/* packet-cipmotion.c * Routines for CIP (Common Industrial Protocol) Motion dissection * CIP Motion Home: www.odva.org * * Copyright 2006-2007 * Benjamin M. Stocks * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "config.h" #include #include "packet-cip.h" void proto_register_cipmotion(void); /* The entry point to the actual dissection is: dissect_cipmotion */ void proto_reg_handoff_cipmotion(void); /* Protocol handle for CIP Motion */ static int proto_cipmotion = -1; /* Header field identifiers, these are registered in the * proto_register_cipmotion function along with the bites/bytes * they represent */ static int hf_cip_format = -1; static int hf_cip_revision = -1; static int hf_cip_class1_seqnum = -1; static int hf_cip_updateid = -1; static int hf_cip_instance_cnt = -1; static int hf_cip_last_update = -1; static int hf_cip_node_status = -1; static int hf_cip_node_control = -1; static int hf_cip_node_control_remote = -1; static int hf_cip_node_control_sync = -1; static int hf_cip_node_data_valid = -1; static int hf_cip_node_fault_reset = -1; static int hf_cip_node_device_faulted = -1; static int hf_cip_time_data_set = -1; static int hf_cip_time_data_stamp = -1; static int hf_cip_time_data_offset = -1; static int hf_cip_time_data_diag = -1; static int hf_cip_time_data_time_diag = -1; static int hf_cip_cont_time_stamp = -1; static int hf_cip_cont_time_offset = -1; static int hf_cip_devc_time_stamp = -1; static int hf_cip_devc_time_offset = -1; static int hf_cip_lost_update = -1; static int hf_cip_late_update = -1; static int hf_cip_data_rx_time_stamp = -1; static int hf_cip_data_tx_time_stamp = -1; static int hf_cip_node_fltalarms = -1; static int hf_cip_motor_cntrl = -1; static int hf_cip_fdbk_config = -1; static int hf_cip_axis_control = -1; static int hf_cip_control_status = -1; static int hf_cip_axis_response = -1; static int hf_cip_axis_resp_stat = -1; static int hf_cip_cmd_data_pos_cmd = -1; static int hf_cip_cmd_data_vel_cmd = -1; static int hf_cip_cmd_data_acc_cmd = -1; static int hf_cip_cmd_data_trq_cmd = -1; static int hf_cip_cmd_data_pos_trim_cmd = -1; static int hf_cip_cmd_data_vel_trim_cmd = -1; static int hf_cip_cmd_data_acc_trim_cmd = -1; static int hf_cip_cmd_data_trq_trim_cmd = -1; static int hf_cip_act_data_pos = -1; static int hf_cip_act_data_vel = -1; static int hf_cip_act_data_acc = -1; static int hf_cip_act_data_trq = -1; static int hf_cip_act_data_crnt = -1; static int hf_cip_act_data_vltg = -1; static int hf_cip_act_data_fqcy = -1; static int hf_cip_sts_flt = -1; static int hf_cip_sts_alrm = -1; static int hf_cip_sts_sts = -1; static int hf_cip_sts_iosts = -1; static int hf_cip_sts_axis_safety = -1; static int hf_cip_sts_drive_safety = -1; static int hf_cip_intrp = -1; static int hf_cip_position_data_type = -1; static int hf_cip_axis_state = -1; static int hf_cip_evnt_ctrl_reg1_pos = -1; static int hf_cip_evnt_ctrl_reg1_neg = -1; static int hf_cip_evnt_ctrl_reg2_pos = -1; static int hf_cip_evnt_ctrl_reg2_neg = -1; static int hf_cip_evnt_ctrl_reg1_posrearm = -1; static int hf_cip_evnt_ctrl_reg1_negrearm = -1; static int hf_cip_evnt_ctrl_reg2_posrearm = -1; static int hf_cip_evnt_ctrl_reg2_negrearm = -1; static int hf_cip_evnt_ctrl_marker_pos = -1; static int hf_cip_evnt_ctrl_marker_neg = -1; static int hf_cip_evnt_ctrl_home_pos = -1; static int hf_cip_evnt_ctrl_home_neg = -1; static int hf_cip_evnt_ctrl_home_pp = -1; static int hf_cip_evnt_ctrl_home_pm = -1; static int hf_cip_evnt_ctrl_home_mp = -1; static int hf_cip_evnt_ctrl_home_mm = -1; static int hf_cip_evnt_ctrl_acks = -1; static int hf_cip_evnt_extend_format = -1; static int hf_cip_evnt_sts_reg1_pos = -1; static int hf_cip_evnt_sts_reg1_neg = -1; static int hf_cip_evnt_sts_reg2_pos = -1; static int hf_cip_evnt_sts_reg2_neg = -1; static int hf_cip_evnt_sts_reg1_posrearm = -1; static int hf_cip_evnt_sts_reg1_negrearm = -1; static int hf_cip_evnt_sts_reg2_posrearm = -1; static int hf_cip_evnt_sts_reg2_negrearm = -1; static int hf_cip_evnt_sts_marker_pos = -1; static int hf_cip_evnt_sts_marker_neg = -1; static int hf_cip_evnt_sts_home_pos = -1; static int hf_cip_evnt_sts_home_neg = -1; static int hf_cip_evnt_sts_home_pp = -1; static int hf_cip_evnt_sts_home_pm = -1; static int hf_cip_evnt_sts_home_mp = -1; static int hf_cip_evnt_sts_home_mm = -1; static int hf_cip_evnt_sts_nfs = -1; static int hf_cip_evnt_sts_stat = -1; static int hf_cip_evnt_type = -1; static int hf_cip_svc_code = -1; static int hf_cip_svc_sts = -1; static int hf_cip_svc_set_axis_attr_sts = -1; static int hf_cip_svc_get_axis_attr_sts = -1; static int hf_cip_svc_transction = -1; static int hf_cip_svc_ext_status = -1; static int hf_cip_svc_data = -1; static int hf_cip_ptp_grandmaster = -1; static int hf_cip_axis_alarm = -1; static int hf_cip_axis_fault = -1; static int hf_cip_axis_sts_local_ctrl = -1; static int hf_cip_axis_sts_alarm = -1; static int hf_cip_axis_sts_dc_bus = -1; static int hf_cip_axis_sts_pwr_struct = -1; static int hf_cip_axis_sts_tracking = -1; static int hf_cip_axis_sts_pos_lock = -1; static int hf_cip_axis_sts_vel_lock = -1; static int hf_cip_axis_sts_vel_standstill = -1; static int hf_cip_axis_sts_vel_threshold = -1; static int hf_cip_axis_sts_vel_limit = -1; static int hf_cip_axis_sts_acc_limit = -1; static int hf_cip_axis_sts_dec_limit = -1; static int hf_cip_axis_sts_torque_threshold = -1; static int hf_cip_axis_sts_torque_limit = -1; static int hf_cip_axis_sts_cur_limit = -1; static int hf_cip_axis_sts_therm_limit = -1; static int hf_cip_axis_sts_feedback_integ = -1; static int hf_cip_axis_sts_shutdown = -1; static int hf_cip_axis_sts_in_process = -1; static int hf_cip_cyclic_wrt_data = -1; static int hf_cip_cyclic_rd_data = -1; static int hf_cip_cyclic_write_blk = -1; static int hf_cip_cyclic_read_blk = -1; static int hf_cip_cyclic_write_sts = -1; static int hf_cip_cyclic_read_sts = -1; static int hf_cip_attribute_data = -1; static int hf_cip_event_checking = -1; static int hf_cip_event_ack = -1; static int hf_cip_event_status = -1; static int hf_cip_event_id = -1; static int hf_cip_event_pos = -1; static int hf_cip_event_ts = -1; static int hf_cip_pos_cmd = -1; static int hf_cip_pos_cmd_int = -1; static int hf_cip_vel_cmd = -1; static int hf_cip_accel_cmd = -1; static int hf_cip_trq_cmd = -1; static int hf_cip_pos_trim = -1; static int hf_cip_vel_trim = -1; static int hf_cip_accel_trim = -1; static int hf_cip_trq_trim = -1; static int hf_cip_act_pos = -1; static int hf_cip_act_vel = -1; static int hf_cip_act_accel = -1; static int hf_cip_act_trq = -1; static int hf_cip_act_crnt = -1; static int hf_cip_act_volts = -1; static int hf_cip_act_freq = -1; static int hf_cip_fault_type = -1; static int hf_cip_fault_sub_code = -1; static int hf_cip_fault_action = -1; static int hf_cip_fault_time_stamp = -1; static int hf_cip_alarm_type = -1; static int hf_cip_alarm_sub_code = -1; static int hf_cip_alarm_state = -1; static int hf_cip_alarm_time_stamp = -1; static int