/* packet-erf.c * Routines for ERF encapsulation dissection * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include #include #include /* #include "wiretap/atm.h" */ #include "wiretap/erf.h" #include "epan/prefs.h" #include "packet-erf.h" /* Initialize the protocol and registered fields */ static int proto_erf = -1; static int hf_erf_ts = -1; static int hf_erf_type = -1; static int hf_erf_flags = -1; static int hf_erf_flags_cap = -1; static int hf_erf_flags_vlen = -1; static int hf_erf_flags_trunc = -1; static int hf_erf_flags_rxe = -1; static int hf_erf_flags_dse = -1; static int hf_erf_flags_res = -1; static int hf_erf_rlen = -1; static int hf_erf_lctr = -1; static int hf_erf_wlen = -1; /* MC HDLC Header */ static int hf_erf_mc_hdlc_cn = -1; static int hf_erf_mc_hdlc_res1 = -1; static int hf_erf_mc_hdlc_res2 = -1; static int hf_erf_mc_hdlc_fcse = -1; static int hf_erf_mc_hdlc_sre = -1; static int hf_erf_mc_hdlc_lre = -1; static int hf_erf_mc_hdlc_afe = -1; static int hf_erf_mc_hdlc_oe = -1; static int hf_erf_mc_hdlc_lbe = -1; static int hf_erf_mc_hdlc_first = -1; static int hf_erf_mc_hdlc_res3 = -1; /* MC RAW Header */ static int hf_erf_mc_raw_int = -1; static int hf_erf_mc_raw_res1 = -1; static int hf_erf_mc_raw_res2 = -1; static int hf_erf_mc_raw_res3 = -1; static int hf_erf_mc_raw_sre = -1; static int hf_erf_mc_raw_lre = -1; static int hf_erf_mc_raw_res4 = -1; static int hf_erf_mc_raw_lbe = -1; static int hf_erf_mc_raw_first = -1; static int hf_erf_mc_raw_res5 = -1; /* MC ATM Header */ static int hf_erf_mc_atm_cn = -1; static int hf_erf_mc_atm_res1 = -1; static int hf_erf_mc_atm_mul = -1; static int hf_erf_mc_atm_port = -1; static int hf_erf_mc_atm_res2 = -1; static int hf_erf_mc_atm_lbe = -1; static int hf_erf_mc_atm_hec = -1; static int hf_erf_mc_atm_crc10 = -1; static int hf_erf_mc_atm_oamcell = -1; static int hf_erf_mc_atm_first = -1; static int hf_erf_mc_atm_res3 = -1; /* MC Raw link Header */ static int hf_erf_mc_rawl_cn = -1; static int hf_erf_mc_rawl_res1 = -1; static int hf_erf_mc_rawl_res2 = -1; static int hf_erf_mc_rawl_lbe = -1; static int hf_erf_mc_rawl_first = -1; static int hf_erf_mc_rawl_res3 = -1; /* MC AAL5 Header */ static int hf_erf_mc_aal5_cn = -1; static int hf_erf_mc_aal5_res1 = -1; static int hf_erf_mc_aal5_port = -1; static int hf_erf_mc_aal5_crcck = -1; static int hf_erf_mc_aal5_crce = -1; static int hf_erf_mc_aal5_lenck = -1; static int hf_erf_mc_aal5_lene = -1; static int hf_erf_mc_aal5_res2 = -1; static int hf_erf_mc_aal5_first = -1; static int hf_erf_mc_aal5_res3 = -1; /* MC AAL2 Header */ static int hf_erf_mc_aal2_cn = -1; static int hf_erf_mc_aal2_res1 = -1; static int hf_erf_mc_aal2_res2 = -1; static int hf_erf_mc_aal2_port = -1; static int hf_erf_mc_aal2_res3 = -1; static int hf_erf_mc_aal2_first = -1; static int hf_erf_mc_aal2_maale = -1; static int hf_erf_mc_aal2_lene = -1; static int hf_erf_mc_aal2_cid = -1; /* ERF Ethernet header/pad */ static int hf_erf_eth_off = -1; static int hf_erf_eth_res1 = -1; /* Initialize the subtree pointers */ static gint ett_erf = -1; static gint ett_erf_pseudo_hdr = -1; static gint ett_erf_flags = -1; static gint ett_erf_mc_hdlc = -1; static gint ett_erf_mc_raw = -1; static gint ett_erf_mc_atm = -1; static gint ett_erf_mc_rawlink = -1; static gint ett_erf_mc_aal5 = -1; static gint ett_erf_mc_aal2 = -1; static gint ett_erf_eth = -1; /* Default subdissector, display raw hex data */ static dissector_handle_t data_handle; typedef enum { ERF_HDLC_CHDLC = 1, ERF_HDLC_PPP = 2, ERF_HDLC_FRELAY = 3, ERF_HDLC_MTP2 = 4, ERF_HDLC_MAX = 5 } erf_hdlc_type; gint erf_hdlc_default = ERF_HDLC_MTP2; static dissector_handle_t erf_hdlc_dissector[ERF_HDLC_MAX]; typedef enum { ERF_ATM_ATM = 1, ERF_ATM_LLC = 2, ERF_ATM_MAX = 3 } erf_atm_type; gint erf_atm_default = ERF_ATM_MAX; static dissector_handle_t erf_atm_dissector[ERF_ATM_MAX]; typedef enum { ERF_ETH_ETHFCS = 1, ERF_ETH_ETHNOFCS = 2, ERF_ETH_MAX = 3 } erf_eth_type; gint erf_eth_default = ERF_ETH_MAX; static dissector_handle_t erf_eth_dissector[ERF_ETH_MAX]; /* Header for ATM trafic identification */ #define ATM_HDR_LENGTH 4 /* Multi Channel HDLC */ #define MC_HDLC_CN_MASK 0x03ff #define MC_HDLC_RES1_MASK 0xfc00 #define MC_HDLC_RES2_MASK 0xff #define MC_HDLC_FCSE_MASK 0x01 #define MC_HDLC_SRE_MASK 0x02 #define MC_HDLC_LRE_MASK 0x04 #define MC_HDLC_AFE_MASK 0x08 #define MC_HDLC_OE_MASK 0x10 #define MC_HDLC_LBE_MASK 0x20 #define MC_HDLC_FIRST_MASK 0x40 #define MC_HDLC_RES3_MASK 0x80 /* Multi Channel RAW */ #define