/* packet-gre.c * Routines for the Generic Routing Encapsulation (GRE) protocol * Brad Robel-Forrest * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "config.h" #include #include #include #include #include #include #include #include "packet-gre.h" #include "packet-wccp.h" void proto_register_gre(void); void proto_reg_handoff_gre(void); /* * See RFC 1701 "Generic Routing Encapsulation (GRE)", RFC 1702 * "Generic Routing Encapsulation over IPv4 networks", RFC 2637 * "Point-to-Point Tunneling Protocol (PPTP)", RFC 2784 "Generic * Routing Encapsulation (GRE)", RFC 2890 "Key and Sequence * Number Extensions to GRE" and draft-ietf-mpls-in-ip-or-gre-07.txt * "Encapsulating MPLS in IP or Generic Routing Encapsulation (GRE)". */ static int proto_gre = -1; static int hf_gre_proto = -1; static int hf_gre_flags_and_version = -1; static int hf_gre_flags_checksum = -1; static int hf_gre_flags_routing = -1; static int hf_gre_flags_key = -1; static int hf_gre_flags_sequence_number = -1; static int hf_gre_flags_strict_source_route = -1; static int hf_gre_flags_recursion_control = -1; static int hf_gre_flags_ack = -1; static int hf_gre_flags_reserved_ppp = -1; static int hf_gre_flags_reserved = -1; static int hf_gre_flags_version = -1; static int hf_gre_checksum = -1; static int hf_gre_checksum_status = -1; static int hf_gre_offset = -1; static int hf_gre_key = -1; static int hf_gre_key_payload_length = -1; static int hf_gre_key_call_id = -1; static int hf_gre_sequence_number = -1; static int hf_gre_ack_number = -1; static int hf_gre_routing = -1; static int hf_gre_routing_address_family = -1; static int hf_gre_routing_sre_length = -1; static int hf_gre_routing_sre_offset = -1; static int hf_gre_routing_information = -1; /* Ref 3GPP2 A.S0012-C v2.0 and A.S0008-A v1.0 */ static int hf_gre_3ggp2_attrib = -1; static int hf_gre_3ggp2_attrib_id = -1; static int hf_gre_3ggp2_attrib_length = -1; static int hf_gre_3ggp2_sdi = -1; static int hf_gre_3ggp2_fci = -1; static int hf_gre_3ggp2_di = -1; static int hf_gre_3ggp2_flow_disc = -1; static int hf_gre_3ggp2_seg = -1; static int hf_gre_wccp_redirect_header = -1; static int hf_gre_wccp_dynamic_service = -1; static int hf_gre_wccp_alternative_bucket_used = -1; static int hf_gre_wccp_redirect_header_valid = -1; static int hf_gre_wccp_service_id = -1; static int hf_gre_wccp_alternative_bucket = -1; static int hf_gre_wccp_primary_bucket = -1; static gint ett_gre = -1; static gint ett_gre_flags = -1; static gint ett_gre_routing = -1; static gint ett_gre_wccp2_redirect_header = -1; static gint ett_3gpp2_attribs = -1; static gint ett_3gpp2_attr = -1; static expert_field ei_gre_checksum_incorrect = EI_INIT; static dissector_table_t gre_dissector_table; /* bit positions for flags in header */ #define GRE_CHECKSUM 0x8000 #define GRE_ROUTING 0x4000 #define GRE_KEY 0x2000 #define GRE_SEQUENCE 0x1000 #define GRE_STRICTSOURCE 0x0800 #define GRE_RECURSION 0x0700 #define GRE_ACK 0x0080 /* only in special PPTPized GRE header */ #define GRE_RESERVED_PPP 0x0078 /* only in special PPTPized GRE header */ #define GRE_RESERVED 0x00F8 #define GRE_VERSION 0x0007 const value_string gre_version[] = { { 0, "GRE" }, /* [RFC2784] */ { 1, "Enhanced GRE" }, /* [RFC2637] */ { 0, NULL} }; const value_string gre_typevals[] = { { GRE_KEEPALIVE, "Possible GRE keepalive packet" }, { ETHERTYPE_PPP, "PPP" }, { ETHERTYPE_IP, "IP" }, { ETHERTYPE_ARP, "ARP" }, { SAP_OSINL5, "OSI"}, { GRE_WCCP, "WCCP"}, { GRE_CISCO_CDP, "CDP (Cisco)"}, { GRE_NHRP, "NHRP"}, { GRE_ERSPAN_88BE, "ERSPAN"}, { GRE_ERSPAN_22EB, "ERSPAN"}, { GRE_MIKROTIK_EOIP, "MIKROTIK EoIP"}, { GRE_AIROHIVE, "AIROHIVE AP AP"}, { ETHERTYPE_IPX, "IPX"}, { ETHERTYPE_ETHBRIDGE, "Transparent Ethernet bridging" }, { ETHERTYPE_RAW_FR, "Frame Relay"}, { ETHERTYPE_IPv6, "IPv6" }, { ETHERTYPE_MPLS, "MPLS label switched packet" }, { ETHERTYPE_NSH, "Network Service Header" }, { ETHERTYPE_CDMA2000_A10_UBS,"CDMA2000 A10 Unstructured byte stream" }, { ETHERTYPE_3GPP2, "CDMA2000 A10 3GPP2 Packet" }, { GRE_ARUBA_8200, "ARUBA WLAN" }, { GRE_ARUBA_8210, "ARUBA WLAN" }, { GRE_ARUBA_8220, "ARUBA WLAN" }, { GRE_ARUBA_8230, "ARUBA WLAN" }, { GRE_ARUBA_8240, "ARUBA WLAN" }, { GRE_ARUBA_8250, "ARUBA WLAN" }, { GRE_ARUBA_8260, "ARUBA WLAN" }, { GRE_ARUBA_8270, "ARUBA WLAN" }, { GRE_ARUBA_8280, "ARUBA WLAN" }, { GRE_ARUBA_8290, "ARUBA WLAN" }, { GRE_ARUBA_82A0, "ARUBA WLAN" }, { GRE_ARUBA_82B0, "ARUBA WLAN" }, { GRE_ARUBA_82C0, "ARUBA WLAN" }, { GRE_ARUBA_82D0, "ARUBA WLAN" }, { GRE_ARUBA_82E0, "ARUBA WLAN" }, { GRE_ARUBA_82F0, "ARUBA WLAN" }, { GRE_ARUBA_8300, "ARUBA WLAN" }, { GRE_ARUBA_8310, "ARUBA WLAN" }, { GRE_ARUBA_8320, "ARUBA WLAN" }, { GRE_ARUBA_8330, "ARUBA WLAN" }, { GRE_ARUBA_8340, "ARUBA WLAN" }, { GRE_ARUBA_8350, "ARUBA WLAN" }, { GRE_ARUBA_8360, "ARUBA WLAN" }, { GRE_ARUBA_8370, "ARUBA WLAN" }, { GRE_ARUBA_9000, "ARUBA WLAN" }, { 0, NULL } }; #define ID_3GPP2_SDI_FLAG 1 #define ID_3GPP2_FLOW_CTRL 2 #define ID_3GPP2_FLOW_DISCRIMINATOR 3 #define ID_3GPP2_SEG 4 static const value_string gre_3ggp2_seg_vals[] = { { 0x00, "Packet Started" }, { 0x01, "Packet continued" }, { 0x02, "Packet Ended" }, { 0, NULL } }; /* 3GPP2 A.S0012-C v2.0 * 2.6.1 GRE Attributes */ static const value_string gre_3ggp2_attrib_id_vals[] = { { 0x01, "1x SDB/HRPD DOS Indicator" }, { 0x02, "Flow Control Indication" }, /* A.S0008-A v1.0 */ { 0x03, "IP Flow Discriminator" }, { 0x04, "Segmentation Indication" }, { 0, NULL } }; static const true_false_string gre_3ggp2_sdi_val = { "Packet suitable for 1x SDB or HRPD DOS transmission", "Reserved" }; static const true_false_string gre_3ggp2_fci_val = { "XOFF", "XON" }; static const true_false_string gre_3ggp2_di_val = { "INDEFINITE:", "TEMPORARY" }; static const true_false_string gre_wccp_dynamic_service_val = { "Dynamic service", "Well-known service" }; static const true_false_string gre_wccp_alternative_bucket_used_val = { "Alternative bucket used", "Primary bucket used", }; static const true_false_string gre_wccp_redirect_header_valid_val = { "Header is present, but ignore contents", "Header contents are valid", }; static int dissect_gre_3gpp2_attribs(tvbuff_t *tvb, int offset, proto_tree *tree) { gboolean last_attrib = FALSE; proto_item *attr_item; proto_tree *attr_tree; guint8 value; int start_offset = offset; proto_item *ti = proto_tree_add_item(tree, hf_gre_3ggp2_attrib, tvb, offset, 0, ENC_NA); proto_tree *atree = proto_item_add_subtree(ti, ett_3gpp2_attribs); while(last_attrib != TRUE) { guint8 attrib_id = tvb_get_guint8(tvb, offset); guint8 attrib_length = tvb_get_guint8(tvb, offset + 1); attr_tree = proto_tree_add_subtree(atree, tvb, offset, attrib_length + 1 + 1, ett_3gpp2_attr, &attr_item, val_to_str((attrib_id&0x7f), gre_3ggp2_attrib_id_vals, "%u (Unknown)")); proto_tree_add_item(attr_tree, hf_gre_3ggp2_attrib_id, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(attr_tree, hf_gre_3ggp2_attrib_length, tvb, offset+1, 