hf_cip_axis_status = -1; static int hf_cip_axis_status_mfg = -1; static int hf_cip_axis_io_status = -1; static int hf_cip_axis_io_status_mfg = -1; static int hf_cip_axis_safety_status = -1; static int hf_cip_axis_safety_status_mfg = -1; static int hf_cip_axis_safety_state = -1; static int hf_cip_drive_safety_status = -1; static int hf_cip_cmd_data_set = -1; static int hf_cip_act_data_set = -1; static int hf_cip_sts_data_set = -1; static int hf_cip_group_sync = -1; static int hf_cip_command_control = -1; static int hf_get_axis_attr_list_attribute_cnt = -1; static int hf_get_axis_attr_list_attribute_id = -1; static int hf_get_axis_attr_list_dimension = -1; static int hf_get_axis_attr_list_element_size = -1; static int hf_get_axis_attr_list_start_index = -1; static int hf_get_axis_attr_list_data_elements = -1; static int hf_set_axis_attr_list_attribute_cnt = -1; static int hf_set_axis_attr_list_attribute_id = -1; static int hf_set_axis_attr_list_dimension = -1; static int hf_set_axis_attr_list_element_size = -1; static int hf_set_axis_attr_list_start_index = -1; static int hf_set_axis_attr_list_data_elements = -1; static int hf_var_devce_instance = -1; static int hf_var_devce_instance_block_size = -1; static int hf_var_devce_cyclic_block_size = -1; static int hf_var_devce_cyclic_data_block_size = -1; static int hf_var_devce_cyclic_rw_block_size = -1; static int hf_var_devce_event_block_size = -1; static int hf_var_devce_service_block_size = -1; static int hf_cip_data = -1; /* Subtree pointers for the dissection */ static gint ett_cipmotion = -1; static gint ett_cont_dev_header = -1; static gint ett_node_control = -1; static gint ett_node_status = -1; static gint ett_time_data_set = -1; static gint ett_inst_data_header = -1; static gint ett_cyclic_data_block = -1; static gint ett_control_mode = -1; static gint ett_feedback_config = -1; static gint ett_command_data_set = -1; static gint ett_actual_data_set = -1; static gint ett_status_data_set = -1; static gint ett_interp_control = -1; static gint ett_cyclic_rd_wt = -1; static gint ett_event = -1; static gint ett_event_check_ctrl = -1; static gint ett_event_check_sts = -1; static gint ett_service = -1; static gint ett_get_axis_attribute = -1; static gint ett_set_axis_attribute = -1; static gint ett_get_axis_attr_list = -1; static gint ett_set_axis_attr_list = -1; static gint ett_group_sync = -1; static gint ett_axis_status_set = -1; static gint ett_command_control = -1; static dissector_handle_t cipmotion_handle; /* These are the BITMASKS for the Time Data Set header field */ #define TIME_DATA_SET_TIME_STAMP 0x1 #define TIME_DATA_SET_TIME_OFFSET 0x2 #define TIME_DATA_SET_UPDATE_DIAGNOSTICS 0x4 #define TIME_DATA_SET_TIME_DIAGNOSTICS 0x8 /* These are the BITMASKS for the Command Data Set cyclic field */ #define COMMAND_DATA_SET_POSITION 0x01 #define COMMAND_DATA_SET_VELOCITY 0x02 #define COMMAND_DATA_SET_ACCELERATION 0x04 #define COMMAND_DATA_SET_TORQUE 0x08 #define COMMAND_DATA_SET_POSITION_TRIM 0x10 #define COMMAND_DATA_SET_VELOCITY_TRIM 0x20 #define COMMAND_DATA_SET_ACCELERATION_TRIM 0x40 #define COMMAND_DATA_SET_TORQUE_TRIM 0x80 /* These are the BITMASKS for the Actual Data Set cyclic field */ #define ACTUAL_DATA_SET_POSITION 0x01 #define ACTUAL_DATA_SET_VELOCITY 0x02 #define ACTUAL_DATA_SET_ACCELERATION 0x04 #define ACTUAL_DATA_SET_TORQUE 0x08 #define ACTUAL_DATA_SET_CURRENT 0x10 #define ACTUAL_DATA_SET_VOLTAGE 0x20 #define ACTUAL_DATA_SET_FREQUENCY 0x40 /* These are the BITMASKS for the Status Data Set cyclic field */ #define STATUS_DATA_SET_AXIS_FAULT 0x01 #define STATUS_DATA_SET_AXIS_ALARM 0x02 #define STATUS_DATA_SET_AXIS_STATUS 0x04 #define STATUS_DATA_SET_AXIS_IO_STATUS 0x08 #define STATUS_DATA_SET_AXIS_SAFETY 0x10 #define STATUS_DATA_SET_DRIVE_SAFETY 0x80 /* These are the BITMASKS for the Command Control cyclic field */ #define COMMAND_CONTROL_TARGET_UPDATE 0x03 #define COMMAND_CONTROL_POSITION_DATA_TYPE 0x0C /* These are the VALUES of the connection format header field of the * CIP Motion protocol */ #define FORMAT_FIXED_CONTROL_TO_DEVICE 2 #define FORMAT_FIXED_DEVICE_TO_CONTROL 3 #define FORMAT_VAR_CONTROL_TO_DEVICE 6 #define FORMAT_VAR_DEVICE_TO_CONTROL 7 /* Translate function to string - connection format values */ static const value_string cip_con_format_vals[] = { { FORMAT_FIXED_CONTROL_TO_DEVICE, "Fixed Controller-to-Device" }, { FORMAT_FIXED_DEVICE_TO_CONTROL, "Fixed Device-to-Controller" }, { FORMAT_VAR_CONTROL_TO_DEVICE, "Variable Controller-to-Device" }, { FORMAT_VAR_DEVICE_TO_CONTROL, "Variable Device-to-Controller" }, { 0, NULL } }; /* Translate function to string - motor control mode values */ static const value_string cip_motor_control_vals[] = { { 0, "No Control" }, { 1, "Position Control" }, { 2, "Velocity Control" }, { 3, "Acceleration Control" }, { 4, "Torque Control" }, { 5, "Current Control" }, { 0, NULL } }; /* Translate function to string - feedback config values */ static const value_string cip_fdbk_config_vals[] = { { 0, "No Feedback" }, { 1, "Master Feedback" }, { 2, "Motor Feedback" }, { 3, "Load Feedback" }, { 4, "Dual Feedback" }, { 0, NULL } }; /* Translate function to string - axis control values */ static const value_string cip_axis_control_vals[] = { { 0, "No Request" }, { 1, "Enable Request" }, { 2, "Disable Request" }, { 3, "Shutdown Request" }, { 4, "Shutdown Reset Request" }, { 5, "Abort Request" }, { 6, "Fault Reset Request" }, { 7, "Stop Process" }, { 8, "Change Actual Pos" }, { 9, "Change Command Pos Ref" }, { 127, "Cancel Request" }, { 0, NULL } }; /* Translate function to string - control status values */ static const value_string cip_control_status_vals[] = { { 1, "Configuration Complete" }, { 0, NULL } }; /* Translate function to string - group sync Status */ static const value_string cip_sync_status_vals[] = { { 0, "Synchronized" }, { 1, "Not Synchronized" }, { 2, "Wrong Grandmaster" }, { 0, NULL } }; /* Translate function to string - command target update */ static const value_string cip_interpolation_vals[] = { { 0, "Immediate" }, { 1, "Extrapolate (+1)" }, { 2, "Interpolate (+2)" }, { 0, NULL } }; /* These are the VALUES for the Command Position Data Type */ #define POSITION_DATA_LREAL 0x00 #define POSITION_DATA_DINT 0x01 /* Translate function to string - position data type */ static const value_string cip_pos_data_type_vals[] = { { POSITION_DATA_LREAL, "LREAL (64-bit Float)" }, { POSITION_DATA_DINT, "DINT (32-bit Integer)" }, { 0, NULL } }; /* Translate function to string - axis response values */ static const value_string cip_axis_response_vals[] = { { 0, "No Acknowledge" }, { 1, "Enable Acknowledge" }, { 2, "Disable Acknowledge" }, { 3, "Shutdown Acknowledge" }, { 4, "Shutdown Reset Acknowledge" }, { 5, "Abort Acknowledge" }, { 6, "Fault Reset Acknowledge" }, { 0, NULL } }; /* Translate function to string - axis state values */ static const value_string cip_axis_state_vals[] = { { 0, "Initializing" }, { 1, "Pre-charging" }, { 