/* packet-gsm_abis_pgsl.c * Routines for packet dissection of Ericsson GSM A-bis P-GSL * Copyright 2010-2016 by Harald Welte * * P-GSL is an Ericsson-specific packetized version of replacing PCU-CCU * TRAU frames on 8k/16k E1 sub-slots with a paketized frame format * which can be transported over LAPD on a SuperChannel (E1 timeslot * bundle) or L2TP. * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "config.h" #include #include #include "packet-gsm_rlcmac.h" #include "packet-gsm_a_common.h" void proto_register_abis_pgsl(void); void proto_reg_handoff_abis_pgsl(void); enum { SUB_RLCMAC_UL, SUB_RLCMAC_DL, SUB_MAX }; static dissector_handle_t sub_handles[SUB_MAX]; /* initialize the protocol and registered fields */ static int proto_abis_pgsl = -1; /* P-GSL header */ static int hf_pgsl_version = -1; static int hf_pgsl_msg_disc = -1; static int hf_pgsl_tn_bitmap = -1; static int hf_pgsl_trx_seqno = -1; static int hf_pgsl_afnd = -1; static int hf_pgsl_afnu = -1; static int hf_pgsl_ccu_ta = -1; static int hf_pgsl_ack_req = -1; static int hf_pgsl_tn_resource = -1; static int hf_pgsl_tn_seqno = -1; static int hf_pgsl_data_len = -1; static int hf_pgsl_cause = -1; static int hf_pgsl_addl_info = -1; static int hf_pgsl_ack_ind = -1; static int hf_pgsl_data_ind = -1; static int hf_pgsl_ucm = -1; static int hf_pgsl_cs = -1; static int hf_pgsl_timing_offset = -1; static int hf_pgsl_power_control = -1; static int hf_pgsl_ir_tfi = -1; static int hf_pgsl_ir_sign_type = -1; static int hf_pgsl_codec_delay = -1; static int hf_pgsl_codec_cs = -1; static int hf_pgsl_codec_rxlev = -1; static int hf_pgsl_codec_parity = -1; static int hf_pgsl_codec_bqm = -1; static int hf_pgsl_codec_mean_bep = -1; static int hf_pgsl_codec_cv_bep = -1; static int hf_pgsl_codec_q = -1; static int hf_pgsl_codec_q1 = -1; static int hf_pgsl_codec_q2 = -1; static int hf_pgsl_pacch = -1; static int hf_pgsl_ab_rxlev = -1; static int hf_pgsl_ab_acc_delay = -1; static int hf_pgsl_ab_abi = -1; static int hf_pgsl_ab_ab_type = -1; /* initialize the subtree pointers */ static int ett_pgsl = -1; static int ett_pacch = -1; static gboolean abis_pgsl_ir = FALSE; #define PGSL_MSG_DLDATA_REQ 1 #define PGSL_MSG_DLDATA_IND 2 #define PGSL_MSG_ULDATA_IND 3 #define PGSL_MSG_STATUS_IND 4 static const value_string pgsl_msg_disc_vals[] = { { PGSL_MSG_DLDATA_REQ, "PGSL-DLDATA-REQ" }, { PGSL_MSG_DLDATA_IND, "PGSL-DLDATA-IND" }, { PGSL_MSG_ULDATA_IND, "PGSL-ULDATA-IND" }, { PGSL_MSG_STATUS_IND, "PGSL-STATUS-IND" }, { 0, NULL } }; static const true_false_string pgsl_q_vals = { "Bad", "Good" }; static const value_string pgsl_msg_cause_vals[] = { { 0, "Frame discarded in CCU, too late" }, { 1, "Frame discarded in CCU, too late or OOM" }, { 2, "Frame(s) missing in sequence detected by CCU" }, { 3, "Frame Format Error" }, { 0, NULL } }; static const value_string pgsl_cs_vals[] = { { 0, "AB" }, { 1, "CS-1" }, { 2, "CS-2" }, { 3, "CS-3" }, { 4, "CS-4" }, { 5, "Header Type 1" }, { 6, "Header Type 2" }, { 7, "Header