fragment, or not fragmented. Dissect what we have here. */ /* Get a tvbuff for the payload. */ next_tvb = tvb_new_subset (next_tvb, hdr_len, len, reported_len); /* * If this is the first fragment, but not the only fragment, * tell the next protocol that. */ if (more_frags) pinfo->fragmented = TRUE; else pinfo->fragmented = FALSE; } } if (next_tvb == NULL) { /* Just show this as an incomplete fragment. */ col_set_str(pinfo->cinfo, COL_INFO, "Fragmented IEEE 802.11 frame"); next_tvb = tvb_new_subset (tvb, hdr_len, len, reported_len); call_dissector(data_handle, next_tvb, pinfo, tree); pinfo->fragmented = save_fragmented; goto end_of_wlan; } switch (FCF_FRAME_TYPE (fcf)) { case MGT_FRAME: dissect_ieee80211_mgt (fcf, next_tvb, pinfo, tree); break; case DATA_FRAME: if (is_amsdu && tvb_reported_length_remaining(next_tvb, 0) > 4){ tvbuff_t *volatile msdu_tvb = NULL; guint32 msdu_offset = 0; guint16 i = 1; const guint8 *lcl_src = NULL; const guint8 *lcl_dst = NULL; guint16 msdu_length; proto_item *parent_item; proto_tree *mpdu_tree; proto_tree *subframe_tree; parent_item = proto_tree_add_protocol_format(tree, proto_aggregate, next_tvb, 0, tvb_reported_length_remaining(next_tvb, 0), "IEEE 802.11 Aggregate MSDU"); mpdu_tree = proto_item_add_subtree(parent_item, ett_msdu_aggregation_parent_tree); do { lcl_dst = tvb_get_ptr (next_tvb, msdu_offset, 6); lcl_src = tvb_get_ptr (next_tvb, msdu_offset+6, 6); msdu_length = tvb_get_ntohs (next_tvb, msdu_offset+12); parent_item = proto_tree_add_uint_format(mpdu_tree, amsdu_msdu_header_text, next_tvb, msdu_offset, roundup2(msdu_offset+14+msdu_length, 4), i, "A-MSDU Subframe #%u", i); subframe_tree = proto_item_add_subtree(parent_item, ett_msdu_aggregation_subframe_tree); i++; proto_tree_add_ether(subframe_tree, hf_addr_da, next_tvb, msdu_offset, 6, lcl_dst); proto_tree_add_ether(subframe_tree, hf_addr_sa, next_tvb, msdu_offset+6, 6, lcl_src); proto_tree_add_uint_format(subframe_tree, mcsset_highest_data_rate, next_tvb, msdu_offset+12, 2, msdu_length, "MSDU length: 0x%04X", msdu_length); msdu_offset += 14; msdu_tvb = tvb_new_subset(next_tvb, msdu_offset, msdu_length, -1); call_dissector(llc_handle, msdu_tvb, pinfo, subframe_tree); msdu_offset = roundup2(msdu_offset+msdu_length, 4); } while (tvb_reported_length_remaining(next_tvb, msdu_offset) > 14); break; } /* I guess some bridges take Netware Ethernet_802_3 frames, which are 802.3 frames (with a length field rather than a type field, but with no 802.2 header in the payload), and just stick the payload into an 802.11 frame. I've seen captures that show frames of that sort. We also handle some odd form of encapsulation in which a complete Ethernet frame is encapsulated within an 802.11 data frame, with no 802.2 header. This has been seen from some hardware. On top of that, at least at some point it appeared that the OLPC XO sent out frames with two bytes of 0 between the "end" of the 802.11 header and the beginning of the payload. So, if the packet doesn't start with 0xaa 0xaa: we first use the same scheme that linux-wlan-ng does to detect those encapsulated Ethernet frames, namely looking to see whether the frame either starts with 6 octets that match the destination address from the 802.11 header or has 6 octets that match the source address from the 802.11 header following the first 6 octets, and, if so, treat it as an encapsulated Ethernet frame; otherwise, we use the same scheme that we use in the Ethernet dissector to recognize Netware 802.3 frames, namely checking whether the packet starts with 0xff 0xff and, if so, treat it as an encapsulated IPX frame, and then check whether the packet starts with 0x00 0x00 and, if so, treat it as an OLPC frame. */ encap_type = ENCAP_802_2; TRY { octet1 = tvb_get_guint8(next_tvb, 0); octet2 = tvb_get_guint8(next_tvb, 1); if (octet1 != 0xaa || octet2 != 0xaa) { src = tvb_get_ptr (next_tvb, 6, 6); dst = tvb_get_ptr (next_tvb, 0, 6); if (memcmp(src, pinfo->dl_src.data, 6) == 0 || memcmp(dst, pinfo->dl_dst.data, 6) == 0) encap_type = ENCAP_ETHERNET; else if (octet1 == 0xff && octet2 == 0xff) encap_type = ENCAP_IPX; else if (octet1 == 0x00 && octet2 == 0x00) { proto_tree_add_text(tree, next_tvb, 0, 2, "Mysterious OLPC stuff"); next_tvb = tvb_new_subset_remaining (next_tvb, 2); } } } CATCH2(BoundsError, ReportedBoundsError) { ; /* do nothing */ } ENDTRY; switch (encap_type) { case ENCAP_802_2: call_dissector(llc_handle, next_tvb, pinfo, tree); break; case ENCAP_ETHERNET: call_dissector(eth_withoutfcs_handle, next_tvb, pinfo, tree); break; case ENCAP_IPX: call_dissector(ipx_handle, next_tvb, pinfo, tree); break; } break; } pinfo->fragmented = save_fragmented; end_of_wlan: whdr->stats = wlan_stats; tap_queue_packet(wlan_tap, pinfo, whdr); memset (&wlan_stats, 0, sizeof wlan_stats); } /* * Dissect 802.11 with a variable-length link-layer header. */ static void dissect_ieee80211 (tvbuff_t * tvb, packet_info * pinfo, proto_tree * tree) { dissect_ieee80211_common (tvb, pinfo, tree, FALSE, pinfo->pseudo_header->ieee_802_11.fcs_len, FALSE, FALSE, FALSE); } /* * Dissect 802.11 with a variable-length link-layer header and data padding. */ static void dissect_ieee80211_datapad (tvbuff_t * tvb, packet_info * pinfo, proto_tree * tree) { dissect_ieee80211_common (tvb, pinfo, tree, FALSE, pinfo->pseudo_header->ieee_802_11.fcs_len, FALSE, TRUE, FALSE); } /* * Dissect 802.11 with a variable-length link-layer header and a pseudo- * header containing radio information. */ static void dissect_radio (tvbuff_t * tvb, packet_info * pinfo, proto_tree * tree) { proto_item *ti = NULL; proto_tree *radio_tree = NULL; col_set_str(pinfo->cinfo, COL_PROTOCOL, "Radio"); col_clear(pinfo->cinfo, COL_INFO); /* Add the radio information to the column information */ if (check_col(pinfo->cinfo, COL_TX_RATE)) { col_add_fstr(pinfo->cinfo, COL_TX_RATE, "%u.%u", pinfo->pseudo_header->ieee_802_11.data_rate / 2, pinfo->pseudo_header->ieee_802_11.data_rate & 1 ? 5 : 0); } if (check_col(pinfo->cinfo, COL_RSSI)) { /* XX - this is a percentage, not a dBm or normalized or raw RSSI */ col_add_fstr(pinfo->cinfo, COL_RSSI, "%u", pinfo->pseudo_header->ieee_802_11.signal_level); } if (tree) { ti = proto_tree_add_item(tree, proto_radio, tvb, 0, 0, FALSE); radio_tree = proto_item_add_subtree (ti, ett_radio); proto_tree_add_uint64_format(radio_tree, hf_data_rate, tvb, 0, 0, (guint64)pinfo->pseudo_header->ieee_802_11.data_rate * 500000, "Data Rate: %u.%u Mb/s", pinfo->pseudo_header->ieee_802_11.data_rate / 2, pinfo->pseudo_header->ieee_802_11.data_rate & 1 ? 5 : 0); proto_tree_add_uint(radio_tree, hf_channel, tvb, 0, 0, pinfo->pseudo_header->ieee_802_11.channel); proto_tree_add_uint_format(radio_tree, hf_signal_strength, tvb, 0, 0, pinfo->pseudo_header->ieee_802_11.signal_level, "Signal Strength: %u%%", pinfo->pseudo_header->ieee_802_11.signal_level); } pinfo->current_proto = "IEEE 802.11"; dissect_ieee80211_common (tvb, pinfo, tree, FALSE, pinfo->pseudo_header->ieee_802_11.fcs_len, FALSE, FALSE, FALSE); } /* * Dissect 802.11 with a variable-length link-layer header and a byte-swapped * control field (some hardware sends out LWAPP-encapsulated 802.11 * packets with the control field byte swapped). */ static void dissect_ieee80211_bsfc (tvbuff_t * tvb, packet_info * pinfo, proto_tree * tree) { dissect_ieee80211_common (tvb, pinfo, tree, FALSE, 0, TRUE, FALSE, FALSE); } /* * Dissect 802.11 with a fixed-length link-layer header (padded to the * maximum length). */ static void dissect_ieee80211_fixed (tvbuff_t * tvb, packet_info * pinfo, proto_tree * tree) { dissect_ieee80211_common (tvb, pinfo, tree, TRUE, 0, FALSE, FALSE, FALSE); } /* * Dissect an HT 802.11 frame with a variable-length link-layer header. * XXX - Can we tell if a frame is +HTC just by looking at the MAC header? * If so, we can dispense with this. */ static void dissect_ieee80211_ht (tvbuff_t * tvb, packet_info * pinfo, proto_tree * tree) { dissect_ieee80211_common (tvb, pinfo, tree, FALSE, pinfo->pseudo_header->ieee_802_11.fcs_len, FALSE, FALSE, TRUE); } static void wlan_defragment_init(void) { fragment_table_init(&wlan_fragment_table); reassembled_table_init(&wlan_reassembled_table); } /* ------------- */ static guint retransmit_hash(gconstpointer k) { const retransmit_key *key = (const retransmit_key *)k; guint hash_val; int i; hash_val = 0; for (i = 0; i < 6; i++) hash_val += key->bssid[i]; for (i = 0; i < 6; i++) hash_val += key->src[i]; return hash_val; } static gint retransmit_equal(gconstpointer k1, gconstpointer k2) { const retransmit_key *key1 = (const retransmit_key *)k1; const retransmit_key *key2 = (const retransmit_key *)k2; return ( (!memcmp(key1->bssid, key2->bssid, 6) && !memcmp( key1->src, key2->src, 6))? TRUE:FALSE); } static guint frame_hash(gconstpointer k) { guint32 frame = GPOINTER_TO_UINT(k); return frame; } static gint frame_equal(gconstpointer k1, gconstpointer k2) { guint32 frame1 = GPOINTER_TO_UINT(k1); guint32 frame2 = GPOINTER_TO_UINT(k2); return frame1==frame2; } static void wlan_retransmit_init(void) { if ( fc_analyse_retransmit_table ){ g_hash_table_destroy(fc_analyse_retransmit_table); fc_analyse_retransmit_table = NULL; } if( fc_first_frame_table ){ g_hash_table_destroy(fc_first_frame_table); fc_first_frame_table = NULL; } if (wlan_subdissector) return; fc_analyse_retransmit_table= g_hash_table_new(retransmit_hash, retransmit_equal); fc_first_frame_table = g_hash_table_new( frame_hash, frame_equal); } /* ------------- */ /* * yah, I know, macros, ugh, but it makes the code * below more readable * XXX - This should be rewritten to use ptvcursors, then. */ #define FIELD_PRESENT(name) (hdr.name.status == 0 && hdr.name.did != 0) #define IFHELP(size, name, var, str) \ if(tree) { \ proto_tree_add_uint_format(prism_tree, hf_prism_ ## name, \ tvb, offset, size, hdr.var, str, hdr.var); \ } \ offset += (size) #define INTFIELD(size, name, str) IFHELP(size, name, name, str) #define VALFIELD(name, str) \ if (FIELD_PRESENT(name)) { \ if(tree) { \ proto_tree_add_uint_format(prism_tree, hf_ ## name, \ tvb, offset, 12, hdr.name.data, \ str ": 0x%x (DID 0x%x, Status 0x%x, Length 0x%x)", \ hdr.name.data, hdr.name.did, \ hdr.name.status, hdr.name.len); \ } \ } \ offset += 12 #define VALFIELD_PRISM(name, str) \ if (FIELD_PRESENT(name)) { \ if(tree) { \ proto_tree_add_uint_format(prism_tree, hf_prism_ ## name ## _data, \ tvb, offset, 12, hdr.name.data, \ str ": 0x%x (DID 0x%x, Status 0x%x, Length 0x%x)", \ hdr.name.data, hdr.name.did, \ hdr.name.status, hdr.name.len); \ } \ } \ offset += 12 static void dissect_prism(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { struct prism_hdr hdr; proto_tree *prism_tree = NULL; proto_item *ti; tvbuff_t *next_tvb; int offset; guint32 msgcode; offset = 0; /* handle the new capture type. */ msgcode = tvb_get_ntohl(tvb, offset); if ((msgcode == WLANCAP_MAGIC_COOKIE_V1) || (msgcode == WLANCAP_MAGIC_COOKIE_V2)) { call_dissector(wlancap_handle, tvb, pinfo, tree); return; } tvb_memcpy(tvb, (guint8 *)&hdr, offset, sizeof(hdr)); col_set_str(pinfo->cinfo, COL_PROTOCOL, "Prism"); col_clear(pinfo->cinfo, COL_INFO); if(check_col(pinfo->cinfo, COL_INFO)) col_add_fstr(pinfo->cinfo, COL_INFO, "Device: %.16s " "Message 0x%x, Length %d", hdr.devname, hdr.msgcode, hdr.msglen); if(tree) { ti = proto_tree_add_item(tree, proto_prism, tvb, 0, sizeof hdr, FALSE); prism_tree = proto_item_add_subtree(ti, ett_radio); } INTFIELD(4, msgcode, "Message Code: %d"); INTFIELD(4, msglen, "Message Length: %d"); if(tree) { proto_tree_add_text(prism_tree, tvb, offset, sizeof hdr.devname, "Device: %s", hdr.devname); } offset += sizeof hdr.devname; if (FIELD_PRESENT(hosttime)) { if(tree) { proto_tree_add_uint64_format(prism_tree, hf_hosttime, tvb, offset, 12, hdr.hosttime.data, "Host timestamp: 0x%x (DID 0x%x, Status 0x%x, Length 0x%x)", hdr.hosttime.data, hdr.hosttime.did, hdr.hosttime.status, hdr.hosttime.len); } } offset += 12; if (FIELD_PRESENT(mactime)) { if(tree) { proto_tree_add_uint64_format(prism_tree, hf_mactime, tvb, offset, 12, hdr.mactime.data, "MAC timestamp: 0x%x (DID 0x%x, Status 0x%x, Length 0x%x)", hdr.mactime.data, hdr.mactime.did, hdr.mactime.status, hdr.mactime.len); } } offset += 12; if (FIELD_PRESENT(channel)) { if (check_col(pinfo->cinfo, COL_FREQ_CHAN)) col_add_fstr(pinfo->cinfo, COL_FREQ_CHAN, "%u", hdr.channel.data); } VALFIELD(channel, "Channel"); if (FIELD_PRESENT(rssi)) { if (check_col(pinfo->cinfo, COL_RSSI)) col_add_fstr(pinfo->cinfo, COL_RSSI, "%d", hdr.rssi.data); if (tree) { proto_tree_add_uint_format(prism_tree, hf_prism_rssi_data, tvb, offset, 12, hdr.rssi.data, "RSSI: 0x%x (DID 0x%x, Status 0x%x, Length 0x%x)", hdr.rssi.data, hdr.rssi.did, hdr.rssi.status, hdr.rssi.len); } } offset += 12; VALFIELD_PRISM(sq, "SQ"); VALFIELD_PRISM(signal, "Signal"); VALFIELD_PRISM(noise, "Noise"); if (FIELD_PRESENT(rate)) { if (check_col(pinfo->cinfo, COL_TX_RATE)) { col_add_fstr(pinfo->cinfo, COL_TX_RATE, "%u.%u", hdr.rate.data / 2, hdr.rate.data & 1 ? 5 : 0); } if (tree) { proto_tree_add_uint64_format(prism_tree, hf_data_rate, tvb, offset, 12, (guint64)hdr.rate.data * 500000, "Data Rate: %u.%u Mb/s", hdr.rate.data / 2, hdr.rate.data & 1 ? 5 : 0); } } offset += 12; VALFIELD_PRISM(istx, "IsTX"); VALFIELD_PRISM(frmlen, "Frame Length"); /* dissect the 802.11 header next */ next_tvb = tvb_new_subset_remaining(tvb, sizeof hdr); call_dissector(ieee80211_handle, next_tvb, pinfo, tree); } /* * AVS linux-wlan-based products use a new sniff header to replace the * old Prism header. This one has additional fields, is designed to be * non-hardware-specific, and more importantly, version and length fields * so it can be extended later without breaking anything. * * Support by Solomon Peachy * * Description, from the capturefrm.txt file in the linux-wlan-ng 0.2.9 * release (linux-wlan-ng-0.2.9/doc/capturefrm.txt): * AVS Capture Frame Format Version 2.1.1 1. Introduction The original header format for "monitor mode" or capturing frames was a considerable hack. The document covers a redesign of that format. Any questions, corrections, or proposed changes go to info@linux-wlan.com 2. Frame Format All sniff frames follow the same format: Offset Name Size Description -------------------------------------------------------------------- 0 CaptureHeader AVS capture metadata header 64 802.11Header [10-30] 802.11 frame header ?? 802.11Payload [0-2312] 802.11 frame payload ?? 802.11FCS 4 802.11 frame check sequence Note that the header and payload are variable length and the payload may be empty. If the hardware does not supply the FCS to the driver, then the frame shall have a FCS of 0xFFFFFFFF. 3. Byte Order All multibyte fields of the capture header are in "network" byte order. The "host to network" and "network to host" functions should work just fine. All the remaining multibyte fields are ordered according to their respective standards. 4. Capture Header Format The following fields make up the AVS capture header: Offset Name Type ------------------------------ 0 version uint32 4 length uint32 8 mactime uint64 16 hosttime uint64 24 phytype uint32 28 frequency uint32 32 datarate uint32 36 antenna uint32 40 priority uint32 44 ssi_type uint32 48 ssi_signal int32 52 ssi_noise int32 56 preamble uint32 60 encoding uint32 64 sequence uint32 68 drops uint32 72 receiver_addr uint8[6] 78 padding uint8[2] ------------------------------ 80 The following subsections detail the fields of the capture header. 4.1 version The version field identifies this type of frame as a subtype of ETH_P_802111_CAPTURE as received by an ARPHRD_IEEE80211_PRISM or an ARPHRD_IEEE80211_CAPTURE device. The value of this field shall be 0x80211002. As new revisions of this header are necessary, we can increment the version appropriately. 4.2 length The length field contains the length of the entire AVS capture header, in bytes. 4.3 mactime Many WLAN devices supply a relatively high resolution frame reception time value. This field contains the value supplied by the device. If the device does not supply a receive time value, this field shall be set to zero. The units for this field are microseconds. If possible, this time value should be absolute, representing the number of microseconds elapsed since the UNIX epoch. 4.4 hosttime The hosttime field is set to the current value of the host maintained clock variable when the frame is received by the host. If possible, this time value should be absolute, representing the number of microseconds elapsed since the UNIX epoch. 4.5 phytype The phytype field identifies what type of PHY is employed by the WLAN device used to capture this frame. The valid values are: PhyType Value ------------------------------------- phytype_fhss_dot11_97 1 phytype_dsss_dot11_97 2 phytype_irbaseband 3 phytype_dsss_dot11_b 4 phytype_pbcc_dot11_b 5 phytype_ofdm_dot11_g 6 phytype_pbcc_dot11_g 7 phytype_ofdm_dot11_a 8 phytype_dss_ofdm_dot11_g 9 4.6 frequency This represents the frequency or channel number of the receiver at the time the frame was received. It is interpreted as follows: For frequency hopping radios, this field is broken in to the following subfields: Byte Subfield ------------------------ Byte0 Hop Set Byte1 Hop Pattern Byte2 Hop Index Byte3 reserved For non-hopping radios, the frequency is interpreted as follows: Value Meaning ----------------------------------------- < 256 Channel number (using externally-defined channelization) < 10000 Center frequency, in MHz >= 10000 Center frequency, in KHz 4.7 datarate The data rate field contains the rate at which the frame was received in units of 100kbps. 4.8 antenna For WLAN devices that indicate the receive antenna for each frame, the antenna field shall contain an index value into the dot11AntennaList. If the device does not indicate a receive antenna value, this field shall be set to zero. 4.9 priority The priority field indicates the receive priority of the frame. The value is in the range [0-15] with the value 0 reserved to indicate contention period and the value 6 reserved to indicate contention free period. 4.10 ssi_type The ssi_type field is used to indicate what type of signal strength information is present: "None", "Normalized RSSI" or "dBm". "None" indicates that the underlying WLAN device does not supply any signal strength at all and the ssi_* values are unset. "Normalized RSSI" values are integers in the range [0-1000] where higher numbers indicate stronger signal. "dBm" values indicate an actual signal strength measurement quantity and are usually in the range [-108 - 10]. The following values indicate the three types: Value Description --------------------------------------------- 0 None 1 Normalized RSSI 2 dBm 3 Raw RSSI 4.11 ssi_signal The ssi_signal field contains the signal strength value reported by the WLAN device for this frame. Note that this is a signed quantity and if the ssi_type value is "dBm" that the value may be negative. 4.12 ssi_noise The ssi_noise field contains the noise or "silence" value reported by the WLAN device. This value is commonly defined to be the "signal strength reported immediately prior to the baseband processor lock on the frame preamble". If the hardware does not provide noise data, this shall equal 0xffffffff. 4.12 preamble For PHYs that support variable preamble lengths, the preamble field indicates the preamble type used for this frame. The values are: Value Description --------------------------------------------- 0 Undefined 1 Short Preamble 2 Long Preamble 4.13 encoding This specifies the encoding of the received packet. For PHYs that support multiple encoding types, this will tell us which one was used. Value Description --------------------------------------------- 0 Unknown 1 CCK 2 PBCC 3 OFDM 4 DSSS-OFDM 5 BPSK 6 QPSK 7 16QAM 8 64QAM 4.14 sequence This is a receive frame sequence counter. The sniff host shall increment this by one for every valid frame received off the medium. By watching for gaps in the sequence numbers we can determine when packets are lost due to unreliable transport, rather than a frame never being received to begin with. 4.15 drops This is a counter of the number of known frame drops that occured. This is particularly useful when the system or hardware cannot keep up with the sniffer load. 4.16 receiver_addr This specifies the MAC address of the receiver of this frame. It is six octets in length. This field is followed by two octets of padding to keep the structure 32-bit word aligned. ================================ Changes: v2->v2.1 * Added contact e-mail address to introduction * Added sniffer_addr, drop count, and sequence fields, bringing total length to 80 bytes * Bumped version to 0x80211002 * Mactime is specified in microseconds, not nanoseconds * Added 64QAM, 16QAM, BPSK, QPSK encodings ================================ Changes: v2.1->v2.1.1 * Renamed 'channel' to 'frequency' * Clarified the interpretation of the frequency/channel field. * Renamed 'sniffer address' to 'receiver address' * Clarified timestamp fields. */ /* * Signal/noise strength type values. */ #define SSI_NONE 0 /* no SSI information */ #define SSI_NORM_RSSI 1 /* normalized RSSI - 0-1000 */ #define SSI_DBM 2 /* dBm */ #define SSI_RAW_RSSI 3 /* raw RSSI from the hardware */ static void dissect_wlancap(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_tree *wlan_tree = NULL; proto_item *ti; tvbuff_t *next_tvb; int offset; guint32 version; guint32 length; guint32 channel; guint32 datarate; guint32 ssi_type; guint32 antnoise; col_set_str(pinfo->cinfo, COL_PROTOCOL, "WLAN"); col_clear(pinfo->cinfo, COL_INFO); offset = 0; version = tvb_get_ntohl(tvb, offset) - WLANCAP_MAGIC_COOKIE_BASE; length = tvb_get_ntohl(tvb, offset+4); if(check_col(pinfo->cinfo, COL_INFO)) col_add_fstr(pinfo->cinfo, COL_INFO, "AVS WLAN Capture v%x, Length %d",version, length); if (version > 2) { goto skip; } /* Dissect the AVS header */ if (tree) { ti = proto_tree_add_item(tree, proto_wlancap, tvb, 0, length, FALSE); wlan_tree = proto_item_add_subtree(ti, ett_radio); proto_tree_add_item(wlan_tree, hf_wlan_magic, tvb, offset, 4, FALSE); proto_tree_add_item(wlan_tree, hf_wlan_version, tvb, offset, 4, FALSE); } offset+=4; if (tree) proto_tree_add_item(wlan_tree, hf_wlan_length, tvb, offset, 4, FALSE); offset+=4; if (tree) proto_tree_add_item(wlan_tree, hf_mactime, tvb, offset, 8, FALSE); offset+=8; if (tree) proto_tree_add_item(wlan_tree, hf_hosttime, tvb, offset, 8, FALSE); offset+=8; if (tree) proto_tree_add_item(wlan_tree, hf_wlan_phytype, tvb, offset, 4, FALSE); offset+=4; /* XXX cook channel (fh uses different numbers) */ channel = tvb_get_ntohl(tvb, offset); if (channel < 256) { if (check_col(pinfo->cinfo, COL_FREQ_CHAN)) col_add_fstr(pinfo->cinfo, COL_FREQ_CHAN, "%u", channel); if (tree) proto_tree_add_uint(wlan_tree, hf_channel, tvb, offset, 4, channel); } else if (channel < 10000) { if (check_col(pinfo->cinfo, COL_FREQ_CHAN)) col_add_fstr(pinfo->cinfo, COL_FREQ_CHAN, "%u MHz", channel); if (tree) proto_tree_add_uint_format(wlan_tree, hf_channel_frequency, tvb, offset, 4, channel, "Frequency: %u MHz", channel); } else { if (check_col(pinfo->cinfo, COL_FREQ_CHAN)) col_add_fstr(pinfo->cinfo, COL_FREQ_CHAN, "%u KHz", channel); if (tree) proto_tree_add_uint_format(wlan_tree, hf_channel_frequency, tvb, offset, 4, channel, "Frequency: %u KHz", channel); } offset+=4; datarate = tvb_get_ntohl(tvb, offset); if (datarate < 100000) { /* In units of 100 Kb/s; convert to b/s */ datarate *= 100000; } if (check_col(pinfo->cinfo, COL_TX_RATE)) { col_add_fstr(pinfo->cinfo, COL_TX_RATE, "%u.