2, "Stopped" }, { 3, "Starting" }, { 4, "Running" }, { 5, "Testing" }, { 6, "Stopping" }, { 7, "Aborting" }, { 8, "Major Faulted" }, { 9, "Start Inhibited" }, { 10, "Shutdown" }, { 0, NULL } }; /* Translate function to string - event type values */ static const value_string cip_event_type_vals[] = { { 0, "Registration 1 Positive Edge" }, { 1, "Registration 1 Negative Edge" }, { 2, "Registration 2 Positive Edge" }, { 3, "Registration 2 Negative Edge" }, { 4, "Marker Positive Edge" }, { 5, "Marker Negative Edge" }, { 6, "Home Switch Positive Edge" }, { 7, "Home Switch Negative Edge" }, { 8, "Home Switch Marker ++" }, { 9, "Home Switch Marker +-" }, { 10, "Home Switch Marker -+" }, { 11, "Home Switch Marker --" }, { 0, NULL } }; #define SC_GET_AXIS_ATTRIBUTE_LIST 0x4B #define SC_SET_AXIS_ATTRIBUTE_LIST 0x4C #define SC_SET_CYCLIC_WRITE_LIST 0x4D #define SC_SET_CYCLIC_READ_LIST 0x4E #define SC_RUN_MOTOR_TEST 0x4F #define SC_GET_MOTOR_TEST_DATA 0x50 #define SC_RUN_INERTIA_TEST 0x51 #define SC_GET_INERTIA_TEST_DATA 0x52 #define SC_RUN_HOOKUP_TEST 0x53 #define SC_GET_HOOKUP_TEST_DATA 0x54 /* Translate function to string - CIP Service codes */ static const value_string cip_sc_vals[] = { GENERIC_SC_LIST { SC_GET_AXIS_ATTRIBUTE_LIST, "Get Axis Attribute List" }, { SC_SET_AXIS_ATTRIBUTE_LIST, "Set Axis Attribute List" }, { SC_SET_CYCLIC_WRITE_LIST, "Set Cyclic Write List" }, { SC_SET_CYCLIC_READ_LIST, "Set Cyclic Read List" }, { SC_RUN_MOTOR_TEST, "Run Motor Test" }, { SC_GET_MOTOR_TEST_DATA, "Get Motor Test Data" }, { SC_RUN_INERTIA_TEST, "Run Inertia Test" }, { SC_GET_INERTIA_TEST_DATA, "Get Inertia Test Data" }, { SC_RUN_HOOKUP_TEST, "Run Hookup Test" }, { SC_GET_HOOKUP_TEST_DATA, "Get Hookup Test Data" }, { 0, NULL } }; /* * Function name: dissect_cmd_data_set * * Purpose: Dissect the command data set field of the cyclic data block header and if any * of the command value bits are set to retrieve and display those command values * * Returns: The number of bytes in the cyclic data used */ static guint32 dissect_cmd_data_set(guint32 cmd_data_set, proto_tree* tree, tvbuff_t* tvb, guint32 offset, gboolean lreal_pos) { guint32 bytes_used = 0; /* The order of these if statements is VERY important, this is the order the values will * appear in the cyclic data */ if ( (cmd_data_set & COMMAND_DATA_SET_POSITION) == COMMAND_DATA_SET_POSITION ) { /* Based on the Command Position Data Type value embedded in the Command Control * header field the position is either 64-bit floating or 32-bit integer */ if (lreal_pos) { /* Display the command data set position command value */ proto_tree_add_item(tree, hf_cip_pos_cmd, tvb, offset + bytes_used, 8, ENC_LITTLE_ENDIAN ); bytes_used += 8; } else { /* Display the command data set position command value */ proto_tree_add_item(tree, hf_cip_pos_cmd_int, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); bytes_used += 4; } } if ( (cmd_data_set & COMMAND_DATA_SET_VELOCITY) == COMMAND_DATA_SET_VELOCITY ) { /* Display the command data set velocity command value */ proto_tree_add_item(tree, hf_cip_vel_cmd, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); bytes_used += 4; } if ( (cmd_data_set & COMMAND_DATA_SET_ACCELERATION) == COMMAND_DATA_SET_ACCELERATION ) { /* Display the command data set acceleration command value */ proto_tree_add_item(tree, hf_cip_accel_cmd, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); bytes_used += 4; } if ( (cmd_data_set & COMMAND_DATA_SET_TORQUE) == COMMAND_DATA_SET_TORQUE ) { /* Display the command data set torque command value */ proto_tree_add_item(tree, hf_cip_trq_cmd, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); bytes_used += 4; } if ( (cmd_data_set & COMMAND_DATA_SET_POSITION_TRIM) == COMMAND_DATA_SET_POSITION_TRIM ) { /* Display the command data set position trim value */ proto_tree_add_item(tree, hf_cip_pos_trim, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); bytes_used += 4; } if ( (cmd_data_set & COMMAND_DATA_SET_VELOCITY_TRIM) == COMMAND_DATA_SET_VELOCITY_TRIM ) { /* Display the command data set velocity trim value */ proto_tree_add_item(tree, hf_cip_vel_trim, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); bytes_used += 4; } if ( (cmd_data_set & COMMAND_DATA_SET_ACCELERATION_TRIM) == COMMAND_DATA_SET_ACCELERATION_TRIM ) { /* Display the command data set acceleration trim value */ proto_tree_add_item(tree, hf_cip_accel_trim, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); bytes_used += 4; } if ( (cmd_data_set & COMMAND_DATA_SET_TORQUE_TRIM) == COMMAND_DATA_SET_TORQUE_TRIM ) { /* Display the command data set torque trim value */ proto_tree_add_item(tree, hf_cip_trq_trim, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); bytes_used += 4; } return bytes_used; } /* * Function name: dissect_act_data_set * * Purpose: Dissect the actual data set field of the cyclic data block header and if any * of the actual value bits are set to retrieve and display those feedback values * * Returns: The number of bytes in the cyclic data used */ static guint32 dissect_act_data_set(guint32 act_data_set, proto_tree* tree, tvbuff_t* tvb, guint32 offset) { guint32 bytes_used = 0; /* The order of these if statements is VERY important, this is the order the values will * appear in the cyclic data */ if ( (act_data_set & ACTUAL_DATA_SET_POSITION) == ACTUAL_DATA_SET_POSITION ) { /* Display the actual data set position feedback value */ proto_tree_add_item(tree, hf_cip_act_pos, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); bytes_used += 4; } if ( (act_data_set & ACTUAL_DATA_SET_VELOCITY) == ACTUAL_DATA_SET_VELOCITY ) { /* Display the actual data set velocity feedback value */ proto_tree_add_item(tree, hf_cip_act_vel, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); bytes_used += 4; } if ( (act_data_set & ACTUAL_DATA_SET_ACCELERATION) == ACTUAL_DATA_SET_ACCELERATION ) { /* Display the actual data set acceleration feedback value */ proto_tree_add_item(tree, hf_cip_act_accel, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); bytes_used += 4; } if ( (act_data_set & ACTUAL_DATA_SET_TORQUE) == ACTUAL_DATA_SET_TORQUE ) { /* Display the actual data set torque feedback value */ proto_tree_add_item(tree, hf_cip_act_trq, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); bytes_used += 4; } if ( (act_data_set & ACTUAL_DATA_SET_CURRENT) == ACTUAL_DATA_SET_CURRENT ) { /* Display the actual data set current feedback value */ proto_tree_add_item(tree, hf_cip_act_crnt, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); bytes_used += 4; } if ( (act_data_set & ACTUAL_DATA_SET_VOLTAGE) == ACTUAL_DATA_SET_VOLTAGE ) { /* Display the actual data set voltage feedback value */ proto_tree_add_item(tree, hf_cip_act_volts, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); bytes_used += 4; } if ( (act_data_set & ACTUAL_DATA_SET_FREQUENCY) == ACTUAL_DATA_SET_FREQUENCY ) { /* Display the actual data set frequency feedback value */ proto_tree_add_item(tree, hf_cip_act_freq, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); bytes_used += 4; } return bytes_used; } /* * Function name: dissect_status_data_set * * Purpose: Dissect the status data set field of the cyclic data block header and if any * of the status value bits are set to retrieve and display those status values * * Returns: The number of bytes in the cyclic data used */ static guint32 dissect_status_data_set(guint32 status_data_set, proto_tree* tree, tvbuff_t* tvb, guint32 offset) { guint32 bytes_used = 0; proto_item *temp_proto_item; proto_tree *temp_proto_tree; /* The order of these if statements is VERY important, this is the order the values will * appear in the cyclic data */ if ( (status_data_set & STATUS_DATA_SET_AXIS_FAULT) == STATUS_DATA_SET_AXIS_FAULT ) { /* Display the various fault codes from the device */ proto_tree_add_item(tree, hf_cip_fault_type, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN); bytes_used += 1; proto_tree_add_item(tree, hf_cip_axis_fault, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN); bytes_used += 1; proto_tree_add_item(tree, hf_cip_fault_sub_code, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN); bytes_used += 1; proto_tree_add_item(tree, hf_cip_fault_action, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN); bytes_used += 1; proto_tree_add_item(tree, hf_cip_fault_time_stamp, tvb, offset + bytes_used, 8, ENC_LITTLE_ENDIAN); bytes_used += 8; } if ( (status_data_set & STATUS_DATA_SET_AXIS_ALARM) == STATUS_DATA_SET_AXIS_ALARM ) { /* Display the various alarm codes from the device */ proto_tree_add_item(tree, hf_cip_alarm_type, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN); bytes_used += 1; proto_tree_add_item(tree, hf_cip_axis_alarm, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN); bytes_used += 1; proto_tree_add_item(tree, hf_cip_alarm_sub_code, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN); bytes_used += 1; proto_tree_add_item(tree, hf_cip_alarm_state, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN); bytes_used += 1; proto_tree_add_item(tree, hf_cip_alarm_time_stamp, tvb, offset + bytes_used, 8, ENC_LITTLE_ENDIAN); bytes_used += 8; } if ( (status_data_set & STATUS_DATA_SET_AXIS_STATUS) == STATUS_DATA_SET_AXIS_STATUS ) { /* Display the various axis state values from the device */ temp_proto_item = proto_tree_add_item(tree, hf_cip_axis_status, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN); temp_proto_tree = proto_item_add_subtree( temp_proto_item, ett_axis_status_set ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_local_ctrl, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_alarm, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_dc_bus, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_pwr_struct, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_tracking, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_pos_lock, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_vel_lock, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_vel_standstill, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_vel_threshold, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_vel_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_acc_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_dec_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_torque_threshold, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_torque_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_cur_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_therm_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_feedback_integ, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_shutdown, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_in_process, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN ); bytes_used += 4; proto_tree_add_item(tree, hf_cip_axis_status_mfg, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN); bytes_used += 4; } if ( (status_data_set & STATUS_DATA_SET_AXIS_IO_STATUS) == STATUS_DATA_SET_AXIS_IO_STATUS ) { proto_tree_add_item(tree, hf_cip_axis_io_status, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN); bytes_used += 4; proto_tree_add_item(tree, hf_cip_axis_io_status_mfg, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN); bytes_used += 4; } if ( (status_data_set & STATUS_DATA_SET_AXIS_SAFETY) == STATUS_DATA_SET_AXIS_SAFETY ) { proto_tree_add_item(tree, hf_cip_axis_safety_status, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN); bytes_used += 4; proto_tree_add_item(tree, hf_cip_axis_safety_status_mfg, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN); bytes_used += 4; proto_tree_add_item(tree, hf_cip_axis_safety_state, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN); bytes_used += 4; } if ( (status_data_set & STATUS_DATA_SET_DRIVE_SAFETY) == STATUS_DATA_SET_DRIVE_SAFETY ) { proto_tree_add_item(tree, hf_cip_drive_safety_status, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN); bytes_used += 4; } return bytes_used; } /* * Function name: dissect_cntr_cyclic * * Purpose: Dissect the cyclic data block of a controller to device format message * * Returns: The new offset into the message that follow on dissections should use * as their starting offset */ static guint32 dissect_cntr_cyclic(guint32 con_format _U_, tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size, guint32 instance _U_) { proto_item *temp_proto_item; proto_tree *header_tree, *temp_proto_tree; guint32 temp_data; gboolean lreal_pos; guint32 bytes_used = 0; /* Create the tree for the entire instance data header */ header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_cyclic_data_block, NULL, "Cyclic Data Block"); /* Add the control mode header field to the tree */ proto_tree_add_item(header_tree, hf_cip_motor_cntrl, tvb, offset, 1, ENC_LITTLE_ENDIAN); /* Add the feedback config header field to the tree */ proto_tree_add_item(header_tree, hf_cip_fdbk_config, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN); /* Add the axis control field to the tree */ proto_tree_add_item(header_tree, hf_cip_axis_control, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN); /* Add the control status to the tree */ proto_tree_add_item(header_tree, hf_cip_control_status, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN); /* Read the command control header field from the packet into memory and determine if the dissector * should be using an LREAL or DINT for position */ temp_data = tvb_get_guint8(tvb, offset + 7); lreal_pos = ( (temp_data & COMMAND_CONTROL_POSITION_DATA_TYPE) == POSITION_DATA_LREAL ); /* Read the command data set header field from the packet into memory */ temp_data = tvb_get_guint8(tvb, offset + 4); /* Create the tree for the command data set header field */ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_cmd_data_set, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN); temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_command_data_set); proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_pos_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_vel_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_acc_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_trq_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_pos_trim_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_vel_trim_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_acc_trim_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_trq_trim_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN); /* Display the command data values from the cyclic data payload within the command data set tree, the * cyclic data starts immediately after the interpolation control field in the controller to device * direction */ bytes_used += dissect_cmd_data_set(temp_data, temp_proto_tree, tvb, offset + 8 + bytes_used, lreal_pos); /* Create the tree for the actual data set header field */ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_act_data_set, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN); temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_actual_data_set); proto_tree_add_item(temp_proto_tree, hf_cip_act_data_pos, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_act_data_vel, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_act_data_acc, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_act_data_trq, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_act_data_crnt, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_act_data_vltg, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_act_data_fqcy, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN); /* Create the tree for the status data set header field */ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_sts_data_set, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN); temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_status_data_set); proto_tree_add_item(temp_proto_tree, hf_cip_sts_flt, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_sts_alrm, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_sts_sts, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_sts_iosts, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_sts_axis_safety, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_sts_drive_safety, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN); /* Create the tree for the command control header field */ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_command_control, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN); temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_command_control); /* Display the interpolation control and position format fields */ proto_tree_add_item(temp_proto_tree, hf_cip_intrp, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_position_data_type, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN); /* Return the offset to the next byte in the message */ return offset + 8 + bytes_used; } /* * Function name: dissect_devce_cyclic * * Purpose: Dissect the cyclic data block of a device to controller format message * * Returns: The new offset into the message that follow on dissections should use * as their starting offset */ static guint32 dissect_devce_cyclic(guint32 con_format _U_, tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size, guint32 instance _U_) { proto_item *temp_proto_item; proto_tree *header_tree, *temp_proto_tree; guint32 temp_data; guint32 bytes_used = 0; /* Create the tree for the entire instance data header */ header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_cyclic_data_block, NULL, "Cyclic Data Block"); /* Add the control mode header field to the tree */ proto_tree_add_item(header_tree, hf_cip_motor_cntrl, tvb, offset, 1, ENC_LITTLE_ENDIAN); /* Add the feedback config header field to the tree */ proto_tree_add_item(header_tree, hf_cip_fdbk_config, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN); /* Add the axis response field to the tree */ proto_tree_add_item(header_tree, hf_cip_axis_response, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN); /* Add the axis response status to the tree */ proto_tree_add_item(header_tree, hf_cip_axis_resp_stat, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN); /* Read the actual data set header field from the packet into memory */ temp_data = tvb_get_guint8(tvb, offset + 5); /* Create the tree for the actual data set header field */ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_act_data_set, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN); temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_actual_data_set); proto_tree_add_item(temp_proto_tree, hf_cip_act_data_pos, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_act_data_vel, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_act_data_acc, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_act_data_trq, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_act_data_crnt, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_act_data_vltg, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_act_data_fqcy, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN); /* Display the actual data values from the cyclic data payload within the command data set tree, the * cyclic data starts immediately after the interpolation control field in the controller to device * direction and the actual data starts immediately after the cyclic data */ bytes_used += dissect_act_data_set(temp_data, temp_proto_tree, tvb, offset + 8 + bytes_used); /* Read the status data set header field from the packet into memory */ temp_data = tvb_get_guint8(tvb, offset + 6); /* Create the tree for the status data set header field */ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_sts_data_set, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN); temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_status_data_set); proto_tree_add_item(temp_proto_tree, hf_cip_sts_flt, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_sts_alrm, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_sts_sts, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_sts_iosts, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_sts_axis_safety, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_sts_drive_safety, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN); /* Display the status data values from the cyclic data payload within the status data set tree, the * cyclic data starts immediately after the axis state field in the device to controller * direction and the status data starts immediately after the cyclic data */ bytes_used += dissect_status_data_set(temp_data, temp_proto_tree, tvb, offset + 8 + bytes_used); /* Display the axis state control field */ proto_tree_add_item(header_tree, hf_cip_axis_state, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN); /* Return the offset to the next byte in the message */ return offset + 8 + bytes_used; } /* * Function name: dissect_cyclic_wt * * Purpose: Dissect the cyclic write data block in a controller to device