Type 3" }, { 0, NULL } }; static const value_string pgsl_ucm_vals[] = { { 1, "Normal Burst (GSMK CS1/CS2/CS3/CS4)" }, { 2, "Normal Burst (CS1 or MCS1 to MCS9)" }, { 3, "Access Burst (8 bit, Traning Sequence 0)" }, { 4, "Access Burst (8 bit or 11 bit, Training Sequence 0/1/2)" }, { 0, NULL } }; static const value_string pgsl_ir_sign_type_vals[] = { { 0, "IR Update Indication" }, { 1, "IR Start Indication" }, { 2, "IR Stop Indication" }, { 3, "No IR Information" }, { 0, NULL } }; static const value_string pgsl_ab_type_vals[] = { { 0, "8-bit RACH" }, { 1, "11-bit RACH (TS0)" }, { 2, "11-bit RACH (TS1)" }, { 3, "11-bit RACH (TS2)" }, { 0, NULL } }; static const value_string pgsl_ab_abi_vals[] = { { 0, "Not Valid" }, { 7, "Valid" }, { 0, NULL } }; static RLCMAC_block_format_t pgsl_cs_to_rlcmac_cs(guint8 pgsl_cs) { static const RLCMAC_block_format_t tbl[8] = { RLCMAC_PRACH, RLCMAC_CS1, RLCMAC_CS2, RLCMAC_CS3, RLCMAC_CS4, RLCMAC_HDR_TYPE_1, RLCMAC_HDR_TYPE_2, RLCMAC_HDR_TYPE_3, }; if (pgsl_cs >= 8) return RLCMAC_CS1; else return tbl[pgsl_cs]; } /* length of an EGPRS RLC data block for given MCS */ static const guint data_block_len_by_mcs[] = { 0, /* MCS0 */ 22, /* MCS1 */ 28, 37, 44, 56, 74, 56, 68, 74, /* MCS9 */ 0, /* MCS_INVALID */ }; /* determine the number of rlc data blocks and their size / offsets */ static void setup_rlc_mac_priv(RlcMacPrivateData_t *rm, gboolean is_uplink, guint *n_calls, guint *data_block_bits, guint *data_block_offsets) { guint nc, dbl = 0, dbo[2] = {0,0}; dbl = data_block_len_by_mcs[rm->mcs]; switch (rm->block_format) { case RLCMAC_HDR_TYPE_1: nc = 3; dbo[0] = is_uplink ? 5*8 + 6 : 5*8 + 0; dbo[1] = dbo[0] + dbl * 8 + 2; break; case RLCMAC_HDR_TYPE_2: nc = 2; dbo[0] = is_uplink ? 4*8 + 5 : 3*8 + 4; break; case RLCMAC_HDR_TYPE_3: nc = 2; dbo[0] = 3*8 + 7; break; default: nc = 1; break; } *n_calls = nc; *data_block_bits = dbl * 8 + 2; data_block_offsets[0] = dbo[0]; data_block_offsets[1] = dbo[1]; } /* bit-shift the entire 'src' of length 'length_bytes' by 'offset_bits' * and store the reuslt to caller-allocated 'buffer'. The shifting is * done lsb-first, unlike tvb_new_octet_aligned() */ static void clone_aligned_buffer_lsbf(guint offset_bits, guint length_bytes, const guint8 *src, guint8 *buffer) { guint hdr_bytes; guint extra_bits; guint i; guint8 c, last_c; guint8 *dst; hdr_bytes = offset_bits / 8; extra_bits = offset_bits % 8; if (extra_bits == 0) { /* It is aligned already */ memmove(buffer, src + hdr_bytes, length_bytes); return; } dst = buffer; src = src + hdr_bytes; last_c = *(src++); for (i = 0; i < length_bytes; i++) { c = src[i]; *(dst++) = (last_c >> extra_bits) | (c << (8 - extra_bits)); last_c = c; } } /* obtain an (aligned) EGPRS data block with given bit-offset and * bit-length from the parent TVB */ static tvbuff_t *get_egprs_data_block(tvbuff_t *tvb, guint offset_bits, guint length_bits, packet_info *pinfo) { tvbuff_t *aligned_tvb; const guint initial_spare_bits = 6; guint8 *aligned_buf; guint