%u", datarate / 1000000, ((datarate % 1000000) > 500000) ? 5 : 0); } if (tree) { proto_tree_add_uint64_format(wlan_tree, hf_data_rate, tvb, offset, 4, datarate, "Data Rate: %u.%u Mb/s", datarate/1000000, ((datarate % 1000000) > 500000) ? 5 : 0); } offset+=4; if (tree) proto_tree_add_item(wlan_tree, hf_wlan_antenna, tvb, offset, 4, FALSE); offset+=4; if (tree) proto_tree_add_item(wlan_tree, hf_wlan_priority, tvb, offset, 4, FALSE); offset+=4; ssi_type = tvb_get_ntohl(tvb, offset); if (tree) proto_tree_add_uint(wlan_tree, hf_wlan_ssi_type, tvb, offset, 4, ssi_type); offset+=4; switch (ssi_type) { case SSI_NONE: default: /* either there is no SSI information, or we don't know what type it is */ break; case SSI_NORM_RSSI: /* Normalized RSSI */ if (check_col(pinfo->cinfo, COL_RSSI)) col_add_fstr(pinfo->cinfo, COL_RSSI, "%u (norm)", tvb_get_ntohl(tvb, offset)); if (tree) proto_tree_add_item(wlan_tree, hf_normrssi_antsignal, tvb, offset, 4, FALSE); break; case SSI_DBM: /* dBm */ if (check_col(pinfo->cinfo, COL_RSSI)) col_add_fstr(pinfo->cinfo, COL_RSSI, "%d dBm", tvb_get_ntohl(tvb, offset)); if (tree) proto_tree_add_item(wlan_tree, hf_dbm_antsignal, tvb, offset, 4, FALSE); break; case SSI_RAW_RSSI: /* Raw RSSI */ if (check_col(pinfo->cinfo, COL_RSSI)) col_add_fstr(pinfo->cinfo, COL_RSSI, "%u (raw)", tvb_get_ntohl(tvb, offset)); if (tree) proto_tree_add_item(wlan_tree, hf_rawrssi_antsignal, tvb, offset, 4, FALSE); break; } offset+=4; antnoise = tvb_get_ntohl(tvb, offset); /* 0xffffffff means "hardware does not provide noise data" */ if (antnoise != 0xffffffff) { switch (ssi_type) { case SSI_NONE: default: /* either there is no SSI information, or we don't know what type it is */ break; case SSI_NORM_RSSI: /* Normalized RSSI */ if (tree) proto_tree_add_uint(wlan_tree, hf_normrssi_antnoise, tvb, offset, 4, antnoise); break; case SSI_DBM: /* dBm */ if (tree) proto_tree_add_int(wlan_tree, hf_dbm_antnoise, tvb, offset, 4, antnoise); break; case SSI_RAW_RSSI: /* Raw RSSI */ if (tree) proto_tree_add_uint(wlan_tree, hf_rawrssi_antnoise, tvb, offset, 4, antnoise); break; } } offset+=4; if (tree) proto_tree_add_item(wlan_tree, hf_wlan_preamble, tvb, offset, 4, FALSE); offset+=4; if (tree) proto_tree_add_item(wlan_tree, hf_wlan_encoding, tvb, offset, 4, FALSE); offset+=4; if (version > 1) { if (tree) proto_tree_add_item(wlan_tree, hf_wlan_sequence, tvb, offset, 4, FALSE); offset+=4; if (tree) proto_tree_add_item(wlan_tree, hf_wlan_drops, tvb, offset, 4, FALSE); offset+=4; if (tree) proto_tree_add_item(wlan_tree, hf_wlan_receiver_addr, tvb, offset, 6, FALSE); offset+=6; if (tree) proto_tree_add_item(wlan_tree, hf_wlan_padding, tvb, offset, 2, FALSE); offset+=2; } skip: offset = length; /* dissect the 802.11 header next */ next_tvb = tvb_new_subset_remaining(tvb, offset); call_dissector(ieee80211_handle, next_tvb, pinfo, tree); } void proto_register_ieee80211 (void) { int i; GString *key_name, *key_title, *key_desc; static const value_string frame_type[] = { {MGT_FRAME, "Management frame"}, {CONTROL_FRAME, "Control frame"}, {DATA_FRAME, "Data frame"}, {0, NULL} }; static const value_string tofrom_ds[] = { {0, "Not leaving DS or network is operating " "in AD-HOC mode (To DS: 0 From DS: 0)"}, {FLAG_TO_DS, "Frame from STA to DS via an AP (To DS: 1 " "From DS: 0)"}, {FLAG_FROM_DS, "Frame from DS to a STA via AP(To DS: 0 " "From DS: 1)"}, #ifdef MESH_OVERRIDES {FLAG_TO_DS|FLAG_FROM_DS, "WDS (AP to AP) or Mesh (MP to MP) Frame " "(To DS: 1 From DS: 1)"}, #else /* MESH_OVERRIDES */ {FLAG_TO_DS|FLAG_FROM_DS, "Frame part of WDS from one AP to another " "AP (To DS: 1 From DS: 1)"}, #endif /* MESH_OVERRIDES */ {0, NULL} }; static const true_false_string tods_flag = { "Frame is entering DS", "Frame is not entering DS" }; static const true_false_string fromds_flag = { "Frame is exiting DS", "Frame is not exiting DS" }; static const true_false_string more_frags = { "More fragments follow", "This is the last fragment" }; static const true_false_string retry_flags = { "Frame is being retransmitted", "Frame is not being retransmitted" }; static const true_false_string pm_flags = { "STA will go to sleep", "STA will stay up" }; static const true_false_string md_flags = { "Data is buffered for STA at AP", "No data buffered" }; static const true_false_string protected_flags = { "Data is protected", "Data is not protected" }; static const true_false_string order_flags = { "Strictly ordered", "Not strictly ordered" }; static const true_false_string cf_ess_flags = { "Transmitter is an AP", "Transmitter is a STA" }; static const true_false_string cf_privacy_flags = { "AP/STA can support WEP", "AP/STA cannot support WEP" }; static const true_false_string cf_preamble_flags = { "Short preamble allowed", "Short preamble not allowed" }; static const true_false_string cf_pbcc_flags = { "PBCC modulation allowed", "PBCC modulation not allowed" }; static const true_false_string cf_agility_flags = { "Channel agility in use", "Channel agility not in use" }; static const true_false_string short_slot_time_flags = { "Short slot time in use", "Short slot time not in use" }; static const true_false_string dsss_ofdm_flags = { "DSSS-OFDM modulation allowed", "DSSS-OFDM modulation not allowed" }; static const true_false_string cf_spec_man_flags = { "dot11SpectrumManagementRequired TRUE", "dot11SpectrumManagementRequired FALSE" }; static const true_false_string cf_apsd_flags = { "apsd implemented", "apsd not implemented" }; static const true_false_string cf_del_blk_ack_flags = { "delayed block ack implemented", "delayed block ack not implemented" }; static const true_false_string cf_imm_blk_ack_flags = { "immediate block ack implemented", "immediate block ack not implemented" }; static const true_false_string cf_ibss_flags = { "Transmitter belongs to an IBSS", "Transmitter belongs to a BSS" }; static const true_false_string eosp_flag = { "End of service period", "Service period" }; static const true_false_string bit4_flag = { "Bits 8-15 of QoS Control field are Queue Size", "Bits 8-15 of QoS Control field are TXOP Duration Requested" }; static const true_false_string hf_qos_amsdu_present_flag = { "A-MSDU", "MSDU" }; static const value_string sta_cf_pollable[] = { {0x00, "Station is not CF-Pollable"}, {0x02, "Station is CF-Pollable, " "not requesting to be placed on the CF-polling list"}, {0x01, "Station is CF-Pollable, " "requesting to be placed on the CF-polling list"}, {0x03, "Station is CF-Pollable, requesting never to be polled"}, {0x0200, "QSTA requesting association in QBSS"}, {0, NULL} }; static const value_string ap_cf_pollable[] = { {0x00, "No point coordinator at AP"}, {0x02, "Point coordinator at AP for delivery only (no polling)"}, {0x01, "Point coordinator at AP for delivery and polling"}, {0x03, "Reserved"}, {0x0200, "QAP (HC) does not use CFP for delivery of unicast data type frames"}, {0x0202, "QAP (HC) uses CFP for delivery, but does not send CF-Polls to non-QoS STAs"}, {0x0201, "QAP (HC) uses CFP for delivery, and sends CF-Polls to non-QoS STAs"}, {0x0203, "Reserved"}, {0, NULL} }; static const value_string auth_alg[] = { {0x00, "Open System"}, {0x01, "Shared key"}, {0x02, "Fast BSS Transition"}, {0x80, "Network EAP"}, /* Cisco proprietary? */ {0, NULL} }; static const true_false_string ff_block_ack_params_amsdu_permitted_flag = { "Permitted in QoS Data MPDUs", "Not Permitted" }; static const true_false_string ff_block_ack_params_policy_flag = { "Immediate Block Ack", "Delayed Block Ack" }; static const value_string ff_channel_width_vals[] = { {0x00, "20 MHz channel width only"}, {0x01, "Any channel width in the STA's Supported Channel Width Set"}, {0, NULL} }; static const true_false_string ff_qos_info_ap_q_ack_flag = { "Implemented", "Not Implemented" }; static const true_false_string ff_qos_info_ap_queue_req_flag = { "Can process a nonzero Queue Size subfield in the QoS Control field in QoS data frames", "Can NOT process a nonzero Queue Size subfield in the QoS Control field in QoS data frames" }; static const true_false_string ff_qos_info_ap_txop_request_flag = { "Can process a nonzero TXOP Duration Requested subfield in the QoS Control field in QoS data frames", "Can NOT process a nonzero TXOP Duration Requested subfield in the QoS Control field in QoS data frames" }; static const true_false_string ff_qos_info_sta_ac_flag = { "Trigger-enabled and Delivery-enabled", "Neither Trigger-enabled nor Delivery-enabled" }; static const true_false_string ff_qos_info_sta_q_ack_flag = { "Implemented", "Not Implemented" }; static const value_string ff_qos_info_sta_max_sp_len_flags[] = { {0x00, "AP may deliver all buffered MSDUs, A-MSDUs and MMPDUs"}, {0x01, "AP may deliver a maximum of two MSDUs and MMPDUs per SP"}, {0x02, "AP may deliver a maximum of four MSDUs and MMPDUs per SP"}, {0x03, "AP may deliver a maximum of six MSDUs and MMPDUs per SP"}, {0, NULL} }; static const true_false_string ff_qos_info_sta_more_data_ack_flag = { "Can process ACK frames with the More Data bit in the Frame Control field set to 1", "Can NOT process ACK frames with the More Data bit in the Frame Control field set to 1" }; static const true_false_string ff_sm_pwr_save_sm_mode_flag = { "Dynamic SM Power Save mode", "Static SM Power Save mode" }; static const true_false_string ff_pco_phase_cntrl_flag = { "40 MHz Phase", "20 MHz Phase" }; static const true_false_string ff_psmp_param_set_more_psmp_flag = { "More PSMP Sequences Follow", "No PSMP Sequences Follow" }; static const value_string ff_mimo_cntrl_nc_index_flags[] = { {0x00, "1 Column"}, {0x01, "2 Columns"}, {0x02, "3 Columns"}, {0x03, "4 Columns"}, {0, NULL} }; static const value_string ff_mimo_cntrl_nr_index_flags[] = { {0x00, "1 Row"}, {0x01, "2 Rows"}, {0x02, "3 Rows"}, {0x03, "4 Rows"}, {0, NULL} }; static const true_false_string ff_mimo_cntrl_channel_width_flag = { "40 MHz", "20 MHz" }; static const true_false_string ff_ht_info_information_request_flag = { "Requesting HT Information Exchange management action frame", "Should not send an HT Information Exchange management action frame" }; static const true_false_string ff_ht_info_40_mhz_intolerant_flag = { "Transmitting station is intolerant of 40 MHz operation", "Transmitting station permits 40 MHz operation" }; static const true_false_string ff_ht_info_sta_chan_width_flag = { "40 MHz", "20 MHz" }; static const value_string ff_ht_action_flags[] = { {HT_ACTION_NOTIFY_CHAN_WIDTH, "Notify Channel Width"}, {HT_ACTION_SM_PWR_SAVE, "Spatial Multiplexing (SM) Power Save"}, {HT_ACTION_PSMP_ACTION, "Power Save Multi-Poll (PSMP) action frame"}, {HT_ACTION_SET_PCO_PHASE, "Set PCO Phase"}, {HT_ACTION_MIMO_CSI, "MIMO CSI Matrices"}, {HT_ACTION_MIMO_BEAMFORMING, "MIMO Non-compressed Beamforming"}, {HT_ACTION_MIMO_COMPRESSED_BEAMFORMING, "MIMO Compressed Beamforming"}, {HT_ACTION_ANT_SEL_FEEDBACK, "Antenna Selection Indices Feedback"}, {HT_ACTION_HT_INFO_EXCHANGE, "HT Information Exchange"}, {0x00, NULL} }; static const value_string ff_mimo_cntrl_grouping_flags[] = { {0x00, "No Grouping"}, {0x01, "Carrier Groups of 2"}, {0x02, "Carrier Groups of 4"}, {0x03, "Reserved"}, {0, NULL} }; static const value_string ff_mimo_cntrl_coefficient_size_flags[] = { {0x00, "4 Bits"}, {0x01, "5 Bits"}, {0x02, "6 Bits"}, {0x03, "8 Bits"}, {0, NULL} }; static const value_string ff_mimo_cntrl_codebook_info_flags[] = { {0x00, "1 bit for 'Capital Psi', 3 bits for 'Small Psi'"}, {0x01, "2 bit for 'Capital Psi', 4 bits for 'Small Psi'"}, {0x02, "3 bit for 'Capital Psi', 5 bits for 'Small Psi'"}, {0x03, "4 bit for 'Capital Psi', 6 bits for 'Small Psi'"}, {0, NULL} }; static const value_string ff_psmp_sta_info_flags[] = { {0x00, "Broadcast"}, {0x01, "Multicast"}, {0x02, "Individually Addressed"}, {0x03, "Unknown"}, {0, NULL} }; static const value_string ff_pa_action_codes[] = { {PA_DSE_ENABLEMENT, "DSE enablement"}, {PA_DSE_DEENABLEMENT, "DSE deenablement"}, {PA_DSE_REG_LOC_ANNOUNCEMENT, "DSE Registered Location Announcement"}, {PA_EXT_CHANNEL_SWITCH_ANNOUNCEMENT, "Extended Channel Switch Announcement"}, {PA_DSE_MEASUREMENT_REQUEST, "DSE measurement request"}, {PA_DSE_MEASUREMENT_REPORT, "DSE measurement report"}, {PA_MEASUREMENT_PILOT, "Measurement Pilot"}, {PA_DSE_POWER_CONSTRAINT, "DSE power constraint"}, {PA_VENDOR_SPECIFIC, "Vendor Specific"}, {PA_GAS_INITIAL_REQUEST, "GAS Initial Request"}, {PA_GAS_INITIAL_RESPONSE, "GAS Initial Response"}, {PA_GAS_COMEBACK_REQUEST, "GAS Comeback Request"}, {PA_GAS_COMEBACK_RESPONSE, "GAS Comeback Response"}, {PA_TDLS_DISCOVERY_RESPONSE, "TDLS Discovery Response"}, {0x00, NULL} }; static const value_string reason_codes[] = { {0x00, "Reserved"}, {0x01, "Unspecified reason"}, {0x02, "Previous authentication no longer valid"}, {0x03, "Deauthenticated because sending STA is leaving (has left) " "IBSS or ESS"}, {0x04, "Disassociated due to inactivity"}, {0x05, "Disassociated because AP is unable to handle all currently " "associated stations"}, {0x06, "Class 2 frame received from nonauthenticated station"}, {0x07, "Class 3 frame received from nonassociated station"}, {0x08, "Disassociated because sending STA is leaving (has left) BSS"}, {0x09, "Station requesting (re)association is not authenticated with " "responding station"}, {0x0A, "Disassociated because the information in the Power Capability " "element is unacceptable"}, {0x0B, "Disassociated because the information in the Supported" "Channels element is unacceptable"}, {0x0D, "Invalid Information Element"}, {0x0E, "Michael MIC failure"}, {0x0F, "4-Way Handshake timeout"}, {0x10, "Group key update timeout"}, {0x11, "Information element in 4-Way Handshake different from " "(Re)Association Request/Probe Response/Beacon"}, {0x12, "Group Cipher is not valid"}, {0x13, "Pairwise Cipher is not valid"}, {0x14, "AKMP is not valid"}, {0x15, "Unsupported RSN IE version"}, {0x16, "Invalid RSN IE Capabilities"}, {0x17, "IEEE 802.1X Authentication failed"}, {0x18, "Cipher suite is rejected per security policy"}, {0x19, "TDLS direct-link teardown due to TDLS peer STA unreachable via " "the TDLS direct link"}, {0x1A, "TDLS direct-link teardown for unspecified reason"}, {0x20, "Disassociated for unspecified, QoS-related reason"}, {0x21, "Disassociated because QoS AP lacks sufficient bandwidth for this QoS STA"}, {0x22, "Disassociated because of excessive number of frames that need to be " "acknowledged, but are not acknowledged for AP transmissions and/or poor " "channel conditions"}, {0x23, "Disassociated because STA is transmitting outside the limits of its TXOPs"}, {0x24, "Requested from peer STA as the STA is leaving the BSS (or resetting)"}, {0x25, "Requested from peer STA as it does not want to use the mechanism"}, {0x26, "Requested from peer STA as the STA received frames using the mechanism " "for which a set up is required"}, {0x27, "Requested from peer STA due to time out"}, {0x2D, "Peer STA does not support the requested cipher suite"}, {0x2E, "Association denied due to requesting STA not supporting HT features"}, {0x00, NULL} }; static const value_string status_codes[] = { {0x00, "Successful"}, {0x01, "Unspecified failure"}, {0x02, "TDLS wakeup schedule rejected but alternative schedule provided"}, {0x03, "TDLS wakeup schedule rejected"}, {0x05, "Security disabled"}, {0x06, "Unacceptable lifetime"}, {0x07, "Not in same BSS"}, {0x0A, "Cannot support all requested capabilities in the " "Capability information field"}, {0x0B, "Reassociation denied due to inability to confirm that " "association exists"}, {0x0C, "Association denied due to reason outside the scope of this " "standard"}, {0x0D, "Responding station does not support the specified authentication " "algorithm"}, {0x0E, "Received an Authentication frame with authentication sequence " "transaction sequence number out of expected sequence"}, {0x0F, "Authentication rejected because of challenge failure"}, {0x10, "Authentication rejected due to timeout waiting for next " "frame in sequence"}, {0x11, "Association denied because AP is unable to handle additional " "associated stations"}, {0x12, "Association denied due to requesting station not supporting all " "of the datarates in the BSSBasicServiceSet Parameter"}, {0x13, "Association denied due to requesting station not supporting " "short preamble operation"}, {0x14, "Association denied due to requesting station not supporting " "PBCC encoding"}, {0x15, "Association denied due to requesting station not supporting " "channel agility"}, {0x16, "Association request rejected because Spectrum Management" "capability is required"}, {0x17, "Association request rejected because the information in the" "Power Capability element is unacceptable"}, {0x18, "Association request rejected because the information in the" "Supported Channels element is unacceptable"}, {0x19, "Association denied due to requesting station not supporting " "short slot operation"}, {0x1A, "Association denied due to requesting station not supporting " "DSSS-OFDM operation"}, {0x1C, "R0KH unreachable"}, {0x1E, "Association request rejected temporarily; try again later"}, {0x1F, "Robust Management frame policy violation"}, {0x20, "Unspecified, QoS-related failure"}, {0x21, "Association denied due to QAP having insufficient bandwidth " "to handle another QSTA"}, {0x22, "Association denied due to excessive frame loss rates and/or " "poor conditions on current operating channel"}, {0x23, "Association (with QBSS) denied due to requesting station not " "supporting the QoS facility"}, {0x24, "Association denied due to requesting station not supporting " "Block Ack"}, {0x25, "The request has been declined."}, {0x26, "The request has not been successful as one or more parameters " "have invalid values."}, {0x27, "The TS has not been created because the request cannot be honored. " "However, a suggested TSPEC is provided so that the initiating QSTA may " "attempt to set another TS with the suggested changes to the TSPEC."}, {0x28, "Invalid Information Element"}, {0x29, "Group Cipher is not valid"}, {0x2A, "Pairwise Cipher is not valid"}, {0x2B, "AKMP is not valid"}, {0x2C, "Unsupported RSN IE version"}, {0x2D, "Invalid RSN IE Capabilities"}, {0x2E, "Cipher suite is rejected per security policy"}, {0x2F, "The TS has not been created. However, the HC may be capable of " "creating a TS, in response to a request, after the time indicated in the TS Delay element."}, {0x30, "Direct Link is not allowed in the BSS by policy"}, {0x31, "Destination STA is not present within this QBSS."}, {0x32, "The Destination STA is not a QSTA."}, {0x34, "Invalid FT Action frame count"}, {0x35, "Invalid pairwise master key identifier (PMKID)"}, {0x36, "Invalid MDIE"}, {0x37, "Invalid FTIE"}, {0x3B, "GAS Advertisement Protocol not supported"}, {0x3C, "No outstanding GAS request"}, {0x3D, "GAS Response not received from the Advertisement Server"}, {0x3E, "STA timed out waiting for GAS Query Response"}, {0x3F, "GAS Response is larger than query response length limit"}, {0x40, "Advertisement Server in the network is not currently reachable"}, {0x41, "Requested information is not available for this BSSID"}, {0x42, "Transmission failure"}, {0x43, "Request refused due to permissions received via SSPN interface"}, {0x44, "Request refused because AP does not support unauthenticated " "access"}, {0x48, "Invalid contents of RSNIE"}, {0x00, NULL} }; static const value_string category_codes[] = { {CAT_SPECTRUM_MGMT, "Spectrum Management (SM)"}, {0x80 | CAT_SPECTRUM_MGMT, "Spectrum Management (SM) (error)"}, {CAT_QOS, "Quality of Service (QoS)"}, {0x80 | CAT_QOS, "Quality of Service (QoS (error))"}, {CAT_DLS, "Direct-Link Setup (DLS)"}, {0x80 | CAT_DLS, "Direct-Link Setup (DLS) (error)"}, {CAT_BLOCK_ACK, "Block Ack"}, {0x80 | CAT_BLOCK_ACK, "Block Ack (error)"}, {CAT_PUBLIC, "Public Action"}, {0x80 | CAT_PUBLIC, "Public Action (error)"}, #ifdef MESH_OVERRIDES {CAT_MESH_PEER_LINK, "Mesh Peer Link"}, {0x80 | CAT_MESH_PEER_LINK, "Mesh Peer Link"}, {CAT_MESH_LINK_METRIC, "Mesh Link Metric"}, {0x80 | CAT_MESH_LINK_METRIC, "Mesh Link Metric"}, {CAT_MESH_PATH_SELECTION, "Mesh Path Selection"}, {0x80 | CAT_MESH_PATH_SELECTION, "Mesh Path Selection"}, {CAT_MESH_INTERWORKING, "Mesh Internetworking"}, {0x80 | CAT_MESH_INTERWORKING, "Mesh Internetworking"}, {CAT_MESH_RESOURCE_COORDINATION, "Mesh Resource Coordination"}, {0x80 | CAT_MESH_RESOURCE_COORDINATION, "Mesh Resource Coordination"}, {CAT_MESH_SECURITY_ARCHITECTURE, "Mesh Security Arch"}, {0x80 | CAT_MESH_SECURITY_ARCHITECTURE, "Mesh Security Arch"}, #endif /* MESH_OVERRIDES */ {CAT_RADIO_MEASUREMENT, "Radio Measurement"}, {0x80 | CAT_RADIO_MEASUREMENT, "Radio Measurement (error)"}, {CAT_FAST_BSS_TRANSITION, "Fast BSS Transition"}, {0x80 | CAT_FAST_BSS_TRANSITION, "Fast BSS Transition (error)"}, {CAT_HT, "High Throughput"}, {0x80 | CAT_HT, "High Throughput (error)"}, {CAT_SA_QUERY, "SA Query"}, {0x80 | CAT_SA_QUERY, "SA Query (error)"}, {CAT_PUBLIC_PROTECTED, "Protected Dual of Public Action"}, {0x80 | CAT_PUBLIC_PROTECTED, "Protected Dual of Public Action (error)"}, {CAT_TDLS, "TDLS"}, {0x80 | CAT_TDLS, "TDLS (error)"}, {CAT_MGMT_NOTIFICATION, "Management Notification"}, {0x80 | CAT_MGMT_NOTIFICATION, "Management Notification (error)"}, {CAT_VENDOR_SPECIFIC_PROTECTED, "Vendor-specific Protected"}, {0x80 | CAT_VENDOR_SPECIFIC_PROTECTED, "Vendor-specific Protected (error)"}, {CAT_VENDOR_SPECIFIC, "Vendor Specific"}, {0x80 | CAT_VENDOR_SPECIFIC, "Vendor Specific (error)"}, {0, NULL} }; static const value_string action_codes[] ={ {SM_ACTION_MEASUREMENT_REQUEST, "Measurement Request"}, {SM_ACTION_MEASUREMENT_REPORT, "Measurement Report"}, {SM_ACTION_TPC_REQUEST, "TPC Request"}, {SM_ACTION_TPC_REPORT, "TPC Report"}, {SM_ACTION_CHAN_SWITCH_ANNC, "Channel Switch Announcement"}, {0, NULL} }; static const value_string vendor_action_types_mrvl[] ={ {MRVL_ACTION_MESH_MANAGEMENT, "Mesh Management"}, {0, NULL} }; static const value_string mesh_mgt_action_codes_mrvl[] ={ {MRVL_MESH_MGMT_ACTION_RREQ, "Route Request"}, {MRVL_MESH_MGMT_ACTION_RREP, "Route Response"}, {MRVL_MESH_MGMT_ACTION_RERR, "Route Error"}, {MRVL_MESH_MGMT_ACTION_PLDM, "Peer Link Down"}, {0, NULL} }; static const value_string mesh_path_selection_codes[] ={ {0x0, "Hybrid Wireless Mesh Protocol"}, {0, NULL} }; static const value_string mesh_metric_codes[] ={ {0x0, "Airtime Link Metric"}, {0, NULL} }; static const value_string wme_action_codes[] = { {0x00, "Setup request"}, {0x01, "Setup response"}, {0x02, "Teardown"}, {0x00, NULL} }; static const value_string wme_status_codes[] = { {0x00, "Admission accepted"}, {0x01, "Invalid parameters"}, {0x03, "Refused"}, {0x00, NULL} }; #ifdef MESH_OVERRIDES static const value_string mesh_mgt_action_ps_codes[] ={ {MESH_PS_PATH_REQUEST, "Path Request"}, {MESH_PS_PATH_REPLY, "Path Reply"}, {MESH_PS_PATH_ERROR, "Path Error"}, {MESH_PS_ROOT_ANNOUNCEMENT, "Root Announcement"}, {0, NULL} }; static const value_string mesh_mgt_action_pl_codes[] ={ {MESH_PL_PEER_LINK_OPEN, "Peer Link Open"}, {MESH_PL_PEER_LINK_CONFIRM, "Peer Link Confirm"}, {MESH_PL_PEER_LINK_CLOSE, "Peer Link Close"}, {0, NULL} }; static const value_string mesh_mgt_pl_reason_codes[] = { {MESH_LINK_CANCELLED, "Link Cancelled"}, {MESH_MAX_NEIGHBORS, "Maximum Number of Peers Reached"}, {MESH_CONFIG_POLICY_VIOLATION, "Policy Violation"}, {MESH_CLOSE_RCVD, "Close Received"}, {MESH_MAX_RETRIES, "Maximum Retries"}, {MESH_CONFIRM_TIMEOUT, "Confirm Timeout"}, {0x00, NULL} }; static const value_string mesh_mgt_ie_codes[] ={ /* TODO: incomplete */ {MESH_MGMT_IE_CONFIGURATION, "Mesh Configuration"}, {MESH_MGMT_IE_ID, "Mesh ID"}, {MESH_MGMT_IE_PEER_LINK, "Peer Link Management"}, {MESH_MGMT_IE_PREQ, "Path Request"}, {MESH_MGMT_IE_PREP, "Path Response"}, {MESH_MGMT_IE_PERR, "Path Error"}, {0, NULL} }; static const true_false_string mesh_dest_rf_flags ={ "[RF = 1] Intermediate Nodes That Respond Will Also Forward", "[RF = 0] Intermediate Nodes That Respond Will Not Forward" }; static const true_false_string mesh_dest_do_flags ={ "[DO = 1] Only Destination Will Respond", "[DO = 0] Intermediate Nodes May Respond" }; #endif /* MESH_OVERRIDES */ static const value_string ack_policy[] = { {0x00, "Normal Ack"}, {0x01, "No Ack"}, {0x02, "No explicit acknowledgment"}, {0x03, "Block Ack"}, {0x00, NULL} }; static const value_string qos_action_codes[] = { {SM_ACTION_ADDTS_REQUEST, "ADDTS Request"}, {SM_ACTION_ADDTS_RESPONSE, "ADDTS Response"}, {SM_ACTION_DELTS, "DELTS"}, {SM_ACTION_QOS_SCHEDULE, "Schedule"}, {0, NULL} }; static const value_string ba_action_codes[] = { {BA_ADD_BLOCK_ACK_REQUEST, "Add Block Ack Request"}, {BA_ADD_BLOCK_ACK_RESPONSE, "Add Block Ack Response"}, {BA_DELETE_BLOCK_ACK, "Delete Block Ack"}, {0x00, NULL} }; static const value_string dls_action_codes[] = { {SM_ACTION_DLS_REQUEST, "DLS Request"}, {SM_ACTION_DLS_RESPONSE, "DLS Response"}, {SM_ACTION_DLS_TEARDOWN, "DLS Teardown"}, {0, NULL} }; static const value_string tsinfo_type[] = { {0x0, "Aperiodic or unspecified Traffic"}, {0x1, "Periodic Traffic"}, {0, NULL} }; static const value_string tsinfo_direction[] = { {0x00, "Uplink"}, {0x01, "Downlink"}, {0x02, "Direct link"}, {0x03, "Bidirectional link"}, {0, NULL} }; static const value_string tsinfo_access[] = { {0x00, "Reserved"}, {0x01, "EDCA"}, {0x02, "HCCA"}, {0x03, "HEMM"}, {0, NULL} }; static const value_string qos_up[] = { {0x00, "Best Effort"}, {0x01, "Background"}, {0x02, "Spare"}, {0x03, "Excellent Effort"}, {0x04, "Controlled Load"}, {0x05, "Video"}, {0x06, "Voice"}, {0x07, "Network Control"}, {0, NULL} }; static const value_string classifier_type[] = { {0x00, "Ethernet parameters"}, {0x01, "TCP/UDP IP parameters"}, {0x02, "IEEE 802.1D/Q parameters"}, {0, NULL} }; static const value_string tclas_process[] = { {0x00, "Incoming MSDU's higher layer parameters have to match to the parameters in all associated TCLAS elements."