message * * Returns: The new offset into the message that follow on dissections should use * as their starting offset */ static guint32 dissect_cyclic_wt(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size) { proto_tree *header_tree; /* Create the tree for the entire cyclic write data block */ header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_cyclic_rd_wt, NULL, "Cyclic Write Data Block"); /* Display the cyclic write block id value */ proto_tree_add_item(header_tree, hf_cip_cyclic_write_blk, tvb, offset, 1, ENC_LITTLE_ENDIAN); /* Display the cyclic read block id value */ proto_tree_add_item(header_tree, hf_cip_cyclic_read_blk, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN); /* Display the remainder of the cyclic write data if there is any */ if ( (size - 4) > 0 ) { proto_tree_add_item(header_tree, hf_cip_cyclic_wrt_data, tvb, offset + 4, size - 4, ENC_NA); } return offset + size; } /* * Function name: dissect_cyclic_rd * * Purpose: Dissect the cyclic read data block in a device to controller message * * Returns: The new offset into the message that follow on dissections should use * as their starting offset */ static guint32 dissect_cyclic_rd(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size) { proto_tree *header_tree; /* Create the tree for the entire cyclic write data block */ header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_cyclic_rd_wt, NULL, "Cyclic Read Data Block"); /* Display the cyclic write block id value */ proto_tree_add_item(header_tree, hf_cip_cyclic_write_blk, tvb, offset, 1, ENC_LITTLE_ENDIAN); /* Display the cyclic write status value */ proto_tree_add_item(header_tree, hf_cip_cyclic_write_sts, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN); /* Display the cyclic read block id value */ proto_tree_add_item(header_tree, hf_cip_cyclic_read_blk, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN); /* Display the cyclic read status value */ proto_tree_add_item(header_tree, hf_cip_cyclic_read_sts, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN); /* Display the remainder of the cyclic read data if there is any*/ if ( (size - 4) > 0 ) { proto_tree_add_item(header_tree, hf_cip_cyclic_rd_data, tvb, offset + 4, size - 4, ENC_NA); } return offset + size; } /* * Function name: dissect_cntr_event * * Purpose: Dissect the event data block in a controller to device message * * Returns: The new offset into the message that follow on dissections should use * as their starting offset */ static guint32 dissect_cntr_event(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size) { proto_item *temp_proto_item; proto_tree *header_tree, *temp_proto_tree; guint32 temp_data; guint32 acks, cur_ack; guint32 bytes_used = 0; /* Create the tree for the entire cyclic write data block */ header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_event, NULL, "Event Data Block"); /* Read the event checking control header field from the packet into memory */ temp_data = tvb_get_letohl(tvb, offset); /* Create the tree for the event checking control header field */ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_event_checking, tvb, offset, 4, ENC_LITTLE_ENDIAN); temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_event_check_ctrl); /* Add the individual elements of the event checking control */ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg1_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg1_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg2_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg2_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg1_posrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg1_negrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg2_posrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg2_negrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_marker_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_marker_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_pp, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_pm, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_mp, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_mm, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_acks, tvb, offset, 4, ENC_LITTLE_ENDIAN); /* The dissector will indicate if the protocol is requesting an extended event format but will not dissect it, * to date no products actually support this format */ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_extend_format, tvb, offset, 4, ENC_LITTLE_ENDIAN); /* The event checking control value is 4 bytes long */ bytes_used = 4; /* The final 4 bits of the event checking control value are the number of acknowledgements in the message */ acks = (temp_data >> 28) & 0x0F; /* Each acknowledgement contains and id and a status value */ for (cur_ack = 0; cur_ack < acks; cur_ack++) { /* Display the current acknowledgement id */ proto_tree_add_item(header_tree, hf_cip_event_ack, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN); bytes_used += 1; /* Display the current event status */ proto_tree_add_item(header_tree, hf_cip_evnt_sts_stat, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN); bytes_used += 1; } return offset + size; } /* * Function name: dissect_devce_event * * Purpose: Dissect the event data block in a device to controller message * * Returns: The new offset into the message that follow on dissections should use * as their starting offset */ static guint32 dissect_devce_event(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size) { proto_item *temp_proto_item; proto_tree *header_tree, *temp_proto_tree; guint64 temp_data; guint64 nots, cur_not; guint32 bytes_used = 0; /* Create the tree for the entire cyclic write data block */ header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_event, NULL, "Event Data Block"); /* Read the event checking control header field from the packet into memory */ temp_data = tvb_get_letohl(tvb, offset); /* Create the tree for the event checking control header field */ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_event_status, tvb, offset, 4, ENC_LITTLE_ENDIAN); temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_event_check_sts); /* Add the individual elements of the event checking control */ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg1_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg1_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg2_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg2_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg1_posrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg1_negrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg2_posrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg2_negrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_marker_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_marker_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_pp, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_pm, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_mp, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_mm, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_nfs, tvb, offset, 