min_src_length_bytes = (offset_bits + length_bits + 7) / 8; guint length_bytes = (initial_spare_bits + length_bits + 7) / 8; tvb_ensure_bytes_exist(tvb, 0, min_src_length_bytes); aligned_buf = (guint8 *) wmem_alloc(pinfo->pool, length_bytes); /* Copy the data out of the tvb to an aligned buffer */ clone_aligned_buffer_lsbf( offset_bits - initial_spare_bits, length_bytes, tvb_get_ptr(tvb, 0, min_src_length_bytes), aligned_buf); /* clear spare bits and move block header bits to the right */ aligned_buf[0] = aligned_buf[0] >> initial_spare_bits; aligned_tvb = tvb_new_child_real_data(tvb, aligned_buf, length_bytes, length_bytes); add_new_data_source(pinfo, aligned_tvb, "Aligned EGPRS data bits"); return aligned_tvb; } /* Dissect a P-GSL ACess Burst Message */ static void dissect_pgsl_access_burst(tvbuff_t *tvb, gint offset, packet_info *pinfo, proto_tree *tree, RlcMacPrivateData_t *rlcmac_data) { proto_item *ti; proto_tree *pacch_tree; tvbuff_t *data_tvb; guint rxlev, abtype, abi; guint16 acc_delay; ti = proto_tree_add_item(tree, hf_pgsl_pacch, tvb, offset, 5, ENC_NA); pacch_tree = proto_item_add_subtree(ti, ett_pacch); proto_tree_add_item_ret_uint(pacch_tree, hf_pgsl_ab_rxlev, tvb, offset++, 1, ENC_NA, &rxlev); /* Access Delay is encoded as 10-bit field with the lowest 8 * bits in the first octet, with the two highest bits in the * lowest bits of the second octet */ acc_delay = tvb_get_guint8(tvb, offset); acc_delay |= tvb_get_bits8(tvb, (offset+1)*8+6, 2) << 8; proto_tree_add_uint(pacch_tree, hf_pgsl_ab_acc_delay, tvb, offset, 2, acc_delay); /* ABI and AB Type are in the same octet as the acc_dely msb's */ offset++; proto_tree_add_item_ret_uint(pacch_tree, hf_pgsl_ab_abi, tvb, offset, 1, ENC_NA, &abi); proto_tree_add_item_ret_uint(pacch_tree, hf_pgsl_ab_ab_type, tvb, offset, 1, ENC_NA, &abtype); offset++; /* Update the 'master' item */ if (abi) { proto_item_append_text(ti, " Valid, RxLev %u, Delay %u bits, Type %s", rxlev, acc_delay, val_to_str(abtype, pgsl_ab_type_vals, "0x%x")); /* decode actual access burst */ data_tvb = tvb_new_subset_length(tvb, offset, 2); call_dissector_with_data(sub_handles[SUB_RLCMAC_UL], data_tvb, pinfo, pacch_tree, (void *) rlcmac_data); } else proto_item_append_text(ti, " Invalid, RxLev %u", rxlev); } /* Dissect a given (E)GPRS RLC/MAC block */ static void dissect_gprs_data(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, gboolean uplink, RlcMacPrivateData_t *rlcmac_data) { dissector_handle_t rlcmac_dissector; tvbuff_t *data_tvb; guint data_block_bits, data_block_offsets[2]; guint num_calls; if (uplink) rlcmac_dissector = sub_handles[SUB_RLCMAC_UL]; else rlcmac_dissector = sub_handles[SUB_RLCMAC_DL]; /* we need to call the dissector several times * incase of EGPRS, once for each header, and * once for the paylod */ switch (rlcmac_data->block_format) { case RLCMAC_PRACH: /* contains information for four access bursts */ dissect_pgsl_access_burst(tvb, 0, pinfo, tree, rlcmac_data); dissect_pgsl_access_burst(tvb, 