}, {0x01, "Incoming MSDU's higher layer parameters have to match to at least one of the associated TCLAS elements."}, {0x02, "Incoming MSDU's that do not belong to any other TS are classified to the TS for which this TCLAS Processing element is used. In this case, there will not be any associated TCLAS elements."}, {0, NULL} }; static const true_false_string hf_block_ack_control_ack_policy_flag = { "Immediate Acknowledgement Required", "Sender Does Not Require Immediate Acknowledgement" }; static const value_string hf_block_ack_request_type_flags[] = { {0x00, "Basic Block Ack Request"}, {0x01, "Reserved"}, {0x02, "Compressed Block Ack Request"}, {0x03, "Multi-TID Block Ack Request"}, {0x00, NULL} }; static const value_string hf_block_ack_type_flags[] = { {0x00, "Basic Block Ack"}, {0x01, "Reserved"}, {0x02, "Compressed Block"}, {0x03, "Multi-TID Block"}, {0x00, NULL} }; static const value_string phy_type[] = { { 0, "Unknown" }, { 1, "FHSS 802.11 '97" }, { 2, "DSSS 802.11 '97" }, { 3, "IR Baseband" }, { 4, "DSSS 802.11b" }, { 5, "PBCC 802.11b" }, { 6, "OFDM 802.11g" }, { 7, "PBCC 802.11g" }, { 8, "OFDM 802.11a" }, { 0, NULL } }; static const value_string encoding_type[] = { { 0, "Unknown" }, { 1, "CCK" }, { 2, "PBCC" }, { 3, "OFDM" }, { 4, "DSS-OFDM" }, { 5, "BPSK" }, { 6, "QPSK" }, { 7, "16QAM" }, { 8, "64QAM" }, { 0, NULL } }; static const value_string ssi_type[] = { { SSI_NONE, "None" }, { SSI_NORM_RSSI, "Normalized RSSI" }, { SSI_DBM, "dBm" }, { SSI_RAW_RSSI, "Raw RSSI" }, { 0, NULL } }; static const value_string preamble_type[] = { { 0, "Unknown" }, { 1, "Short" }, { 2, "Long" }, { 0, NULL } }; static const value_string ft_action_codes[] ={ {FT_ACTION_REQUEST, "FT Request"}, {FT_ACTION_RESPONSE, "FT Response"}, {FT_ACTION_CONFIRM, "FT Confirm"}, {FT_ACTION_ACK, "FT Ack"}, {0, NULL} }; static const value_string sa_query_action_codes[] ={ {SA_QUERY_REQUEST, "SA Query Request"}, {SA_QUERY_RESPONSE, "SA Query Response"}, {0, NULL} }; static const value_string hf_ieee80211_data_encap_payload_types[] = { {1, "Remote Request/Response"}, {2, "TDLS"}, {0, NULL} }; static hf_register_info hf[] = { {&hf_mactime, {"MAC timestamp", "wlan.mactime", FT_UINT64, BASE_DEC, NULL, 0x0, "Value in microseconds of the MAC's Time Synchronization Function timer when the first bit of the MPDU arrived at the MAC", HFILL }}, {&hf_hosttime, {"Host timestamp", "wlan.hosttime", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL }}, {&hf_data_rate, {"Data Rate", "wlan.data_rate", FT_UINT64, BASE_DEC, NULL, 0, "Data rate (b/s)", HFILL }}, {&hf_channel, {"Channel", "wlan.channel", FT_UINT8, BASE_DEC, NULL, 0, "802.11 channel number that this frame was sent/received on", HFILL }}, {&hf_channel_frequency, {"Channel frequency", "wlan.channel_frequency", FT_UINT32, BASE_DEC, NULL, 0x0, "Channel frequency in megahertz that this frame was sent/received on", HFILL }}, {&hf_wlan_antenna, {"Antenna", "wlan.antenna", FT_UINT32, BASE_DEC, NULL, 0x0, "Antenna number this frame was sent/received over (starting at 0)", HFILL } }, {&hf_normrssi_antsignal, {"Normalized RSSI Signal", "wlan.normrssi_antsignal", FT_UINT32, BASE_DEC, NULL, 0x0, "RF signal power at the antenna, normalized to the range 0-1000", HFILL }}, {&hf_dbm_antsignal, {"SSI Signal (dBm)", "wlan.dbm_antsignal", FT_INT32, BASE_DEC, NULL, 0x0, "RF signal power at the antenna from a fixed, arbitrary value in decibels from one milliwatt", HFILL }}, {&hf_rawrssi_antsignal, {"Raw RSSI Signal", "wlan.rawrssi_antsignal", FT_UINT32, BASE_DEC, NULL, 0x0, "RF signal power at the antenna, reported as RSSI by the adapter", HFILL }}, {&hf_normrssi_antnoise, {"Normalized RSSI Noise", "wlan.normrssi_antnoise", FT_UINT32, BASE_DEC, NULL, 0x0, "RF noise power at the antenna, normalized to the range 0-1000", HFILL }}, {&hf_dbm_antnoise, {"SSI Noise (dBm)", "wlan.dbm_antnoise", FT_INT32, BASE_DEC, NULL, 0x0, "RF noise power at the antenna from a fixed, arbitrary value in decibels per one milliwatt", HFILL }}, {&hf_rawrssi_antnoise, {"Raw RSSI Noise", "wlan.rawrssi_antnoise", FT_UINT32, BASE_DEC, NULL, 0x0, "RF noise power at the antenna, reported as RSSI by the adapter", HFILL }}, {&hf_signal_strength, {"Signal Strength", "wlan.signal_strength", FT_UINT8, BASE_DEC, NULL, 0, "Signal strength (Percentage)", HFILL }}, {&hf_fc_field, {"Frame Control Field", "wlan.fc", FT_UINT16, BASE_HEX, NULL, 0, "MAC Frame control", HFILL }}, {&hf_fc_proto_version, {"Version", "wlan.fc.version", FT_UINT8, BASE_DEC, NULL, 0, "MAC Protocol version", HFILL }}, /* 0 */ {&hf_fc_frame_type, {"Type", "wlan.fc.type", FT_UINT8, BASE_DEC, VALS(frame_type), 0, "Frame type", HFILL }}, {&hf_fc_frame_subtype, {"Subtype", "wlan.fc.subtype", FT_UINT8, BASE_DEC, NULL, 0, "Frame subtype", HFILL }}, /* 2 */ {&hf_fc_frame_type_subtype, {"Type/Subtype", "wlan.fc.type_subtype", FT_UINT8, BASE_HEX, VALS(frame_type_subtype_vals), 0, "Type and subtype combined (first byte: type, second byte: subtype)", HFILL }}, {&hf_fc_flags, {"Protocol Flags", "wlan.flags", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_fc_data_ds, {"DS status", "wlan.fc.ds", FT_UINT8, BASE_HEX, VALS (&tofrom_ds), (FLAG_FROM_DS|FLAG_TO_DS), "Data-frame DS-traversal status", HFILL }}, /* 3 */ {&hf_fc_to_ds, {"To DS", "wlan.fc.tods", FT_BOOLEAN, 8, TFS (&tods_flag), FLAG_TO_DS, "To DS flag", HFILL }}, /* 4 */ {&hf_fc_from_ds, {"From DS", "wlan.fc.fromds", FT_BOOLEAN, 8, TFS (&fromds_flag), FLAG_FROM_DS, "From DS flag", HFILL }}, /* 5 */ {&hf_fc_more_frag, {"More Fragments", "wlan.fc.frag", FT_BOOLEAN, 8, TFS (&more_frags), FLAG_MORE_FRAGMENTS, "More Fragments flag", HFILL }}, /* 6 */ {&hf_fc_retry, {"Retry", "wlan.fc.retry", FT_BOOLEAN, 8, TFS (&retry_flags), FLAG_RETRY, "Retransmission flag", HFILL }}, { &hf_fc_analysis_retransmission, {"Retransmission", "wlan.analysis.retransmission", FT_NONE, BASE_NONE, NULL, 0x0, "This frame is a suspected wireless retransmission", HFILL }}, { &hf_fc_analysis_retransmission_frame, {"Retransmission of frame", "wlan.analysis.retransmission_frame", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "This is a retransmission of frame #", HFILL }}, {&hf_fc_pwr_mgt, {"PWR MGT", "wlan.fc.pwrmgt", FT_BOOLEAN, 8, TFS (&pm_flags), FLAG_POWER_MGT, "Power management status", HFILL }}, {&hf_fc_more_data, {"More Data", "wlan.fc.moredata", FT_BOOLEAN, 8, TFS (&md_flags), FLAG_MORE_DATA, "More data flag", HFILL }}, {&hf_fc_protected, {"Protected flag", "wlan.fc.protected", FT_BOOLEAN, 8, TFS (&protected_flags), FLAG_PROTECTED, NULL, HFILL }}, {&hf_fc_order, {"Order flag", "wlan.fc.order", FT_BOOLEAN, 8, TFS (&order_flags), FLAG_ORDER, "Strictly ordered flag", HFILL }}, {&hf_assoc_id, {"Association ID","wlan.aid",FT_UINT16, BASE_DEC,NULL,0, "Association-ID field", HFILL }}, {&hf_did_duration, {"Duration", "wlan.duration", FT_UINT16, BASE_DEC, NULL, 0, "Duration field", HFILL }}, {&hf_addr_da, {"Destination address", "wlan.da", FT_ETHER, BASE_NONE, NULL, 0, "Destination Hardware Address", HFILL }}, {&hf_addr_sa, {"Source address", "wlan.sa", FT_ETHER, BASE_NONE, NULL, 0, "Source Hardware Address", HFILL }}, { &hf_addr, {"Source or Destination address", "wlan.addr", FT_ETHER, BASE_NONE, NULL, 0, "Source or Destination Hardware Address", HFILL }}, {&hf_addr_ra, {"Receiver address", "wlan.ra", FT_ETHER, BASE_NONE, NULL, 0, "Receiving Station Hardware Address", HFILL }}, {&hf_addr_ta, {"Transmitter address", "wlan.ta", FT_ETHER, BASE_NONE, NULL, 0, "Transmitting Station Hardware Address", HFILL }}, {&hf_addr_addr1, {"First Address of Contained Frame", "wlan.controlwrap.addr1", FT_ETHER, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_addr_bssid, {"BSS Id", "wlan.bssid", FT_ETHER, BASE_NONE, NULL, 0, "Basic Service Set ID", HFILL }}, {&hf_frag_number, {"Fragment number", "wlan.frag", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_seq_number, {"Sequence number", "wlan.seq", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_qos_priority, {"Priority", "wlan.qos.priority", FT_UINT16, BASE_DEC, NULL, 0, "802.1D Tag", HFILL }}, {&hf_qos_eosp, {"EOSP", "wlan.qos.eosp", FT_BOOLEAN, 8, TFS (&eosp_flag), QOS_FLAG_EOSP, "EOSP Field", HFILL }}, {&hf_qos_bit4, {"QoS bit 4", "wlan.qos.bit4", FT_BOOLEAN, 8, TFS (&bit4_flag), QOS_FLAG_EOSP, NULL, HFILL }}, {&hf_qos_ack_policy, {"Ack Policy", "wlan.qos.ack", FT_UINT8, BASE_HEX, VALS (&ack_policy), 0, NULL, HFILL }}, {&hf_qos_amsdu_present, {"Payload Type", "wlan.qos.amsdupresent", FT_BOOLEAN, BASE_NONE, TFS (&hf_qos_amsdu_present_flag), 0x0, NULL, HFILL }}, {&hf_qos_txop_limit, {"TXOP Limit", "wlan.qos.txop_limit", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_qos_buf_state_indicated, {"Buffer State Indicated", "wlan.qos.buf_state_indicated", FT_BOOLEAN, 8, TFS(&tfs_yes_no), 0x02, NULL, HFILL }}, {&hf_qos_highest_pri_buf_ac, {"Highest-Priority Buffered AC", "wlan.qos.highest_pri_buf_ac", FT_UINT8, BASE_DEC, VALS(wme_acs), 0x0C, NULL, HFILL }}, {&hf_qos_qap_buf_load, {"QAP Buffered Load", "wlan.qos.qap_buf_load", FT_UINT8, BASE_DEC, NULL, 0xF0, NULL, HFILL }}, {&hf_qos_txop_dur_req, {"TXOP Duration Requested", "wlan.qos.txop_dur_req", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_qos_queue_size, {"Queue Size", "wlan.qos.queue_size", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_fcs, {"Frame check sequence", "wlan.fcs", FT_UINT32, BASE_HEX, NULL, 0, "Frame Check Sequence (FCS)", HFILL }}, {&hf_fcs_good, {"Good", "wlan.fcs_good", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "True if the FCS is correct", HFILL }}, {&hf_fcs_bad, {"Bad", "wlan.fcs_bad", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "True if the FCS is incorrect", HFILL }}, {&hf_fragment_overlap, {"Fragment overlap", "wlan.fragment.overlap", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Fragment overlaps with other fragments", HFILL }}, {&hf_fragment_overlap_conflict, {"Conflicting data in fragment overlap", "wlan.fragment.overlap.conflict", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Overlapping fragments contained conflicting data", HFILL }}, {&hf_fragment_multiple_tails, {"Multiple tail fragments found", "wlan.fragment.multipletails", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Several tails were found when defragmenting the packet", HFILL }}, {&hf_fragment_too_long_fragment, {"Fragment too long", "wlan.fragment.toolongfragment", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Fragment contained data past end of packet", HFILL }}, {&hf_fragment_error, {"Defragmentation error", "wlan.fragment.error", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "Defragmentation error due to illegal fragments", HFILL }}, {&hf_fragment, {"802.11 Fragment", "wlan.fragment", FT_FRAMENUM, BASE_NONE, NULL, 0x0, NULL, HFILL }}, {&hf_fragments, {"802.11 Fragments", "wlan.fragments", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL }}, {&hf_reassembled_in, {"Reassembled 802.11 in frame", "wlan.reassembled_in", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "This 802.11 packet is reassembled in this frame", HFILL }}, {&hf_reassembled_length, {"Reassembled 802.11 length", "wlan.reassembled.length", FT_UINT32, BASE_DEC, NULL, 0x0, "The total length of the reassembled payload", HFILL }}, {&hf_wep_iv, {"Initialization Vector", "wlan.wep.iv", FT_UINT24, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_wep_iv_weak, {"Weak IV", "wlan.wep.weakiv", FT_BOOLEAN,BASE_NONE, NULL,0x0, NULL,HFILL}}, {&hf_tkip_extiv, {"TKIP Ext. Initialization Vector", "wlan.tkip.extiv", FT_STRING, BASE_NONE, NULL, 0, "TKIP Extended Initialization Vector", HFILL }}, {&hf_ccmp_extiv, {"CCMP Ext. Initialization Vector", "wlan.ccmp.extiv", FT_STRING, BASE_NONE, NULL, 0, "CCMP Extended Initialization Vector", HFILL }}, {&hf_wep_key, {"Key Index", "wlan.wep.key", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_wep_icv, {"WEP ICV", "wlan.wep.icv", FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL }}, /*** Begin: WAVE Service information element Dissection - IEEE 802.11p Draft 4.0 ***/ {&hf_pst_timingquality, {"Timing Quality", "pst.timingQuality", FT_UINT16, BASE_DEC, NULL, 0, "PST Timing Quality", HFILL }}, {&hf_pst_providercount, {"No. of Providers announcing their Services", "pst.providerCount", FT_UINT8, BASE_DEC, NULL, 0, "Provider Count", HFILL }}, {&hf_pst_length, {"Provider Service Table Length", "pst.length", FT_UINT16, BASE_DEC, NULL, 0, "PST Length", HFILL }}, {&hf_pst_contents, {"Provider Service Table Contents", "pst.contents", FT_UINT8, BASE_HEX, NULL, 0, "PST Contents", HFILL }}, {&hf_pst_acid, {"Application Class ID (ACID)", "pst.ACID", FT_UINT8, BASE_DEC, NULL, 0, "PST ACID", HFILL }}, {&hf_pst_acm_length, {"Application Context Mask (ACM) Length", "pst.ACM.length", FT_UINT8, BASE_DEC, NULL, 0, "PST ACM Length", HFILL }}, {&hf_pst_acm, {"Application Context Mask", "pst.ACM", FT_STRING, BASE_NONE, NULL, 0, "PST ACM", HFILL }}, {&hf_pst_acm_contents, {"Application Context Mask Contents (ACM)", "pst.ACM.contents", FT_UINT32, BASE_DEC, NULL, 0, "PST ACM Contents", HFILL }}, {&hf_pst_acf, {"Application Contents Field (ACF)", "pst.ACF", FT_UINT32, BASE_DEC, NULL, 0, "PST ACF", HFILL }}, {&hf_pst_priority, {"Application Priority", "pst.priority", FT_UINT8, BASE_DEC, NULL, 0, "PST Priority", HFILL }}, {&hf_pst_ipv6addr, {"Internet Protocol V6 Address", "pst.ipv6addr", FT_IPv6, BASE_NONE, NULL, 0, "IP v6 Addr", HFILL }}, {&hf_pst_macaddr, {"Medium Access Control Address (MAC addr)", "pst.macaddr", FT_ETHER, BASE_NONE, NULL, 0, "MAC Address", HFILL }}, {&hf_pst_serviceport, {"Service Port", "pst.serviceport", FT_UINT16, BASE_DEC, NULL, 0, "PST Service Port", HFILL }}, {&hf_pst_addressing, {"Addressing", "pst.addressing", FT_UINT8, BASE_DEC, NULL, 0, "PST Addressing", HFILL }}, {&hf_pst_channel, {"Service (IEE802.11) Channel", "pst.channel", FT_UINT8, BASE_DEC, NULL, 0, "PST Service Channel", HFILL }}, {&hf_chan_noc, {"Number of Channels", "chan.chan_uknown", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_chan_length, {"Length", "chan.chan_length", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_chan_content, {"Contents", "chan.chan_content", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_chan_channel, {"channel", "chan.chan_channel", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_chan_adapt, {"Adaptable", "chan.chan_adapt", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_chan_rate, {"Rate", "chan.chan_rate", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_chan_tx_pow, {"Tx Power", "chan.chan_tx_pow", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_block_ack_request_control, {"Block Ack Request (BAR) Control", "wlan.bar.control", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_block_ack_control, {"Block Ack Request Control", "wlan.ba.control", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_block_ack_control_ack_policy, {"BAR Ack Policy", "wlan.ba.control.ackpolicy", FT_BOOLEAN, 16, TFS (&hf_block_ack_control_ack_policy_flag), 0x01, "Block Ack Request (BAR) Ack Policy", HFILL }}, {&hf_block_ack_control_multi_tid, {"Multi-TID", "wlan.ba.control.multitid", FT_BOOLEAN, 16, 0, 0x02, "Multi-Traffic Identifier (TID)", HFILL }}, {&hf_block_ack_control_compressed_bitmap, {"Compressed Bitmap", "wlan.ba.control.cbitmap", FT_BOOLEAN, 16, 0, 0x04, NULL, HFILL }}, {&hf_block_ack_control_reserved, {"Reserved", "wlan.ba.control.cbitmap", FT_UINT16, BASE_HEX, NULL, 0x0ff8, NULL, HFILL }}, {&hf_block_ack_control_basic_tid_info, {"TID for which a Basic BlockAck frame is requested", "wlan.ba.basic.tidinfo", FT_UINT16, BASE_HEX, NULL, 0xf000, "Traffic Identifier (TID) for which a Basic BlockAck frame is requested", HFILL }}, {&hf_block_ack_control_compressed_tid_info, {"TID for which a BlockAck frame is requested", "wlan.bar.compressed.tidinfo", FT_UINT16, BASE_HEX, NULL, 0xf000, "Traffic Identifier (TID) for which a BlockAck frame is requested", HFILL }}, {&hf_block_ack_control_multi_tid_info, {"Number of TIDs Present", "wlan.ba.mtid.tidinfo", FT_UINT16, BASE_HEX, NULL, 0xf000, "Number of Traffic Identifiers (TIDs) Present", HFILL }}, {&hf_block_ack_multi_tid_info, {"Traffic Identifier (TID) Info", "wlan.ba.mtid.tid", FT_UINT8, BASE_DEC, 0, 0, NULL, HFILL }}, {&hf_block_ack_multi_tid_reserved, {"Reserved", "wlan.bar.mtid.tidinfo.reserved", FT_UINT16, BASE_HEX, 0, 0x0fff, NULL, HFILL }}, {&hf_block_ack_multi_tid_value, {"Multi-TID Value", "wlan.bar.mtid.tidinfo.value", FT_UINT16, BASE_HEX, 0, 0xf000, NULL, HFILL }}, {&hf_block_ack_request_type, {"Block Ack Request Type", "wlan.bar.type", FT_UINT8, BASE_HEX, VALS(hf_block_ack_request_type_flags), 0, "Block Ack Request (BAR) Type", HFILL }}, {&hf_block_ack_type, {"Block Ack Type", "wlan.ba.type", FT_UINT8, BASE_HEX, VALS(hf_block_ack_type_flags), 0, NULL, HFILL }}, {&hf_block_ack_bitmap, {"Block Ack Bitmap", "wlan.ba.bm", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_data_encap_payload_type, {"Payload Type", "wlan.data_encap.payload_type", FT_UINT8, BASE_DEC, VALS(hf_ieee80211_data_encap_payload_types), 0, NULL, HFILL }}, {&hf_ieee80211_ff_tdls_action_code, {"Action code", "wlan_mgt.fixed.action_code", FT_UINT8, BASE_DEC, VALS(&tdls_action_codes), 0, "Management action code", HFILL }}, {&hf_ieee80211_ff_target_channel, {"Target Channel", "wlan_mgt.fixed.target_channel", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_ff_regulatory_class, {"Regulatory Class", "wlan_mgt.fixed.regulatory_class", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }} #ifdef MESH_OVERRIDES , {&hf_mesh_flags, {"Mesh Flags", "wlan.mesh.flags", FT_BOOLEAN, BASE_NONE, NULL, 0x0, NULL, HFILL }}, {&hf_mesh_seq, {"Mesh Seq", "wlan.mesh.seq", FT_UINT32, BASE_DEC, NULL, 0, "Mesh End-to-End sequence number", HFILL }}, {&hf_mesh_ttl, {"Mesh TTL", "wlan.mesh.ttl", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_mesh_ae1, {"Mesh A4", "wlan.mesh.a4", FT_ETHER, BASE_NONE, NULL, 0, "Mesh Address4", HFILL }}, {&hf_mesh_ae2, {"Mesh A5", "wlan.mesh.a5", FT_ETHER, BASE_NONE, NULL, 0, "Mesh Address5", HFILL }}, {&hf_mesh_ae3, {"Mesh A6", "wlan.mesh.a6", FT_ETHER, BASE_NONE, NULL, 0, "Mesh Address6", HFILL }} #endif /* MESH_OVERRIDES */ }; static hf_register_info hf_prism[] = { /* Prism-specific header fields XXX - make as many of these generic as possible. */ { &hf_prism_msgcode, {"Message Code", "prism.msgcode", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_prism_msglen, {"Message Length", "prism.msglen", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_prism_rssi_data, {"RSSI Field", "prism.rssi.data", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_prism_sq_data, {"SQ Field", "prism.sq.data", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_prism_signal_data, {"Signal Field", "prism.signal.data", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_prism_noise_data, {"Noise Field", "prism.noise.data", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_prism_rate_data, {"Rate Field", "prism.rate.data", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_prism_istx_data, {"IsTX Field", "prism.istx.data", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_prism_frmlen_data, {"Frame Length Field", "prism.frmlen.data", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }} }; static hf_register_info hf_wlancap[] = { /* AVS-specific header fields. XXX - make as many of these generic as possible. */ {&hf_wlan_magic, {"Header magic", "wlancap.magic", FT_UINT32, BASE_HEX, NULL, 0xFFFFFFF0, NULL, HFILL } }, { &hf_wlan_version, { "Header revision", "wlancap.version", FT_UINT32, BASE_DEC, NULL, 0xF, NULL, HFILL } }, { &hf_wlan_length, { "Header length", "wlancap.length", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, {&hf_wlan_phytype, {"PHY type", "wlan.phytype", FT_UINT32, BASE_DEC, VALS(phy_type), 0x0, NULL, HFILL } }, { &hf_wlan_priority, { "Priority", "wlancap.priority", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_wlan_ssi_type, { "SSI Type", "wlancap.ssi_type", FT_UINT32, BASE_DEC, VALS(ssi_type), 0x0, NULL, HFILL } }, { &hf_wlan_ssi_signal, { "SSI Signal", "wlancap.ssi_signal", FT_INT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_wlan_ssi_noise, { "SSI Noise", "wlancap.ssi_noise", FT_INT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_wlan_preamble, { "Preamble", "wlancap.preamble", FT_UINT32, BASE_DEC, VALS(preamble_type), 0x0, NULL, HFILL } }, { &hf_wlan_encoding, { "Encoding