/* packet-cisco-fp-mim.c * Routines for analyzing Cisco FabricPath MiM packets * Copyright 2011, Leonard Tracy * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA. */ /* * See * * http://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/white_paper_c11-687554.html */ #include "config.h" #include #include #include #include void proto_register_mim(void); void proto_reg_handoff_fabricpath(void); static int proto_fp = -1 ; static gint ett_mim = -1 ; static gint ett_hmac = -1 ; /* Main protocol items */ static int hf_s_hmac = -1; static int hf_d_hmac = -1; static int hf_d_hmac_mc = -1; static int hf_ftag = -1; static int hf_ttl = -1; /* HMAC subtrees */ static int hf_swid = -1 ; static int hf_sswid = -1; static int hf_eid = -1; static int hf_lid = -1; static int hf_ul = -1; static int hf_ig = -1; static int hf_ooodl = -1; static const true_false_string ig_tfs = { "Group address (multicast/broadcast)", "Individual address (unicast)" }; static const true_false_string ul_tfs = { "Locally administered address (this is NOT the factory default)", "Globally unique address (factory default)" }; static const true_false_string ooodl_tfs = { "Out of order delivery (If DA) or Do not learn (If SA)", "Deliver in order (If DA) or Learn (If SA)" }; static dissector_handle_t eth_maybefcs_dissector ; #define FP_PROTO_COL_NAME "FabricPath" #define FP_PROTO_COL_INFO "Cisco FabricPath MiM Encapsulated Frame" #define FP_FIELD_LEN 3 #define FP_EID_MASK 0x00FCC0 #define FP_3B_EID_MASK 0xFCC000 #define FP_UL_MASK 0x020000 #define FP_IG_MASK 0x010000 #define FP_EID2_MASK 0x00C000 #define FP_RES_MASK 0x002000 #define FP_OOO_MASK 0x001000 #define FP_SWID_MASK 0x000FFF #define FP_BF_LEN 3 #define FP_LID_LEN 2 #define FP_SSWID_LEN 1 #define FP_FTAG_LEN 2 #define FP_FTAG_MASK 0xFFC0 #define FP_TTL_MASK 0x003F #define FP_HMAC_IG_MASK G_GINT64_CONSTANT(0x010000000000) #define FP_HMAC_SWID_MASK G_GINT64_CONSTANT(0x000FFF000000) #define FP_HMAC_SSWID_MASK G_GINT64_CONSTANT(0x000000FF0000) #define FP_HMAC_LID_MASK G_GINT64_CONSTANT(0x00000000FFFF) #define FP_HMAC_LEN 6 #define FP_HEADER_SIZE (16) static int dissect_fp( tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_ ); /* * These packets are a bit strange. * * They run over Ethernet, but, instead of a normal 14-octet Ethernet * header, they have a 16-octet header, which happens to have, in the * position occupied by the Type/Length field in an Ethernet header, * the Ethertype value reserved for FabricPath. * * The fields in the positions occupied by the destination and source * MAC addresses in an Ethernet header are occupied by addresses that * are parsed specially, so we want to dissect them differently from * normal MAC addresses. * * The Ethertype field is part of a 4-octet FP tag, which includes * the Ethertype and some additional information. * * So we register as a heuristic dissector, which gets called before * the regular code that checks Ethertypes. */ static gboolean dissect_fp_heur (tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) { guint16 type = 0; /* * Is ethertype ETHERTYPE_DCE */ type = tvb_get_ntohs (tvb, 12); if (type == ETHERTYPE_DCE) { dissect_fp (tvb, pinfo, tree, NULL); return TRUE; } else { return FALSE; } } static gboolean fp_is_ig_set (guint64 hmac) { if (hmac & FP_HMAC_IG_MASK) { return TRUE; } else { return FALSE; } } static void fp_get_hmac_addr (guint64 hmac, guint16 *swid, guint16 *sswid, guint16 *lid) { if (!swid || !sswid || !lid) { return; } *swid = (guint16) ((hmac & FP_HMAC_SWID_MASK) >> 24); *sswid = (guint16) ((hmac & FP_HMAC_SSWID_MASK) >> 