5, pinfo, tree, rlcmac_data); dissect_pgsl_access_burst(tvb, 10, pinfo, tree, rlcmac_data); dissect_pgsl_access_burst(tvb, 15, pinfo, tree, rlcmac_data); break; case RLCMAC_HDR_TYPE_1: case RLCMAC_HDR_TYPE_2: case RLCMAC_HDR_TYPE_3: /* First call of RLC/MAC dissector for header */ call_dissector_with_data(rlcmac_dissector, tvb, pinfo, tree, (void *) rlcmac_data); /* now determine how to proceed for data */ setup_rlc_mac_priv(rlcmac_data, uplink, &num_calls, &data_block_bits, data_block_offsets); /* and call dissector one or two time for the data blocks */ if (num_calls >= 2) { rlcmac_data->flags = GSM_RLC_MAC_EGPRS_BLOCK1; data_tvb = get_egprs_data_block(tvb, data_block_offsets[0], data_block_bits, pinfo); call_dissector_with_data(rlcmac_dissector, data_tvb, pinfo, tree, (void *) rlcmac_data); } if (num_calls == 3) { rlcmac_data->flags = GSM_RLC_MAC_EGPRS_BLOCK2; data_tvb = get_egprs_data_block(tvb, data_block_offsets[1], data_block_bits, pinfo); call_dissector_with_data(rlcmac_dissector, data_tvb, pinfo, tree, (void *) rlcmac_data); } break; default: /* regular GPRS CS doesn't need any * shifting/re-alignment or even separate calls for * header and data blocks. We simply call the dissector * as-is */ call_dissector_with_data(rlcmac_dissector, tvb, pinfo, tree, (void *) rlcmac_data); } } static int dissect_abis_pgsl(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) { proto_item *ti; proto_tree *pgsl_tree; int offset = 0; tvbuff_t *next_tvb; guint32 msg_disc, len, ack_data_ind, cs, fn; RlcMacPrivateData_t rlcmac_data; col_set_str(pinfo->cinfo, COL_PROTOCOL, "P-GSL"); ti = proto_tree_add_item(tree, proto_abis_pgsl, tvb, 0, -1, ENC_NA); pgsl_tree = proto_item_add_subtree(ti, ett_pgsl); proto_tree_add_item(pgsl_tree, hf_pgsl_version, tvb, offset, 1, ENC_NA); proto_tree_add_item_ret_uint(pgsl_tree, hf_pgsl_msg_disc, tvb, offset, 1, ENC_NA, &msg_disc); offset++; col_append_str(pinfo->cinfo, COL_INFO, val_to_str(msg_disc, pgsl_msg_disc_vals, "Unknown (%u)")); rlcmac_data.magic = GSM_RLC_MAC_MAGIC_NUMBER; switch (msg_disc) { case PGSL_MSG_DLDATA_REQ: proto_tree_add_item(pgsl_tree, hf_pgsl_tn_bitmap, tvb, offset++, 1, ENC_NA); proto_tree_add_item(pgsl_tree, hf_pgsl_trx_seqno, tvb, offset++, 1, ENC_NA); proto_tree_add_item(pgsl_tree, hf_pgsl_afnd, tvb, offset, 3, ENC_LITTLE_ENDIAN); offset += 3; proto_tree_add_item(pgsl_tree, hf_pgsl_ccu_ta, tvb, offset++, 1, ENC_NA); proto_tree_add_item(pgsl_tree, hf_pgsl_ack_req, tvb, offset++, 1, ENC_NA); break; case PGSL_MSG_DLDATA_IND: proto_tree_add_item(pgsl_tree, hf_pgsl_tn_resource, tvb, offset++, 1, ENC_NA); proto_tree_add_item(pgsl_tree, hf_pgsl_tn_seqno, tvb, offset++, 1, ENC_NA); proto_tree_add_item_ret_uint(pgsl_tree, hf_pgsl_afnd, tvb, offset, 3, ENC_LITTLE_ENDIAN, &fn); rlcmac_data.frame_number = fn; offset += 3; ack_data_ind = tvb_get_guint8(tvb, offset); proto_tree_add_item(pgsl_tree, hf_pgsl_ack_ind, tvb, offset, 1, ENC_NA); proto_tree_add_item(pgsl_tree, hf_pgsl_data_ind, tvb, offset++, 