Type", "wlancap.encoding", FT_UINT32, BASE_DEC, VALS(encoding_type), 0x0, NULL, HFILL } }, { &hf_wlan_sequence, { "Receive sequence", "wlancap.sequence", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_wlan_drops, { "Known Dropped Frames", "wlancap.drops", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_wlan_receiver_addr, { "Receiver Address", "wlancap.receiver_addr", FT_ETHER, BASE_NONE, NULL, 0x0, "Receiver Hardware Address", HFILL } }, { &hf_wlan_padding, { "Padding", "wlancap.padding", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } } }; static const true_false_string rsn_preauth_flags = { "Transmitter supports pre-authentication", "Transmitter does not support pre-authentication" }; static const true_false_string rsn_no_pairwise_flags = { "Transmitter cannot support WEP default key 0 simultaneously with " "Pairwise key", "Transmitter can support WEP default key 0 simultaneously with " "Pairwise key" }; static const value_string rsn_cap_replay_counter[] = { {0x00, "1 replay counter per PTKSA/GTKSA/STAKeySA"}, {0x01, "2 replay counters per PTKSA/GTKSA/STAKeySA"}, {0x02, "4 replay counters per PTKSA/GTKSA/STAKeySA"}, {0x03, "16 replay counters per PTKSA/GTKSA/STAKeySA"}, {0, NULL} }; static const true_false_string ht_ldpc_coding_flag = { "Transmitter supports receiving LDPC coded packets", "Transmitter does not support receiving LDPC coded packets" }; static const true_false_string ht_chan_width_flag = { "Transmitter supports 20MHz and 40MHz operation", "Transmitter only supports 20MHz operation" }; static const value_string ht_sm_pwsave_flag[] = { {0x00, "Static SM Power Save mode"}, {0x01, "Dynamic SM Power Save mode"}, {0x02, "Reserved"}, {0x03, "SM Power Save disabled"}, {0x00, NULL} }; static const true_false_string ht_green_flag = { "Transmitter is able to receive PPDUs with Green Field (GF) preamble", "Transmitter is not able to receive PPDUs with Green Field (GF) preamble" }; static const value_string ht_rx_stbc_flag[] = { {0x00, "No Rx STBC support"}, {0x01, "Rx support of one spatial stream"}, {0x02, "Rx support of one and two spatial streams"}, {0x03, "Rx support of one, two, and three spatial streams"}, {0x00, NULL} }; static const true_false_string ht_delayed_block_ack_flag = { "Transmitter supports HT-Delayed BlockAck", "Transmitter does not support HT-Delayed BlockAck" }; static const true_false_string ht_max_amsdu_flag = { "7935 bytes", "3839 bytes" }; static const true_false_string ht_dss_cck_40_flag = { "Will/Can use DSSS/CCK in 40 MHz", "Won't/Can't use of DSSS/CCK in 40 MHz" }; static const true_false_string ht_psmp_flag = { "Will/Can support PSMP operation", "Won't/Can't support PSMP operation" }; static const true_false_string ht_40_mhz_intolerant_flag = { "Use of 40 MHz transmissions restricted/disallowed", "Use of 40 MHz transmissions unrestricted/allowed" }; static const value_string ampduparam_mpdu_start_spacing_flags[] = { {0x00, "no restriction"}, {0x01, "1/4 [usec]"}, {0x02, "1/2 [usec]"}, {0x03, "1 [usec]"}, {0x04, "2 [usec]"}, {0x05, "4 [usec]"}, {0x06, "8 [usec]"}, {0x07, "16 [usec]"}, {0x00, NULL} }; static const true_false_string mcsset_tx_mcs_set_defined_flag = { "Defined", "Not Defined", }; static const true_false_string mcsset_tx_rx_mcs_set_not_equal_flag = { "Not Equal", "Equal", }; static const value_string mcsset_tx_max_spatial_streams_flags[] = { {0x00, "1 spatial stream"}, {0x01, "2 spatial streams"}, {0x02, "3 spatial streams"}, {0x03, "4 spatial streams"}, {0x00, NULL} }; static const value_string htex_transtime_flags[] = { {0x00, "No Transition"}, {0x01, "400 usec"}, {0x02, "1.5 msec"}, {0x03, "5 msec"}, {0x00, NULL} }; static const value_string htex_mcs_flags[] = { {0x00, "STA does not provide MCS feedback"}, {0x01, "Reserved"}, {0x02, "STA provides only unsolicited MCS feedback"}, {0x03, "STA can provide MCS feedback in response to MRQ as well as unsolicited MCS feedback"}, {0x00, NULL} }; static const value_string txbf_calib_flag[] = { {0x00, "incapable"}, {0x01, "Limited involvement, cannot initiate"}, {0x02, "Limited involvement, can initiate"}, {0x03, "Fully capable"}, {0x00, NULL} }; static const value_string txbf_feedback_flags[] = { {0x00, "not supported"}, {0x01, "delayed feedback capable"}, {0x02, "immediate feedback capable"}, {0x03, "delayed and immediate feedback capable"}, {0x00, NULL} }; static const value_string txbf_antenna_flags[] = { {0x00, "1 TX antenna sounding"}, {0x01, "2 TX antenna sounding"}, {0x02, "3 TX antenna sounding"}, {0x03, "4 TX antenna sounding"}, {0x00, NULL} }; static const value_string txbf_csi_max_rows_bf_flags[] = { {0x00, "1 row of CSI"}, {0x01, "2 rows of CSI"}, {0x02, "3 rows of CSI"}, {0x03, "4 rows of CSI"}, {0x00, NULL} }; static const value_string txbf_chan_est_flags[] = { {0x00, "1 space time stream"}, {0x01, "2 space time streams"}, {0x02, "3 space time streams"}, {0x03, "4 space time streams"}, {0x00, NULL} }; static const value_string txbf_min_group_flags[] = { {0x00, "No grouping supported"}, {0x01, "Groups of 1,2 supported"}, {0x02, "Groups of 1,4 supported"}, {0x03, "Groups of 1,2,4 supported"}, {0x00, NULL} }; static const value_string hta_ext_chan_offset_flag[] = { {0x00, "No Extension Channel"}, {0x01, "Extension Channel above control channel"}, {0x02, "Undefined"}, {0x03, "Extension Channel below control channel"}, {0x00, NULL} }; static const true_false_string hta_rec_tx_width_flag = { "Any channel width enabled", "Use 20MHz channel (control)" }; static const true_false_string hta_rifs_mode_flag = { "Use of RIFS permitted", "Use of RIFS prohibited" }; static const true_false_string hta_controlled_access_flag = { "Not only PSMP", "PSMP only" }; static const value_string hta_service_interval_flag[] = { {0x00, "5ms"}, {0x01, "10ms"}, {0x02, "15ms"}, {0x03, "20ms"}, {0x04, "25ms"}, {0x05, "30ms"}, {0x06, "35ms"}, {0x07, "40ms"}, {0x00, NULL} }; static const value_string hta_operating_mode_flag[] = { {0x00, "Pure HT, no protection"}, {0x01, "There may be non-HT devices (control & ext channel)"}, {0x02, "No non-HT is associated, but at least 1 20MHz is. protect on"}, {0x03, "Mixed: no non-HT is associated, protect on"}, {0x00, NULL} }; static const true_false_string hta_non_gf_devices_flag = { "All HT devices associated are GF capable", "One or More HT devices are not GF capable" }; static const true_false_string hta_dual_stbc_protection_flag = { "Dual CTS protections is used", "Regular use of RTS/CTS" }; static const true_false_string hta_secondary_beacon_flag = { "Secondary Beacon", "Primary Beacon" }; static const true_false_string hta_lsig_txop_protection_flag = { "Full Support", "Not full support" }; static const true_false_string hta_pco_active_flag = { "PCO is activated in the BSS", "PCO is not activated in the BSS" }; static const true_false_string hta_pco_phase_flag = { "Switch to 20MHz phase/keep 20MHz", "Switch to 40MHz phase/keep 40MHz" }; static const value_string ht_info_secondary_channel_offset_flags[] = { {0x00, "No secondary channel"}, {0x01, "Secondary channel is above the primary channel"}, {0x02, "Reserved"}, {0x03, "Secondary channel is below the primary channel"}, {0x00, NULL} }; static const true_false_string ht_info_channel_width_flag = { "Channel of any width supported", "20 MHz channel width only" }; static const true_false_string ht_info_rifs_mode_flag = { "Permitted", "Prohibited" }; static const true_false_string ht_info_psmp_stas_only_flag = { "Association requests are accepted from only PSMP capable STA", "Association requests are accepted regardless of PSMP capability" }; static const value_string ht_info_service_interval_granularity_flags[] = { {0x00, "5 ms"}, {0x01, "10 ms"}, {0x02, "15 ms"}, {0x03, "20 ms"}, {0x04, "25 ms"}, {0x05, "30 ms"}, {0x06, "35 ms"}, {0x07, "40 ms"}, {0x00, NULL} }; static const value_string ht_info_operating_mode_flags[] = { {0x00, "All STAs are - 20/40 MHz HT or in a 20/40 MHz BSS or are 20 MHz HT in a 20 MHz BSS"}, {0x01, "HT non-member protection mode"}, {0x02, "Only HT STAs in the BSS, however, there exists at least one 20 MHz STA"}, {0x03, "HT mixed mode"}, {0x00, NULL} }; static const true_false_string ht_info_non_greenfield_sta_present_flag = { "One or more associated STAs are not greenfield capable", "All associated STAs are greenfield capable" }; static const true_false_string ht_info_transmit_burst_limit_flag = { "2.4 GHz - 6.16 ms | All other bands - 3.08 ms", "No limit" }; static const true_false_string ht_info_obss_non_ht_stas_present_flag = { "Use of protection for non-HT STAs by overlapping BSSs is needed", "Use of protection for non-HT STAs by overlapping BSSs is not needed" }; static const true_false_string ht_info_dual_beacon_flag = { "AP transmits a secondary beacon", "No second beacon is transmitted" }; static const true_false_string ht_info_dual_cts_protection_flag = { "Required", "Not required" }; static const true_false_string ht_info_secondary_beacon_flag = { "Secondary beacon", "Primary beacon" }; static const true_false_string ht_info_lsig_txop_protection_full_support_flag = { "All HT STAs in the BSS support L-SIG TXOP protection", "One or more HT STAs in the BSS do not support L-SIG TXOP protection" }; static const true_false_string ht_info_pco_phase_flag = { "Switch to or continue 40 MHz phase", "Switch to or continue 20 MHz phase" }; static const true_false_string htc_lac_trq_flag = { "Want sounding PPDU", "Don't want sounding PPDU" }; static const true_false_string htc_lac_mai_mrq_flag = { "MCS feedback requested", "No MCS feedback requested" }; static const value_string hf_htc_lac_asel_command_flags[] = { {0x00, "Transmit Antenna Selection Sounding Indication (TXASSI)"}, {0x01, "Transmit Antenna Selection Sounding Request (TXASSR)"}, {0x02, "Receive Antenna Selection Sounding Indication (RXASSI)"}, {0x03, "Receive Antenna Selection Sounding Request (RXASSR)"}, {0x04, "Sounding Label"}, {0x05, "No feedback, ASEL training failure"}, {0x06, "Transmit Antenna Selection Sounding Indication (TXASSI) requesting feedback of explicit CSI"}, {0x07, "Reserved"}, {0x00, NULL} }; static const value_string hf_htc_cal_pos_flags[] = { {0x00, "Not a calibration frame"}, {0x01, "Calibration Start"}, {0x02, "Sounding Response"}, {0x03, "Sounding Complete"}, {0x00, NULL} }; static const true_false_string hf_htc_ndp_announcement_flag = { "NDP will follow", "No NDP will follow" }; static const value_string hf_htc_csi_steering_flags[] = { {0x00, "No feedback required"}, {0x01, "CSI"}, {0x02, "Non-compressed Beamforming Feedback Matrix"}, {0x03, "Compressed Beamforming Feedback Matrix"}, {0x00, NULL} }; static const value_string hf_tag_secondary_channel_offset_flags[] = { {0x00, "No Secondary Channel"}, {0x01, "Above Primary Channel"}, {0x02, "Reserved"}, {0x03, "Below Primary Channel"}, {0x00, NULL} }; static const true_false_string hf_tag_measure_acc_not_acc = { "Accepted", "Not Accepted" }; static const value_string hf_tag_measure_request_type_flags[] = { {0x00, "Basic Request"}, {0x01, "Clear Channel Assessment (CCA) Request"}, {0x02, "Receive Power Indication (RPI) Histogram Request"}, {0x03, "Channel Load Request"}, {0x04, "Noise Histogram Request"}, {0x05, "Beacon Request"}, {0x06, "Frame Request"}, {0x07, "STA Statistics Request"}, {0x08, "Location Configuration Indication (LCI) Request"}, {0x09, "Transmit Stream Measurement Request"}, {0x0A, "Measurement Pause Request"}, {0x00, NULL} }; static const value_string hf_tag_measure_report_type_flags[] = { {0x00, "Basic Report"}, {0x01, "Clear Channel Assessment (CCA) Report"}, {0x02, "Receive Power Indication (RPI) Histogram Report"}, {0x03, "Channel Load Report"}, {0x04, "Noise Histogram Report"}, {0x05, "Beacon Report"}, {0x06, "Frame Report"}, {0x07, "STA Statistics Report"}, {0x08, "Location Configuration Information (LCI) Report"}, {0x09, "Transmit Stream Measurement Report"}, {0x00, NULL} }; static const true_false_string hf_tag_measure_report_frame_info_frame_type_flag = { "Measurement Pilot Frame", "Beacon/Probe Response Frame" }; static const true_false_string hf_tag_measure_map_field_bss_flag = { "At least one MPDU was received by another BSS or IBSS in the measurement period.", "No MPDUs were received from another BSS or IBSS in the measurement period." }; static const true_false_string hf_tag_measure_detected_not_detected = { "Detected", "Not Detected" }; static const value_string hf_tag_measure_request_measurement_mode_flags[] = { {0x00, "Passive"}, {0x01, "Active"}, {0x02, "Beacon Table"}, {0x00, NULL} }; static const value_string hf_tag_measure_request_reporting_condition_flags[] = { {0x00, "Report to be issued after each measurement."}, {0x01, "The measured RCPI level is greater than an absolute threshold."}, {0x02, "The measured RCPI level is less than an absolute threshold."}, {0x03, "The measured RSNI level is greater than an absolute threshold."}, {0x04, "The measured RSNI level is less than an absolute threshold."}, {0x05, "The measured RCPI level is greater than a threshold defined by an offset from the serving AP's reference RCPI."}, {0x06, "The measured RCPI level is less than a threshold defined by an offset from the serving AP's reference RCPI."}, {0x07, "The measured RSNI level is greater than a threshold defined by an offset from the serving AP's reference RSNI."}, {0x08, "The measured RSNI level is less than a threshold defined by an offset from the serving AP's reference RSNI."}, {0x09, "The measured RCPI level is in a range bound by the serving AP's reference RCPI and an offset from the serving AP's reference RCPI."}, {0x0a, "The measured RSNI level is in a range bound by the serving AP's reference RSNI and an offset from the serving AP's reference RSNI."}, {0xfe, "Report not required to be issued"}, {0x00, NULL} }; static const value_string hf_tag_measure_request_group_id_flags[] = { {0x00, "STA Counters from dot11CountersTable"}, {0x01, "STA Counters from dot11MacStatistics group"}, {0x02, "QoS STA Counters for UP0 from dot11QosCountersTable"}, {0x03, "QoS STA Counters for UP1 from dot11QosCountersTable"}, {0x04, "QoS STA Counters for UP2 from dot11QosCountersTable"}, {0x05, "QoS STA Counters for UP3 from dot11QosCountersTable"}, {0x06, "QoS STA Counters for UP4 from dot11QosCountersTable"}, {0x07, "QoS STA Counters for UP5 from dot11QosCountersTable"}, {0x08, "QoS STA Counters for UP6 from dot11QosCountersTable"}, {0x09, "QoS STA Counters for UP7 from dot11QosCountersTable"}, {0x0a, "BSS Average Access Delays"}, {0x0b, "STA Counters from dot11A-MSDU Group"}, {0x0c, "STA Counters from dot11A-MPDU Group"}, {0x0d, "STA Counters from dot11 BAR, Channel Width, PSMP Group"}, {0x0e, "STA Counters from dot11Protection Group"}, {0x0f, "STBC Group"}, {0x00, NULL} }; static const value_string hf_tag_ext_channel_switch_announcement_switch_mode_flags[] = { {0x00, "Frames may be transmitted before the channel switch has been completed"}, {0x01, "No more frames are to be transmitted until the channel switch has been completed"}, {0x00, NULL} }; static const value_string service_interval_granularity_vals[] = { { 0, "5 ms" }, { 1, "10 ms" }, { 2, "15 ms" }, { 3, "20 ms" }, { 4, "25 ms" }, { 5, "30 ms" }, { 6, "35 ms" }, { 7, "40 ms" }, { 0x00, NULL } }; static hf_register_info ff[] = { {&hf_ieee80211_ff_timestamp, {"Timestamp", "wlan_mgt.fixed.timestamp", FT_STRING, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_ff_auth_alg, {"Authentication Algorithm", "wlan_mgt.fixed.auth.alg", FT_UINT16, BASE_DEC, VALS (&auth_alg), 0, NULL, HFILL }}, {&hf_ieee80211_ff_beacon_interval, {"Beacon Interval", "wlan_mgt.fixed.beacon", FT_DOUBLE, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_fixed_parameters, {"Fixed parameters", "wlan_mgt.fixed.all", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tagged_parameters, {"Tagged parameters", "wlan_mgt.tagged.all", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tagged_ssid, {"SSID", "wlan_mgt.ssid", FT_STRING, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_ff_block_ack_params, {"Block Ack Parameters", "wlan_mgt.fixed.baparams", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_ff_block_ack_params_amsdu_permitted, {"A-MSDUs", "wlan_mgt.fixed.baparams.amsdu", FT_BOOLEAN, 16, TFS (&ff_block_ack_params_amsdu_permitted_flag), 0x0001, "A-MSDU Permitted in QoS Data MPDUs", HFILL }}, {&hf_ieee80211_ff_block_ack_params_policy, {"Block Ack Policy", "wlan_mgt.fixed.baparams.policy", FT_BOOLEAN, 16, TFS (&ff_block_ack_params_policy_flag), 0x0002, NULL, HFILL }}, {&hf_ieee80211_ff_block_ack_params_tid, {"Traffic Identifier", "wlan_mgt.fixed.baparams.tid", FT_UINT8, BASE_HEX, NULL, 0x003C, NULL, HFILL }}, {&hf_ieee80211_ff_block_ack_params_buffer_size, {"Number of Buffers (1 Buffer = 2304 Bytes)", "wlan_mgt.fixed.baparams.buffersize", FT_UINT16, BASE_DEC, NULL, 0xFFC0, "Number of Buffers", HFILL }}, {&hf_ieee80211_ff_block_ack_timeout, {"Block Ack Timeout", "wlan_mgt.fixed.batimeout", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_ff_block_ack_ssc, {"Block Ack Starting Sequence Control (SSC)", "wlan_mgt.fixed.ssc", FT_UINT16, BASE_HEX, 0, 0, NULL, HFILL }}, {&hf_ieee80211_ff_block_ack_ssc_fragment, {"Fragment", "wlan_mgt.fixed.fragment", FT_UINT16, BASE_DEC, 0, 0x000f, NULL, HFILL }}, {&hf_ieee80211_ff_block_ack_ssc_sequence, {"Starting Sequence Number", "wlan_mgt.fixed.sequence", FT_UINT16, BASE_DEC, 0, 0xfff0, NULL, HFILL }}, {&hf_ieee80211_ff_delba_param, {"Delete Block Ack (DELBA) Parameter Set", "wlan_mgt.fixed.delba.param", FT_UINT16, BASE_HEX, 0, 0, NULL, HFILL }}, {&hf_ieee80211_ff_delba_param_reserved, {"Reserved", "wlan_mgt.fixed.delba.param.reserved", FT_UINT16, BASE_HEX, 0, 0x07ff, NULL, HFILL }}, {&hf_ieee80211_ff_delba_param_init, {"Initiator", "wlan_mgt.fixed.delba.param.initiator", FT_BOOLEAN, 16, 0, 0x0800, NULL, HFILL }}, {&hf_ieee80211_ff_delba_param_tid, {"TID", "wlan_mgt.fixed.delba.param.tid", FT_UINT16, BASE_HEX, 0, 0xf000, "Traffic Identifier (TID)", HFILL }}, {&ff_max_reg_pwr, {"Maximum Regulation Power", "wlan_mgt.fixed.maxregpwr", FT_UINT16, BASE_HEX, 0, 0, NULL, HFILL }}, {&ff_measurement_pilot_int, {"Measurement Pilot Interval", "wlan_mgt.fixed.msmtpilotint", FT_UINT16, BASE_HEX, 0, 0, "Measurement Pilot Interval Fixed Field", HFILL }}, {&ff_country_str, {"Country String", "wlan_mgt.fixed.country", FT_STRING, BASE_NONE, 0, 0, NULL, HFILL }}, {&ff_max_tx_pwr, {"Maximum Transmit Power", "wlan_mgt.fixed.maxtxpwr", FT_UINT8, BASE_HEX, 0, 0, NULL, HFILL }}, {&ff_tx_pwr_used, {"Transmit Power Used", "wlan_mgt.fixed.txpwr", FT_UINT8, BASE_HEX, 0, 0, NULL, HFILL }}, {&ff_transceiver_noise_floor, {"Transceiver Noise Floor", "wlan_mgt.fixed.tnoisefloor", FT_UINT8, BASE_HEX, 0, 0, NULL, HFILL }}, {&ff_channel_width, {"Supported Channel Width", "wlan_mgt.fixed.chanwidth", FT_UINT8, BASE_HEX, VALS (ff_channel_width_vals), 0, NULL, HFILL }}, {&hf_ieee80211_ff_qos_info_ap, {"QoS Information (AP)", "wlan_mgt.fixed.qosinfo.ap", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_ff_qos_info_ap_edca_param_set_counter, {"EDCA Parameter Set Update Count", "wlan_mgt.fixed.qosinfo.ap.edcaupdate", FT_UINT8, BASE_HEX, NULL, 0x0F, "Enhanced Distributed Channel Access (EDCA) Parameter Set Update Count", HFILL }}, {&hf_ieee80211_ff_qos_info_ap_q_ack, {"Q-Ack", "wlan_mgt.fixed.qosinfo.ap.qack", FT_BOOLEAN, 8, TFS (&ff_qos_info_ap_q_ack_flag), 0x10, "QoS Ack", HFILL }}, {&hf_ieee80211_ff_qos_info_ap_queue_req, {"Queue Request", "wlan_mgt.fixed.qosinfo.ap", FT_BOOLEAN, 8, TFS (&ff_qos_info_ap_queue_req_flag), 0x20, NULL, HFILL }}, {&hf_ieee80211_ff_qos_info_ap_txop_request, {"TXOP Request", "wlan_mgt.fixed.qosinfo.ap.txopreq", FT_BOOLEAN, 8, TFS (&ff_qos_info_ap_txop_request_flag), 0x40, "Transmit Opportunity (TXOP) Request", HFILL }}, {&hf_ieee80211_ff_qos_info_ap_reserved, {"Reserved", "wlan_mgt.fixed.qosinfo.ap.reserved", FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL }}, {&hf_ieee80211_ff_qos_info_sta, {"QoS Information (STA)", "wlan_mgt.fixed.qosinfo.sta", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_ff_qos_info_sta_ac_vo, {"AC_VO", "wlan_mgt.fixed.qosinfo.sta.ac.vo", FT_BOOLEAN, 8, TFS (&ff_qos_info_sta_ac_flag), 0x01, NULL, HFILL }}, {&hf_ieee80211_ff_qos_info_sta_ac_vi, {"AC_VI", "wlan_mgt.fixed.qosinfo.sta.ac.vi", FT_BOOLEAN, 8, TFS (&ff_qos_info_sta_ac_flag), 0x02, NULL, HFILL }}, {&hf_ieee80211_ff_qos_info_sta_ac_bk, {"AC_BK", "wlan_mgt.fixed.qosinfo.sta.ac.bk", FT_BOOLEAN, 8, TFS (&ff_qos_info_sta_ac_flag), 0x04, NULL, HFILL }}, {&hf_ieee80211_ff_qos_info_sta_ac_be, {"AC_BE", "wlan_mgt.fixed.qosinfo.sta.ac.be", FT_BOOLEAN, 8, TFS (&ff_qos_info_sta_ac_flag), 0x08, NULL, HFILL }}, {&hf_ieee80211_ff_qos_info_sta_q_ack, {"Q-Ack", "wlan_mgt.fixed.qosinfo.sta.qack", FT_BOOLEAN, 8, TFS (&ff_qos_info_sta_q_ack_flag), 0x10, "QoS Ack", HFILL }}, {&hf_ieee80211_ff_qos_info_sta_max_sp_len, {"Service Period (SP) Length", "wlan_mgt.fixed.qosinfo.sta.splen", FT_UINT8, BASE_HEX, VALS (&ff_qos_info_sta_max_sp_len_flags) , 0x60, NULL, HFILL }}, {&hf_ieee80211_ff_qos_info_sta_more_data_ack, {"More Data Ack", "wlan_mgt.fixed.qosinfo.sta.moredataack", FT_BOOLEAN, 8, TFS (&ff_qos_info_sta_more_data_ack_flag), 0x80, NULL, HFILL }}, {&ff_sm_pwr_save, {"Spatial Multiplexing (SM) Power Control", "wlan_mgt.fixed.sm.powercontrol", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&ff_sm_pwr_save_enabled, {"SM Power Save", "wlan_mgt.fixed.sm.powercontrol.enabled", FT_BOOLEAN, 8, TFS (&tfs_enabled_disabled), 0x01, "Spatial Multiplexing (SM) Power Save", HFILL }}, {&ff_sm_pwr_save_sm_mode, {"SM Mode", "wlan_mgt.fixed.sm.powercontrol.mode", FT_BOOLEAN, 8, TFS (&ff_sm_pwr_save_sm_mode_flag), 0x02, "Spatial Multiplexing (SM) Mode", HFILL }}, {&ff_sm_pwr_save_reserved, {"Reserved", "wlan_mgt.fixed.sm.powercontrol.reserved", FT_UINT8, BASE_HEX, NULL, 0xFC, NULL, HFILL }}, {&ff_pco_phase_cntrl, {"Phased Coexistence Operation (PCO) Phase Control", "wlan_mgt.fixed.pco.phasecntrl", FT_BOOLEAN, BASE_NONE, TFS (&ff_pco_phase_cntrl_flag), 0x0, NULL, HFILL }}, {&ff_psmp_param_set, {"Power Save Multi-Poll (PSMP) Parameter Set", "wlan_mgt.fixed.psmp.paramset", FT_UINT16, BASE_HEX, 0, 0, NULL, HFILL }}, {&ff_psmp_param_set_n_sta, {"Number of STA Info Fields Present", "wlan_mgt.fixed.psmp.paramset.nsta", FT_UINT8, BASE_HEX, 0, 0, NULL, HFILL }}, {&ff_psmp_param_set_more_psmp, {"More PSMP", "wlan_mgt.fixed.psmp.paramset.more", FT_BOOLEAN, BASE_NONE, TFS(&ff_psmp_param_set_more_psmp_flag), 0x0, "More Power Save Multi-Poll (PSMP)", HFILL }}, {&ff_psmp_param_set_psmp_sequence_duration, {"PSMP Sequence Duration", "wlan_mgt.fixed.psmp.paramset.seqduration", FT_UINT16, BASE_DEC, 0, 0, "Power Save Multi-Poll (PSMP) Sequence Duration", HFILL }}, {&ff_mimo_cntrl_nc_index, {"Nc Index", "wlan_mgt.fixed.mimo.control.ncindex", FT_UINT16, BASE_HEX, VALS (&ff_mimo_cntrl_nc_index_flags), 0x0003, "Number of Columns Less One", HFILL }}, {&ff_mimo_cntrl_nr_index, {"Nr Index", "wlan_mgt.fixed.mimo.control.nrindex", FT_UINT16, BASE_HEX, VALS (&ff_mimo_cntrl_nr_index_flags), 0x000C, "Number of Rows Less One", HFILL }}, {&ff_mimo_cntrl_channel_width, {"Channel Width", "wlan_mgt.fixed.mimo.control.chanwidth", FT_BOOLEAN, 16, TFS(&ff_mimo_cntrl_channel_width_flag), 0x0010, NULL, HFILL }}, {&ff_mimo_cntrl_grouping, {"Grouping (Ng)", "wlan_mgt.fixed.mimo.control.grouping", FT_UINT16, BASE_HEX, VALS (&ff_mimo_cntrl_grouping_flags), 0x0060, NULL, HFILL }}, {&ff_mimo_cntrl_coefficient_size, {"Coefficient Size (Nb)", "wlan_mgt.fixed.mimo.control.cosize", FT_UINT16, BASE_HEX, VALS (&ff_mimo_cntrl_coefficient_size_flags), 0x0180, NULL, HFILL }}, {&ff_mimo_cntrl_codebook_info, {"Codebook Information", "wlan_mgt.fixed.mimo.control.codebookinfo", FT_UINT16, BASE_HEX, VALS (&ff_mimo_cntrl_codebook_info_flags), 0x0600, NULL, HFILL }}, {&ff_mimo_cntrl_remaining_matrix_segment, {"Remaining Matrix Segment", "wlan_mgt.fixed.mimo.control.matrixseg", FT_UINT16, BASE_HEX, 0, 0x3800, NULL, HFILL }}, {&ff_mimo_cntrl_reserved, {"Reserved", "wlan_mgt.fixed.mimo.control.reserved", FT_UINT16, BASE_HEX, 0, 0xC000, NULL, HFILL }}, {&ff_mimo_cntrl_sounding_timestamp, {"Sounding Timestamp", "wlan_mgt.fixed.mimo.control.soundingtime", FT_UINT32, BASE_HEX, 0, 0, NULL, HFILL }}, {&ff_psmp_sta_info, {"Power Save Multi-Poll (PSMP) Station Information", "wlan_mgt.fixed.psmp.stainfo", FT_UINT8, BASE_HEX, VALS (&ff_psmp_sta_info_flags), 0, NULL, HFILL }}, {&ff_psmp_sta_info_dtt_start_offset, {"DTT Start Offset", "wlan_mgt.fixed.psmp.stainfo.dttstart", FT_UINT16, BASE_HEX, 0, 0, NULL, HFILL }}, {&ff_psmp_sta_info_dtt_duration, {"DTT Duration", "wlan_mgt.fixed.psmp.stainfo.dttduration", FT_UINT8, BASE_HEX, 0, 0, NULL, HFILL }}, {&ff_psmp_sta_info_sta_id, {"Target Station ID", "wlan_mgt.fixed.psmp.stainfo.staid", FT_UINT16, BASE_HEX, 0, 0, NULL, HFILL }}, {&ff_psmp_sta_info_utt_start_offset, {"UTT Start Offset", "wlan_mgt.fixed.psmp.stainfo.uttstart", FT_UINT16, BASE_HEX, 0, 0, NULL, HFILL }}, {&ff_psmp_sta_info_utt_duration, {"UTT Duration", "wlan_mgt.fixed.psmp.stainfo.uttduration", FT_UINT16, BASE_HEX, 0, 0, NULL, HFILL }}, {&ff_psmp_sta_info_reserved_small, {"Reserved", "wlan_mgt.fixed.psmp.stainfo.reserved", FT_UINT16, BASE_HEX, 0, 0, NULL, HFILL }}, {&ff_psmp_sta_info_reserved_large, {"Reserved", "wlan_mgt.fixed.psmp.stainfo.reserved", FT_UINT64, BASE_HEX, 0, 0, NULL, HFILL }}, {&ff_psmp_sta_info_psmp_multicast_id, {"Power Save Multi-Poll (PSMP) Multicast ID", "wlan_mgt.fixed.psmp.stainfo.multicastid", FT_UINT64, BASE_HEX, 0, 0, NULL, HFILL }}, {&ff_ant_selection, {"Antenna Selection", "wlan_mgt.fixed.antsel", FT_UINT8, BASE_HEX, 0, 0, NULL, HFILL }}, {&ff_ant_selection_0, {"Antenna 0", "wlan_mgt.fixed.antsel.ant0", FT_UINT8, BASE_HEX, 0, 0x01, NULL, HFILL }}, {&ff_ant_selection_1, {"Antenna 1", "wlan_mgt.fixed.antsel.ant1", FT_UINT8, BASE_HEX, 0, 0x02, NULL, HFILL }}, {&ff_ant_selection_2, {"Antenna 2", "wlan_mgt.fixed.antsel.ant2", FT_UINT8, BASE_HEX, 0, 0x04, NULL, HFILL }}, {&ff_ant_selection_3, {"Antenna 3", "wlan_mgt.fixed.antsel.ant3", FT_UINT8, BASE_HEX, 0, 0x08, NULL, HFILL }}, {&ff_ant_selection_4, {"Antenna 4", "wlan_mgt.fixed.antsel.ant4", FT_UINT8, BASE_HEX, 0, 0x10, NULL, HFILL }}, {&ff_ant_selection_5, {"Antenna 5", "wlan_mgt.fixed.antsel.ant5", FT_UINT8, BASE_HEX, 0, 0x20, NULL, HFILL }}, {&ff_ant_selection_6, {"Antenna 6", "wlan_mgt.fixed.antsel.ant6", FT_UINT8, BASE_HEX, 0, 0x40, NULL, HFILL }}, {&ff_ant_selection_7, {"Antenna 7", "wlan_mgt.fixed.antsel.ant7", FT_UINT8, BASE_HEX, 0, 0x80, NULL, HFILL }}, {&ff_ext_channel_switch_announcement, {"Extended Channel Switch Announcement", "wlan_mgt.fixed.extchansw", FT_UINT32, BASE_HEX, 0, 0, NULL, HFILL }}, {&ff_ht_info, {"HT Information", "wlan_mgt.fixed.extchansw", FT_UINT8, BASE_HEX, 0, 0, "HT Information Fixed Field", HFILL }}, {&ff_ht_info_information_request, {"Information Request", "wlan_mgt.fixed.mimo.control.chanwidth", FT_BOOLEAN, 8, TFS(&ff_ht_info_information_request_flag), 0x01, NULL, HFILL }}, {&ff_ht_info_40_mhz_intolerant, {"40 MHz Intolerant", "wlan_mgt.fixed.mimo.control.chanwidth", FT_BOOLEAN, 8, TFS(&ff_ht_info_40_mhz_intolerant_flag), 0x02, NULL, HFILL }}, {&ff_ht_info_sta_chan_width, {"Station Channel Width", "wlan_mgt.fixed.mimo.control.chanwidth", FT_BOOLEAN, 8, TFS(&ff_ht_info_sta_chan_width_flag), 0x04, NULL, HFILL }}, {&ff_ht_info_reserved, {"Reserved", "wlan_mgt.fixed.extchansw", FT_UINT8, BASE_HEX, 0, 0xF8, "Reserved Field", HFILL }}, {&ff_ht_action, {"HT Action", "wlan_mgt.fixed.htact", FT_UINT8, BASE_HEX, VALS (&ff_ht_action_flags), 0, "HT Action Code", HFILL }}, {&ff_mimo_csi_snr, {"Signal to Noise Ratio (SNR)", "wlan_mgt.mimo.csimatrices.snr", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&ff_public_action, {"Public Action", "wlan_mgt.fixed.publicact", FT_UINT8, BASE_HEX, VALS(ff_pa_action_codes), 0, "Public Action Code", HFILL }}, {&ff_capture, {"Capabilities", "wlan_mgt.fixed.capabilities", FT_UINT16, BASE_HEX, NULL, 0, "Capability information", HFILL }}, {&ff_cf_ess, {"ESS capabilities", "wlan_mgt.fixed.capabilities.ess", FT_BOOLEAN, 16, TFS (&cf_ess_flags), 0x0001, NULL, HFILL }}, {&ff_cf_ibss, {"IBSS status", "wlan_mgt.fixed.capabilities.ibss", FT_BOOLEAN, 16, TFS (&cf_ibss_flags), 0x0002, "IBSS participation", HFILL }}, {&ff_cf_sta_poll, {"CFP participation capabilities", "wlan_mgt.fixed.capabilities.cfpoll.sta", FT_UINT16, BASE_HEX, VALS (&sta_cf_pollable), 0x020C, "CF-Poll capabilities for a STA", HFILL }}, {&ff_cf_ap_poll, {"CFP participation capabilities", "wlan_mgt.fixed.capabilities.cfpoll.ap", FT_UINT16, BASE_HEX, VALS (&ap_cf_pollable), 0x020C, "CF-Poll capabilities for an AP", HFILL }}, {&ff_cf_privacy, {"Privacy", "wlan_mgt.fixed.capabilities.privacy", FT_BOOLEAN, 16, TFS (&cf_privacy_flags), 0x0010, "WEP support", HFILL }}, {&ff_cf_preamble, {"Short Preamble", "wlan_mgt.fixed.capabilities.preamble", FT_BOOLEAN, 16, TFS (&cf_preamble_flags), 0x0020, NULL, HFILL }}, {&ff_cf_pbcc, {"PBCC", "wlan_mgt.fixed.capabilities.pbcc", FT_BOOLEAN, 16, TFS (&cf_pbcc_flags), 0x0040, "PBCC Modulation", HFILL }}, {&ff_cf_agility, {"Channel Agility", "wlan_mgt.fixed.capabilities.agility", FT_BOOLEAN, 16, TFS (&cf_agility_flags), 0x0080, NULL, HFILL }}, {&ff_cf_spec_man, {"Spectrum Management", "wlan_mgt.fixed.capabilities.spec_man", FT_BOOLEAN, 16, TFS (&cf_spec_man_flags), 0x0100, NULL, HFILL }}, {&ff_short_slot_time, {"Short Slot Time", "wlan_mgt.fixed.capabilities.short_slot_time", FT_BOOLEAN, 16, TFS (&short_slot_time_flags), 0x0400, NULL, HFILL }}, {&ff_cf_apsd, {"Automatic Power Save Delivery", "wlan_mgt.fixed.capabilities.apsd", FT_BOOLEAN, 16, TFS (&cf_apsd_flags), 0x0800, NULL, HFILL }}, {&ff_dsss_ofdm, {"DSSS-OFDM", "wlan_mgt.fixed.capabilities.dsss_ofdm", FT_BOOLEAN, 16, TFS (&dsss_ofdm_flags), 0x2000, "DSSS-OFDM Modulation", HFILL }}, {&ff_cf_del_blk_ack, {"Delayed Block Ack", "wlan_mgt.fixed.capabilities.del_blk_ack", FT_BOOLEAN, 16, TFS (&cf_del_blk_ack_flags), 0x4000, NULL, HFILL }}, {&ff_cf_imm_blk_ack, {"Immediate Block Ack", "wlan_mgt.fixed.capabilities.imm_blk_ack", FT_BOOLEAN, 16, TFS (&cf_imm_blk_ack_flags), 0x8000, NULL, HFILL }}, {&hf_ieee80211_ff_auth_seq, {"Authentication SEQ", "wlan_mgt.fixed.auth_seq", FT_UINT16, BASE_HEX, NULL, 0, "Authentication Sequence Number", HFILL }}, {&hf_ieee80211_ff_assoc_id, {"Association ID", "wlan_mgt.fixed.aid", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_ff_listen_ival, {"Listen Interval", "wlan_mgt.fixed.listen_ival", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_ff_current_ap, {"Current AP", "wlan_mgt.fixed.current_ap", FT_ETHER, BASE_NONE, NULL, 0, "MAC address of current AP", HFILL }}, {&hf_ieee80211_ff_reason, {"Reason code", "wlan_mgt.fixed.reason_code", FT_UINT16, BASE_HEX, VALS (&reason_codes), 0, "Reason for unsolicited notification", HFILL }}, {&hf_ieee80211_ff_status_code, {"Status code", "wlan_mgt.fixed.status_code", FT_UINT16, BASE_HEX, VALS (&status_codes), 0, "Status of requested event", HFILL }}, {&hf_ieee80211_ff_category_code, {"Category code", "wlan_mgt.fixed.category_code", FT_UINT16, BASE_DEC, VALS (&category_codes), 0, "Management action category", HFILL }}, {&hf_ieee80211_ff_action_code, {"Action code", "wlan_mgt.fixed.action_code", FT_UINT16, BASE_DEC, VALS (&action_codes), 0, "Management action code", HFILL }}, {&hf_ieee80211_ff_dialog_token, {"Dialog token", "wlan_mgt.fixed.dialog_token", FT_UINT8, BASE_HEX, NULL, 0, "Management action dialog token", HFILL }}, {&ff_marvell_action_type, {"Marvell Action type", "wlan_mgt.fixed.mrvl_action_type", FT_UINT8, BASE_DEC, VALS (&vendor_action_types_mrvl), 0, "Vendor Specific Action Type (Marvell)", HFILL }}, {&ff_marvell_mesh_mgt_action_code, {"Mesh action(Marvell)", "wlan_mgt.fixed.mrvl_mesh_action", FT_UINT8, BASE_HEX, VALS (&mesh_mgt_action_codes_mrvl), 0, "Mesh action code(Marvell)", HFILL }}, {&ff_mesh_mgt_length, {"Message Length", "wlan_mgt.fixed.length", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&ff_mesh_mgt_mode, {"Message Mode", "wlan_mgt.fixed.mode", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&ff_mesh_mgt_ttl, {"Message TTL", "wlan_mgt.fixed.ttl", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&ff_mesh_mgt_dstcount, {"Destination Count", "wlan_mgt.fixed.dstcount", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&ff_mesh_mgt_hopcount, {"Hop Count", "wlan_mgt.fixed.hopcount", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&ff_mesh_mgt_rreqid, {"RREQ ID", "wlan_mgt.fixed.rreqid", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, {&ff_mesh_mgt_sa, {"Source Address", "wlan_mgt.fixed.sa", FT_ETHER, BASE_NONE, NULL, 0, "Source MAC address", HFILL }}, {&ff_mesh_mgt_ssn, {"SSN", "wlan_mgt.fixed.ssn", FT_UINT32, BASE_DEC, NULL, 0, "Source Sequence Number", HFILL }}, {&ff_mesh_mgt_metric, {"Metric", "wlan_mgt.fixed.metric", FT_UINT32, BASE_DEC, NULL, 0, "Route Metric", HFILL }}, {&ff_mesh_mgt_flags, {"RREQ Flags", "wlan_mgt.fixed.hopcount", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&ff_mesh_mgt_da, {"Destination Address", "wlan_mgt.fixed.da", FT_ETHER, BASE_NONE, NULL, 0, "Destination MAC address", HFILL }}, {&ff_mesh_mgt_dsn, {"DSN", "wlan_mgt.fixed.dsn", FT_UINT32, BASE_DEC, NULL, 0, "Destination Sequence Number", HFILL }}, {&ff_mesh_mgt_lifetime, {"Lifetime", "wlan_mgt.fixed.lifetime", FT_UINT32, BASE_DEC, NULL, 0, "Route Lifetime", HFILL }}, {&hf_ieee80211_ff_wme_action_code, {"Action code", "wlan_mgt.fixed.action_code", FT_UINT16, BASE_HEX, VALS (&wme_action_codes), 0, "Management notification action code", HFILL }}, {&hf_ieee80211_ff_wme_status_code, {"Status code", "wlan_mgt.fixed.status_code", FT_UINT16, BASE_HEX, VALS (&wme_status_codes), 0, "Management notification setup response status code", HFILL }}, #ifdef MESH_OVERRIDES {&ff_mesh_mgt_action_ps_code, {"Action code", "wlan_mgt.fixed.action_code", FT_UINT16, BASE_HEX, VALS (&mesh_mgt_action_ps_codes), 0, "Mesh Management Path Selection action code", HFILL }}, {&ff_mesh_mgt_action_pl_code, {"Action code", "wlan_mgt.fixed.action_code", FT_UINT16, BASE_HEX, VALS (&mesh_mgt_action_pl_codes), 0, "Mesh Management Peer Link action code", HFILL }}, {&hf_mesh_mgt_pl_local_link_id, {"Local Link ID", "wlan.pl.local_id", FT_UINT16, BASE_HEX, NULL, 0, "Mesh Management Local Link ID", HFILL }}, {&hf_mesh_mgt_pl_subtype, {"Peer Link Subtype", "wlan.pl.subtype", FT_UINT16, BASE_HEX, VALS (&mesh_mgt_action_pl_codes), 0, "Mesh Management Peer Link Subtype", HFILL }}, {&hf_mesh_mgt_pl_reason_code, {"Reason Code", "wlan.pl.reason_code", FT_UINT16, BASE_HEX, VALS (&mesh_mgt_pl_reason_codes), 0, "Mesh Management Reason Code", HFILL }}, {&hf_mesh_mgt_pl_peer_link_id, {"Peer Link ID", "wlan.pl.peer_id", FT_UINT16, BASE_HEX, NULL, 0, "Mesh Management Peer Link ID", HFILL }}, {&hf_mesh_config_version, {"Version", "wlan.mesh.config.version", FT_UINT16, BASE_HEX, NULL, 0, "Mesh Configuration Version", HFILL }}, {&hf_mesh_config_path_sel_protocol, {"Path Selection Protocol", "wlan.mesh.config.ps_protocol", FT_UINT16, BASE_HEX, NULL, 0, "Mesh Configuration Path Selection Protocol", HFILL }}, {&hf_mesh_config_path_sel_metric, {"Path Selection Metric", "wlan.mesh.config.ps_metric", FT_UINT16, BASE_HEX, NULL, 0, "Mesh Configuration Path Selection Metric", HFILL }}, {&hf_mesh_config_congestion_control, {"Congestion Control", "wlan.mesh.config.cong_ctl", FT_UINT16, BASE_HEX, NULL, 0, "Mesh Configuration Congestion Control", HFILL }}, {&hf_mesh_config_channel_prec, {"Channel Precedence", "wlan.mesh.config.chan_prec", FT_UINT16, BASE_HEX, NULL, 0, "Mesh Configuration Channel Precedence", HFILL }}, {&hf_mesh_config_capability, {"Capability", "wlan.mesh.config.cap", FT_UINT16, BASE_HEX, NULL, 0, "Mesh Configuration Capability", HFILL }}, {&ff_mesh_mgt_ie_id, {"Mesh Managment IE ID", "wlan.mesh_ie", FT_UINT8, BASE_HEX, VALS (&mesh_mgt_ie_codes), 0, "Information Element ID", HFILL }}, {&ff_mesh_mgt_dest_flags, {"Destination Flags", "wlan.preq.dest_flags", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&ff_mesh_mgt_dest_do_flags, {"Destination Flags", "wlan.preq.dest_flags.do", FT_BOOLEAN, 8, TFS (&mesh_dest_do_flags), 0x01, "Dest Flags", HFILL }}, {&ff_mesh_mgt_dest_rf_flags, {"Destination Flags", "wlan.preq.dest_flags.rf", FT_BOOLEAN, 8, TFS (&mesh_dest_rf_flags), 0x02, "Dest Flags", HFILL }}, {&ff_mesh_mgt_srccount, {"Source Count", "wlan.mesh.srccount", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, #endif /* MESH_OVERRIDES */ {&hf_ieee80211_ff_qos_action_code, {"Action code", "wlan_mgt.fixed.action_code", FT_UINT16, BASE_HEX, VALS (&qos_action_codes), 0, "QoS management action code", HFILL }}, {&ff_ba_action, {"Action code", "wlan_mgt.fixed.action_code", FT_UINT8, BASE_HEX, VALS (&ba_action_codes), 0, "Block Ack action code", HFILL }}, {&hf_ieee80211_ff_dls_action_code, {"Action code", "wlan_mgt.fixed.action_code", FT_UINT16, BASE_HEX, VALS (&dls_action_codes), 0, "DLS management action code", HFILL }}, {&hf_ieee80211_ff_dst_mac_addr, {"Destination address", "wlan_mgt.fixed.dst_mac_addr", FT_ETHER, BASE_NONE, NULL, 0, "Destination MAC address", HFILL }}, {&hf_ieee80211_ff_src_mac_addr, {"Source address", "wlan_mgt.fixed.src_mac_addr", FT_ETHER, BASE_NONE, NULL, 0, "Source MAC address", HFILL }}, {&hf_ieee80211_ff_ft_action_code, {"Action code", "wlan_mgt.fixed.action_code", FT_UINT8, BASE_DEC, VALS(&ft_action_codes), 0, "Management action code", HFILL }}, {&hf_ieee80211_ff_sta_address, {"STA Address", "wlan_mgt.fixed.sta_address", FT_ETHER, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_ff_target_ap_address, {"Target AP Address", "wlan_mgt.fixed.target_ap_address", FT_ETHER, BASE_NONE, NULL, 0, "Target AP MAC address", HFILL }}, {&hf_ieee80211_ff_gas_comeback_delay, {"GAS Comeback Delay", "wlan_mgt.fixed.gas_comeback_delay", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_ff_gas_fragment_id, {"GAS Query Response Fragment ID", "wlan_mgt.fixed.gas_fragment_id", FT_UINT8, BASE_DEC, NULL, 0x7f, NULL, HFILL }}, {&hf_ieee80211_ff_more_gas_fragments, {"More GAS Fragments", "wlan_mgt.fixed.more_gas_fragments", FT_UINT8, BASE_DEC, NULL, 0x80, NULL, HFILL }}, {&hf_ieee80211_ff_query_request_length, {"Query Request Length", "wlan_mgt.fixed.query_request_length", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_ff_query_request, {"Query Request", "wlan_mgt.fixed.query_request", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_ff_query_response_length, {"Query Response Length", "wlan_mgt.fixed.query_response_length", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_ff_query_response, {"Query Response", "wlan_mgt.fixed.query_response", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_ff_anqp_info_id, {"Info ID", "wlan_mgt.fixed.anqp.info_id", FT_UINT16, BASE_DEC, VALS(&anqp_info_id_vals), 0, "Access Network Query Protocol Info ID", HFILL }}, {&hf_ieee80211_ff_anqp_info_length, {"Length", "wlan_mgt.fixed.anqp.info_length", FT_UINT16, BASE_DEC, NULL, 0, "Access Network Query Protocol Length", HFILL }}, {&hf_ieee80211_ff_anqp_info, {"Information", "wlan_mgt.fixed.anqp.info", FT_BYTES, BASE_NONE, NULL, 0, "Access Network Query Protocol Information", HFILL }}, {&hf_ieee80211_ff_dls_timeout, {"DLS timeout", "wlan_mgt.fixed.dls_timeout", FT_UINT16, BASE_HEX, NULL, 0, "DLS timeout value", HFILL }}, {&hf_ieee80211_ff_sa_query_action_code, {"Action code", "wlan_mgt.fixed.action_code", FT_UINT8, BASE_DEC, VALS(&sa_query_action_codes), 0, "Management action code", HFILL }}, {&hf_ieee80211_ff_transaction_id, {"Transaction Id", "wlan_mgt.fixed.transaction_id", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, {&tag_number, {"Tag", "wlan_mgt.tag.number", FT_UINT8, BASE_DEC, VALS(tag_num_vals), 0, "Element ID", HFILL }}, {&tag_length, {"Tag length", "wlan_mgt.tag.length", FT_UINT32, BASE_DEC, NULL, 0, "Length of tag", HFILL }}, {&tag_interpretation, {"Tag interpretation", "wlan_mgt.tag.interpretation", FT_STRING, BASE_NONE, NULL, 0, "Interpretation of tag", HFILL }}, {&tag_oui, {"OUI", "wlan_mgt.tag.oui", FT_BYTES, BASE_NONE, NULL, 0, "OUI of vendor specific IE", HFILL }}, {&hf_ieee80211_tag_ds_param_channel, {"Current Channel", "wlan_mgt.ds.current_channel", FT_UINT8, BASE_DEC, NULL, 0, "DS Parameter Set - Current Channel", HFILL }}, {&hf_ieee80211_tag_vendor_oui_type, {"Vendor Specific OUI Type", "wlan_mgt.tag.oui.type", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&tim_length, {"TIM length", "wlan_mgt.tim.length", FT_UINT8, BASE_DEC, NULL, 0, "Traffic Indication Map length", HFILL }}, {&tim_dtim_count, {"DTIM count", "wlan_mgt.tim.dtim_count", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&tim_dtim_period, {"DTIM period", "wlan_mgt.tim.dtim_period", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&tim_bmapctl, {"Bitmap control", "wlan_mgt.tim.bmapctl", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_rsn_cap, {"RSN Capabilities", "wlan_mgt.rsn.capabilities", FT_UINT16, BASE_HEX, NULL, 0, "RSN Capability information", HFILL }}, {&hf_ieee80211_rsn_cap_preauth, {"RSN Pre-Auth capabilities", "wlan_mgt.rsn.capabilities.preauth", FT_BOOLEAN, 16, TFS (&rsn_preauth_flags), 0x0001, NULL, HFILL }}, {&hf_ieee80211_rsn_cap_no_pairwise, {"RSN No Pairwise capabilities", "wlan_mgt.rsn.capabilities.no_pairwise", FT_BOOLEAN, 16, TFS (&rsn_no_pairwise_flags), 0x0002, NULL, HFILL }}, {&hf_ieee80211_rsn_cap_ptksa_replay_counter, {"RSN PTKSA Replay Counter capabilities", "wlan_mgt.rsn.capabilities.ptksa_replay_counter", FT_UINT16, BASE_HEX, VALS (&rsn_cap_replay_counter), 0x000C, NULL, HFILL }}, {&hf_ieee80211_rsn_cap_gtksa_replay_counter, {"RSN GTKSA Replay Counter capabilities", "wlan_mgt.rsn.capabilities.gtksa_replay_counter", FT_UINT16, BASE_HEX, VALS (&rsn_cap_replay_counter), 0x0030, NULL, HFILL }}, {&hf_ieee80211_rsn_cap_mfpr, {"Management Frame Protection Required", "wlan_mgt.rsn.capabilities.mfpr", FT_BOOLEAN, 16, NULL, 0x0040, NULL, HFILL }}, {&hf_ieee80211_rsn_cap_mfpc, {"Management Frame Protection Capable", "wlan_mgt.rsn.capabilities.mfpc", FT_BOOLEAN, 16, NULL, 0x0080, NULL, HFILL }}, {&hf_ieee80211_rsn_cap_peerkey, {"PeerKey Enabled", "wlan_mgt.rsn.capabilities.peerkey", FT_BOOLEAN, 16, NULL, 0x0200, NULL, HFILL }}, {&ht_cap, {"HT Capabilities Info", "wlan_mgt.ht.capabilities", FT_UINT16, BASE_HEX, NULL, 0, "HT Capability information", HFILL }}, {&ht_vs_cap, {"HT Capabilities Info (VS)", "wlan_mgt.vs.ht.capabilities", FT_UINT16, BASE_HEX, NULL, 0, "Vendor Specific HT Capability information", HFILL }}, {&ht_ldpc_coding, {"HT LDPC coding capability", "wlan_mgt.ht.capabilities.ldpccoding", FT_BOOLEAN, 16, TFS (&ht_ldpc_coding_flag), 0x0001, NULL, HFILL }}, {&ht_chan_width, {"HT Support channel width", "wlan_mgt.ht.capabilities.width", FT_BOOLEAN, 16, TFS (&ht_chan_width_flag), 0x0002, NULL, HFILL }}, {&ht_sm_pwsave, {"HT SM Power Save", "wlan_mgt.ht.capabilities.sm", FT_UINT16, BASE_HEX, VALS (&ht_sm_pwsave_flag), 0x000c, NULL, HFILL }}, {&ht_green, {"HT Green Field", "wlan_mgt.ht.capabilities.green", FT_BOOLEAN, 16, TFS (&ht_green_flag), 0x0010, NULL, HFILL }}, {&ht_short20, {"HT Short GI for 20MHz", "wlan_mgt.ht.capabilities.short20", FT_BOOLEAN, 16, TFS (&tfs_supported_not_supported), 0x0020, NULL, HFILL }}, {&ht_short40, {"HT Short GI for 40MHz", "wlan_mgt.ht.capabilities.short40", FT_BOOLEAN, 16, TFS (&tfs_supported_not_supported), 0x0040, NULL, HFILL }}, {&ht_tx_stbc, {"HT Tx STBC", "wlan_mgt.ht.capabilities.txstbc", FT_BOOLEAN, 16, TFS (&tfs_supported_not_supported), 0x0080, NULL, HFILL }}, {&ht_rx_stbc, {"HT Rx STBC", "wlan_mgt.ht.capabilities.rxstbc", FT_UINT16, BASE_HEX, VALS (&ht_rx_stbc_flag), 0x0300, "HT Tx STBC", HFILL }}, {&ht_delayed_block_ack, {"HT Delayed Block ACK", "wlan_mgt.ht.capabilities.delayedblockack", FT_BOOLEAN, 16, TFS (&ht_delayed_block_ack_flag), 0x0400, NULL, HFILL }}, {&ht_max_amsdu, {"HT Max A-MSDU length", "wlan_mgt.ht.capabilities.amsdu", FT_BOOLEAN, 16, TFS (&ht_max_amsdu_flag), 0x0800, NULL, HFILL }}, {&ht_dss_cck_40, {"HT DSSS/CCK mode in 40MHz", "wlan_mgt.ht.capabilities.dsscck", FT_BOOLEAN, 16, TFS (&ht_dss_cck_40_flag), 0x1000, "HT DSS/CCK mode in 40MHz", HFILL }}, {&ht_psmp, {"HT PSMP Support", "wlan_mgt.ht.capabilities.psmp", FT_BOOLEAN, 16, TFS (&ht_psmp_flag), 0x2000, NULL, HFILL }}, {&ht_40_mhz_intolerant, {"HT Forty MHz Intolerant", "wlan_mgt.ht.capabilities.40mhzintolerant", FT_BOOLEAN, 16, TFS (&ht_40_mhz_intolerant_flag), 0x4000, NULL, HFILL }}, {&ht_l_sig, {"HT L-SIG TXOP Protection support", "wlan_mgt.ht.capabilities.lsig", FT_BOOLEAN, 16, TFS (&tfs_supported_not_supported), 0x8000, NULL, HFILL }}, {&duparam, {"A-MPDU Parameters", "wlan_mgt.ht.ampduparam", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, {&duparam_vs, {"A-MPDU Parameters (VS)", "wlan_mgt.vs.ht.ampduparam", FT_UINT16, BASE_HEX, NULL, 0, "Vendor Specific A-MPDU Parameters", HFILL }}, {&duparam_mpdu, {"Maximum Rx A-MPDU Length", "wlan_mgt.ht.ampduparam.maxlength", FT_UINT8, BASE_HEX, 0 , 0x03, NULL, HFILL }}, {&duparam_mpdu_start_spacing, {"MPDU Density", "wlan_mgt.ht.ampduparam.mpdudensity", FT_UINT8, BASE_HEX, VALS (&duparam_mpdu_start_spacing_flags) , 0x1c, NULL, HFILL }}, {&duparam_reserved, {"Reserved", "wlan_mgt.ht.ampduparam.reserved", FT_UINT8, BASE_HEX, NULL, 0xE0, NULL, HFILL }}, {&mcsset, {"Rx Supported Modulation and Coding Scheme Set", "wlan_mgt.ht.mcsset", FT_STRING, BASE_NONE, NULL, 0, NULL, HFILL }}, {&mcsset_vs, {"Rx Supported Modulation and Coding Scheme Set (VS)", "wlan_mgt.vs.ht.mcsset", FT_STRING, BASE_NONE, NULL, 0, "Vendor Specific Rx Supported Modulation and Coding Scheme Set", HFILL }}, {&mcsset_rx_bitmask_0to7, {"Rx Bitmask Bits 0-7", "wlan_mgt.ht.mcsset.rxbitmask.0to7", FT_UINT32, BASE_HEX, 0, 0x000000ff, NULL, HFILL }}, {&mcsset_rx_bitmask_8to15, {"Rx Bitmask Bits 8-15", "wlan_mgt.ht.mcsset.rxbitmask.8to15", FT_UINT32, BASE_HEX, 0, 0x0000ff00, NULL, HFILL }}, {&mcsset_rx_bitmask_16to23, {"Rx Bitmask Bits 16-23", "wlan_mgt.ht.mcsset.rxbitmask.16to23", FT_UINT32, BASE_HEX, 0, 0x00ff0000, NULL, HFILL }}, {&mcsset_rx_bitmask_24to31, {"Rx Bitmask Bits 24-31", "wlan_mgt.ht.mcsset.rxbitmask.24to31", FT_UINT32, BASE_HEX, 0, 0xff000000, NULL, HFILL }}, {&mcsset_rx_bitmask_32, {"Rx Bitmask Bit 32", "wlan_mgt.ht.mcsset.rxbitmask.32", FT_UINT32, BASE_HEX, 0, 0x000001, NULL, HFILL }}, {&mcsset_rx_bitmask_33to38, {"Rx Bitmask Bits 33-38", "wlan_mgt.ht.mcsset.rxbitmask.33to38", FT_UINT32, BASE_HEX, 0, 0x00007e, NULL, HFILL }}, {&mcsset_rx_bitmask_39to52, {"Rx Bitmask Bits 39-52", "wlan_mgt.ht.mcsset.rxbitmask.39to52", FT_UINT32, BASE_HEX, 0, 0x1fff80, NULL, HFILL }}, {&mcsset_rx_bitmask_53to76, {"Rx Bitmask Bits 53-76", "wlan_mgt.ht.mcsset.rxbitmask.53to76", FT_UINT32, BASE_HEX, 0, 0x1fffffe0, NULL, HFILL }}, {&mcsset_highest_data_rate, {"Highest Supported Data Rate", "wlan_mgt.ht.mcsset.highestdatarate", FT_UINT16, BASE_HEX, 0, 0x03ff, NULL, HFILL }}, {&mcsset_tx_mcs_set_defined, {"Tx Supported MCS Set", "wlan_mgt.ht.mcsset.txsetdefined", FT_BOOLEAN, 16, TFS (&mcsset_tx_mcs_set_defined_flag), 0x0001, NULL, HFILL }}, {&mcsset_tx_rx_mcs_set_not_equal, {"Tx and Rx MCS Set", "wlan_mgt.ht.mcsset.txrxmcsnotequal", FT_BOOLEAN, 16, TFS (&mcsset_tx_rx_mcs_set_not_equal_flag), 0x0002, NULL, HFILL }}, {&mcsset_tx_max_spatial_streams, {"Tx Maximum Number of Spatial Streams Supported", "wlan_mgt.ht.mcsset.txmaxss", FT_UINT16, BASE_HEX, VALS (&mcsset_tx_max_spatial_streams_flags) , 0x000c, NULL, HFILL }}, {&mcsset_tx_unequal_modulation, {"Unequal Modulation", "wlan_mgt.ht.mcsset.txunequalmod", FT_BOOLEAN, 16, TFS (&tfs_supported_not_supported), 0x0010, NULL, HFILL }}, {&htex_cap, {"HT Extended Capabilities", "wlan_mgt.htex.capabilities", FT_UINT16, BASE_HEX, NULL, 0, "HT Extended Capability information", HFILL }}, {&htex_vs_cap, {"HT Extended Capabilities (VS)", "wlan_mgt.vs.htex.capabilities", FT_UINT16, BASE_HEX, NULL, 0, "Vendor Specific HT Extended Capability information", HFILL }}, {&htex_pco, {"Transmitter supports PCO", "wlan_mgt.htex.capabilities.pco", FT_BOOLEAN, 16, TFS (&tfs_supported_not_supported), 0x0001, NULL, HFILL }}, {&htex_transtime, {"Time needed to transition between 20MHz and 40MHz", "wlan_mgt.htex.capabilities.transtime", FT_UINT16, BASE_HEX, VALS (&htex_transtime_flags), 0x0006, NULL, HFILL }}, {&htex_mcs, {"MCS Feedback capability", "wlan_mgt.htex.capabilities.mcs", FT_UINT16, BASE_HEX, VALS (&htex_mcs_flags), 0x0300, NULL, HFILL }}, {&htex_htc_support, {"High Throughput", "wlan_mgt.htex.capabilities.htc", FT_BOOLEAN, 16, TFS (&tfs_supported_not_supported), 0x0400, NULL, HFILL }}, {&htex_rd_responder, {"Reverse Direction Responder", "wlan_mgt.htex.capabilities.rdresponder", FT_BOOLEAN, 16, TFS (&tfs_supported_not_supported), 0x0800, NULL, HFILL }}, {&txbf, {"Transmit Beam Forming (TxBF) Capabilities", "wlan_mgt.txbf", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, {&txbf_vs, {"Transmit Beam Forming (TxBF) Capabilities (VS)", "wlan_mgt.vs.txbf", FT_UINT16, BASE_HEX, NULL, 0, "Vendor Specific Transmit Beam Forming (TxBF) Capabilities", HFILL }}, {&txbf_cap, {"Transmit Beamforming", "wlan_mgt.txbf.txbf", FT_BOOLEAN, 32, TFS (&tfs_supported_not_supported), 0x00000001, NULL, HFILL }}, {&txbf_rcv_ssc, {"Receive Staggered Sounding", "wlan_mgt.txbf.rxss", FT_BOOLEAN, 32, TFS (&tfs_supported_not_supported), 0x00000002, NULL, HFILL }}, {&txbf_tx_ssc, {"Transmit Staggered Sounding", "wlan_mgt.txbf.txss", FT_BOOLEAN, 32, TFS (&tfs_supported_not_supported), 0x00000004, NULL, HFILL }}, {&txbf_rcv_ndp, {"Receive Null Data packet (NDP)", "wlan_mgt.txbf.rxndp", FT_BOOLEAN, 32, TFS (&tfs_supported_not_supported), 0x00000008, NULL, HFILL }}, {&txbf_tx_ndp, {"Transmit Null Data packet (NDP)", "wlan_mgt.txbf.txndp", FT_BOOLEAN, 32, TFS (&tfs_supported_not_supported), 0x00000010, NULL, HFILL }}, {&txbf_impl_txbf, {"Implicit TxBF capable", "wlan_mgt.txbf.impltxbf", FT_BOOLEAN, 32, TFS (&tfs_supported_not_supported), 0x00000020, "Implicit Transmit Beamforming (TxBF) capable", HFILL }}, {&txbf_calib, {"Calibration", "wlan_mgt.txbf.calibration", FT_UINT32, BASE_HEX, VALS (&txbf_calib_flag), 0x000000c0, NULL, HFILL }}, {&txbf_expl_csi, {"STA can apply TxBF using CSI explicit feedback", "wlan_mgt.txbf.csi", FT_BOOLEAN, 32, TFS (&tfs_supported_not_supported), 0x00000100, "Station can apply TxBF using CSI explicit feedback", HFILL }}, {&txbf_expl_uncomp_fm, {"STA can apply TxBF using uncompressed beamforming feedback matrix", "wlan_mgt.txbf.fm.uncompressed.tbf", FT_BOOLEAN, 32, TFS (&tfs_supported_not_supported), 0x00000200, "Station can apply TxBF using uncompressed beamforming feedback matrix", HFILL }}, {&txbf_expl_comp_fm, {"STA can apply TxBF using compressed beamforming feedback matrix", "wlan_mgt.txbf.fm.compressed.tbf", FT_BOOLEAN, 32, TFS (&tfs_supported_not_supported), 0x00000400, "Station can apply TxBF using compressed beamforming feedback matrix", HFILL }}, {&txbf_expl_bf_csi, {"Receiver can return explicit CSI feedback", "wlan_mgt.txbf.rcsi", FT_UINT32, BASE_HEX, VALS (&txbf_feedback_flags), 0x00001800, NULL, HFILL }}, {&txbf_expl_uncomp_fm_feed, {"Receiver can return explicit uncompressed Beamforming Feedback Matrix", "wlan_mgt.txbf.fm.uncompressed.rbf", FT_UINT32, BASE_HEX, VALS (&txbf_feedback_flags), 0x00006000, NULL, HFILL }}, {&txbf_expl_comp_fm_feed, {"STA can compress and use compressed Beamforming Feedback Matrix", "wlan_mgt.txbf.fm.compressed.bf", FT_UINT32, BASE_HEX, VALS (&txbf_feedback_flags), 0x00018000, "Station can compress and use compressed Beamforming Feedback Matrix", HFILL }}, {&txbf_min_group, {"Minimal grouping used for explicit feedback reports", "wlan_mgt.txbf.mingroup", FT_UINT32, BASE_HEX, VALS (&txbf_min_group_flags), 0x00060000, NULL, HFILL }}, {&txbf_csi_num_bf_ant, {"Max antennae STA can support when CSI feedback required", "wlan_mgt.txbf.csinumant", FT_UINT32, BASE_HEX, VALS (&txbf_antenna_flags), 0x00180000, "Max antennae station can support when CSI feedback required", HFILL }}, {&txbf_uncomp_sm_bf_ant, {"Max antennae STA can support when uncompressed Beamforming feedback required", "wlan_mgt.txbf.fm.uncompressed.maxant", FT_UINT32, BASE_HEX, VALS (&txbf_antenna_flags), 0x00600000, "Max antennae station can support when uncompressed Beamforming feedback required", HFILL }}, {&txbf_comp_sm_bf_ant, {"Max antennae STA can support when compressed Beamforming feedback required", "wlan_mgt.txbf.fm.compressed.maxant", FT_UINT32, BASE_HEX, VALS (&txbf_antenna_flags), 0x01800000, "Max antennae station can support when compressed Beamforming feedback required", HFILL }}, {&txbf_csi_max_rows_bf, {"Maximum number of rows of CSI explicit feedback", "wlan_mgt.txbf.csi.maxrows", FT_UINT32, BASE_HEX, VALS (&txbf_csi_max_rows_bf_flags), 0x06000000, NULL, HFILL }}, {&txbf_chan_est, {"Maximum number of space time streams for which channel dimensions can be simultaneously estimated", "wlan_mgt.txbf.channelest", FT_UINT32, BASE_HEX, VALS (&txbf_chan_est_flags), 0x18000000, NULL, HFILL }}, {&txbf_resrv, {"Reserved", "wlan_mgt.txbf.reserved", FT_UINT32, BASE_HEX, NULL, 0xe0000000, NULL, HFILL }}, {&hta_cap, {"HT Additional Capabilities", "wlan_mgt.hta.capabilities", FT_UINT16, BASE_HEX, NULL, 0, "HT Additional Capability information", HFILL }}, {&hta_ext_chan_offset, {"Extension Channel Offset", "wlan_mgt.hta.capabilities.extchan", FT_UINT16, BASE_HEX, VALS (&hta_ext_chan_offset_flag), 0x0003, NULL, HFILL }}, {&hta_rec_tx_width, {"Recommended Tx Channel Width", "wlan_mgt.hta.capabilities.rectxwidth", FT_BOOLEAN, 16, TFS (&hta_rec_tx_width_flag), 0x0004, "Recommended Transmit Channel Width", HFILL }}, {&hta_rifs_mode, {"Reduced Interframe Spacing (RIFS) Mode", "wlan_mgt.hta.capabilities.rifsmode", FT_BOOLEAN, 16, TFS (&hta_rifs_mode_flag), 0x0008, NULL, HFILL }}, {&hta_controlled_access, {"Controlled Access Only", "wlan_mgt.hta.capabilities.controlledaccess", FT_BOOLEAN, 16, TFS (&hta_controlled_access_flag), 0x0010, NULL, HFILL }}, {&hta_service_interval, {"Service Interval Granularity", "wlan_mgt.hta.capabilities.serviceinterval", FT_UINT16, BASE_HEX, VALS (&hta_service_interval_flag), 0x00E0, NULL, HFILL }}, {&hta_operating_mode, {"Operating Mode", "wlan_mgt.hta.capabilities.operatingmode", FT_UINT16, BASE_HEX, VALS (&hta_operating_mode_flag), 0x0003, NULL, HFILL }}, {&hta_non_gf_devices, {"Non Greenfield (GF) devices Present", "wlan_mgt.hta.capabilities.nongfdevices", FT_BOOLEAN, 16, TFS (&hta_non_gf_devices_flag), 0x0004, "on Greenfield (GF) devices Present", HFILL }}, {&hta_basic_stbc_mcs, {"Basic STB Modulation and Coding Scheme (MCS)", "wlan_mgt.hta.capabilities.", FT_UINT16, BASE_HEX, NULL , 0x007f, NULL, HFILL }}, {&hta_dual_stbc_protection, {"Dual Clear To Send (CTS) Protection", "wlan_mgt.hta.capabilities.", FT_BOOLEAN, 16, TFS (&hta_dual_stbc_protection_flag), 0x0080, NULL, HFILL }}, {&hta_secondary_beacon, {"Secondary Beacon", "wlan_mgt.hta.capabilities.", FT_BOOLEAN, 16, TFS (&hta_secondary_beacon_flag), 0x0100, NULL, HFILL }}, {&hta_lsig_txop_protection, {"L-SIG TXOP Protection Support", "wlan_mgt.hta.capabilities.", FT_BOOLEAN, 16, TFS (&hta_lsig_txop_protection_flag), 0x0200, NULL, HFILL }}, {&hta_pco_active, {"Phased Coexistence Operation (PCO) Active", "wlan_mgt.hta.capabilities.", FT_BOOLEAN, 16, TFS (&hta_pco_active_flag), 0x0400, NULL, HFILL }}, {&hta_pco_phase, {"Phased Coexistence Operation (PCO) Phase", "wlan_mgt.hta.capabilities.", FT_BOOLEAN, 16, TFS (&hta_pco_phase_flag), 0x0800, NULL, HFILL }}, {&antsel, {"Antenna Selection (ASEL) Capabilities", "wlan_mgt.asel", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&antsel_vs, {"Antenna Selection (ASEL) Capabilities (VS)", "wlan_mgt.vs.asel", FT_UINT8, BASE_HEX, NULL, 0, "Vendor Specific Antenna Selection (ASEL) Capabilities", HFILL }}, {&antsel_b0, {"Antenna Selection Capable", "wlan_mgt.asel.capable", FT_BOOLEAN, 8, TFS (&tfs_supported_not_supported), 0x01, NULL, HFILL }}, {&antsel_b1, {"Explicit CSI Feedback Based Tx ASEL", "wlan_mgt.asel.txcsi", FT_BOOLEAN, 8, TFS (&tfs_supported_not_supported), 0x02, NULL, HFILL }}, {&antsel_b2, {"Antenna Indices Feedback Based Tx ASEL", "wlan_mgt.asel.txif", FT_BOOLEAN, 8, TFS (&tfs_supported_not_supported), 0x04, NULL, HFILL }}, {&antsel_b3, {"Explicit CSI Feedback", "wlan_mgt.asel.csi", FT_BOOLEAN, 8, TFS (&tfs_supported_not_supported), 0x08, NULL, HFILL }}, {&antsel_b4, {"Antenna Indices Feedback", "wlan_mgt.asel.if", FT_BOOLEAN, 8, TFS (&tfs_supported_not_supported), 0x10, NULL, HFILL }}, {&antsel_b5, {"Rx ASEL", "wlan_mgt.asel.rx", FT_BOOLEAN, 8, TFS (&tfs_supported_not_supported), 0x20, NULL, HFILL }}, {&antsel_b6, {"Tx Sounding PPDUs", "wlan_mgt.asel.sppdu", FT_BOOLEAN, 8, TFS (&tfs_supported_not_supported), 0x40, NULL, HFILL }}, {&antsel_b7, {"Reserved", "wlan_mgt.asel.reserved", FT_UINT8, BASE_HEX, NULL, 0x80, NULL, HFILL }}, {&ht_info_delimiter1, {"HT Information Delimiter #1", "wlan_mgt.ht.info.delim1", FT_UINT8, BASE_HEX, NULL, 0xff, NULL, HFILL }}, {&ht_info_primary_channel, {"Primary Channel", "wlan_mgt.ht.info.primarychannel", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&ht_info_secondary_channel_offset, {"Secondary channel offset", "wlan_mgt.ht.info.secchanoffset", FT_UINT8, BASE_HEX, VALS (&ht_info_secondary_channel_offset_flags), 0x03, NULL, HFILL }}, {&ht_info_channel_width, {"Supported channel width", "wlan_mgt.ht.info.chanwidth", FT_BOOLEAN, 8, TFS (&ht_info_channel_width_flag), 0x04, NULL, HFILL }}, {&ht_info_rifs_mode, {"Reduced Interframe Spacing (RIFS)", "wlan_mgt.ht.info.rifs", FT_BOOLEAN, 8, TFS (&ht_info_rifs_mode_flag), 0x08, NULL, HFILL }}, {&ht_info_psmp_stas_only, {"Power Save Multi-Poll (PSMP) stations only", "wlan_mgt.ht.info.psmponly", FT_BOOLEAN, 8, TFS (&ht_info_psmp_stas_only_flag), 0x10, NULL, HFILL }}, {&ht_info_service_interval_granularity, {"Shortest service interval", "wlan_mgt.ht.info.", FT_UINT8, BASE_HEX, VALS (&ht_info_service_interval_granularity_flags), 0xe0, NULL, HFILL }}, {&ht_info_delimiter2, {"HT Information Delimiter #2", "wlan_mgt.ht.info.delim2", FT_UINT16, BASE_HEX, NULL, 0xffff, NULL, HFILL }}, {&ht_info_operating_mode, {"Operating mode of BSS", "wlan_mgt.ht.info.operatingmode", FT_UINT16, BASE_HEX, VALS (&ht_info_operating_mode_flags), 0x0003, NULL, HFILL }}, {&ht_info_non_greenfield_sta_present, {"Non-greenfield STAs present", "wlan_mgt.ht.info.greenfield", FT_BOOLEAN, 16, TFS (&ht_info_non_greenfield_sta_present_flag), 0x0004, NULL, HFILL }}, {&ht_info_transmit_burst_limit, {"Transmit burst limit", "wlan_mgt.ht.info.burstlim", FT_BOOLEAN, 16, TFS (&ht_info_transmit_burst_limit_flag), 0x0008, NULL, HFILL }}, {&ht_info_obss_non_ht_stas_present, {"OBSS non-HT STAs present", "wlan_mgt.ht.info.obssnonht", FT_BOOLEAN, 16, TFS (&ht_info_obss_non_ht_stas_present_flag), 0x0010, NULL, HFILL }}, {&ht_info_reserved_1, {"Reserved", "wlan_mgt.ht.info.reserved1", FT_UINT16, BASE_HEX, NULL, 0xffe0, NULL, HFILL }}, {&ht_info_delimiter3, {"HT Information Delimiter #3", "wlan_mgt.ht.info.delim3", FT_UINT16, BASE_HEX, NULL, 0xffff, NULL, HFILL }}, {&ht_info_reserved_2, {"Reserved", "wlan_mgt.ht.info.reserved2", FT_UINT16, BASE_HEX, NULL, 0x003f, NULL, HFILL }}, {&ht_info_dual_beacon, {"Dual beacon", "wlan_mgt.ht.info.dualbeacon", FT_BOOLEAN, 16, TFS (&ht_info_dual_beacon_flag), 0x0040, NULL, HFILL }}, {&ht_info_dual_cts_protection, {"Dual Clear To Send (CTS) protection", "wlan_mgt.ht.info.dualcts", FT_BOOLEAN, 16, TFS (&ht_info_dual_cts_protection_flag), 0x0080, NULL, HFILL }}, {&ht_info_secondary_beacon, {"Beacon ID", "wlan_mgt.ht.info.secondarybeacon", FT_BOOLEAN, 16, TFS (&ht_info_secondary_beacon_flag), 0x0100, NULL, HFILL }}, {&ht_info_lsig_txop_protection_full_support, {"L-SIG TXOP Protection Full Support", "wlan_mgt.ht.info.lsigprotsupport", FT_BOOLEAN, 16, TFS (&ht_info_lsig_txop_protection_full_support_flag), 0x0200, NULL, HFILL }}, {&ht_info_pco_active, {"Phased Coexistence Operation (PCO)", "wlan_mgt.ht.info.pco.active", FT_BOOLEAN, 16, TFS (&tfs_active_inactive), 0x0400, NULL, HFILL }}, {&ht_info_pco_phase, {"Phased Coexistence Operation (PCO) Phase", "wlan_mgt.ht.info.pco.phase", FT_BOOLEAN, 16, TFS (&ht_info_pco_phase_flag), 0x0800, NULL, HFILL }}, {&ht_info_reserved_3, {"Reserved", "wlan_mgt.ht.info.reserved3", FT_UINT16, BASE_HEX, NULL, 0xf000, NULL, HFILL }}, {&hf_tag_secondary_channel_offset, {"Secondary Channel Offset", "wlan_mgt.secchanoffset", FT_UINT8, BASE_HEX, VALS (&hf_tag_secondary_channel_offset_flags), 0, NULL, HFILL }}, {&hf_tag_power_capability_min, {"Minimum Transmit Power", "wlan_mgt.powercap.min", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_power_capability_max, {"Maximum Transmit Power", "wlan_mgt.powercap.max", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_tpc_report_trsmt_pow, {"Transmit Power", "wlan_mgt.tcprep.trsmt_pow", FT_INT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_tag_tpc_report_link_mrg, {"Link Margin", "wlan_mgt.tcprep.link_mrg", FT_INT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_tag_supported_channels, {"Supported Channels Set", "wlan_mgt.supchan", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_tag_supported_channels_first, {"First Supported Channel", "wlan_mgt.supchan.first", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_supported_channels_range, {"Supported Channel Range", "wlan_mgt.supchan.range", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_request_measurement_token, {"Measurement Token", "wlan_mgt.measure.req.measuretoken", FT_UINT8, BASE_HEX, NULL, 0xff, NULL, HFILL }}, {&hf_tag_measure_request_mode, {"Measurement Request Mode", "wlan_mgt.measure.req.reqmode", FT_UINT8, BASE_HEX, NULL, 0xff, NULL, HFILL }}, {&hf_tag_measure_request_mode_reserved1, {"Reserved", "wlan_mgt.measure.req.reqmode.reserved1", FT_UINT8, BASE_HEX, NULL, 0x01, NULL, HFILL }}, {&hf_tag_measure_request_mode_enable, {"Measurement Request Mode Field", "wlan_mgt.measure.req.reqmode.enable", FT_BOOLEAN, 8, TFS (&tfs_enabled_disabled), 0x02, NULL, HFILL }}, {&hf_tag_measure_request_mode_request, {"Measurement Reports", "wlan_mgt.measure.req.reqmode.request", FT_BOOLEAN, 8, TFS (&hf_tag_measure_acc_not_acc), 0x04, NULL, HFILL }}, {&hf_tag_measure_request_mode_report, {"Autonomous Measurement Reports", "wlan_mgt.measure.req.reqmode.report", FT_BOOLEAN, 8, TFS (&hf_tag_measure_acc_not_acc), 0x08, NULL, HFILL }}, {&hf_tag_measure_request_mode_reserved2, {"Reserved", "wlan_mgt.measure.req.reqmode.reserved2", FT_UINT8, BASE_HEX, NULL, 0xf0, NULL, HFILL }}, {&hf_tag_measure_request_type, {"Measurement Request Type", "wlan_mgt.measure.req.reqtype", FT_UINT8, BASE_HEX, VALS (&hf_tag_measure_request_type_flags), 0x00, NULL, HFILL }}, {&hf_tag_measure_request_channel_number, {"Measurement Channel Number", "wlan_mgt.measure.req.channelnumber", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_request_start_time, {"Measurement Start Time", "wlan_mgt.measure.req.starttime", FT_UINT64, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_request_duration, {"Measurement Duration", "wlan_mgt.measure.req.channelnumber", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_request_regulatory_class, {"Measurement Channel Number", "wlan_mgt.measure.req.regclass", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_request_randomization_interval, {"Randomization Interval", "wlan_mgt.measure.req.randint", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_request_measurement_mode, {"Measurement Mode", "wlan_mgt.measure.req.measurementmode", FT_UINT8, BASE_HEX, VALS(hf_tag_measure_request_measurement_mode_flags), 0, NULL, HFILL }}, {&hf_tag_measure_request_bssid, {"BSSID", "wlan_mgt.measure.req.bssid", FT_ETHER, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_request_reporting_condition, {"Reporting Condition", "wlan_mgt.measure.req.repcond", FT_UINT8, BASE_HEX, VALS(hf_tag_measure_request_reporting_condition_flags), 0, NULL, HFILL }}, {&hf_tag_measure_request_threshold_offset_unsigned, {"Threshold/Offset", "wlan_mgt.measure.req.threshold", FT_UINT8, BASE_HEX, 0, 0, NULL, HFILL }}, {&hf_tag_measure_request_threshold_offset_signed, {"Threshold/Offset", "wlan_mgt.measure.req.threshold", FT_UINT8, BASE_HEX, 0, 0, NULL, HFILL }}, {&hf_tag_measure_request_report_mac, {"MAC on wich to gather data", "wlan_mgt.measure.req.reportmac", FT_ETHER, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_request_group_id, {"Group ID", "wlan_mgt.measure.req.groupid", FT_UINT8, BASE_HEX, VALS(hf_tag_measure_request_group_id_flags), 0, NULL, HFILL }}, {&hf_tag_measure_report_measurement_token, {"Measurement Token", "wlan_mgt.measure.req.clr", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_report_mode, {"Measurement Report Mode", "wlan_mgt.measure.req.clr", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_report_mode_late, {"Measurement Report Mode Field", "wlan_mgt.measure.rep.repmode.late", FT_BOOLEAN, 8, TFS (&tfs_enabled_disabled), 0x01, NULL, HFILL }}, {&hf_tag_measure_report_mode_incapable, {"Measurement Reports", "wlan_mgt.measure.rep.repmode.incapable", FT_BOOLEAN, 8, TFS (&hf_tag_measure_acc_not_acc), 0x02, NULL, HFILL }}, {&hf_tag_measure_report_mode_refused, {"Autonomous Measurement Reports", "wlan_mgt.measure.rep.repmode.refused", FT_BOOLEAN, 8, TFS (&hf_tag_measure_acc_not_acc), 0x04, NULL, HFILL }}, {&hf_tag_measure_report_mode_reserved, {"Reserved", "wlan_mgt.measure.rep.repmode.reserved", FT_UINT8, BASE_HEX, NULL, 0xf8, NULL, HFILL }}, {&hf_tag_measure_report_type, {"Measurement Report Type", "wlan_mgt.measure.rep.reptype", FT_UINT8, BASE_HEX, VALS (&hf_tag_measure_report_type_flags), 0x00, NULL, HFILL }}, {&hf_tag_measure_report_channel_number, {"Measurement Channel Number", "wlan_mgt.measure.rep.channelnumber", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_report_start_time, {"Measurement Start Time", "wlan_mgt.measure.rep.starttime", FT_UINT64, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_report_duration, {"Measurement Duration", "wlan_mgt.measure.rep.channelnumber", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_cca_busy_fraction, {"CCA Busy Fraction", "wlan_mgt.measure.rep.ccabusy", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_basic_map_field, {"Map Field", "wlan_mgt.measure.rep.mapfield", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_map_field_bss, {"BSS", "wlan_mgt.measure.rep.repmode.mapfield.bss", FT_BOOLEAN, 8, TFS (&hf_tag_measure_map_field_bss_flag), 0x01, NULL, HFILL }}, {&hf_tag_measure_map_field_odfm, {"Orthogonal Frequency Division Multiplexing (ODFM) Preamble", "wlan_mgt.measure.rep.repmode.mapfield.bss", FT_BOOLEAN, 8, TFS (&hf_tag_measure_detected_not_detected), 0x02, NULL, HFILL }}, {&hf_tag_measure_map_field_unident_signal, {"Unidentified Signal", "wlan_mgt.measure.rep.repmode.mapfield.unidentsig", FT_BOOLEAN, 8, TFS (&hf_tag_measure_detected_not_detected), 0x04, NULL, HFILL }}, {&hf_tag_measure_map_field_radar, {"Radar", "wlan_mgt.measure.rep.repmode.mapfield.radar", FT_BOOLEAN, 8, TFS (&hf_tag_measure_detected_not_detected), 0x08, NULL, HFILL }}, {&hf_tag_measure_map_field_unmeasured, {"Unmeasured", "wlan_mgt.measure.rep.repmode.mapfield.unmeasured", FT_BOOLEAN, 8, TFS (&tfs_true_false), 0x10, NULL, HFILL }}, {&hf_tag_measure_map_field_reserved, {"Reserved", "wlan_mgt.measure.rep.repmode.mapfield.reserved", FT_UINT8, BASE_HEX, NULL, 0xe0, NULL, HFILL }}, {&hf_tag_measure_rpi_histogram_report, {"Receive Power Indicator (RPI) Histogram Report", "wlan_mgt.measure.rep.rpi.histogram_report", FT_STRING, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_rpi_histogram_report_0, {"RPI 0 Density", "wlan_mgt.measure.rep.rpi.rpi0density", FT_UINT8, BASE_HEX, NULL, 0, "Receive Power Indicator (RPI) 0 Density", HFILL }}, {&hf_tag_measure_rpi_histogram_report_1, {"RPI 1 Density", "wlan_mgt.measure.rep.rpi.rpi1density", FT_UINT8, BASE_HEX, NULL, 0, "Receive Power Indicator (RPI) 1 Density", HFILL }}, {&hf_tag_measure_rpi_histogram_report_2, {"RPI 2 Density", "wlan_mgt.measure.rep.rpi.rpi2density", FT_UINT8, BASE_HEX, NULL, 0, "Receive Power Indicator (RPI) 2 Density", HFILL }}, {&hf_tag_measure_rpi_histogram_report_3, {"RPI 3 Density", "wlan_mgt.measure.rep.rpi.rpi3density", FT_UINT8, BASE_HEX, NULL, 0, "Receive Power Indicator (RPI) 3 Density", HFILL }}, {&hf_tag_measure_rpi_histogram_report_4, {"RPI 4 Density", "wlan_mgt.measure.rep.rpi.rpi4density", FT_UINT8, BASE_HEX, NULL, 0, "Receive Power Indicator (RPI) 4 Density", HFILL }}, {&hf_tag_measure_rpi_histogram_report_5, {"RPI 5 Density", "wlan_mgt.measure.rep.rpi.rpi5density", FT_UINT8, BASE_HEX, NULL, 0, "Receive Power Indicator (RPI) 5 Density", HFILL }}, {&hf_tag_measure_rpi_histogram_report_6, {"RPI 6 Density", "wlan_mgt.measure.rep.rpi.rpi6density", FT_UINT8, BASE_HEX, NULL, 0, "Receive Power Indicator (RPI) 6 Density", HFILL }}, {&hf_tag_measure_rpi_histogram_report_7, {"RPI 7 Density", "wlan_mgt.measure.rep.rpi.rpi7density", FT_UINT8, BASE_HEX, NULL, 0, "Receive Power Indicator (RPI) 7 Density", HFILL }}, {&hf_tag_measure_report_regulatory_class, {"Regulatory Class", "wlan_mgt.measure.rep.regclass", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_report_channel_load, {"Channel Load", "wlan_mgt.measure.rep.chanload", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_report_frame_info, {"Reported Frame Information", "wlan_mgt.measure.rep.frameinfo", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_report_frame_info_phy_type, {"Condensed PHY", "wlan_mgt.measure.rep.frameinfo.phytype", FT_UINT8, BASE_HEX, NULL, 0x7F, NULL, HFILL }}, {&hf_tag_measure_report_frame_info_frame_type, {"Reported Frame Type", "wlan_mgt.measure.rep.frameinfo.frametype", FT_UINT8, BASE_HEX, TFS(&hf_tag_measure_report_frame_info_frame_type_flag), 0x80, NULL, HFILL }}, {&hf_tag_measure_report_rcpi, {"Received Channel Power Indicator (RCPI)", "wlan_mgt.measure.rep.rcpi", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_report_rsni, {"Received