1, ENC_BIG_ENDIAN); offset += 2; last_attrib = (attrib_id & 0x80)?TRUE:FALSE; attrib_id &= 0x7F; switch(attrib_id) { case ID_3GPP2_FLOW_DISCRIMINATOR: { value = tvb_get_guint8(tvb,offset); proto_tree_add_item(attr_tree, hf_gre_3ggp2_flow_disc, tvb, offset, attrib_length, ENC_NA); proto_item_append_text(attr_item," - 0x%x",value); } break; case ID_3GPP2_SDI_FLAG: { value = tvb_get_guint8(tvb,offset); proto_tree_add_item(attr_tree, hf_gre_3ggp2_sdi, tvb, offset, attrib_length, ENC_BIG_ENDIAN); proto_item_append_text(attr_item," - %s", (value & 0x80) ? "Packet suitable for 1x SDB or HRPD DOS transmission" : "Reserved"); } break; case ID_3GPP2_SEG: { value = tvb_get_guint8(tvb,offset) >>6; proto_tree_add_item(attr_tree, hf_gre_3ggp2_seg, tvb, offset, attrib_length, ENC_BIG_ENDIAN); proto_item_append_text(attr_item," - %s",val_to_str(value, gre_3ggp2_seg_vals, "0x%02X - Unknown")); } break; case ID_3GPP2_FLOW_CTRL: { value = tvb_get_guint8(tvb,offset); proto_tree_add_item(attr_tree, hf_gre_3ggp2_fci, tvb, offset, attrib_length, ENC_BIG_ENDIAN); proto_item_append_text(attr_item," - %s", (value & 0x80) ? "XON" : "XOFF"); proto_tree_add_item(attr_tree, hf_gre_3ggp2_di, tvb, offset, attrib_length, ENC_BIG_ENDIAN); proto_item_append_text(attr_item,"/%s", (value & 0x40) ? "INDEFINITE" : "TEMPORARY"); } break; } offset += attrib_length; } proto_item_set_len(ti, offset - start_offset); return offset; } static void dissect_gre_wccp2_redirect_header(tvbuff_t *tvb, int offset, proto_tree *tree) { proto_item *ti; proto_tree *rh_tree; ti = proto_tree_add_item(tree, hf_gre_wccp_redirect_header, tvb, offset, 4, ENC_NA); rh_tree = proto_item_add_subtree(ti, ett_gre_wccp2_redirect_header); proto_tree_add_item(rh_tree, hf_gre_wccp_dynamic_service, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(rh_tree, hf_gre_wccp_alternative_bucket_used, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(rh_tree, hf_gre_wccp_redirect_header_valid, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(rh_tree, hf_gre_wccp_service_id, tvb, offset +1, 1, ENC_BIG_ENDIAN); proto_tree_add_item(rh_tree, hf_gre_wccp_alternative_bucket, tvb, offset +2, 1, ENC_BIG_ENDIAN); proto_tree_add_item(rh_tree, hf_gre_wccp_primary_bucket, tvb, offset +3, 1, ENC_BIG_ENDIAN); } static gboolean capture_gre(const guchar *pd _U_, int offset _U_, int len _U_, capture_packet_info_t *cpinfo, const union wtap_pseudo_header *pseudo_header _U_) { capture_dissector_increment_count(cpinfo, proto_gre); return TRUE; } static int dissect_gre(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_) { int offset = 0; guint16 flags_and_ver; guint16 type; gboolean is_ppp = FALSE; gboolean is_wccp2 = FALSE; proto_item *ti, *it_flags; proto_tree *gre_tree, *fv_tree = NULL; guint16 sre_af; guint8 sre_length; tvbuff_t *next_tvb; flags_and_ver = tvb_get_ntohs(tvb, offset); type = tvb_get_ntohs(tvb, offset + 2); col_set_str(pinfo->cinfo, COL_PROTOCOL, "GRE"); col_add_fstr(pinfo->cinfo, COL_INFO, "Encapsulated %s", val_to_str(type, gre_typevals, "0x%04X (unknown)")); switch (type) { case ETHERTYPE_PPP: if (flags_and_ver & GRE_VERSION) is_ppp = TRUE; break; case ETHERTYPE_3GPP2: case ETHERTYPE_CDMA2000_A10_UBS: is_ppp = TRUE; break; case GRE_WCCP: /* WCCP2 puts an extra 4 octets into the header, but uses the same encapsulation type; if it looks as if the first octet of the packet isn't the beginning