1, ENC_NA); if (ack_data_ind & 1) { /* Codec Control */ proto_tree_add_item(pgsl_tree, hf_pgsl_ucm, tvb, offset, 1, ENC_NA); proto_tree_add_item_ret_uint(pgsl_tree, hf_pgsl_cs, tvb, offset, 1, ENC_NA, &cs); proto_tree_add_item(pgsl_tree, hf_pgsl_timing_offset, tvb, offset+1, 1, ENC_NA); offset += 2; /* Power Control */ proto_tree_add_item(pgsl_tree, hf_pgsl_power_control, tvb, offset++, 1, ENC_NA); if (abis_pgsl_ir) { /* Incremental Redundancy */ proto_tree_add_item(pgsl_tree, hf_pgsl_ir_tfi, tvb, offset, 1, ENC_NA); proto_tree_add_item(pgsl_tree, hf_pgsl_ir_sign_type, tvb, offset, 1, ENC_NA); proto_tree_add_item(pgsl_tree, hf_pgsl_tn_bitmap, tvb, offset+1, 1, ENC_NA); offset += 2; } /* Data length */ proto_tree_add_item_ret_uint(pgsl_tree, hf_pgsl_data_len, tvb, offset++, 1, ENC_NA, &len); rlcmac_data.block_format = pgsl_cs_to_rlcmac_cs(cs); /* Generate tvb containing only the RLC/MAC data */ next_tvb = tvb_new_subset_length(tvb, offset, len); dissect_gprs_data(next_tvb, pinfo, tree, 0, &rlcmac_data); } break; case PGSL_MSG_ULDATA_IND: proto_tree_add_item(pgsl_tree, hf_pgsl_tn_resource, tvb, offset++, 1, ENC_NA); proto_tree_add_item(pgsl_tree, hf_pgsl_tn_seqno, tvb, offset++, 1, ENC_NA); proto_tree_add_item_ret_uint(pgsl_tree, hf_pgsl_afnu, tvb, offset, 3, ENC_LITTLE_ENDIAN, &fn); rlcmac_data.frame_number = fn; offset += 3; /* Codec Status */ proto_tree_add_item(pgsl_tree, hf_pgsl_codec_delay, tvb, offset, 1, ENC_NA); proto_tree_add_item_ret_uint(pgsl_tree, hf_pgsl_codec_cs, tvb, offset, 1, ENC_NA, &cs); proto_tree_add_item(pgsl_tree, hf_pgsl_codec_rxlev, tvb, offset+1, 1, ENC_NA); if (cs <= 4) { /* GPRS */ proto_tree_add_item(pgsl_tree, hf_pgsl_codec_parity, tvb, offset+2, 1, ENC_NA); proto_tree_add_item(pgsl_tree, hf_pgsl_codec_bqm, tvb, offset+2, 1, ENC_NA); } else { /* EGPRS */ proto_tree_add_item(pgsl_tree, hf_pgsl_codec_mean_bep, tvb, offset+2, 1, ENC_NA); proto_tree_add_item(pgsl_tree, hf_pgsl_codec_cv_bep, tvb, offset+3, 1, ENC_NA); proto_tree_add_item(pgsl_tree, hf_pgsl_codec_q, tvb, offset+3, 1, ENC_NA); proto_tree_add_item(pgsl_tree, hf_pgsl_codec_q1, tvb, offset+3, 1, ENC_NA); proto_tree_add_item(pgsl_tree, hf_pgsl_codec_q2, tvb, offset+3, 1, ENC_NA); } offset += 4; /* Data Length */ proto_tree_add_item_ret_uint(pgsl_tree, hf_pgsl_data_len, tvb, offset++, 1, ENC_NA, &len); rlcmac_data.block_format = pgsl_cs_to_rlcmac_cs(cs); /* Generate tvb containing only the RLC/MAC data */ next_tvb = tvb_new_subset_length(tvb, offset, len); dissect_gprs_data(next_tvb, pinfo, tree, 1, &rlcmac_data); break; case PGSL_MSG_STATUS_IND: proto_tree_add_item(pgsl_tree, hf_pgsl_tn_resource, tvb, offset++, 1, ENC_NA); proto_tree_add_item(pgsl_tree, hf_pgsl_tn_seqno, tvb, offset++, 1, ENC_NA); proto_tree_add_item(pgsl_tree, hf_pgsl_afnu, tvb, offset, 3, ENC_NA); offset += 3; proto_tree_add_item(pgsl_tree, hf_pgsl_cause, tvb, offset++, 1, ENC_NA); proto_tree_add_item(pgsl_tree, hf_pgsl_addl_info, tvb, offset++, 1, ENC_NA); break; } return