MC_RAW_INT_MASK 0x0f #define MC_RAW_RES1_MASK 0xf0 #define MC_RAW_RES2_MASK 0xffff #define MC_RAW_RES3_MASK 0x01 #define MC_RAW_SRE_MASK 0x02 #define MC_RAW_LRE_MASK 0x04 #define MC_RAW_RES4_MASK 0x18 #define MC_RAW_LBE_MASK 0x20 #define MC_RAW_FIRST_MASK 0x40 #define MC_RAW_RES5_MASK 0x80 /* Multi Channel ATM */ #define MC_ATM_CN_MASK 0x03ff #define MC_ATM_RES1_MASK 0x7c00 #define MC_ATM_MUL_MASK 0x8000 #define MC_ATM_PORT_MASK 0x0f #define MC_ATM_RES2_MASK 0xf0 #define MC_ATM_LBE_MASK 0x01 #define MC_ATM_HEC_MASK 0x02 #define MC_ATM_CRC10_MASK 0x04 #define MC_ATM_OAMCELL_MASK 0x08 #define MC_ATM_FIRST_MASK 0x10 #define MC_ATM_RES3_MASK 0xe0 /* Multi Channel RAW Link */ #define MC_RAWL_CN_MASK 0x03ff #define MC_RAWL_RES1_MASK 0xfffc #define MC_RAWL_RES2_MASK 0x1f #define MC_RAWL_LBE_MASK 0x20 #define MC_RAWL_FIRST_MASK 0x40 #define MC_RAWL_RES3_MASK 0x80 /* Multi Channel AAL5 */ #define MC_AAL5_CN_MASK 0x03ff #define MC_AAL5_RES1_MASK 0xfc00 #define MC_AAL5_PORT_MASK 0x0f #define MC_AAL5_CRCCK_MASK 0x10 #define MC_AAL5_CRCE_MASK 0x20 #define MC_AAL5_LENCK_MASK 0x40 #define MC_AAL5_LENE_MASK 0x80 #define MC_AAL5_RES2_MASK 0x0f #define MC_AAL5_FIRST_MASK 0x10 #define MC_AAL5_RES3_MASK 0xe0 /* Multi Channel AAL2 */ #define MC_AAL2_CN_MASK 0x03ff #define MC_AAL2_RES1_MASK 0x1c00 #define MC_AAL2_RES2_MASK 0xe000 #define MC_AAL2_PORT_MASK 0x0f #define MC_AAL2_RES3_MASK 0x10 #define MC_AAL2_FIRST_MASK 0x20 #define MC_AAL2_MAALE_MASK 0x40 #define MC_AAL2_LENE_MASK 0x80 #define MC_AAL2_CID_MASK 0xff /* ETH */ #define ETH_OFF_MASK 0xff #define ETH_RES1_MASK 0xff /* Record type defines */ static const value_string erf_type_vals[] = { { ERF_TYPE_LEGACY,"LEGACY"}, { ERF_TYPE_HDLC_POS,"HDLC_POS"}, { ERF_TYPE_ETH,"ETH"}, { ERF_TYPE_ATM,"ATM"}, { ERF_TYPE_AAL5,"AAL5"}, { ERF_TYPE_MC_HDLC,"MC_HDLC"}, { ERF_TYPE_MC_RAW,"MC_RAW"}, { ERF_TYPE_MC_ATM,"MC_ATM"}, { ERF_TYPE_MC_RAW_CHANNEL,"MC_RAW_CHANNEL"}, { ERF_TYPE_MC_AAL5,"MC_AAL5"}, { ERF_TYPE_COLOR_HDLC_POS,"COLOR_HDLC_POS"}, { ERF_TYPE_COLOR_ETH,"COLOR_ETH"}, { ERF_TYPE_MC_AAL2,"MC_AAL2 "}, { ERF_TYPE_IP_COUNTER,"IP_COUNTER"}, { ERF_TYPE_TCP_FLOW_COUNTER,"TCP_FLOW_COUNTER"}, { ERF_TYPE_DSM_COLOR_HDLC_POS,"DSM_COLOR_HDLC_POS"}, { ERF_TYPE_DSM_COLOR_ETH,"DSM_COLOR_ETH "}, { ERF_TYPE_COLOR_MC_HDLC_POS,"COLOR_MC_HDLC_POS"}, { ERF_TYPE_AAL2,"AAL2"}, { ERF_TYPE_PAD,"PAD"}, {0, NULL} }; /* Copy of atm_guess_traffic_type from atm.c in /wiretap */ static void erf_atm_guess_lane_type(const guint8 *pd, guint32 len, union wtap_pseudo_header *pseudo_header) { if (len >= 2) { if (pd[0] == 0xff && pd[1] == 0x00) { /* * Looks like LE Control traffic. */ pseudo_header->atm.subtype = TRAF_ST_LANE_LE_CTRL; } else { /* * XXX - Ethernet, or Token Ring? * Assume Ethernet for now; if we see earlier * LANE traffic, we may be able to figure out * the traffic type from that, but there may * still be situations where the user has to * tell us. */ pseudo_header->atm.subtype = TRAF_ST_LANE_802_3; } } } static void erf_atm_guess_traffic_type(const guint8 *pd, guint32 len, union wtap_pseudo_header *pseudo_header) { /* * Start out assuming nothing other than that it's AAL5. */ pseudo_header->atm.aal = AAL_5; pseudo_header->atm.type = TRAF_UNKNOWN; pseudo_header->atm.subtype = TRAF_ST_UNKNOWN; if (pseudo_header->atm.vpi == 0) { /* * Traffic on some PVCs with a VPI of 0 and certain * VCIs is of particular types. */ switch (pseudo_header->atm.vci) { case 5: /* * Signalling AAL. */ pseudo_header->atm.aal = AAL_SIGNALLING; return; case 16: /* * ILMI. */ pseudo_header->atm.type = TRAF_ILMI; return; } } /* * OK, we can't tell what it is based on the VPI/VCI; try * guessing based on the contents, if we have enough data * to guess. */ if (len >= 3) { if (pd[0] == 0xaa && pd[1] == 0xaa && pd[2] == 0x03) { /* * Looks like a SNAP header; assume it's LLC * multiplexed RFC 1483 traffic. */ pseudo_header->atm.type = TRAF_LLCMX; } else if ((pseudo_header->atm.aal5t_len && pseudo_header->atm.aal5t_len < 16) || len<16) { /* * As this cannot be a LANE Ethernet frame (less * than 2 bytes of LANE header + 14 bytes of * Ethernet header) we can try it as a SSCOP frame. */ pseudo_header->atm.aal = AAL_SIGNALLING; } else if (pd[0] == 0x83 || pd[0] == 0x81) { /* * MTP3b headers often encapsulate * a SCCP or MTN in the 3G network. * This should cause 0x83 or 0x81 * in the first byte. */ pseudo_header->atm.aal = AAL_SIGNALLING; } else { /* * Assume it's LANE. */ pseudo_header->atm.type = TRAF_LANE; erf_atm_guess_lane_type(pd, len, pseudo_header); } } else { /* * Not only VCI 5 is used for signaling. It might be * one of these VCIs. */ pseudo_header->atm.aal = AAL_SIGNALLING; } } static void dissect_mc_hdlc_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_item *mc_hdlc_item = NULL; proto_tree *mc_hdlc_tree = NULL; struct erf_mc_hdlc_hdrx * mc_hdlc; if (tree) { mc_hdlc_item = proto_tree_add_text(tree, tvb, 0, 0, "Multi Channel HDLC Header"); mc_hdlc_tree = proto_item_add_subtree(mc_hdlc_item, ett_erf_mc_hdlc); PROTO_ITEM_SET_GENERATED(mc_hdlc_item); mc_hdlc = (struct erf_mc_hdlc_hdrx *) (&pinfo->pseudo_header->erf.subhdr.mc_hdr); proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_cn, tvb, 0, 0, mc_hdlc->byte01); proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_res1, tvb, 0, 0, mc_hdlc->byte01); proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_res2, tvb, 0, 0, mc_hdlc->byte2); proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_fcse, tvb, 0, 0, mc_hdlc->byte3); proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_sre, tvb, 0, 0, mc_hdlc->byte3); proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_lre, tvb, 0, 0, mc_hdlc->byte3); proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_afe, tvb, 0, 0, mc_hdlc->byte3); proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_oe, tvb, 0, 0, mc_hdlc->byte3); proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_lbe, tvb, 0, 0, mc_hdlc->byte3); proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_first, tvb, 0, 0, mc_hdlc->byte3); proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_res3, tvb, 0, 0, mc_hdlc->byte3); } } static void dissect_mc_raw_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_item *mc_raw_item = NULL; proto_tree *mc_raw_tree = NULL; struct erf_mc_raw_hdrx * mc_raw; if (tree) { mc_raw_item = proto_tree_add_text(tree, tvb, 0, 0, "Multi Channel RAW Header"); mc_raw_tree = proto_item_add_subtree(mc_raw_item, ett_erf_mc_raw); PROTO_ITEM_SET_GENERATED(mc_raw_item); mc_raw = (struct erf_mc_raw_hdrx *) (&pinfo->pseudo_header->erf.subhdr.mc_hdr); proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_int, tvb, 0, 0, mc_raw->byte0); proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_res1, tvb, 0, 0, mc_raw->byte0); proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_res2, tvb, 0, 0, mc_raw->byte12); proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_res3, tvb, 0, 0, mc_raw->byte3); proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_sre, tvb, 0, 0, mc_raw->byte3); proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_lre, tvb, 0, 0, mc_raw->byte3); proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_res4, tvb, 0, 0, mc_raw->byte3); proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_lbe, tvb, 0, 0, mc_raw->byte3); proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_first, tvb, 0, 0, mc_raw->byte3); proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_res5, tvb, 0, 0, mc_raw->byte3); } } static void dissect_mc_atm_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_item *mc_atm_item = NULL; proto_tree *mc_atm_tree = NULL; struct erf_mc_atm_hdrx * mc_atm; if (tree) { mc_atm_item = proto_tree_add_text(tree, tvb, 0, 0, "Multi Channel ATM Header"); mc_atm_tree = proto_item_add_subtree(mc_atm_item, ett_erf_mc_atm); PROTO_ITEM_SET_GENERATED(mc_atm_item); mc_atm = (struct erf_mc_atm_hdrx *) (&pinfo->pseudo_header->erf.subhdr.mc_hdr); proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_cn, tvb, 0, 0, mc_atm->byte01); proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_res1, tvb, 0, 0, mc_atm->byte01); proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_mul, tvb, 0, 0, mc_atm->byte01); proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_port, tvb, 0, 0, mc_atm->byte2); proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_res2, tvb, 0, 0, mc_atm->byte2); proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_lbe, tvb, 0, 0, mc_atm->byte3); proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_hec, tvb, 0, 0, mc_atm->byte3); proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_crc10, tvb, 0, 0, mc_atm->byte3); proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_oamcell, tvb, 0, 0, mc_atm->byte3); proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_first, tvb, 0, 0, mc_atm->byte3); proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_res3, tvb, 0, 0, mc_atm->byte3); } } static void dissect_mc_rawlink_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_item *mc_rawl_item = NULL; proto_tree *mc_rawl_tree = NULL; struct erf_mc_rawl_hdrx * mc_rawl; if (tree) { mc_rawl_item = proto_tree_add_text(tree, tvb, 0, 0, "Multi Channel RAW Link Header"); mc_rawl_tree = proto_item_add_subtree(mc_rawl_item, ett_erf_mc_rawlink); PROTO_ITEM_SET_GENERATED(mc_rawl_item); mc_rawl = (struct erf_mc_rawl_hdrx *) (&pinfo->pseudo_header->erf.subhdr.mc_hdr); proto_tree_add_uint(mc_rawl_tree, hf_erf_mc_rawl_cn, tvb, 0, 0, mc_rawl->byte01); proto_tree_add_uint(mc_rawl_tree, hf_erf_mc_rawl_res2, tvb, 0, 0, mc_rawl->byte3); proto_tree_add_uint(mc_rawl_tree, hf_erf_mc_rawl_lbe, tvb, 0, 0, mc_rawl->byte3); proto_tree_add_uint(mc_rawl_tree, hf_erf_mc_rawl_first, tvb, 0, 0, mc_rawl->byte3); proto_tree_add_uint(mc_rawl_tree, hf_erf_mc_rawl_res3, tvb, 0, 0, mc_rawl->byte3); } } static void dissect_mc_aal5_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_item *mc_aal5_item = NULL; proto_tree *mc_aal5_tree = NULL; struct erf_mc_aal5_hdrx * mc_aal5; if (tree) { mc_aal5_item = proto_tree_add_text(tree, tvb, 0, 0, "Multi Channel AAL5 Header"); mc_aal5_tree = proto_item_add_subtree(mc_aal5_item, ett_erf_mc_aal5); PROTO_ITEM_SET_GENERATED(mc_aal5_item); mc_aal5 = (struct erf_mc_aal5_hdrx *) (&pinfo->pseudo_header->erf.subhdr.mc_hdr); proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_cn, tvb, 0, 0, mc_aal5->byte01); proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_res1, tvb, 0, 0, mc_aal5->byte01); proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_port, tvb, 0, 0, mc_aal5->byte2); proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_crcck, tvb, 0, 0, mc_aal5->byte2); proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_crce, tvb, 0, 0, mc_aal5->byte2); proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_lenck, tvb, 0, 0, mc_aal5->byte2); proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_lene, tvb, 0, 0, mc_aal5->byte2); proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_res2, tvb, 0, 0, mc_aal5->byte3); proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_first, tvb, 0, 0, mc_aal5->byte3); proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_res3, tvb, 0, 0, mc_aal5->byte3); } } static void dissect_mc_aal2_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_item *mc_aal2_item = NULL; proto_tree *mc_aal2_tree = NULL; struct erf_mc_aal2_hdrx * mc_aal2; if (tree) { mc_aal2_item = proto_tree_add_text(tree, tvb, 0, 0, "Multi Channel AAL2 Header"); mc_aal2_tree = proto_item_add_subtree(mc_aal2_item, ett_erf_mc_aal2); PROTO_ITEM_SET_GENERATED(mc_aal2_item); mc_aal2 = (struct erf_mc_aal2_hdrx *) (&pinfo->pseudo_header->erf.subhdr.mc_hdr); proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_cn, tvb, 0, 0, mc_aal2->byte01); proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_res1, tvb, 0, 0, mc_aal2->byte01); proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_res2, tvb, 0, 0, mc_aal2->byte01); proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_port, tvb, 0, 0, mc_aal2->byte2); proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_res3, tvb, 0, 0, mc_aal2->byte2); proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_first, tvb, 0, 0, mc_aal2->byte2); proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_maale, tvb, 0, 0, mc_aal2->byte2); proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_lene, tvb, 0, 0, mc_aal2->byte2); proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_cid, tvb, 0, 0, mc_aal2->byte3); } } static void dissect_eth_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_item *eth_item = NULL; proto_tree *eth_tree = NULL; struct erf_eth_hdrx * eth_hdr; if (tree) { eth_item = proto_tree_add_text(tree, tvb, 0, 0, "Ethernet Header"); eth_tree = proto_item_add_subtree(eth_item, ett_erf_eth); PROTO_ITEM_SET_GENERATED(eth_item); eth_hdr = (struct erf_eth_hdrx *) (&pinfo->pseudo_header->erf.subhdr.eth_hdr); proto_tree_add_uint(eth_tree, hf_erf_eth_off, tvb, 0, 0, eth_hdr->byte0); proto_tree_add_uint(eth_tree, hf_erf_eth_res1, tvb, 0, 0, eth_hdr->byte1); } } static void dissect_erf_pseudo_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_item *pi; proto_item *pseudo_hdr_item = NULL, *flags_item = NULL; proto_tree *pseudo_hdr_tree = NULL, *flags_tree = NULL; pseudo_hdr_item = proto_tree_add_text(tree, tvb, 0, 0, "ERF Header"); pseudo_hdr_tree = proto_item_add_subtree(pseudo_hdr_item, ett_erf_pseudo_hdr); PROTO_ITEM_SET_GENERATED( pseudo_hdr_item); pi=proto_tree_add_uint64(pseudo_hdr_tree, hf_erf_ts, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.ts); pi=proto_tree_add_uint(pseudo_hdr_tree, hf_erf_type, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.type); flags_item=proto_tree_add_uint(pseudo_hdr_tree, hf_erf_flags, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags); flags_tree = proto_item_add_subtree(flags_item, ett_erf_flags); pi=proto_tree_add_uint(flags_tree, hf_erf_flags_cap, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags); pi=proto_tree_add_uint(flags_tree, hf_erf_flags_vlen, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags); pi=proto_tree_add_uint(flags_tree, hf_erf_flags_trunc, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags); pi=proto_tree_add_uint(flags_tree, hf_erf_flags_rxe, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags); pi=proto_tree_add_uint(flags_tree, hf_erf_flags_dse, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags); pi=proto_tree_add_uint(flags_tree, hf_erf_flags_res, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags); pi=proto_tree_add_uint(pseudo_hdr_tree, hf_erf_rlen, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.rlen); pi=proto_tree_add_uint(pseudo_hdr_tree, hf_erf_lctr, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.lctr); pi=proto_tree_add_uint(pseudo_hdr_tree, hf_erf_wlen, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.wlen); } static void dissect_erf_header(tvbuff_t *erf_tvb, packet_info *pinfo, proto_tree *erf_tree, proto_tree *tree) { tvbuff_t *tvb, *new_tvb; gint new_tvb_length; guint8 erf_type; guint32 atm_hdr=0; guint8 flags=0; if (erf_tree) { dissect_erf_pseudo_header(erf_tvb, pinfo, erf_tree); } tvb=erf_tvb; new_tvb=erf_tvb; flags = pinfo->pseudo_header->erf.phdr.flags; /* Set if frame is Received or Sent */ pinfo->p2p_dir = ( (flags & 0x01) ? TRUE : FALSE); if (pinfo->pseudo_header) { erf_type=pinfo->pseudo_header->erf.phdr.type; switch(erf_type) { case ERF_TYPE_LEGACY: case ERF_TYPE_IP_COUNTER: case ERF_TYPE_TCP_FLOW_COUNTER: /* undefined */ break; case ERF_TYPE_PAD: /* Nothing to do */ break; case ERF_TYPE_MC_RAW: dissect_mc_raw_header(tvb, pinfo, erf_tree); if (data_handle) call_dissector(data_handle, tvb, pinfo, tree); break; case ERF_TYPE_MC_RAW_CHANNEL: dissect_mc_rawlink_header(tvb, pinfo, erf_tree); if (data_handle) call_dissector(data_handle, tvb, pinfo, tree); break; case ERF_TYPE_MC_ATM: dissect_mc_atm_header(tvb, pinfo, erf_tree); /* continue with type ATM */ case ERF_TYPE_ATM: memset(&pinfo->pseudo_header->atm, 0, sizeof(pinfo->pseudo_header->atm)); atm_hdr = tvb_get_ntohl(tvb, 0); pinfo->pseudo_header->atm.vpi = ((atm_hdr & 0x0ff00000) >> 20); pinfo->pseudo_header->atm.vci = ((atm_hdr & 0x000ffff0) >> 4); pinfo->pseudo_header->atm.channel = (flags & 0x03); /* Work around to have decoding working */ pinfo->pseudo_header->atm.aal = AAL_UNKNOWN; pinfo->pseudo_header->atm.type = TRAF_UNKNOWN; pinfo->pseudo_header->atm.subtype = TRAF_ST_UNKNOWN; new_tvb_length = tvb_length(tvb) - ATM_HDR_LENGTH; new_tvb = tvb_new_subset(tvb, ATM_HDR_LENGTH, new_tvb_length, new_tvb_length); /* Try to guess the type according to the first bytes */ erf_atm_guess_traffic_type(tvb->real_data, tvb->length, pinfo->pseudo_header); if (erf_atm_dissector[erf_atm_default]) call_dissector(erf_atm_dissector[erf_atm_default], new_tvb, pinfo, tree); break; case ERF_TYPE_MC_AAL5: dissect_mc_aal5_header(tvb, pinfo, erf_tree); /* continue with type AAL5 */ case ERF_TYPE_AAL5: atm_hdr = tvb_get_ntohl(tvb, 0); memset(&pinfo->pseudo_header->atm, 0, sizeof(pinfo->pseudo_header->atm)); pinfo->pseudo_header->atm.vpi = ((atm_hdr & 0x0ff00000) >> 20); pinfo->pseudo_header->atm.vci = ((atm_hdr & 0x000ffff0) >> 4); pinfo->pseudo_header->atm.channel = (flags & 0x03); /* Work around to have decoding working */ pinfo->pseudo_header->atm.aal = AAL_5; pinfo->pseudo_header->atm.type = TRAF_UNKNOWN; pinfo->pseudo_header->atm.subtype = TRAF_ST_UNKNOWN; new_tvb_length = tvb_length(tvb) - ATM_HDR_LENGTH; new_tvb = tvb_new_subset(tvb, ATM_HDR_LENGTH, new_tvb_length, new_tvb_length); /* Try to guess the type according to the first bytes */ erf_atm_guess_traffic_type(tvb->real_data, tvb->length, pinfo->pseudo_header); if (erf_atm_dissector[erf_atm_default]) call_dissector(erf_atm_dissector[erf_atm_default], new_tvb, pinfo, tree); break; case ERF_TYPE_MC_AAL2: dissect_mc_aal2_header(tvb, pinfo, erf_tree); /* continue with type AAL2 */ case ERF_TYPE_AAL2: atm_hdr = tvb_get_ntohl(tvb, 0); memset(&pinfo->pseudo_header->atm, 0, sizeof(pinfo->pseudo_header->atm)); pinfo->pseudo_header->atm.vpi = ((atm_hdr & 0x0ff00000) >> 20); pinfo->pseudo_header->atm.vci = ((atm_hdr & 0x000ffff0) >> 4); pinfo->pseudo_header->atm.channel = (flags & 0x03); /* Work around to have decoding working */ pinfo->pseudo_header->atm.aal = AAL_2; pinfo->pseudo_header->atm.type = TRAF_UNKNOWN; pinfo->pseudo_header->atm.subtype = TRAF_ST_UNKNOWN; new_tvb_length = tvb_length(tvb) - ATM_HDR_LENGTH; new_tvb = tvb_new_subset(tvb, ATM_HDR_LENGTH, new_tvb_length, new_tvb_length); /* Try to guess the type according to the first bytes */ erf_atm_guess_traffic_type(tvb->real_data, tvb->length, pinfo->pseudo_header); if (erf_atm_dissector[erf_atm_default]) call_dissector(erf_atm_dissector[erf_atm_default], new_tvb, pinfo, tree); break; case ERF_TYPE_ETH: case ERF_TYPE_COLOR_ETH: case ERF_TYPE_DSM_COLOR_ETH: dissect_eth_header(tvb, pinfo, erf_tree); /* Clean the pseudo header (if used in subdissector) */ switch (erf_eth_default) { case ERF_ETH_ETHFCS: case ERF_ETH_ETHNOFCS: memset(&pinfo->pseudo_header->eth, 0, sizeof(pinfo->pseudo_header->eth)); break; } if (erf_eth_dissector[erf_eth_default]) call_dissector(erf_eth_dissector[erf_eth_default], tvb, pinfo, tree); break; case ERF_TYPE_MC_HDLC: dissect_mc_hdlc_header(tvb, pinfo, erf_tree); /* continue with type HDLC */ case ERF_TYPE_HDLC_POS: case ERF_TYPE_COLOR_HDLC_POS: case ERF_TYPE_DSM_COLOR_HDLC_POS: case ERF_TYPE_COLOR_MC_HDLC_POS: /* Clean the pseudo header (if used in subdissector) */ switch (erf_hdlc_default) { case ERF_HDLC_CHDLC: break; case ERF_HDLC_PPP: break; case ERF_HDLC_FRELAY: memset(&pinfo->pseudo_header->x25, 0, sizeof(pinfo->pseudo_header->x25)); break; case ERF_HDLC_MTP2: /* not used, but .. */ memset(&pinfo->pseudo_header->mtp2, 0, sizeof(pinfo->pseudo_header->mtp2)); break; default: break; } if (erf_hdlc_dissector[erf_hdlc_default]) call_dissector(erf_hdlc_dissector[erf_hdlc_default], tvb, pinfo, tree); break; default: break; } /* erf type */ } /* pseudo header */ } static void dissect_erf(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_item *erf_item = NULL; proto_tree *erf_tree = NULL; if (check_col(pinfo->cinfo, COL_PROTOCOL)) col_set_str(pinfo->cinfo, COL_PROTOCOL, "ERF"); if (tree) { erf_item = proto_tree_add_item(tree, proto_erf, tvb, 0, -1, FALSE); erf_tree = proto_item_add_subtree(erf_item, ett_erf); }; dissect_erf_header(tvb, pinfo, erf_tree, tree); } void proto_register_erf(void) { static hf_register_info hf[] = { /* ERF Header */ { &hf_erf_ts, { "Timestamp", "erf.ts", FT_UINT64, BASE_HEX, NULL, 0x0, "", HFILL } }, { &hf_erf_type, { "type", "erf.type", FT_UINT8, BASE_DEC, VALS(erf_type_vals), 0x0, "", HFILL } }, { &hf_erf_flags,{ "flags", "erf.flags", FT_UINT8, BASE_DEC, NULL, 0xFF, "", HFILL } }, { &hf_erf_flags_cap,{ "capture interface", "erf.flags.cap", FT_UINT8, BASE_DEC, NULL, 0x03, "", HFILL } }, { &hf_erf_flags_vlen,{ "varying record length", "erf.flags.vlen", FT_UINT8, BASE_DEC, NULL, 0x04, "", HFILL } }, { &hf_erf_flags_trunc,{ "truncated", "erf.flags.trunc", FT_UINT8, BASE_DEC, NULL, 0x08, "", HFILL } }, { &hf_erf_flags_rxe,{ "rx error", "erf.flags.rxe", FT_UINT8, BASE_DEC, NULL, 0x10, "", HFILL } }, { &hf_erf_flags_dse,{ "ds error", "erf.flags.dse", FT_UINT8, BASE_DEC, NULL, 0x20, "", HFILL } }, { &hf_erf_flags_res,{ "reserved", "erf.flags.res", FT_UINT8, BASE_DEC, NULL, 0xC0, "", HFILL } }, { &hf_erf_rlen, { "record length", "erf.rlen", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL } }, { &hf_erf_lctr, { "loss counter", "erf.lctr", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL } }, { &hf_erf_wlen, { "wire length", "erf.wlen", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL } }, /* MC HDLC Header */ { &hf_erf_mc_hdlc_cn, { "connection number", "erf.mchdlc.cn", FT_UINT16, BASE_DEC, NULL, MC_HDLC_CN_MASK, "", HFILL } }, { &hf_erf_mc_hdlc_res1, { "reserved", "erf.mchdlc.res1", FT_UINT16, BASE_DEC, NULL, MC_HDLC_RES1_MASK, "", HFILL } }, { &hf_erf_mc_hdlc_res2, { "reserved", "erf.mchdlc.res2", FT_UINT8, BASE_DEC, NULL, MC_HDLC_RES2_MASK, "", HFILL } }, { &hf_erf_mc_hdlc_fcse, { "FCS error", "erf.mchdlc.fcse", FT_UINT8, BASE_DEC, NULL, MC_HDLC_FCSE_MASK, "", HFILL } }, { &hf_erf_mc_hdlc_sre, { "Short record error", "erf.mchdlc.sre", FT_UINT8, BASE_DEC, NULL, MC_HDLC_SRE_MASK, "", HFILL } }, { &hf_erf_mc_hdlc_lre, { "Long record error", "erf.mchdlc.lre", FT_UINT8, BASE_DEC, NULL, MC_HDLC_LRE_MASK, "", HFILL } }, { &hf_erf_mc_hdlc_afe, { "Aborted frame error", "erf.mchdlc.afe", FT_UINT8, BASE_DEC, NULL, MC_HDLC_AFE_MASK, "", HFILL } }, { &hf_erf_mc_hdlc_oe, { "Octet error", "erf.mchdlc.oe", FT_UINT8, BASE_DEC, NULL, MC_HDLC_OE_MASK, "", HFILL } }, { &hf_erf_mc_hdlc_lbe, { "Lost byte error", "erf.mchdlc.lbe", FT_UINT8, BASE_DEC, NULL, MC_HDLC_LBE_MASK, "", HFILL } }, { &hf_erf_mc_hdlc_first, { "First record", "erf.mchdlc.first", FT_UINT8, BASE_DEC, NULL, MC_HDLC_FIRST_MASK, "", HFILL } }, { &hf_erf_mc_hdlc_res3, { "reserved", "erf.mchdlc.res3", FT_UINT8, BASE_DEC, NULL, MC_HDLC_RES3_MASK, "", HFILL } }, /* MC RAW Header */ { &hf_erf_mc_raw_int, { "physical interface", "erf.mcraw.int", FT_UINT8, BASE_DEC, NULL, MC_RAW_INT_MASK, "", HFILL } }, { &hf_erf_mc_raw_res1, { "reserved", "erf.mcraw.res1", FT_UINT8, BASE_DEC, NULL, MC_RAW_RES1_MASK, "", HFILL } }, { &hf_erf_mc_raw_res2, { "reserved", "erf.mcraw.res2", FT_UINT16, BASE_DEC, NULL, MC_RAW_RES2_MASK, "", HFILL } }, { &hf_erf_mc_raw_res3, { "reserved", "erf.mcraw.res3", FT_UINT8, BASE_DEC, NULL, MC_RAW_RES3_MASK, "", HFILL } }, { &hf_erf_mc_raw_sre, { "Short record error", "erf.mcraw.sre", FT_UINT8, BASE_DEC, NULL, MC_RAW_SRE_MASK, "", HFILL } }, { &hf_erf_mc_raw_lre, { "Long record error", "erf.mcraw.lre", FT_UINT8, BASE_DEC, NULL, MC_RAW_LRE_MASK, "", HFILL } }, { &hf_erf_mc_raw_res4, { "reserved", "erf.mcraw.res4", FT_UINT8, BASE_DEC, NULL, MC_RAW_RES4_MASK, "", HFILL } }, { &hf_erf_mc_raw_lbe, { "Lost byte error", "erf.mcraw.lbe", FT_UINT8, BASE_DEC, NULL, MC_RAW_LBE_MASK, "", HFILL } }, { &hf_erf_mc_raw_first, { "First record", "erf.mcraw.first", FT_UINT8, BASE_DEC, NULL, MC_RAW_FIRST_MASK, "", HFILL } }, { &hf_erf_mc_raw_res5, { "reserved", "erf.mcraw.res5", FT_UINT8, BASE_DEC, NULL, MC_RAW_RES5_MASK, "", HFILL } }, /* MC ATM Header */ { &hf_erf_mc_atm_cn, { "connection number", "erf.mcatm.cn", FT_UINT16, BASE_DEC, NULL, MC_ATM_CN_MASK, "", HFILL } }, { &hf_erf_mc_atm_res1, { "reserved", "erf.mcatm.res1", FT_UINT16, BASE_DEC, NULL, MC_ATM_RES1_MASK, "", HFILL } }, { &hf_erf_mc_atm_mul, { "multiplexed", "erf.mcatm.mul", FT_UINT16, BASE_DEC, NULL, MC_ATM_MUL_MASK, "", HFILL } }, { &hf_erf_mc_atm_port, { "physical port", "erf.mcatm.port", FT_UINT8, BASE_DEC, NULL, MC_ATM_PORT_MASK, "", HFILL } }, { &hf_erf_mc_atm_res2, { "reserved", "erf.mcatm.res2", FT_UINT8, BASE_DEC, NULL, MC_ATM_RES2_MASK, "", HFILL } }, { &hf_erf_mc_atm_lbe, { "Lost Byte Error", "erf.mcatm.lbe", FT_UINT8, BASE_DEC, NULL, MC_ATM_LBE_MASK, "", HFILL } }, { &hf_erf_mc_atm_hec, { "HEC corrected", "erf.mcatm.hec", FT_UINT8, BASE_DEC, NULL, MC_ATM_HEC_MASK, "", HFILL } }, { &hf_erf_mc_atm_crc10, { "OAM Cell CRC10 Error (not implemented)", "erf.mcatm.crc10", FT_UINT8, BASE_DEC, NULL, MC_ATM_CRC10_MASK, "", HFILL } }, { &hf_erf_mc_atm_oamcell, { "OAM Cell", "erf.mcatm.oamcell", FT_UINT8, BASE_DEC, NULL, MC_ATM_OAMCELL_MASK, "", HFILL } }, { &hf_erf_mc_atm_first, { "First record", "erf.mcatm.first", FT_UINT8, BASE_DEC, NULL, MC_ATM_FIRST_MASK, "", HFILL } }, { &hf_erf_mc_atm_res3, { "reserved", "erf.mcatm.res3", FT_UINT8, BASE_DEC, NULL, MC_ATM_RES3_MASK, "", HFILL } }, /* MC RAW Link Header */ { &hf_erf_mc_rawl_cn, { "connection number", "erf.mcrawl.cn", FT_UINT8, BASE_DEC, NULL, MC_RAWL_CN_MASK, "", HFILL } }, { &hf_erf_mc_rawl_res1, { "reserved", "erf.mcrawl.res1", FT_UINT16, BASE_DEC, NULL, MC_RAWL_RES1_MASK, "", HFILL } }, { &hf_erf_mc_rawl_res2, { "reserved", "erf.mcrawl.res2", FT_UINT8, BASE_DEC, NULL, MC_RAWL_RES2_MASK, "", HFILL } }, { &hf_erf_mc_rawl_lbe, { "Lost byte error", "erf.mcrawl.lbe", FT_UINT8, BASE_DEC, NULL, MC_RAWL_LBE_MASK, "", HFILL } }, { &hf_erf_mc_rawl_first, { "First record", "erf.mcrawl.first", FT_UINT8, BASE_DEC, NULL, MC_RAWL_FIRST_MASK, "", HFILL } }, { &hf_erf_mc_rawl_res3, { "reserved", "erf.mcrawl.res5", FT_UINT8, BASE_DEC, NULL, MC_RAWL_RES3_MASK, "", HFILL } }, /* MC AAL5 Header */ { &hf_erf_mc_aal5_cn, { "connection number", "erf.mcaal5.cn", FT_UINT16, BASE_DEC, NULL, MC_AAL5_CN_MASK, "", HFILL } }, { &hf_erf_mc_aal5_res1, { "reserved", "erf.mcaal5.res1", FT_UINT16, BASE_DEC, NULL, MC_AAL5_RES1_MASK, "", HFILL } }, { &hf_erf_mc_aal5_port, { "physical port", "erf.mcaal5.port", FT_UINT8, BASE_DEC, NULL, MC_AAL5_PORT_MASK, "", HFILL } }, { &hf_erf_mc_aal5_crcck, { "CRC checked", "erf.mcaal5.crcck", FT_UINT8, BASE_DEC, NULL, MC_AAL5_CRCCK_MASK, "", HFILL } }, { &hf_erf_mc_aal5_crce, { "CRC error", "erf.mcaal5.crce", FT_UINT8, BASE_DEC, NULL, MC_AAL5_CRCE_MASK, "", HFILL } }, { &hf_erf_mc_aal5_lenck, { "Length checked", "erf.mcaal5.lenck", FT_UINT8, BASE_DEC, NULL, MC_AAL5_LENCK_MASK, "", HFILL } }, { &hf_erf_mc_aal5_lene, { "Length error", "erf.mcaal5.lene", FT_UINT8, BASE_DEC, NULL, MC_AAL5_LENE_MASK, "", HFILL } }, { &hf_erf_mc_aal5_res2, { "reserved", "erf.mcaal5.res2", FT_UINT8, BASE_DEC, NULL, MC_AAL5_RES2_MASK, "", HFILL } }, { &hf_erf_mc_aal5_first, { "First record", "erf.mcaal5.first", FT_UINT8, BASE_DEC, NULL, MC_AAL5_FIRST_MASK, "", HFILL } }, { &hf_erf_mc_aal5_res3, { "reserved", "erf.mcaal5.res3", FT_UINT8, BASE_DEC, NULL, MC_AAL5_RES3_MASK, "", HFILL } }, /* MC AAL2 Header */ { &hf_erf_mc_aal2_cn, { "connection number", "erf.mcaal2.cn", FT_UINT16, BASE_DEC, NULL, MC_AAL2_CN_MASK, "", HFILL } }, { &hf_erf_mc_aal2_res1, { "reserved for extra connection", "erf.mcaal2.res1", FT_UINT16, BASE_DEC, NULL, MC_AAL2_RES1_MASK, "", HFILL } }, { &hf_erf_mc_aal2_res2, { "reserved for type", "erf.mcaal2.mul", FT_UINT16, BASE_DEC, NULL, MC_AAL2_RES2_MASK, "", HFILL } }, { &hf_erf_mc_aal2_port, { "physical port", "erf.mcaal2.port", FT_UINT8, BASE_DEC, NULL, MC_AAL2_PORT_MASK, "", HFILL } }, { &hf_erf_mc_aal2_res3, { "reserved", "erf.mcaal2.res2", FT_UINT8, BASE_DEC, NULL, MC_AAL2_RES3_MASK, "", HFILL } }, { &hf_erf_mc_aal2_first, { "first cell received", "erf.mcaal2.lbe", FT_UINT8, BASE_DEC, NULL, MC_AAL2_FIRST_MASK, "", HFILL } }, { &hf_erf_mc_aal2_maale, { "MAAL error", "erf.mcaal2.hec", FT_UINT8, BASE_DEC, NULL, MC_AAL2_MAALE_MASK, "", HFILL } }, { &hf_erf_mc_aal2_lene, { "Length error", "erf.mcaal2.crc10", FT_UINT8, BASE_DEC, NULL, MC_AAL2_LENE_MASK, "", HFILL } }, { &hf_erf_mc_aal2_cid, { "Channel Identification Number", "erf.mcaal2.cid", FT_UINT8, BASE_DEC, NULL, MC_AAL2_CID_MASK, "", HFILL } }, /* ETH Header */ { &hf_erf_eth_off, { "offset", "erf.eth.off", FT_UINT8, BASE_DEC, NULL, ETH_OFF_MASK, "", HFILL } }, { &hf_erf_eth_res1, { "reserved", "erf.eth.res1", FT_UINT8, BASE_DEC, NULL, ETH_RES1_MASK, "", HFILL } }, }; static gint *ett[] = { &ett_erf, &ett_erf_pseudo_hdr, &ett_erf_flags, &ett_erf_mc_hdlc, &ett_erf_mc_raw, &ett_erf_mc_atm, &ett_erf_mc_rawlink, &ett_erf_mc_aal5, &ett_erf_mc_aal2, &ett_erf_eth }; static enum_val_t erf_hdlc_options[] = { { "chdlc", "Cisco HDLC", ERF_HDLC_CHDLC }, { "ppp", "PPP serial", ERF_HDLC_PPP }, { "fr", "Frame Relay", ERF_HDLC_FRELAY }, { "mtp2", "SS7 MTP2", ERF_HDLC_MTP2 }, { "raw", "Raw data", ERF_HDLC_MAX }, { NULL, NULL, 0 } }; static enum_val_t erf_atm_options[] = { { "atm", "ATM", ERF_ATM_ATM }, { "llc", "LLC", ERF_ATM_LLC }, { "raw", "Raw data", ERF_ATM_MAX }, { NULL, NULL, 0 } }; static enum_val_t erf_eth_options[] = { { "ethfcs", "Ethernet with FCS", ERF_ETH_ETHFCS }, { "eth", "Ethernet", ERF_ETH_ETHNOFCS }, { "raw", "Raw data", ERF_ETH_MAX }, { NULL, NULL, 0 } }; module_t *erf_module; proto_erf = proto_register_protocol("Extensible Record Format", "ERF", "erf"); register_dissector("erf", dissect_erf, proto_erf); proto_register_field_array(proto_erf, hf, array_length(hf)); proto_register_subtree_array(ett, array_length(ett)); erf_module = prefs_register_protocol(proto_erf, NULL); prefs_register_enum_preference(erf_module, "erfhdlc", "ERF_HDLC Layer 2", "Protocol encapsulated in HDLC records", &erf_hdlc_default, erf_hdlc_options, FALSE); prefs_register_enum_preference(erf_module, "erfatm", "ERF_ATM Layer 2", "Protocol encapsulated in ATM records", &erf_atm_default, erf_atm_options, FALSE); prefs_register_enum_preference(erf_module, "erfeth", "ERF_ETH Layer 2", "Protocol encapsulated in Ethernet records", &erf_eth_default, erf_eth_options, FALSE); } void proto_reg_handoff_erf(void) { dissector_handle_t erf_handle; erf_handle = create_dissector_handle(dissect_erf, proto_erf); dissector_add("wtap_encap", WTAP_ENCAP_ERF, erf_handle); /* Dissector called to dump raw data, or unknown protocol */ data_handle = find_dissector("data"); /* Create ERF_HDLC dissectors table */ erf_hdlc_dissector[ERF_HDLC_CHDLC] = find_dissector("chdlc"); erf_hdlc_dissector[ERF_HDLC_PPP] = find_dissector("ppp_hdlc"); erf_hdlc_dissector[ERF_HDLC_FRELAY] = find_dissector("fr"); erf_hdlc_dissector[ERF_HDLC_MTP2] = find_dissector("mtp2"); erf_hdlc_dissector[ERF_HDLC_MAX] = data_handle; /* Create ERF_ATM dissectors table */ erf_atm_dissector[ERF_ATM_ATM] = find_dissector("atm_untruncated"); erf_atm_dissector[ERF_ATM_LLC] = find_dissector("llc"); erf_atm_dissector[ERF_ATM_MAX] = data_handle; /* Create Ethernet dissectors table */ erf_eth_dissector[ERF_ETH_ETHFCS] = find_dissector("eth_withfcs"); erf_eth_dissector[ERF_ETH_ETHNOFCS] = find_dissector("eth_withoutfcs"); erf_eth_dissector[ERF_ETH_MAX] = data_handle; }