of an IPv4 header, assume it's WCCP2. */ if ((tvb_get_guint8(tvb, offset + 2 + 2) & 0xF0) != 0x40) { is_wccp2 = TRUE; } break; } /* Per README.developer, section 1.2, we must call subdissectors regardless * of whether "tree" is NULL or not. That is done below using * call_dissector(), but since the next_tvb must begin at the correct offset, * it's easier and more readable to always enter this block in order to * compute the correct offset to pass to tvb_new_subset_remaining(). */ if (1) { ti = proto_tree_add_protocol_format(tree, proto_gre, tvb, offset, -1, "Generic Routing Encapsulation (%s)", val_to_str(type, gre_typevals, "0x%04X - unknown")); gre_tree = proto_item_add_subtree(ti, ett_gre); it_flags = proto_tree_add_item(gre_tree, hf_gre_flags_and_version, tvb, offset, 2, ENC_BIG_ENDIAN); fv_tree = proto_item_add_subtree(it_flags, ett_gre_flags); proto_tree_add_item(fv_tree, hf_gre_flags_checksum, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(fv_tree, hf_gre_flags_routing, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(fv_tree, hf_gre_flags_key, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(fv_tree, hf_gre_flags_sequence_number, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(fv_tree, hf_gre_flags_strict_source_route, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(fv_tree, hf_gre_flags_recursion_control, tvb, offset, 2, ENC_BIG_ENDIAN); /* RFC2637 Section 4.1 : Enhanced GRE Header */ if (is_ppp) { proto_tree_add_item(fv_tree, hf_gre_flags_ack, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(fv_tree, hf_gre_flags_reserved_ppp, tvb, offset, 2, ENC_BIG_ENDIAN); } else { proto_tree_add_item(fv_tree, hf_gre_flags_reserved, tvb, offset, 2, ENC_BIG_ENDIAN); } proto_tree_add_item(fv_tree, hf_gre_flags_version, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; proto_tree_add_item(gre_tree, hf_gre_proto, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; if (flags_and_ver & GRE_CHECKSUM || flags_and_ver & GRE_ROUTING) { guint length, reported_length; vec_t cksum_vec[1]; /* Checksum check !... */ length = tvb_captured_length(tvb); reported_length = tvb_reported_length(tvb); /* The Checksum Present bit is set, and the packet isn't part of a fragmented datagram and isn't truncated, so we can checksum it. */ if ((flags_and_ver & GRE_CHECKSUM) && !pinfo->fragmented && length >= reported_length) { SET_CKSUM_VEC_TVB(cksum_vec[0], tvb, 0, reported_length); proto_tree_add_checksum(gre_tree, tvb, offset, hf_gre_checksum, hf_gre_checksum_status, &ei_gre_checksum_incorrect, pinfo, in_cksum(cksum_vec, 1), ENC_BIG_ENDIAN, PROTO_CHECKSUM_VERIFY|PROTO_CHECKSUM_IN_CKSUM); } else { proto_tree_add_checksum(gre_tree, tvb, offset, hf_gre_checksum, hf_gre_checksum_status, &ei_gre_checksum_incorrect, pinfo, 0, ENC_BIG_ENDIAN, PROTO_CHECKSUM_NO_FLAGS); } offset += 2; proto_tree_add_item(gre_tree, hf_gre_offset, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; } if (flags_and_ver & GRE_KEY) { /* RFC2637 Section 4.1 : Enhanced GRE Header */ if (is_ppp && type!