4, ENC_LITTLE_ENDIAN); /* The dissector will indicate if the protocol is requesting an extended event format but will not dissect it, * to date no products actually support this format */ proto_tree_add_item(temp_proto_tree, hf_cip_evnt_extend_format, tvb, offset, 4, ENC_LITTLE_ENDIAN); /* The event status control value is 4 bytes long */ bytes_used = 4; /* The final 4 bits of the event status control value are the number of notifications in the message */ nots = (temp_data >> 28) & 0x0F; /* Each notification contains and id, status value, event type, position and time stamp */ for (cur_not = 0; cur_not < nots; cur_not++) { /* Display the current event id */ proto_tree_add_item(header_tree, hf_cip_event_id, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN); bytes_used += 1; /* Display the current event status */ proto_tree_add_item(header_tree, hf_cip_evnt_sts_stat, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN); bytes_used += 1; /* Display the current event type */ proto_tree_add_item(header_tree, hf_cip_evnt_type, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN); bytes_used += 2; /* Increment by 2 to jump the reserved byte */ /* Display the event position value */ proto_tree_add_item(header_tree, hf_cip_event_pos, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN); bytes_used += 4; /* Display the event time stamp value */ proto_tree_add_item(header_tree, hf_cip_event_ts, tvb, offset + bytes_used, 8, ENC_LITTLE_ENDIAN); bytes_used += 8; } return size + offset; } /* * Function name: dissect_get_axis_attr_list_request * * Purpose: Dissect the get axis attribute list service request * * Returns: None */ static void dissect_get_axis_attr_list_request (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size) { proto_item *attr_item; proto_tree *header_tree, *attr_tree; guint16 attribute, attribute_cnt; guint32 local_offset; guint8 increment_size, dimension; /* Create the tree for the get axis attribute list request */ header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_get_axis_attribute, NULL, "Get Axis Attribute List Request"); /* Read the number of attributes that are contained within the request */ attribute_cnt = tvb_get_letohs(tvb, offset); proto_tree_add_item(header_tree, hf_get_axis_attr_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN); /* Start the attribute loop at the beginning of the first attribute in the list */ local_offset = offset + 4; /* For each attribute display the associated fields */ for (attribute = 0; attribute < attribute_cnt; attribute++) { /* At a minimum the local offset needs will need to be incremented by 4 bytes to reach the next attribute */ increment_size = 4; /* Pull the fields for this attribute from the payload, all fields are needed to make some calculations before * properly displaying of the attribute is possible */ dimension = tvb_get_guint8(tvb, local_offset + 2); /* Create the tree for this attribute within the request */ attr_item = proto_tree_add_item(header_tree, hf_get_axis_attr_list_attribute_id, tvb, local_offset, 2, ENC_LITTLE_ENDIAN); attr_tree = proto_item_add_subtree(attr_item, ett_get_axis_attr_list); proto_tree_add_item(attr_tree, hf_get_axis_attr_list_dimension, tvb, local_offset + 2, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(attr_tree, hf_get_axis_attr_list_element_size, tvb, local_offset + 3, 1, ENC_LITTLE_ENDIAN); if (dimension == 1) { /* Display the start index and start index from the request if this is an array request */ proto_tree_add_item(attr_tree, hf_get_axis_attr_list_start_index, tvb, local_offset + 4, 2, ENC_LITTLE_ENDIAN); proto_tree_add_item(attr_tree, hf_get_axis_attr_list_data_elements, tvb, local_offset + 6, 2, ENC_LITTLE_ENDIAN); /* Modify the amount to update the local offset by and the start of the data to include the index and elements field */ increment_size += 4; } /* Move the local offset to the next attribute */ local_offset += increment_size; } } /* * Function name: dissect_set_axis_attr_list_request * * Purpose: Dissect the set axis attribute list service request * * Returns: None */ static void dissect_set_axis_attr_list_request (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size) { proto_item *attr_item; proto_tree *header_tree, *attr_tree; guint16 attribute, attribute_cnt, data_elements; guint32 local_offset; guint32 attribute_size; guint8 dimension, attribute_start, increment_size; /* Create the tree for the set axis attribute list request */ header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_set_axis_attribute, NULL, "Set Axis Attribute List Request"); /* Read the number of attributes that are contained within the request */ attribute_cnt = tvb_get_letohs(tvb, offset); proto_tree_add_item(header_tree, hf_set_axis_attr_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN); /* Start the attribute loop at the beginning of the first attribute in the list */ local_offset = offset + 4; /* For each attribute display the associated fields */ for (attribute = 0; attribute < attribute_cnt; attribute++) { /* At a minimum the local offset needs to be incremented by 4 bytes to reach the next attribute */ increment_size = 4; /* Pull the fields for this attribute from the payload, all fields are needed to make some calculations before * properly displaying of the attribute is possible */ dimension = tvb_get_guint8(tvb, local_offset + 2); attribute_size = tvb_get_guint8(tvb, local_offset + 3); attribute_start = 4; if (dimension == 1) { data_elements = tvb_get_letohs(tvb, local_offset + 6); /* Modify the size of the attribute data by the number of elements if the request is an array request */ attribute_size *= data_elements; /* Modify the amount to update the local offset by and the start of the data to include the index and elements field */ increment_size += 4; attribute_start += 4; } /* Create the tree for this attribute in the get axis attribute list request */ attr_item = proto_tree_add_item(header_tree, hf_set_axis_attr_list_attribute_id, tvb, local_offset, 2, ENC_LITTLE_ENDIAN); attr_tree = proto_item_add_subtree(attr_item, ett_set_axis_attr_list); proto_tree_add_item(attr_tree, hf_set_axis_attr_list_dimension, tvb, local_offset + 2, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(attr_tree, hf_set_axis_attr_list_element_size, tvb, local_offset + 3, 1, ENC_LITTLE_ENDIAN); if (dimension == 1) { /* Display the start index and start index from the request if the request is an array */ proto_tree_add_item(attr_tree, hf_set_axis_attr_list_start_index, tvb, local_offset + 4, 2, ENC_LITTLE_ENDIAN); proto_tree_add_item(attr_tree, hf_set_axis_attr_list_data_elements, tvb, local_offset + 6, 2, ENC_LITTLE_ENDIAN); } /* Display the value of this attribute */ proto_tree_add_item(attr_tree, hf_cip_attribute_data, tvb, local_offset + attribute_start, attribute_size, ENC_NA); /* Round