offset; } void proto_register_abis_pgsl(void) { static hf_register_info hf[] = { { &hf_pgsl_version, { "Version", "gsm_abis_pgsl.version", FT_UINT8, BASE_DEC, NULL, 0xf0, NULL, HFILL } }, { &hf_pgsl_msg_disc, { "Message Discriminator", "gsm_abis_pgsl.msg_disc", FT_UINT8, BASE_DEC, VALS(pgsl_msg_disc_vals), 0x0f, NULL, HFILL } }, { &hf_pgsl_tn_bitmap, { "TN Bitmap", "gsm_abis_pgsl.tn_bitmap", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL } }, { &hf_pgsl_trx_seqno, { "TRX Sequence Number", "gsm_abis_pgsl.trx_seqno", FT_UINT8, BASE_DEC, NULL, 0, "Per-TRX Sequence Number", HFILL } }, { &hf_pgsl_afnd, { "aFNd", "gsm_abis_pgsl.a_fn_d", FT_UINT24, BASE_DEC, NULL, 0, "Frame Number (Downlink)", HFILL } }, { &hf_pgsl_afnu, { "aFNu", "gsm_abis_pgsl.a_fn_u", FT_UINT24, BASE_DEC, NULL, 0, "Frame Number (Uplink)", HFILL } }, { &hf_pgsl_ccu_ta, { "CCU TA Value", "gsm_abis_pgsl.ccu_ta", FT_UINT8, BASE_DEC, NULL, 0x3f, NULL, HFILL } }, { &hf_pgsl_ack_req, { "ACK Requested", "gsm_abis_pgsl.ack_req", FT_BOOLEAN, 8, NULL, 0x01, NULL, HFILL } }, { &hf_pgsl_tn_resource, { "TN Resource", "gsm_abis_pgsl.tn_resource", FT_UINT8, BASE_DEC, NULL, 0x07, "Timeslot Number", HFILL } }, { &hf_pgsl_tn_seqno, { "TN Sequence Number", "gsm_abis_pgsl.tn_seqno", FT_UINT8, BASE_DEC, NULL, 0, "Per-TN Sequence Number", HFILL } }, { &hf_pgsl_data_len, { "Data Length", "gsm_abis_pgsl.data_len", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } }, { &hf_pgsl_cause, { "Cause", "gsm_abis_pgsl.cause", FT_UINT8, BASE_DEC, VALS(pgsl_msg_cause_vals), 0, NULL, HFILL } }, { &hf_pgsl_addl_info, { "Additional Info", "gsm_abis_pgsl.addl_info", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL } }, { &hf_pgsl_ack_ind, { "ACK Indicator", "gsm_abis_pgsl.ack_ind", FT_BOOLEAN, 8, NULL, 0x02, NULL, HFILL } }, { &hf_pgsl_data_ind, { "Data Indicator", "gsm_abis_pgsl.data_ind", FT_BOOLEAN, 8, NULL, 0x01, NULL, HFILL } }, { &hf_pgsl_ucm, { "Uplink Channel Mode", "gsm_abis_pgsl.ucm", FT_UINT8, BASE_DEC, VALS(pgsl_ucm_vals), 0xe0, NULL, HFILL } }, { &hf_pgsl_cs, { "Coding Scheme", "gsm_abis_pgsl.cs", FT_UINT8, BASE_DEC, VALS(pgsl_cs_vals), 0x1f, NULL, HFILL } }, { &hf_pgsl_timing_offset, { "Timing Offset", "gsm_abis_pgsl.timing_offset", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } }, { &hf_pgsl_power_control, { "Power Control", "gsm_abis_pgsl.power_control", FT_UINT8, BASE_DEC, NULL, 0x0f, NULL, HFILL } }, { &hf_pgsl_ir_tfi, { "TFI", "gsm_abis_pgsl.ir_tfi", FT_UINT8, BASE_DEC, NULL, 0x7c, "TBF Identifier", HFILL } }, { &hf_pgsl_ir_sign_type, { "IR Signalling Type", "gsm_abis_pgsl.ir_sign_type", FT_UINT8, BASE_DEC, VALS(pgsl_ir_sign_type_vals), 0x03, NULL, HFILL } }, { &hf_pgsl_codec_delay, { "Codec Delay", "gsm_abis_pgsl.codec_delay", FT_UINT8, BASE_DEC, NULL, 0xe0, "Estimated Accss Delay Deviation", HFILL } }, { &hf_pgsl_codec_cs, { "Codec CS", "gsm_abis_pgsl.codec_csy", FT_UINT8, BASE_DEC, VALS(pgsl_cs_vals), 0x1f, "Coding Scheme Status", HFILL } }, { &hf_pgsl_codec_rxlev, { "RxLev", "gsm_abis_pgsl.codec_rxlev", FT_UINT8, BASE_DEC|BASE_EXT_STRING, &gsm_a_rr_rxlev_vals_ext, 0x3f, "Receiver Level Measurement", HFILL } }, { &hf_pgsl_codec_parity, { "GPRS Parity", "gsm_abis_pgsl.gprs_parity", FT_BOOLEAN, 8, NULL, 0x08, "GPRS Block Status Parity", HFILL } }, { &hf_pgsl_codec_bqm, { "GPRS BQM", "gsm_abis_pgsl.gprs_bqm", FT_UINT8, BASE_DEC, NULL, 0x07, "GPRS Block Quality Measurement", HFILL } }, { &hf_pgsl_codec_mean_bep, { "EGPRS MEAN_BEP", "gsm_abis_pgsl.egprs_mean_bep", FT_UINT8, BASE_DEC, NULL, 0x7f, "Mean Value of BEP", HFILL } }, { &hf_pgsl_codec_cv_bep, { "EGPRS CV_BEP", "gsm_abis_pgsl.egprs_cv_bep", FT_UINT8, BASE_DEC, NULL, 0x07, "Variation Co-Efficient of BEP", HFILL } }, { &hf_pgsl_codec_q, { "EGPRS Header Quality", "gsm_abis_pgsl.egprs_q", FT_BOOLEAN, 8, TFS(&pgsl_q_vals), 0x08, "EGPRS RLC/MAC Header Quality", HFILL } }, { &hf_pgsl_codec_q1, { "EGPRS Data Block 1 Quality", "gsm_abis_pgsl.egprs_q1", FT_BOOLEAN, 8, TFS(&pgsl_q_vals), 0x10, NULL, HFILL } }, { &hf_pgsl_codec_q2, { "EGPRS Data Block 2 Quality", "gsm_abis_pgsl.egprs_q2", FT_BOOLEAN, 8, TFS(&pgsl_q_vals), 0x20, NULL, HFILL } }, { &hf_pgsl_pacch, { "PACCH", "gsm_abis_pgsl.pacch", FT_NONE, BASE_NONE, NULL, 0, NULL, HFILL } }, { &hf_pgsl_ab_rxlev, { "Access Burst Rx Level", "gsm_abis_pgsl.ab.rxlev", FT_UINT8, BASE_DEC|BASE_EXT_STRING, &gsm_a_rr_rxlev_vals_ext, 0, NULL, HFILL } }, { &hf_pgsl_ab_acc_delay, { "Access Burst Access Delay", "gsm_abis_pgsl.ab.acc_delay", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL } }, { &hf_pgsl_ab_abi, { "Access Burst Indicator", "gsm_abis_pgsl.ab.abi", FT_UINT8, BASE_DEC, VALS(pgsl_ab_abi_vals), 0x70, NULL, HFILL } }, { &hf_pgsl_ab_ab_type, { "Access Burst Type", "gsm_abis_pgsl.ab.type", FT_UINT8, BASE_DEC, VALS(pgsl_ab_type_vals), 0x0c, NULL, HFILL } }, }; static gint *ett[] = { &ett_pgsl, &ett_pacch, }; module_t *pgsl_module; /* assign our custom match functions */ proto_abis_pgsl = proto_register_protocol("GSM A-bis P-GSL", "Ericsson GSM A-bis P-GSL", "gsm_abis_pgsl"); pgsl_module = prefs_register_protocol(proto_abis_pgsl, NULL); prefs_register_bool_preference(pgsl_module, "ir", "Incremental Redundancy", "The packets contain the optional Incremental Redundancy (IR) fields", &abis_pgsl_ir); proto_register_field_array(proto_abis_pgsl, hf, array_length(hf)); proto_register_subtree_array(ett, array_length(ett)); register_dissector("gsm_abis_pgsl", dissect_abis_pgsl, proto_abis_pgsl); } /* This function is called once at startup and every time the user hits * 'apply' in the preferences dialogue */ void proto_reg_handoff_abis_pgsl(void) { sub_handles[SUB_RLCMAC_UL] = find_dissector("gsm_rlcmac_ul"); sub_handles[SUB_RLCMAC_DL] = find_dissector("gsm_rlcmac_dl"); } /* * Editor modelines - http://www.wireshark.org/tools/modelines.html * * Local variables: * c-basic-offset: 8 * tab-width: 8 * indent-tabs-mode: t * End: * * vi: set shiftwidth=8 tabstop=8 noexpandtab: * :indentSize=8:tabSize=8:noTabs=false: */