=ETHERTYPE_CDMA2000_A10_UBS) { proto_tree_add_item(gre_tree, hf_gre_key_payload_length, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; proto_tree_add_item(gre_tree, hf_gre_key_call_id, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; } else { proto_tree_add_item(gre_tree, hf_gre_key, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; } } if (flags_and_ver & GRE_SEQUENCE) { proto_tree_add_item(gre_tree, hf_gre_sequence_number , tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; } if (is_ppp && (flags_and_ver & GRE_ACK)) { proto_tree_add_item(gre_tree, hf_gre_ack_number , tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; } if (flags_and_ver & GRE_ROUTING) { proto_item *it_routing; proto_tree *r_tree; for (;;) { it_routing = proto_tree_add_item(gre_tree, hf_gre_routing, tvb, offset, -1, ENC_NA); r_tree = proto_item_add_subtree(ti, ett_gre_routing); sre_af = tvb_get_ntohs(tvb, offset); proto_tree_add_item(r_tree, hf_gre_routing_address_family , tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; proto_tree_add_item(r_tree, hf_gre_routing_sre_offset , tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; sre_length = tvb_get_guint8(tvb, offset); proto_tree_add_item(r_tree, hf_gre_routing_sre_length , tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_item_set_len(it_routing, 2 + 1 +1 + sre_length); if (sre_af == 0 && sre_length == 0) break; proto_tree_add_item(r_tree, hf_gre_routing_information , tvb, offset, sre_length, ENC_NA); offset += sre_length; } } if (type == GRE_WCCP && is_wccp2) { dissect_gre_wccp2_redirect_header(tvb, offset, gre_tree); offset += 4; } if (type == ETHERTYPE_3GPP2) { offset = dissect_gre_3gpp2_attribs(tvb, offset, gre_tree); } proto_item_set_len(ti, offset); /* If the S bit is not set, this packet might not have a payload, so check whether there's any data left, first. XXX - the S bit isn't in RFC 2784, which deprecates that bit and some other bits in RFC 1701 and says that they should be zero for RFC 2784-compliant GRE; as such, the absence of the S bit doesn't necessarily mean there's no payload. */ if (!(flags_and_ver & GRE_SEQUENCE)) { if (tvb_reported_length_remaining(tvb, offset) <= 0) return offset; /* no payload */ } next_tvb = tvb_new_subset_remaining(tvb, offset); pinfo->flags.in_gre_pkt = TRUE; if (!dissector_try_uint(gre_dissector_table, type, next_tvb, pinfo, tree)) call_data_dissector(next_tvb, pinfo, gre_tree); } return tvb_captured_length(tvb); } void proto_register_gre(void) { static hf_register_info hf[] = { { &hf_gre_proto, { "Protocol Type", "gre.proto", FT_UINT16, BASE_HEX, VALS(gre_typevals), 0x0, "The protocol that is GRE encapsulated", HFILL } }, { &hf_gre_flags_and_version, { "Flags and Version", "gre.flags_and_version", FT_UINT16, BASE_HEX, NULL, 0x0, "The GRE flags are encoded in the first two octets", HFILL } }, { &hf_gre_flags_checksum, { "Checksum Bit", "gre.flags.checksum", FT_BOOLEAN, 16, TFS(&tfs_yes_no), GRE_CHECKSUM, "Indicates if the Checksum field is present", HFILL } }, { &hf_gre_flags_routing, { "Routing Bit", "gre.flags.routing", FT_BOOLEAN, 16, TFS(&tfs_yes_no), GRE_ROUTING, "Indicates if the Routing and Checksum/Offset field are present", HFILL } }, { &hf_gre_flags_key, { "Key Bit", "gre.flags.key", FT_BOOLEAN, 16, TFS(&tfs_yes_no), GRE_KEY, "Indicates if the Key field is present", HFILL } }, { &hf_gre_flags_sequence_number, { "Sequence Number Bit", "gre.flags.sequence_number", FT_BOOLEAN, 16, TFS(&tfs_yes_no), GRE_SEQUENCE, "Indicates if the Sequence Number field is present", HFILL } }, { &hf_gre_flags_strict_source_route, { "Strict Source Route Bit", "gre.flags.strict_source_route", FT_BOOLEAN, 16, TFS(&tfs_yes_no), GRE_STRICTSOURCE, NULL, HFILL } }, { &hf_gre_flags_recursion_control, { "Recursion control", "gre.flags.recursion_control", FT_UINT16, BASE_DEC, NULL, GRE_RECURSION, NULL, HFILL } }, { &hf_gre_flags_ack, { "Acknowledgment", "gre.flags.ack", FT_BOOLEAN, 16, TFS(&tfs_yes_no), GRE_ACK, "Indicates if the packet packet contains Acknowledgment Number to be used for acknowledging previously transmitted data", HFILL } }, { &hf_gre_flags_reserved, { "Flags (Reserved)", "gre.flags.reserved", FT_UINT16, BASE_DEC, NULL, GRE_RESERVED, NULL, HFILL } }, { &hf_gre_flags_reserved_ppp, { "Flags (Reserved)", "gre.flags.reserved", FT_UINT16, BASE_DEC, NULL, GRE_RESERVED_PPP, NULL, HFILL } }, { &hf_gre_flags_version, { "Version", "gre.flags.version", FT_UINT16, BASE_DEC, VALS(gre_version), GRE_VERSION, NULL, HFILL } }, { &hf_gre_checksum, { "Checksum", "gre.checksum", FT_UINT16, BASE_HEX, NULL, 0x0, "The Checksum field contains the IP (one's complement) checksum of the GRE header and the payload packet", HFILL } }, { &hf_gre_checksum_status, { "Checksum Status", "gre.checksum.status", FT_UINT8, BASE_NONE, VALS(proto_checksum_vals), 0x0, NULL, HFILL } }, { &hf_gre_offset, { "Offset", "gre.offset", FT_UINT16, BASE_DEC, NULL, 0x0, "The offset field indicates the octet offset from the start of the Routing field to the first octet of the active Source Route Entry to be examined", HFILL } }, { &hf_gre_key, { "Key", "gre.key", FT_UINT32, BASE_HEX, NULL, 0x0, "The Key field contains a four octet number which was inserted by the encapsulator", HFILL } }, { &hf_gre_key_payload_length, { "Payload Length", "gre.key.payload_length", FT_UINT16, BASE_DEC, NULL, 0x0, "Size of the payload, not including the GRE header", HFILL } }, { &hf_gre_key_call_id, { "Call ID", "gre.key.call_id", FT_UINT16, BASE_DEC, NULL, 0x0, "Contains the Peer's Call ID for the session to which this packet belongs.", HFILL } }, { &hf_gre_sequence_number, { "Sequence Number", "gre.sequence_number", FT_UINT32, BASE_DEC, NULL, 0x0, "The Sequence Number field contains an unsigned 32 bit integer which is inserted by the encapsulator", HFILL } }, { &hf_gre_ack_number, { "Acknowledgment Number", "gre.ack_number", FT_UINT32, BASE_DEC, NULL, 0x0, "Contains the sequence number of the highest numbered GRE packet received by the sending peer for this user session", HFILL } }, { &hf_gre_routing, { "Routing", "gre.routing", FT_NONE, BASE_NONE, NULL, 0x0, "The Routing field is a list of Source Route Entries (SREs)", HFILL } }, { &hf_gre_routing_address_family, { "Address Family", "gre.routing.address_family", FT_UINT16, BASE_DEC, NULL, 0x0, "The Address Family field contains a two octet value which indicates the syntax and semantics of the Routing Information field", HFILL } }, { &hf_gre_routing_sre_offset, { "SRE Offset", "gre.routing.sre_offset", FT_UINT8, BASE_DEC, NULL, 0x0, "The Address Family field contains a two octet value which indicates the syntax and semantics of the Routing Information field", HFILL } }, { &hf_gre_routing_sre_length, { "SRE Length", "gre.routing.src_length", FT_UINT8, BASE_DEC, NULL, 0x0, "The SRE Length field contains the number of octets in the SRE", HFILL } }, { &hf_gre_routing_information, { "Routing Information", "gre.routing.information", FT_BYTES, BASE_NONE, NULL, 0x0, "The Routing Information field contains data which may be used in routing this packet", HFILL } }, { &hf_gre_3ggp2_attrib, { "3GGP2 Attributes", "gre.ggp2_attrib", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } }, { &hf_gre_3ggp2_attrib_id, { "Type", "gre.ggp2_attrib_id", FT_UINT8, BASE_HEX, VALS(gre_3ggp2_attrib_id_vals), 