Signal to Noise Indicator (RSNI)", "wlan_mgt.measure.rep.rsni", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_report_bssid, {"BSSID Being Reported", "wlan_mgt.measure.rep.bssid", FT_ETHER, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_report_ant_id, {"Antenna ID", "wlan_mgt.measure.rep.antid", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_measure_report_parent_tsf, {"Parent Timing Synchronization Function (TSF)", "wlan_mgt.measure.rep.parenttsf", FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL }}, /* Table 7-35a-Capabilities field */ {&hf_tag_extended_capabilities, {"Extended Capabilities", "wlan_mgt.extcap", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, /* P802.11n/D6.0 */ /* Extended Capability octet 0 */ {&hf_tag_extended_capabilities_b0, {"20/40 BSS Coexistence Management Support", "wlan_mgt.extcap.infoexchange.b0", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x0001, "HT Information Exchange Support", HFILL }}, /* P802.11p/D4.0 */ {&hf_tag_extended_capabilities_b1, {"On-demand beacon", "wlan_mgt.extcap.infoexchange.b1", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x0002, NULL, HFILL }}, {&hf_tag_extended_capabilities_b2, {"Extended Channel Switching", "wlan_mgt.extcap.infoexchange.b2", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x0004, NULL, HFILL }}, {&hf_tag_extended_capabilities_b3, {"WAVE indication", "wlan_mgt.extcap.infoexchange.b3", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x0008, NULL, HFILL }}, /*End: P802.11p/D4.0 */ {&hf_tag_extended_capabilities_b4, {"PSMP Capability", "wlan_mgt.extcap.infoexchange.b4", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x0010, NULL, HFILL }}, {&hf_tag_extended_capabilities_b6, {"S-PSMP Support", "wlan_mgt.extcap.infoexchange.b6", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x0040, NULL, HFILL }}, /* Extended Capability octet 3 */ {&hf_tag_extended_capabilities_b28, {"Peer U-APSD Buffer STA Support", "wlan_mgt.extcap.infoexchange.b28", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x0010, NULL, HFILL }}, {&hf_tag_extended_capabilities_b29, {"TDLS Peer PSM Support", "wlan_mgt.extcap.infoexchange.b29", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x0020, NULL, HFILL }}, {&hf_tag_extended_capabilities_b30, {"TDLS channel switching", "wlan_mgt.extcap.infoexchange.b30", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x0040, NULL, HFILL }}, /* Extended Capability octet 4 */ {&hf_tag_extended_capabilities_b37, {"TDLS support", "wlan_mgt.extcap.infoexchange.b37", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x0020, NULL, HFILL }}, {&hf_tag_extended_capabilities_b38, {"TDLS Prohibited", "wlan_mgt.extcap.infoexchange.b38", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x0040, NULL, HFILL }}, {&hf_tag_extended_capabilities_b39, {"TDLS Channel Switching Prohibited", "wlan_mgt.extcap.infoexchange.b39", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x0080, NULL, HFILL }}, /* Extended Capability octet 5 */ {&hf_tag_extended_capabilities_b40, {"Reject Unadmitted Frame", "wlan_mgt.extcap.infoexchange.b40", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x0001, NULL, HFILL }}, {&hf_tag_extended_capabilities_serv_int_granularity, {"Service Interval Granularity", "wlan_mgt.extcap.infoexchange.serv_int_granularity", FT_UINT8, BASE_NONE, VALS(service_interval_granularity_vals), 0x000e, NULL, HFILL }}, {&hf_tag_neighbor_report_bssid, {"BSSID", "wlan_mgt.nreport.bssid", FT_ETHER, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_tag_neighbor_report_bssid_info, {"BSSID Information", "wlan_mgt.nreport.bssid.info", FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_neighbor_report_bssid_info_reachability, {"AP Reachability", "wlan_mgt.nreport.bssid.info.reachability", FT_UINT16, BASE_HEX, NULL, 0x0003, NULL, HFILL }}, {&hf_tag_neighbor_report_bssid_info_security, {"Security", "wlan_mgt.nreport.bssid.info.security", FT_UINT16, BASE_HEX, NULL, 0x0004, NULL, HFILL }}, {&hf_tag_neighbor_report_bssid_info_key_scope, {"Key Scope", "wlan_mgt.nreport.bssid.info.keyscope", FT_UINT16, BASE_HEX, NULL, 0x0008, NULL, HFILL }}, {&hf_tag_neighbor_report_bssid_info_capability_spec_mng, {"Capability: Spectrum Management", "wlan_mgt.nreport.bssid.info.capability.specmngt", FT_UINT16, BASE_HEX, NULL, 0x0010, NULL, HFILL }}, {&hf_tag_neighbor_report_bssid_info_capability_qos, {"Capability: QoS", "wlan_mgt.nreport.bssid.info.capability.qos", FT_UINT16, BASE_HEX, NULL, 0x0020, NULL, HFILL }}, {&hf_tag_neighbor_report_bssid_info_capability_apsd, {"Capability: APSD", "wlan_mgt.nreport.bssid.info.capability.apsd", FT_UINT16, BASE_HEX, NULL, 0x0040, NULL, HFILL }}, {&hf_tag_neighbor_report_bssid_info_capability_radio_msnt, {"Capability: Radio Measurement", "wlan_mgt.nreport.bssid.info.capability.radiomsnt", FT_UINT16, BASE_HEX, NULL, 0x0080, NULL, HFILL }}, {&hf_tag_neighbor_report_bssid_info_capability_dback, {"Capability: Delayed Block Ack", "wlan_mgt.nreport.bssid.info.capability.dback", FT_UINT16, BASE_HEX, NULL, 0x0100, NULL, HFILL }}, {&hf_tag_neighbor_report_bssid_info_capability_iback, {"Capability: Immediate Block Ack", "wlan_mgt.nreport.bssid.info.capability.iback", FT_UINT16, BASE_HEX, NULL, 0x0200, NULL, HFILL }}, {&hf_tag_neighbor_report_bssid_info_mobility_domain, {"Mobility Domain", "wlan_mgt.nreport.bssid.info.mobilitydomain", FT_UINT16, BASE_HEX, NULL, 0x0400, NULL, HFILL }}, {&hf_tag_neighbor_report_bssid_info_high_throughput, {"High Throughput", "wlan_mgt.nreport.bssid.info.hthoughput", FT_UINT16, BASE_HEX, NULL, 0x0800, NULL, HFILL }}, {&hf_tag_neighbor_report_bssid_info_reserved, {"Reserved", "wlan_mgt.nreport.bssid.info.reserved", FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_neighbor_report_reg_class, {"Regulatory Class", "wlan_mgt.nreport.regclass", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_neighbor_report_channel_number, {"Channel Number", "wlan_mgt.nreport.channumber", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_neighbor_report_phy_type, {"PHY Type", "wlan_mgt.nreport.phytype", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_ext_channel_switch_announcement_switch_mode, {"Channel Switch Mode", "wlan_mgt.extchanswitch.switchmode", FT_UINT8, BASE_HEX, VALS (&hf_tag_ext_channel_switch_announcement_switch_mode_flags), 0, NULL, HFILL }}, {&hf_tag_ext_channel_switch_announcement_new_reg_class, {"New Regulatory Class", "wlan_mgt.extchanswitch.new.regclass", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_ext_channel_switch_announcement_new_chan_number, {"New Channel Number", "wlan_mgt.extchanswitch.new.channumber", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_ext_channel_switch_announcement_switch_count, {"Channel Switch Count", "wlan_mgt.extchanswitch.switchcount", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_supported_reg_classes_current, {"Current Regulatory Class", "wlan_mgt.supregclass.current", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_tag_supported_reg_classes_alternate, {"Alternate Regulatory Classes", "wlan_mgt.supregclass.alt", FT_STRING, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_marvell_ie_type, {"Type", "wlan_mgt.marvell.ie.type", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_marvell_ie_mesh_subtype, {"Subtype", "wlan_mgt.marvell.ie.subtype", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_marvell_ie_mesh_version, {"Version", "wlan_mgt.marvell.ie.version", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_marvell_ie_mesh_active_proto_id, {"Path Selection Protocol", "wlan_mgt.marvell.ie.proto_id", FT_UINT8, BASE_HEX, VALS(mesh_path_selection_codes), 0, NULL, HFILL }}, {&hf_marvell_ie_mesh_active_metric_id, {"Path Selection Metric", "wlan_mgt.marvell.ie.metric_id", FT_UINT8, BASE_HEX, VALS(mesh_metric_codes), 0, NULL, HFILL }}, {&hf_marvell_ie_mesh_cap, {"Mesh Capabilities", "wlan_mgt.marvell.ie.cap", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_marvell_ie_data, { "Marvell IE data", "wlan_mgt.marvell.data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, {&hf_aironet_ie_type, {"Aironet IE type", "wlan_mgt.aironet.type", FT_UINT8, BASE_DEC, VALS(aironet_ie_type_vals), 0, NULL, HFILL }}, {&hf_aironet_ie_version, {"Aironet IE CCX version?", "wlan_mgt.aironet.version", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_aironet_ie_data, { "Aironet IE data", "wlan_mgt.aironet.data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, {&hf_qbss_version, {"QBSS Version", "wlan_mgt.qbss.version", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_qbss_scount, {"Station Count", "wlan_mgt.qbss.scount", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_qbss_cu, {"Channel Utilization", "wlan_mgt.qbss.cu", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_qbss_adc, {"Available Admission Capabilities", "wlan_mgt.qbss.adc", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_qbss2_cu, {"Channel Utilization", "wlan_mgt.qbss2.cu", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_qbss2_gl, {"G.711 CU Quantum", "wlan_mgt.qbss2.glimit", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_qbss2_cal, {"Call Admission Limit", "wlan_mgt.qbss2.cal", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_qbss2_scount, {"Station Count", "wlan_mgt.qbss2.scount", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_aironet_ie_qos_unk1, {"Aironet IE QoS unknown 1", "wlan_mgt.aironet.qos.unk1", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_aironet_ie_qos_paramset, {"Aironet IE QoS paramset", "wlan_mgt.aironet.qos.paramset", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_aironet_ie_qos_val, {"Aironet IE QoS valueset", "wlan_mgt.aironet.qos.val", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ts_info, {"Traffic Stream (TS) Info", "wlan_mgt.ts_info", FT_UINT24, BASE_HEX, NULL, 0, "Traffic Stream (TS) Info field", HFILL }}, {&hf_tsinfo_type, {"Traffic Type", "wlan_mgt.ts_info.type", FT_UINT8, BASE_DEC, VALS (&tsinfo_type), 0, "Traffic Stream (TS) Info Traffic Type", HFILL }}, {&hf_tsinfo_tsid, {"Traffic Stream ID (TSID)", "wlan_mgt.ts_info.tsid", FT_UINT8, BASE_DEC, NULL, 0, "Traffic Stream ID (TSID) Info TSID", HFILL }}, {&hf_tsinfo_dir, {"Direction", "wlan_mgt.ts_info.dir", FT_UINT8, BASE_DEC, VALS (&tsinfo_direction), 0, "Traffic Stream (TS) Info Direction", HFILL }}, {&hf_tsinfo_access, {"Access Policy", "wlan_mgt.ts_info.dir", FT_UINT8, BASE_DEC, VALS (&tsinfo_access), 0, "Traffic Stream (TS) Info Access Policy", HFILL }}, {&hf_tsinfo_agg, {"Aggregation", "wlan_mgt.ts_info.agg", FT_UINT8, BASE_DEC, NULL, 0, "Traffic Stream (TS) Info Access Policy", HFILL }}, {&hf_tsinfo_apsd, {"Automatic Power-Save Delivery (APSD)", "wlan_mgt.ts_info.apsd", FT_UINT8, BASE_DEC, NULL, 0, "Traffic Stream (TS) Info Automatic Power-Save Delivery (APSD)", HFILL }}, {&hf_tsinfo_up, {"User Priority", "wlan_mgt.ts_info.up", FT_UINT8, BASE_DEC, VALS (&qos_up), 0, "Traffic Stream (TS) Info User Priority", HFILL }}, {&hf_tsinfo_ack, {"Ack Policy", "wlan_mgt.ts_info.ack", FT_UINT8, BASE_DEC, VALS (&ack_policy), 0, "Traffic Stream (TS) Info Ack Policy", HFILL }}, {&hf_tsinfo_sched, {"Schedule", "wlan_mgt.ts_info.sched", FT_UINT8, BASE_DEC, NULL, 0, "Traffic Stream (TS) Info Schedule", HFILL }}, {&tspec_nor_msdu, {"Normal MSDU Size", "wlan_mgt.tspec.nor_msdu", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&tspec_max_msdu, {"Maximum MSDU Size", "wlan_mgt.tspec.max_msdu", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&tspec_min_srv, {"Minimum Service Interval", "wlan_mgt.tspec.min_srv", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, {&tspec_max_srv, {"Maximum Service Interval", "wlan_mgt.tspec.max_srv", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, {&tspec_inact_int, {"Inactivity Interval", "wlan_mgt.tspec.inact_int", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, {&tspec_susp_int, {"Suspension Interval", "wlan_mgt.tspec.susp_int", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, {&tspec_srv_start, {"Service Start Time", "wlan_mgt.tspec.srv_start", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, {&tspec_min_data, {"Minimum Data Rate", "wlan_mgt.tspec.min_data", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, {&tspec_mean_data, {"Mean Data Rate", "wlan_mgt.tspec.mean_data", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, {&tspec_peak_data, {"Peak Data Rate", "wlan_mgt.tspec.peak_data", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, {&tspec_burst_size, {"Burst Size", "wlan_mgt.tspec.burst_size", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, {&tspec_delay_bound, {"Delay Bound", "wlan_mgt.tspec.delay_bound", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, {&tspec_min_phy, {"Minimum PHY Rate", "wlan_mgt.tspec.min_phy", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, {&tspec_surplus, {"Surplus Bandwidth Allowance", "wlan_mgt.tspec.surplus", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&tspec_medium, {"Medium Time", "wlan_mgt.tspec.medium", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&ts_delay, {"Traffic Stream (TS) Delay", "wlan_mgt.ts_delay", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_class_type, {"Classifier Type", "wlan_mgt.tclas.class_type", FT_UINT8, BASE_DEC, VALS (classifier_type), 0, NULL, HFILL }}, {&hf_class_mask, {"Classifier Mask", "wlan_mgt.tclas.class_mask", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_ether_type, {"Ethernet Type", "wlan_mgt.tclas.params.type", FT_UINT8, BASE_DEC, NULL, 0, "Classifier Parameters Ethernet Type", HFILL }}, {&hf_tclas_process, {"Processing", "wlan_mgt.tclas_proc.processing", FT_UINT8, BASE_DEC, VALS (tclas_process), 0, "TCLAS Processing", HFILL }}, {&hf_sched_info, {"Schedule Info", "wlan_mgt.sched.sched_info", FT_UINT16, BASE_HEX, NULL, 0, "Schedule Info field", HFILL }}, {&hf_sched_srv_start, {"Service Start Time", "wlan_mgt.sched.srv_start", FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_sched_srv_int, {"Service Interval", "wlan_mgt.sched.srv_int", FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_sched_spec_int, {"Specification Interval", "wlan_mgt.sched.spec_int", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_action, {"Action", "wlan_mgt.fixed.action", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&cf_version, {"IP Version", "wlan_mgt.tclas.params.version", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&cf_ipv4_src, {"IPv4 Src Addr", "wlan_mgt.tclas.params.ipv4_src", FT_IPv4, BASE_NONE, NULL, 0, NULL, HFILL }}, {&cf_ipv4_dst, {"IPv4 Dst Addr", "wlan_mgt.tclas.params.ipv4_dst", FT_IPv4, BASE_NONE, NULL, 0, NULL, HFILL }}, {&cf_src_port, {"Source Port", "wlan_mgt.tclas.params.src_port", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&cf_dst_port, {"Destination Port", "wlan_mgt.tclas.params.dst_port", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&cf_dscp, {"IPv4 DSCP", "wlan_mgt.tclas.params.dscp", FT_UINT8, BASE_HEX, NULL, 0, "IPv4 Differentiated Services Code Point (DSCP) Field", HFILL }}, {&cf_protocol, {"Protocol", "wlan_mgt.tclas.params.protocol", FT_UINT8, BASE_HEX, NULL, 0, "IPv4 Protocol", HFILL }}, {&cf_ipv6_src, {"IPv6 Src Addr", "wlan_mgt.tclas.params.ipv6_src", FT_IPv6, BASE_NONE, NULL, 0, NULL, HFILL }}, {&cf_ipv6_dst, {"IPv6 Dst Addr", "wlan_mgt.tclas.params.ipv6_dst", FT_IPv6, BASE_NONE, NULL, 0, NULL, HFILL }}, {&cf_flow, {"Flow Label", "wlan_mgt.tclas.params.flow", FT_UINT24, BASE_HEX, NULL, 0, "IPv6 Flow Label", HFILL }}, {&cf_tag_type, {"802.1Q Tag Type", "wlan_mgt.tclas.params.tag_type", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, {&cf_aruba, {"Aruba Type", "wlan_mgt.aruba_type", FT_UINT16, BASE_DEC, VALS(aruba_mgt_typevals), 0, "Aruba Management", HFILL }}, {&cf_aruba_hb_seq, {"Aruba Heartbeat Sequence", "wlan_mgt.aruba_heartbeat_sequence", FT_UINT64, BASE_DEC, NULL, 0, NULL, HFILL }}, {&cf_aruba_mtu, {"Aruba MTU Size", "wlan_mgt.aruba_mtu_size", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, /* Start: HT Control (+HTC) */ {&hf_htc, {"HT Control (+HTC)", "wlan_mgt.htc", FT_UINT32, BASE_HEX, NULL, 0, "High Throughput Control (+HTC)", HFILL }}, {&hf_htc_lac, {"Link Adaptation Control (LAC)", "wlan_mgt.htc.lac", FT_UINT16, BASE_HEX, NULL, 0, "High Throughput Control Link Adaptation Control (LAC)", HFILL }}, {&hf_htc_lac_reserved, {"Reserved", "wlan_mgt.htc.lac.reserved", FT_BOOLEAN, 16, NULL, 0x0001, "High Throughput Control Link Adaptation Control Reserved", HFILL }}, {&hf_htc_lac_trq, {"Training Request (TRQ)", "wlan_mgt.htc.lac.trq", FT_BOOLEAN, 16, TFS(&htc_lac_trq_flag), 0x0002, "High Throughput Control Link Adaptation Control Training Request (TRQ)", HFILL }}, {&hf_htc_lac_mai_aseli, {"Antenna Selection Indication (ASELI)", "wlan_mgt.htc.lac.mai.aseli", FT_UINT16, BASE_HEX, NULL, 0x003C, "High Throughput Control Link Adaptation Control MAI Antenna Selection Indication", HFILL }}, {&hf_htc_lac_mai_mrq, {"MCS Request (MRQ)", "wlan_mgt.htc.lac.mai.mrq", FT_BOOLEAN, 16, TFS(&htc_lac_mai_mrq_flag), 0x0004, "High Throughput Control Link Adaptation Control MAI MCS Request", HFILL }}, {&hf_htc_lac_mai_msi, {"MCS Request Sequence Identifier (MSI)", "wlan_mgt.htc.lac.mai.msi", FT_UINT16, BASE_HEX, NULL, 0x0038, "High Throughput Control Link Adaptation Control MAI MCS Request Sequence Identifier", HFILL }}, {&hf_htc_lac_mai_reserved, {"Reserved", "wlan_mgt.htc.lac.mai.reserved", FT_UINT16, BASE_HEX, NULL, 0x0038, "High Throughput Control Link Adaptation Control MAI Reserved", HFILL }}, {&hf_htc_lac_mfsi, {"MCS Feedback Sequence Identifier (MFSI)", "wlan_mgt.htc.lac.mfsi", FT_UINT16, BASE_DEC, NULL, 0x01C0, "High Throughput Control Link Adaptation Control MCS Feedback Sequence Identifier (MSI)", HFILL }}, {&hf_htc_lac_asel_command, {"Antenna Selection (ASEL) Command", "wlan_mgt.htc.lac.asel.command", FT_UINT16, BASE_HEX, VALS (&hf_htc_lac_asel_command_flags), 0x0E00, "High Throughput Control Link Adaptation Control Antenna Selection (ASEL) Command", HFILL }}, {&hf_htc_lac_asel_data, {"Antenna Selection (ASEL) Data", "wlan_mgt.htc.lac.asel.data", FT_UINT16, BASE_HEX, NULL, 0xF000, "High Throughput Control Link Adaptation Control Antenna Selection (ASEL) Data", HFILL }}, {&hf_htc_lac_mfb, {"MCS Feedback (MFB)", "wlan_mgt.htc.lac.mfb", FT_UINT16, BASE_HEX, NULL, 0xFE00, "High Throughput Control Link Adaptation Control MCS Feedback", HFILL }}, {&hf_htc_cal_pos, {"Calibration Position", "wlan_mgt.htc.cal.pos", FT_UINT16, BASE_DEC, VALS (&hf_htc_cal_pos_flags), 0x0003, "High Throughput Control Calibration Position", HFILL }}, {&hf_htc_cal_seq, {"Calibration Sequence Identifier", "wlan_mgt.htc.cal.seq", FT_UINT16, BASE_DEC, NULL, 0x000C, "High Throughput Control Calibration Sequence Identifier", HFILL }}, {&hf_htc_reserved1, {"Reserved", "wlan_mgt.htc.reserved1", FT_UINT16, BASE_DEC, NULL, 0x0030, "High Throughput Control Reserved", HFILL }}, {&hf_htc_csi_steering, {"CSI/Steering", "wlan_mgt.htc.csi_steering", FT_UINT16, BASE_DEC, VALS (&hf_htc_csi_steering_flags), 0x00C0, "High Throughput Control CSI/Steering", HFILL }}, {&hf_htc_ndp_announcement, {"NDP Announcement", "wlan_mgt.htc.ndp_announcement", FT_BOOLEAN, 16, TFS(&hf_htc_ndp_announcement_flag), 0x0100, "High Throughput Control NDP Announcement", HFILL }}, {&hf_htc_reserved2, {"Reserved", "wlan_mgt.htc.reserved2", FT_UINT16, BASE_HEX, NULL, 0x3E00, "High Throughput Control Reserved", HFILL }}, {&hf_htc_ac_constraint, {"AC Constraint", "wlan_mgt.htc.ac_constraint", FT_BOOLEAN, 16, NULL, 0x4000, "High Throughput Control AC Constraint", HFILL }}, {&hf_htc_rdg_more_ppdu, {"RDG/More PPDU", "wlan_mgt.htc.rdg_more_ppdu", FT_BOOLEAN, 16, NULL, 0x8000, "High Throughput Control RDG/More PPDU", HFILL }}, /* End: HT Control (+HTC) */ /* MDIE */ {&hf_ieee80211_tag_mobility_domain_mdid, {"Mobility Domain Identifier", "wlan_mgt.mobility_domain.mdid", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_mobility_domain_ft_capab, {"FT Capability and Policy", "wlan_mgt.mobility_domain.ft_capab", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_mobility_domain_ft_capab_ft_over_ds, {"Fast BSS Transition over DS", "wlan_mgt.mobility_domain.ft_capab.ft_over_ds", FT_UINT8, BASE_HEX, NULL, 0x01, NULL, HFILL }}, {&hf_ieee80211_tag_mobility_domain_ft_capab_resource_req, {"Resource Request Protocol Capability", "wlan_mgt.mobility_domain.ft_capab.resource_req", FT_UINT8, BASE_HEX, NULL, 0x02, NULL, HFILL }}, /* FTIE */ {&hf_ieee80211_tag_ft_mic_control, {"MIC Control", "wlan_mgt.ft.mic_control", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_ft_element_count, {"Element Count", "wlan_mgt.ft.element_count", FT_UINT16, BASE_DEC, NULL, 0xff00, NULL, HFILL }}, {&hf_ieee80211_tag_ft_mic, {"MIC", "wlan_mgt.ft.mic", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_ft_anonce, {"ANonce", "wlan_mgt.ft.anonce", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_ft_snonce, {"SNonce", "wlan_mgt.ft.snonce", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_ft_subelem_id, {"Subelement ID", "wlan_mgt.ft.subelem.id", FT_UINT8, BASE_DEC, VALS(ft_subelem_id_vals), 0, NULL, HFILL }}, {&hf_ieee80211_tag_ft_subelem_len, {"Length", "wlan_mgt.ft.subelem.len", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_ft_subelem_data, {"Data", "wlan_mgt.ft.subelem.data", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_ft_subelem_r1kh_id, {"PMK-R1 key holder identifier (R1KH-ID)", "wlan_mgt.ft.subelem.r1kh_id", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_ft_subelem_gtk_key_info, {"Key Info", "wlan_mgt.ft.subelem.gtk.key_info", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_ft_subelem_gtk_key_id, {"Key ID", "wlan_mgt.ft.subelem.gtk.key_id", FT_UINT16, BASE_DEC, NULL, 0x0003, NULL, HFILL }}, {&hf_ieee80211_tag_ft_subelem_gtk_key_length, {"Key Length", "wlan_mgt.ft.subelem.gtk.key_length", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_ft_subelem_gtk_rsc, {"RSC", "wlan_mgt.ft.subelem.gtk.rsc", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_ft_subelem_gtk_key, {"GTK", "wlan_mgt.ft.subelem.gtk.key", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_ft_subelem_r0kh_id, {"PMK-R0 key holder identifier (R0KH-ID)", "wlan_mgt.ft.subelem.r0kh_id", FT_STRING, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_ft_subelem_igtk_key_id, {"Key ID", "wlan_mgt.ft.subelem.igtk.key_id", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_ft_subelem_igtk_ipn, {"IPN", "wlan_mgt.ft.subelem.igtk.ipn", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_ft_subelem_igtk_key_length, {"Key Length", "wlan_mgt.ft.subelem.igtk.key_length", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_ft_subelem_igtk_key, {"Wrapped Key (IGTK)", "wlan_mgt.ft.subelem.igtk.key", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }}, /* MMIE */ {&hf_ieee80211_tag_mmie_keyid, {"KeyID", "wlan_mgt.mmie.keyid", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_mmie_ipn, {"IPN", "wlan_mgt.mmie.ipn", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_mmie_mic, {"MIC", "wlan_mgt.mmie.mic", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }}, /* Advertisement Protocol */ {&hf_ieee80211_tag_adv_proto_resp_len_limit, {"Query Response Length Limit", "wlan_mgt.adv_proto.resp_len_limit", FT_UINT8, BASE_DEC, NULL, 0x7f, NULL, HFILL }}, {&hf_ieee80211_tag_adv_proto_pame_bi, {"PAME-BI", "wlan_mgt.adv_proto.pame_bi", FT_UINT8, BASE_DEC, NULL, 0x80, "Pre-Association Message Xchange BSSID Independent (PAME-BI)", HFILL }}, {&hf_ieee80211_tag_adv_proto_id, {"Advertisement Protocol ID", "wlan_mgt.adv_proto.id", FT_UINT8, BASE_DEC, VALS(adv_proto_id_vals), 0, NULL, HFILL }}, /* Timeout Interval */ {&hf_ieee80211_tag_timeout_int_type, {"Timeout Interval Type", "wlan_mgt.timeout_int.type", FT_UINT8, BASE_DEC, VALS(timeout_int_types), 0, NULL, HFILL }}, {&hf_ieee80211_tag_timeout_int_value, {"Timeout Interval Value", "wlan_mgt.timeout_int.value", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, /* Link Identifier */ {&hf_ieee80211_tag_link_id_bssid, {"BSSID", "wlan_mgt.link_id.bssid", FT_ETHER, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_link_id_init_sta, {"TDLS initiator STA Address", "wlan_mgt.link_id.init_sta", FT_ETHER, BASE_NONE, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_link_id_resp_sta, {"TDLS responder STA Address", "wlan_mgt.link_id.resp_sta", FT_ETHER, BASE_NONE, NULL, 0, NULL, HFILL }}, /* Wakeup Schedule */ {&hf_ieee80211_tag_wakeup_schedule_offset, {"Offset", "wlan_mgt.wakeup_schedule.offset", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_wakeup_schedule_interval, {"Interval", "wlan_mgt.wakeup_schedule.interval", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_wakeup_schedule_awake_window_slots, {"Awake Window Slots", "wlan_mgt.wakeup_schedule.awake_window_slots", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_wakeup_schedule_max_awake_dur, {"Maximum Awake Window Duration", "wlan_mgt.wakeup_schedule.max_awake_dur", FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_wakeup_schedule_idle_count, {"Idle Count", "wlan_mgt.wakeup_schedule.idle_count", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, /* Channel Switch Timing */ {&hf_ieee80211_tag_channel_switch_timing_switch_time, {"Switch Time", "wlan_mgt.channel_switch_timing.switch_time", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_channel_switch_timing_switch_timeout, {"Switch Timeout", "wlan_mgt.channel_switch_timing.switch_timeout", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, /* PTI Control */ {&hf_ieee80211_tag_pti_control_tid, {"TID", "wlan_mgt.pti_control.tid", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }}, {&hf_ieee80211_tag_pti_control_sequence_control, {"Sequence Control", "wlan_mgt.pti_control.sequence_control", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL }}, /* PU Buffer Status */ {&hf_ieee80211_tag_pu_buffer_status_ac_bk, {"AC_BK traffic available", "wlan_mgt.pu_buffer_status.ac_bk", FT_UINT8, BASE_DEC, NULL, 0x01, NULL, HFILL }}, {&hf_ieee80211_tag_pu_buffer_status_ac_be, {"AC_BE traffic available", "wlan_mgt.pu_buffer_status.ac_be", FT_UINT8, BASE_DEC, NULL, 0x02, NULL, HFILL }}, {&hf_ieee80211_tag_pu_buffer_status_ac_vi, {"AC_VI traffic available", "wlan_mgt.pu_buffer_status.ac_vi", FT_UINT8, BASE_DEC, NULL, 0x04, NULL, HFILL }}, {&hf_ieee80211_tag_pu_buffer_status_ac_vo, {"AC_VO traffic available", "wlan_mgt.pu_buffer_status.ac_vo", FT_UINT8, BASE_DEC, NULL, 0x08, NULL, HFILL }} }; static hf_register_info aggregate_fields[] = { {&amsdu_msdu_header_text, {"MAC Service Data Unit (MSDU)", "wlan_aggregate.msduheader", FT_UINT16, BASE_DEC, 0, 0x0000, NULL, HFILL }} }; static gint *tree_array[] = { &ett_80211, &ett_fc_tree, &ett_proto_flags, &ett_fragments, &ett_fragment, &ett_block_ack, &ett_80211_mgt, &ett_fixed_parameters, &ett_tagged_parameters, &ett_qos_parameters, &ett_qos_ps_buf_state, &ett_wep_parameters, #ifdef MESH_OVERRIDES &ett_msh_parameters, &ett_msh_dest_flags_tree, #endif /* MESH_OVERRIDES */ &ett_cap_tree, &ett_rsn_cap_tree, &ett_ht_cap_tree, &ett_ff_ba_param_tree, &ett_ff_qos_info, &ett_ff_sm_pwr_save, &ett_ff_psmp_param_set, &ett_ff_mimo_cntrl, &ett_ff_ant_sel, &ett_ff_chan_switch_announce, &ett_ff_ht_info, &ett_ff_psmp_sta_info, &ett_ff_delba_param_tree, &ett_ff_ba_ssc_tree, &ett_mimo_report, &ett_cntrl_wrapper_fc, &ett_cntrl_wrapper_payload, &ett_ht_info_delimiter1_tree, &ett_ht_info_delimiter2_tree, &ett_ht_info_delimiter3_tree, &ett_msdu_aggregation_parent_tree, &ett_msdu_aggregation_subframe_tree, &ett_tag_measure_request_tree, &ett_tag_ex_cap, &ett_tag_supported_channels, &ett_tag_neighbor_report_bssid_info_tree, &ett_tag_neighbor_report_bssid_info_capability_tree, &ett_tag_neighbor_report_sub_tag_tree, &ett_ampduparam_tree, &ett_mcsset_tree, &ett_mcsbit_tree, &ett_htex_cap_tree, &ett_txbf_tree, &ett_hta_cap_tree, &ett_hta_cap1_tree, &ett_hta_cap2_tree, &ett_htc_tree, &ett_antsel_tree, &ett_80211_mgt_ie, &ett_tsinfo_tree, &ett_sched_tree, &ett_fcs, &ett_radio, &ett_pst_tree, &ett_pst_cap_tree, &ett_chan_noc_tree, &ett_wave_chnl_tree, &ett_adv_proto, &ett_adv_proto_tuple, &ett_gas_query, &ett_gas_anqp }; module_t *wlan_module; memset (&wlan_stats, 0, sizeof wlan_stats); proto_aggregate = proto_register_protocol("IEEE 802.11 wireless LAN aggregate frame", "IEEE 802.11 Aggregate Data", "wlan_aggregate"); proto_register_field_array(proto_aggregate, aggregate_fields, array_length(aggregate_fields)); proto_wlan = proto_register_protocol ("IEEE 802.11 wireless LAN", "IEEE 802.11", "wlan"); proto_register_field_array (proto_wlan, hf, array_length (hf)); proto_wlan_mgt = proto_register_protocol ("IEEE 802.11 wireless LAN management frame", "802.11 MGT", "wlan_mgt"); proto_register_field_array (proto_wlan_mgt, ff, array_length (ff)); proto_register_subtree_array (tree_array, array_length (tree_array)); register_dissector("wlan", dissect_ieee80211, proto_wlan); register_dissector("wlan_fixed", dissect_ieee80211_fixed, proto_wlan); register_dissector("wlan_bsfc", dissect_ieee80211_bsfc, proto_wlan); register_dissector("wlan_datapad", dissect_ieee80211_datapad, proto_wlan); register_dissector("wlan_ht", dissect_ieee80211_ht, proto_wlan); register_init_routine(wlan_defragment_init); register_init_routine(wlan_retransmit_init); proto_radio = proto_register_protocol("802.11 radio information", "Radio", "radio"); proto_prism = proto_register_protocol("Prism capture header", "Prism", "prism"); proto_register_field_array(proto_prism, hf_prism, array_length(hf_prism)); proto_wlancap = proto_register_protocol("AVS WLAN Capture header", "AVS WLANCAP", "wlancap"); proto_register_field_array(proto_wlancap, hf_wlancap, array_length(hf_wlancap)); register_dissector("wlancap", dissect_wlancap, proto_wlancap); wlan_tap = register_tap("wlan"); /* Register configuration options */ wlan_module = prefs_register_protocol(proto_wlan, init_wepkeys); prefs_register_bool_preference(wlan_module, "defragment", "Reassemble fragmented 802.11 datagrams", "Whether fragmented 802.11 datagrams should be reassembled", &wlan_defragment); prefs_register_bool_preference(wlan_module, "ignore_draft_ht", "Ignore vendor-specific HT elements", "Don't dissect 802.11n draft HT elements (which might contain duplicate information).", &wlan_ignore_draft_ht); prefs_register_bool_preference(wlan_module, "retransmitted", "Call subdissector for retransmitted 802.11 frames", "Whether retransmitted 802.11 frames should be subdissected", &wlan_subdissector); prefs_register_bool_preference(wlan_module, "check_fcs", "Assume packets have FCS", "Some 802.11 cards include the FCS at the end of a packet, others do not.", &wlan_check_fcs); /* Davide Schiera (2006-11-26): changed "WEP bit" in "Protection bit" */ /* (according to the document IEEE Std 802.11i-2004) */ prefs_register_enum_preference(wlan_module, "ignore_wep", "Ignore the Protection bit", "Some 802.11 cards leave the Protection bit set even though the packet is decrypted, " "and some also leave the IV (initialization vector).", &wlan_ignore_wep, wlan_ignore_wep_options, TRUE); #ifndef USE_ENV prefs_register_obsolete_preference(wlan_module, "wep_keys"); #ifdef HAVE_AIRPDCAP /* Davide Schiera (2006-11-26): added reference to WPA/WPA2 decryption */ prefs_register_bool_preference(wlan_module, "enable_decryption", "Enable decryption", "Enable WEP and WPA/WPA2 decryption", &enable_decryption); #else prefs_register_bool_preference(wlan_module, "enable_decryption", "Enable decryption", "Enable WEP decryption", &enable_decryption); #endif #ifdef HAVE_AIRPDCAP prefs_register_static_text_preference(wlan_module, "info_decryption_key", "Key examples: 01:02:03:04:05 (40/64-bit WEP),\n" "010203040506070809101111213 (104/128-bit WEP),\n" "wpa-pwd:MyPassword[:MyAP] (WPA + plaintext password [+ SSID]),\n" "wpa-psk:0102030405...6061626364 (WPA + 256-bit key). " "Invalid keys will be ignored.", "Valid key formats"); #else prefs_register_static_text_preference(wlan_module, "info_decryption_key", "Key examples: 01:02:03:04:05 (40/64-bit WEP),\n" "010203040506070809101111213 (104/128-bit WEP)", "Valid key formats"); #endif for (i = 0; i < MAX_ENCRYPTION_KEYS; i++) { key_name = g_string_new(""); key_title = g_string_new(""); key_desc = g_string_new(""); wep_keystr[i] = NULL; /* prefs_register_*_preference() expects unique strings, so * we build them using g_string_printf and just leave them * allocated. */ #ifdef HAVE_AIRPDCAP g_string_printf(key_name, "wep_key%d", i + 1); g_string_printf(key_title, "Key #%d", i + 1); /* Davide Schiera (2006-11-26): modified keys input tooltip */ g_string_printf(key_desc, "Key #%d string can be:" " ;" " wep:;" " wpa-pwd:[:];" " wpa-psk:", i + 1); #else g_string_printf(key_name, "wep_key%d", i + 1); g_string_printf(key_title, "WEP key #%d", i + 1); g_string_printf(key_desc, "WEP key #%d can be:" " ;" " wep:", i + 1); #endif prefs_register_string_preference(wlan_module, key_name->str, key_title->str, key_desc->str, (const char **) &wep_keystr[i]); g_string_free(key_name, FALSE); g_string_free(key_title, FALSE); g_string_free(key_desc, FALSE); } #endif } static void dissect_data_encap(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { int offset = 0; guint8 type; int tagged_parameter_tree_len; proto_tree *tagged_tree; g_pinfo = pinfo; type = tvb_get_guint8(tvb, offset); proto_tree_add_item(tree, hf_ieee80211_data_encap_payload_type, tvb, offset, 1, FALSE); offset++; switch (type) { case 1: col_set_str(pinfo->cinfo, COL_PROTOCOL, "RRB"); /* TODO: IEEE 802.11r */ break; case 2: col_set_str(pinfo->cinfo, COL_PROTOCOL, "TDLS"); col_clear(pinfo->cinfo, COL_INFO); offset += add_fixed_field(tree, tvb, offset, FIELD_ACTION); tagged_parameter_tree_len = tvb_reported_length_remaining(tvb, offset); if (tagged_parameter_tree_len != 0) { tagged_tree = get_tagged_parameter_tree(tree, tvb, offset, tagged_parameter_tree_len); ieee_80211_add_tagged_parameters(tvb, offset, pinfo, tagged_tree, tagged_parameter_tree_len); } break; } } void proto_reg_handoff_ieee80211(void) { dissector_handle_t radio_handle; dissector_handle_t prism_handle; dissector_handle_t data_encap_handle; /* * Get handles for the LLC, IPX and Ethernet dissectors. */ llc_handle = find_dissector("llc"); ipx_handle = find_dissector("ipx"); eth_withoutfcs_handle = find_dissector("eth_withoutfcs"); data_handle = find_dissector("data"); ieee80211_handle = find_dissector("wlan"); dissector_add_uint("wtap_encap", WTAP_ENCAP_IEEE_802_11, ieee80211_handle); dissector_add_uint("ethertype", ETHERTYPE_CENTRINO_PROMISC, ieee80211_handle); /* Register handoff to radio-header dissectors */ radio_handle = create_dissector_handle(dissect_radio, proto_radio); dissector_add_uint("wtap_encap", WTAP_ENCAP_IEEE_802_11_WITH_RADIO, radio_handle); prism_handle = create_dissector_handle(dissect_prism, proto_prism); dissector_add_uint("wtap_encap", WTAP_ENCAP_PRISM_HEADER, prism_handle); wlancap_handle = create_dissector_handle(dissect_wlancap, proto_wlancap); dissector_add_uint("wtap_encap", WTAP_ENCAP_IEEE_802_11_WLAN_AVS, wlancap_handle); /* Register handoff to Aruba GRE */ dissector_add_uint("gre.proto", GRE_ARUBA_8200, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_8210, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_8220, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_8230, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_8240, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_8250, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_8260, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_8270, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_8280, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_8290, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_82A0, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_82B0, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_82C0, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_82D0, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_82E0, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_82F0, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_8300, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_8310, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_8320, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_8330, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_8340, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_8350, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_8360, ieee80211_handle); dissector_add_uint("gre.proto", GRE_ARUBA_8370, ieee80211_handle); data_encap_handle = create_dissector_handle(dissect_data_encap, proto_wlan); dissector_add_uint("ethertype", ETHERTYPE_IEEE80211_DATA_ENCAP, data_encap_handle); } #ifdef HAVE_AIRPDCAP /* Davide Schiera (2006-11-26): this function will try to decrypt with WEP or */ /* WPA and return a tvb to the caller to add a new tab. It returns the */ /* algorithm used for decryption (WEP, TKIP, CCMP) and the header and */ /* trailer lengths. */ static tvbuff_t * try_decrypt(tvbuff_t *tvb, guint offset, guint len, guint8 *algorithm, guint32 *sec_header, guint32 *sec_trailer) { const guint8 *enc_data; guint8 *tmp = NULL; tvbuff_t *decr_tvb = NULL; guint32 dec_caplen; guchar dec_data[AIRPDCAP_MAX_CAPLEN]; AIRPDCAP_KEY_ITEM used_key; if (!enable_decryption) return NULL; /* get the entire packet */ enc_data = tvb_get_ptr(tvb, 0, len+offset); /* process packet with AirPDcap */ if (AirPDcapPacketProcess(&airpdcap_ctx, enc_data, offset, offset+len, dec_data, &dec_caplen, &used_key, FALSE, TRUE)==AIRPDCAP_RET_SUCCESS) { *algorithm=used_key.KeyType; switch (*algorithm) { case AIRPDCAP_KEY_TYPE_WEP: *sec_header=AIRPDCAP_WEP_HEADER; *sec_trailer=AIRPDCAP_WEP_TRAILER; break; case AIRPDCAP_KEY_TYPE_CCMP: *sec_header=AIRPDCAP_RSNA_HEADER; *sec_trailer=AIRPDCAP_CCMP_TRAILER; break; case AIRPDCAP_KEY_TYPE_TKIP: *sec_header=AIRPDCAP_RSNA_HEADER; *sec_trailer=AIRPDCAP_TKIP_TRAILER; break; default: return NULL; } /* allocate buffer for decrypted payload */ tmp = g_memdup(dec_data+offset, dec_caplen-offset); len=dec_caplen-offset; /* decrypt successful, let's set up a new data tvb. */ decr_tvb = tvb_new_child_real_data(tvb, tmp, len, len); tvb_set_free_cb(decr_tvb, g_free); } else g_free(tmp); return decr_tvb; } /* Davide Schiera ----------------------------------------------------------- */ #else static tvbuff_t *try_decrypt_wep(tvbuff_t *tvb, guint32 offset, guint32 len) { const guint8 *enc_data; guint8 *tmp = NULL; int i; tvbuff_t *decr_tvb = NULL; if (! enable_decryption) return NULL; enc_data = tvb_get_ptr(tvb, offset, len); if ((tmp = g_malloc(len)) == NULL) return NULL; /* krap! */ /* try once with the key index in the packet, then look through our list. */ for (i = 0; i < num_wepkeys; i++) { /* copy the encrypted data over to the tmp buffer */ #if 0 printf("trying %d\n", i); #endif memcpy(tmp, enc_data, len); if (wep_decrypt(tmp, len, i) == 0) { /* decrypt successful, let's set up a new data tvb. */ decr_tvb = tvb_new_child_real_data(tvb, tmp, len-8, len-8); tvb_set_free_cb(decr_tvb, g_free); break; } } if (!decr_tvb) g_free(tmp); #if 0 printf("de-wep %p\n", decr_tvb); #endif return decr_tvb; } #endif /* * Convert a raw WEP key or one prefixed with "wep:" to a byte array. * Separators are allowed. */ /* XXX This is duplicated in epan/airpdcap.c:parse_key_string() */ static gboolean wep_str_to_bytes(const char *hex_str, GByteArray *bytes) { char *first_nibble = (char *) hex_str; if (g_ascii_strncasecmp(hex_str, STRING_KEY_TYPE_WEP ":", 4) == 0) { first_nibble += 4; } return hex_str_to_bytes(first_nibble, bytes, FALSE); } /* Collect our WEP and WPA keys */ #ifdef HAVE_AIRPDCAP static void set_airpdcap_keys(void) { guint i = 0; AIRPDCAP_KEY_ITEM key; PAIRPDCAP_KEYS_COLLECTION keys; decryption_key_t* dk = NULL; GByteArray *bytes = NULL; gboolean res; gchar* tmpk = NULL; keys=(PAIRPDCAP_KEYS_COLLECTION)g_malloc(sizeof(AIRPDCAP_KEYS_COLLECTION)); keys->nKeys = 0; for(i = 0; i < MAX_ENCRYPTION_KEYS; i++) { tmpk = g_strdup(wep_keystr[i]); dk = parse_key_string(tmpk); if(dk != NULL) { if(dk->type == AIRPDCAP_KEY_TYPE_WEP) { key.KeyType = AIRPDCAP_KEY_TYPE_WEP; bytes = g_byte_array_new(); res = wep_str_to_bytes(dk->key->str, bytes); if (dk->key->str && res && bytes->len > 0 && bytes->len <= AIRPDCAP_WEP_KEY_MAXLEN) { /* * WEP key is correct (well, the can be even or odd, so it is not * a real check, I think... is a check performed somewhere in the * AirPDcap function??? ) */ memcpy(key.KeyData.Wep.WepKey, bytes->data, bytes->len); key.KeyData.Wep.WepKeyLen = bytes->len; keys->Keys[keys->nKeys] = key; keys->nKeys++; } } else if(dk->type == AIRPDCAP_KEY_TYPE_WPA_PWD) { key.KeyType = AIRPDCAP_KEY_TYPE_WPA_PWD; /* XXX - This just lops the end if the key off if it's too long. * Should we handle this more gracefully? */ g_strlcpy(key.UserPwd.Passphrase, dk->key->str, AIRPDCAP_WPA_PASSPHRASE_MAX_LEN+1); key.UserPwd.SsidLen = 0; if(dk->ssid != NULL && dk->ssid->len <= AIRPDCAP_WPA_SSID_MAX_LEN) { memcpy(key.UserPwd.Ssid, dk->ssid->data, dk->ssid->len); key.UserPwd.SsidLen = dk->ssid->len; } keys->Keys[keys->nKeys] = key; keys->nKeys++; } else if(dk->type == AIRPDCAP_KEY_TYPE_WPA_PMK) { key.KeyType = AIRPDCAP_KEY_TYPE_WPA_PMK; bytes = g_byte_array_new(); res = wep_str_to_bytes(dk->key->str, bytes); /* XXX - Pass the correct array of bytes... */ if (bytes-> len <= AIRPDCAP_WPA_PMK_LEN) { memcpy(key.KeyData.Wpa.Pmk, bytes->data, bytes->len); keys->Keys[keys->nKeys] = key; keys->nKeys++; } } } g_free(tmpk); } /* Now set the keys */ AirPDcapSetKeys(&airpdcap_ctx,keys->Keys,keys->nKeys); g_free(keys); if (bytes) g_byte_array_free(bytes, TRUE); } #endif #ifndef HAVE_AIRPDCAP /* de-weps the block. if successful, buf* will point to the data start. */ static int wep_decrypt(guint8 *buf, guint32 len, int keyidx) { guint32 i, j, k, crc, keylen; guint8 s[256], key[128], c_crc[4]; guint8 *dpos, *cpos; /* Needs to be at least 8 bytes of payload */ if (len < 8) return -1; /* initialize the first bytes of the key from the IV */ key[0] = buf[0]; key[1] = buf[1]; key[2] = buf[2]; if (keyidx < 0 || keyidx >= num_wepkeys) return -1; keylen = wep_keylens[keyidx]; if (keylen == 0) return -1; if (wep_keys[keyidx] == NULL) return -1; keylen+=3; /* add in ICV bytes */ /* copy the rest of the key over from the designated key */ memcpy(key+3, wep_keys[keyidx], wep_keylens[keyidx]); #if 0 printf("%d: %02x %02x %02x (%d %d) %02x:%02x:%02x:%02x:%02x\n", len, key[0], key[1], key[2], keyidx, keylen, key[3], key[4], key[5], key[6], key[7]); #endif /* set up the RC4 state */ for (i = 0; i < 256; i++) s[i] = i; j = 0; for (i = 0; i < 256; i++) { j = (j + s[i] + key[i % keylen]) & 0xff; SSWAP(i,j); } /* Apply the RC4 to the data, update the CRC32 */ cpos = buf+4; dpos = buf; crc = ~0; i = j = 0; for (k = 0; k < (len -8); k++) { i = (i+1) & 0xff; j = (j+s[i]) & 0xff; SSWAP(i,j); #if 0 printf("%d -- %02x ", k, *dpos); #endif *dpos = *cpos++ ^ s[(s[i] + s[j]) & 0xff]; #if 0 printf("%02x\n", *dpos); #endif crc = crc32_ccitt_table[(crc ^ *dpos++) & 0xff] ^ (crc >> 8); } crc = ~crc; /* now let's check the crc */ c_crc[0] = crc; c_crc[1] = crc >> 8; c_crc[2] = crc >> 16; c_crc[3] = crc >> 24; for (k = 0; k < 4; k++) { i = (i + 1) & 0xff; j = (j+s[i]) & 0xff; SSWAP(i,j); #if 0 printf("-- %02x %02x\n", *dpos, c_crc[k]); #endif if ((*cpos++ ^ s[(s[i] + s[j]) & 0xff]) != c_crc[k]) return -1; /* ICV mismatch */ } return 0; } #endif static void init_wepkeys(void) { #ifndef HAVE_AIRPDCAP const char *tmp; int i, keyidx; GByteArray *bytes; gboolean res; if (wep_keys) { for (i = 0; i < num_wepkeys; i++) g_free(wep_keys[i]); g_free(wep_keys); } g_free(wep_keylens); #ifdef USE_ENV guint8 *buf; tmp = getenv("WIRESHARK_WEPKEYNUM"); if (!tmp) { num_wepkeys = 0; return; } num_wepkeys = atoi(tmp); if (num_wepkeys < 1) return; #endif /* Figure out how many valid keys we have */ bytes = g_byte_array_new(); num_wepkeys = 0; for ( i = 0; i < MAX_ENCRYPTION_KEYS; i++) { g_strstrip(wep_keystr[i]); res = wep_str_to_bytes(wep_keystr[i], bytes); if (wep_keystr[i] && res && bytes-> len > 0) { num_wepkeys++; } } wep_keys = g_malloc0(num_wepkeys * sizeof(guint8*)); wep_keylens = g_malloc(num_wepkeys * sizeof(int)); for (i = 0, keyidx = 0; i < MAX_ENCRYPTION_KEYS && keyidx < num_wepkeys; i++) { wep_keys[keyidx] = NULL; wep_keylens[keyidx] = 0; #ifdef USE_ENV buf = ep_strdup_printf("WIRESHARK_WEPKEY%d", i+1); tmp = getenv(buf); #else tmp = wep_keystr[i]; #endif if (tmp) { #if 0 #ifdef USE_ENV printf("%s -- %s\n", buf, tmp); #else printf("%d -- %s\n", i+1, tmp); #endif #endif g_free(wep_keys[keyidx]); res = wep_str_to_bytes(tmp, bytes); if (tmp && res && bytes->len > 0) { if (bytes->len > 32) { bytes->len = 32; } wep_keys[keyidx] = g_malloc0(32 * sizeof(guint8)); memcpy(wep_keys[keyidx], bytes->data, bytes->len * sizeof(guint8)); wep_keylens[keyidx] = bytes->len; keyidx++; #if 0 printf("%d: %d bytes\n", i, bytes->len); printf("%d: %s\n", i, bytes_to_str(bytes->data, bytes->len)); #endif } else { #if 0 printf("res: %d bytes->len: %d\n", res, bytes->len); #endif if (tmp[0] != 'w') /* Assume it begins with "wep:" or "wpa-*:" */ g_warning("Could not parse WEP key %d: %s", i + 1, tmp); } } } g_byte_array_free(bytes, TRUE); #else /* HAVE_AIRPDCAP defined */ /* * XXX - AirPDcap - That God sends it to us beautiful (che dio ce la mandi bona) * The next lines will add a key to the AirPDcap context. The keystring will be added * to the old WEP array too, but we don't care, because the packets will come here * already decrypted... One of these days we will fix this too */ set_airpdcap_keys(); #endif /* HAVE_AIRPDCAP */ } /* * This code had been taken from AirSnort crack.c function classify() * Permission granted by snax shmoo dot com * weak_iv - determine which key byte an iv is useful in resolving * parm - p, pointer to the first byte of an IV * return - n - this IV is weak for byte n of a WEP key * -1 - this IV is not weak for any key bytes * * This function tests for IVs that are known to satisfy the criteria * for a weak IV as specified in FMS section 7.1 * */ static int weak_iv(guchar *iv) { guchar sum, k; if (iv[1] == 255 && iv[0] > 2 && iv[0] < 16) { return iv[0] -3; } sum = iv[0] + iv[1]; if (sum == 1) { if (iv[2] <= 0x0a) { return iv[2] +2; } else if (iv[2] == 0xff){ return 0; } } k = 0xfe - iv[2]; if (sum == k && (iv[2] >= 0xf2 && iv[2] <= 0xfe && iv[2] != 0xfd)){ return k; } return -1; } /* * Editor modelines * * Local Variables: * c-basic-offset: 2 * tab-width: 8 * indent-tabs-mode: nil * End: * * ex: set shiftwidth=2 tabstop=8 expandtab * :indentSize=2:tabSize=8:noTabs=true: */