16); *lid = (guint16) (hmac & FP_HMAC_LID_MASK); } static void fp_add_hmac (tvbuff_t *tvb, proto_tree *tree, int offset) { guint16 eid; if (!tree) { return; } eid = tvb_get_ntohs(tvb, offset); eid &= FP_EID_MASK; eid = ((eid & 0x00C0) >> 6) + ((eid & 0xFC00) >> 8); proto_tree_add_uint(tree, hf_eid, tvb, offset, FP_BF_LEN, eid); proto_tree_add_item (tree, hf_ul, tvb, offset, FP_BF_LEN, ENC_NA); proto_tree_add_item (tree, hf_ig, tvb, offset, FP_BF_LEN, ENC_NA); proto_tree_add_item (tree, hf_ooodl, tvb, offset, FP_BF_LEN, ENC_NA); proto_tree_add_item (tree, hf_swid, tvb, offset, FP_BF_LEN, ENC_BIG_ENDIAN); offset += FP_BF_LEN; proto_tree_add_item (tree, hf_sswid, tvb, offset, FP_SSWID_LEN, ENC_BIG_ENDIAN); offset += FP_SSWID_LEN; proto_tree_add_item (tree, hf_lid, tvb, offset, FP_LID_LEN, ENC_BIG_ENDIAN); /*offset += FP_LID_LEN;*/ } /* FabricPath MiM Dissector */ static int dissect_fp( tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_ ) { proto_item *ti ; proto_tree *fp_tree ; proto_tree *fp_addr_tree ; tvbuff_t *next_tvb ; int offset = 0 ; guint64 hmac_src; guint64 hmac_dst; guint16 sswid = 0; guint16 ssswid = 0; guint16 slid = 0; guint16 dswid = 0; guint16 dsswid = 0; guint16 dlid = 0; const guint8 *dst_addr = NULL; gboolean dest_ig = FALSE; col_set_str( pinfo->cinfo, COL_PROTOCOL, FP_PROTO_COL_NAME ) ; col_set_str( pinfo->cinfo, COL_INFO, FP_PROTO_COL_INFO ) ; if (tree) { hmac_dst = tvb_get_ntoh48 (tvb, 0); hmac_src = tvb_get_ntoh48 (tvb, 6); dest_ig = fp_is_ig_set(hmac_dst); if (!dest_ig) { fp_get_hmac_addr (hmac_dst, &dswid, &dsswid, &dlid); } else { hmac_dst = GUINT64_TO_BE (hmac_dst); /* Get pointer to most sig byte of destination address in network order */ dst_addr = ((const guint8 *) &hmac_dst) + 2; } fp_get_hmac_addr (hmac_src, &sswid, &ssswid, &slid); if (PTREE_DATA(tree)->visible) { if (dest_ig) { address ether_addr; set_address(ðer_addr, AT_ETHER, 6, dst_addr); ti = proto_tree_add_protocol_format(tree, proto_fp, tvb, 0, FP_HEADER_SIZE, "Cisco FabricPath, Src: %03x.%02x.%04x, Dst: %s", sswid, ssswid, slid, address_with_resolution_to_str(wmem_packet_scope(), ðer_addr)); } else { ti = proto_tree_add_protocol_format(tree, proto_fp, tvb, 0, FP_HEADER_SIZE, "Cisco FabricPath, Src: %03x.%02x.%04x, Dst: %03x.%02x.%04x", sswid, ssswid, slid, dswid, dsswid, dlid); } } else { ti = proto_tree_add_item( tree, proto_fp, tvb, 0, -1, ENC_NA ) ; } fp_tree = proto_item_add_subtree( ti, ett_mim ) ; offset = 0; /* Add dest and source heir. mac */ if (dest_ig) { /* MCAST address */ proto_tree_add_ether( fp_tree, hf_d_hmac_mc, tvb, offset, 6, dst_addr); } else { /* Unicast */ ti = proto_tree_add_none_format (fp_tree, hf_d_hmac, tvb, offset, 6, "Destination: %03x.%02x.%04x", dswid, dsswid, dlid); fp_addr_tree = proto_item_add_subtree (ti, ett_hmac); fp_add_hmac (tvb, fp_addr_tree, offset); } offset += FP_HMAC_LEN; ti = proto_tree_add_none_format (fp_tree, hf_s_hmac, tvb, offset, 6, "Source: %03x.%02x.%04x", sswid, ssswid, slid); fp_addr_tree = proto_item_add_subtree (ti, ett_hmac); fp_add_hmac (tvb, fp_addr_tree, offset); offset += FP_HMAC_LEN; /* Skip ethertype */ offset += 2; proto_tree_add_item (fp_tree, hf_ftag, tvb, offset, FP_FTAG_LEN, ENC_BIG_ENDIAN); proto_tree_add_item (fp_tree, hf_ttl, tvb, offset, FP_FTAG_LEN, ENC_BIG_ENDIAN); } /* call the eth dissector */ next_tvb = tvb_new_subset_remaining( tvb, FP_HEADER_SIZE) ; /* * For now, we don't know whether there's an FCS in the captured data. */ call_dissector( eth_maybefcs_dissector, next_tvb, pinfo, tree ) ; return tvb_captured_length( tvb ) ; } /* Register the protocol with Wireshark */ void proto_register_mim(void) { static hf_register_info hf[] = { { &hf_s_hmac, { "Source HMAC", "cfp.s_hmac", FT_NONE, BASE_NONE, NULL, 0, "Source Hierarchical MAC", HFILL }}, { &hf_d_hmac, { "Destination HMAC", "cfp.d_hmac", FT_NONE, BASE_NONE, NULL, 0, "Destination Hierarchical MAC", HFILL }}, { &hf_d_hmac_mc, { "MC Destination", "cfp.d_hmac_mc", FT_ETHER, BASE_NONE, NULL, 0, "Multicast Destination Address", HFILL }}, { &hf_ftag, { "FTAG", "cfp.ftag", FT_UINT16, BASE_DEC, NULL, FP_FTAG_MASK, "FTAG field identifying forwarding distribution tree.", HFILL }}, { &hf_ttl, { "TTL", "cfp.ttl", FT_UINT16, BASE_DEC, NULL, FP_TTL_MASK, "The remaining hop count for this frame", HFILL }}, { &hf_swid, { "switch-id", "cfp.swid", FT_UINT24, BASE_DEC_HEX, NULL, FP_SWID_MASK, "Switch-id/nickname of switch in FabricPath network", HFILL }}, { &hf_sswid, { "sub-switch-id", "cfp.sswid", FT_UINT8, BASE_DEC_HEX, NULL, 0x0, "Sub-switch-id of switch in FabricPath network", HFILL }}, { &hf_eid, { "End Node ID", "cfp.eid", FT_UINT24, BASE_DEC_HEX, NULL, FP_3B_EID_MASK, "Cisco FabricPath End node ID", HFILL }}, { &hf_lid, { "Source LID", "cfp.lid", FT_UINT16, BASE_DEC_HEX, NULL, 0x0, "Source or Destination Port index on switch in FabricPath network", HFILL }}, { &hf_ul, { "U/L bit", "cfp.ul", FT_BOOLEAN, 24, TFS(&ul_tfs), FP_UL_MASK, "Specifies if this is a locally administered or globally unique (IEEE assigned) address", HFILL }}, { &hf_ig, { "I/G bit", "cfp.ig", FT_BOOLEAN, 24 /* FP_BF_LEN */, TFS(&ig_tfs), FP_IG_MASK, "Specifies if this is an individual (unicast) or group (broadcast/multicast) address", HFILL }}, { &hf_ooodl, { "OOO/DL Bit", "cfp.ooodl", FT_BOOLEAN, 24 /* FP_BF_LEN */, TFS(&ooodl_tfs), FP_OOO_MASK, "Specifies Out of Order Delivery OK in destination address and Do Not Learn when set in source address", HFILL }} }; static gint *ett[] = { &ett_mim, &ett_hmac }; module_t *mim_module; proto_fp = proto_register_protocol("Cisco FabricPath", "CFP", "cfp"); mim_module = prefs_register_protocol (proto_fp, proto_reg_handoff_fabricpath); prefs_register_obsolete_preference (mim_module, "enable"); proto_register_field_array(proto_fp, hf, array_length(hf)); proto_register_subtree_array(ett, array_length(ett)); } void proto_reg_handoff_fabricpath(void) { /* dissector_handle_t fp_handle; fp_handle = create_dissector_handle(dissect_fp, proto_fp); dissector_add_uint("ethertype", ETHERTYPE_DCE, fp_handle); */ static gboolean prefs_initialized = FALSE; if (!prefs_initialized) { /* * Using Heuristic dissector (As opposed to * registering the ethertype) in order to * get outer source and destination MAC * before the standard ethernet dissector */ heur_dissector_add ("eth", dissect_fp_heur, "Cisco FabricPath over Ethernet", "fp_eth", proto_fp, HEURISTIC_DISABLE); /* * The FCS in FabricPath frames covers the entire FabricPath frame, * not the encapsulated Ethernet frame, so we don't want to treat * the encapsulated frame as if it had an FCS. * * XXX - we probably need to do similar FCS checks to the ones done * by the Ethernet dissector. This needs more work, so we leave this * as calling the "eth" dissector as a reminder. */ eth_maybefcs_dissector = find_dissector_add_dependency( "eth_maybefcs", proto_fp ); prefs_initialized = TRUE; } } /* * Editor modelines - http://www.wireshark.org/tools/modelines.html * * Local Variables: * c-basic-offset: 2 * tab-width: 8 * indent-tabs-mode: nil * End: * * ex: set shiftwidth=2 tabstop=8 expandtab: * :indentSize=2:tabSize=8:noTabs=true: */