0x7f, NULL, HFILL } }, { &hf_gre_3ggp2_attrib_length, { "Length", "gre.ggp2_attrib_length", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } }, { &hf_gre_3ggp2_sdi, { "SDI/DOS", "gre.3ggp2_sdi", FT_BOOLEAN, 16, TFS(&gre_3ggp2_sdi_val), 0x8000, "Short Data Indicator(SDI)/Data Over Signaling (DOS)", HFILL } }, { &hf_gre_3ggp2_fci, { "Flow Control Indicator", "gre.3ggp2_fci", FT_BOOLEAN, 16, TFS(&gre_3ggp2_fci_val), 0x8000, NULL, HFILL } }, { &hf_gre_3ggp2_di, { "Duration Indicator", "gre.3ggp2_di", FT_BOOLEAN, 16, TFS(&gre_3ggp2_di_val), 0x4000, NULL, HFILL } }, { &hf_gre_3ggp2_flow_disc, { "Flow ID", "gre.ggp2_flow_disc", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, { &hf_gre_3ggp2_seg, { "Type", "gre.ggp2_3ggp2_seg", FT_UINT16, BASE_HEX, VALS(gre_3ggp2_seg_vals), 0xc000, NULL, HFILL } }, { &hf_gre_wccp_redirect_header, { "Redirect Header", "gre.wccp.redirect_header", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } }, { &hf_gre_wccp_dynamic_service, { "Dynamic Service", "gre.wccp.dynamic_service", FT_BOOLEAN, 8, TFS(&gre_wccp_dynamic_service_val), 0x01, NULL, HFILL } }, { &hf_gre_wccp_alternative_bucket_used, { "Alternative bucket used", "gre.wccp.alternative_bucket_used", FT_BOOLEAN, 8, TFS(&gre_wccp_alternative_bucket_used_val), 0x02, NULL, HFILL } }, { &hf_gre_wccp_redirect_header_valid, { "WCCP Redirect header is valid", "gre.wccp.redirect_header_valid", FT_BOOLEAN, 8, TFS(&gre_wccp_redirect_header_valid_val), 0x04, NULL, HFILL } }, { &hf_gre_wccp_service_id, { "Service ID", "gre.wccp.service_id", FT_UINT8, BASE_DEC, VALS(service_id_vals), 0x00, "Service Group identifier", HFILL } }, { &hf_gre_wccp_alternative_bucket, { "Alternative Bucket", "gre.wccp.alternative_bucket", FT_UINT8, BASE_DEC, NULL, 0x0, "Alternative bucket index used to redirect the packet.", HFILL } }, { &hf_gre_wccp_primary_bucket, { "Primary Bucket", "gre.wccp.primary_bucket", FT_UINT8, BASE_DEC, NULL, 0x0, "Primary bucket index used to redirect the packet.", HFILL } }, }; static gint *ett[] = { &ett_gre, &ett_gre_flags, &ett_gre_routing, &ett_gre_wccp2_redirect_header, &ett_3gpp2_attribs, &ett_3gpp2_attr, }; static ei_register_info ei[] = { { &ei_gre_checksum_incorrect, { "gre.checksum.incorrect", PI_PROTOCOL, PI_WARN, "Incorrect GRE Checksum", EXPFILL }}, }; expert_module_t* expert_gre; proto_gre = proto_register_protocol("Generic Routing Encapsulation", "GRE", "gre"); proto_register_field_array(proto_gre, hf, array_length(hf)); proto_register_subtree_array(ett, array_length(ett)); expert_gre = expert_register_protocol(proto_gre); expert_register_field_array(expert_gre, ei, array_length(ei)); /* subdissector code */ gre_dissector_table = register_dissector_table("gre.proto", "GRE protocol type", proto_gre, FT_UINT16, BASE_HEX); } void proto_reg_handoff_gre(void) { dissector_handle_t gre_handle; capture_dissector_handle_t gre_cap_handle; gre_handle = create_dissector_handle(dissect_gre, proto_gre); dissector_add_uint("ip.proto", IP_PROTO_GRE, gre_handle); gre_cap_handle = create_capture_dissector_handle(capture_gre, proto_gre); capture_dissector_add_uint("ip.proto", IP_PROTO_GRE, gre_cap_handle); } /* * Editor modelines - http://www.wireshark.org/tools/modelines.html * * Local variables: * c-basic-offset: 4 * tab-width: 8 * indent-tabs-mode: nil * End: * * vi: set shiftwidth=4 tabstop=8 expandtab: * :indentSize=4:tabSize=8:noTabs=true: */