the attribute size up so the next attribute lines up on a 32-bit boundary */ if (attribute_size % 4 != 0) { attribute_size = attribute_size + (4 - (attribute_size % 4)); } /* Move the local offset to the next attribute */ local_offset += (attribute_size + increment_size); } } /* * Function name: dissect_group_sync_request * * Purpose: Dissect the group sync service request * * Returns: None */ static void dissect_group_sync_request (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size) { proto_tree *header_tree; /* Create the tree for the group sync request */ header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_group_sync, NULL, "Group Sync Request"); /* Read the grandmaster id from the payload */ proto_tree_add_item(header_tree, hf_cip_ptp_grandmaster, tvb, offset, 8, ENC_LITTLE_ENDIAN); } /* * Function name: dissect_cntr_service * * Purpose: Dissect the service data block in a controller to device message * * Returns: The new offset into the message that follow on dissections should use * as their starting offset */ static guint32 dissect_cntr_service(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size) { proto_tree *header_tree; guint8 service; /* Create the tree for the entire service data block */ header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_service, NULL, "Service Data Block"); /* Display the transaction id value */ proto_tree_add_item(header_tree, hf_cip_svc_transction, tvb, offset, 1, ENC_LITTLE_ENDIAN); /* Display the service code */ service = tvb_get_guint8(tvb, offset + 1); proto_tree_add_item(header_tree, hf_cip_svc_code, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN); /* If the service is a set axis, get axis attribute or group sync request dissect it as well */ if (size > 4) { switch (service) { case SC_GET_AXIS_ATTRIBUTE_LIST: dissect_get_axis_attr_list_request(tvb, header_tree, offset + 4, size - 4); break; case SC_SET_AXIS_ATTRIBUTE_LIST: dissect_set_axis_attr_list_request(tvb, header_tree, offset + 4, size - 4); break; case SC_GROUP_SYNC: dissect_group_sync_request(tvb, header_tree, offset + 4, size - 4); break; default: /* Display the remainder of the service channel data */ proto_tree_add_item(header_tree, hf_cip_svc_data, tvb, offset + 4, size - 4, ENC_NA); } } return offset + size; } /* * Function name: dissect_set_axis_attr_list_response * * Purpose: Dissect the set axis attribute list service response * * Returns: None */ static void dissect_set_axis_attr_list_response (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size) { proto_item *attr_item; proto_tree *header_tree, *attr_tree; guint16 attribute, attribute_cnt; guint32 local_offset; /* Create the tree for the set axis attribute list response */ header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_get_axis_attribute, NULL, "Set Axis Attribute List Response"); /* Read the number of attributes that are contained within the response */ attribute_cnt = tvb_get_letohs(tvb, offset); proto_tree_add_item(header_tree, hf_set_axis_attr_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN); /* Start the attribute loop at the beginning of the first attribute in the list */ local_offset = offset + 4; /* For each attribute display the associated fields */ for (attribute = 0; attribute < attribute_cnt; attribute++) { /* Create the tree for the current attribute in the set axis attribute list response */ attr_item = proto_tree_add_item(header_tree, hf_set_axis_attr_list_attribute_id, tvb, local_offset, 2, ENC_LITTLE_ENDIAN); attr_tree = proto_item_add_subtree(attr_item, ett_get_axis_attr_list); /* Add the response status to the tree */ proto_tree_add_item(attr_tree, hf_cip_svc_set_axis_attr_sts, tvb, local_offset + 2, 1, ENC_LITTLE_ENDIAN); /* Move the local offset to the next attribute */ local_offset += 4; } } /* * Function name: dissect_get_axis_attr_list_response * * Purpose: Dissect the get axis attribute list service response * * Returns: None */ static void dissect_get_axis_attr_list_response (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size) { proto_item *attr_item; proto_tree *header_tree, *attr_tree; guint16 attribute, attribute_cnt, data_elements; guint32 attribute_size; guint8 dimension, attribute_start, increment_size; guint32 local_offset; /* Create the tree for the get axis attribute list response */ header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_get_axis_attribute, NULL, "Get Axis Attribute List Response"); /* Read the number of attributes that are contained within the request */ attribute_cnt = tvb_get_letohs(tvb, offset); proto_tree_add_item(header_tree, hf_get_axis_attr_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN); /* Start the attribute loop at the beginning of the first attribute in the list */ local_offset = offset + 4; /* For each attribute display the associated fields */ for (attribute = 0; attribute < attribute_cnt; attribute++) { /* At a minimum the local offset needs to be incremented by 4 bytes to reach the next attribute */ increment_size = 4; /* Pull the fields for this attribute from the payload, all fields are need to make some calculations before * properly displaying of the attribute is possible */ dimension = tvb_get_guint8(tvb, local_offset + 2); attribute_size = tvb_get_guint8(tvb, local_offset + 3); attribute_start = 4; if (dimension == 1) { data_elements = tvb_get_letohs(tvb, local_offset + 6); /* Modify the size of the attribute data by the number of elements if the request is an array request */ attribute_size *= data_elements; /* Modify the amount to update the local offset by and the start of the data to include the index and elements field */ increment_size += 4; attribute_start += 4; } /* Display the fields associated with the get axis attribute list response */ attr_item = proto_tree_add_item(header_tree, hf_get_axis_attr_list_attribute_id, tvb, local_offset, 2, ENC_LITTLE_ENDIAN); attr_tree = proto_item_add_subtree(attr_item, ett_get_axis_attr_list); if (dimension == 0xFF) { /* Display the element size as an error code if the dimension field indicates an error */ proto_tree_add_item(attr_tree, hf_cip_svc_get_axis_attr_sts, tvb, local_offset + 3, 1, ENC_LITTLE_ENDIAN); /* No attribute data so no attribute size */ attribute_size = 0; } else { proto_tree_add_item(attr_tree, hf_get_axis_attr_list_dimension, tvb, local_offset + 2, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(attr_tree, hf_get_axis_attr_list_element_size, tvb, local_offset + 3, 1, ENC_LITTLE_ENDIAN); if (dimension == 1) { /* Display the start index and start indexfrom the request */ proto_tree_add_item(attr_tree, hf_get_axis_attr_list_start_index, tvb, local_offset + 4, 2, ENC_LITTLE_ENDIAN); proto_tree_add_item(attr_tree, hf_get_axis_attr_list_data_elements, tvb, local_offset + 6, 2, ENC_LITTLE_ENDIAN); } /* Display the remainder of the service channel data */ proto_tree_add_item(attr_tree, hf_cip_attribute_data, tvb, offset + attribute_start, attribute_size, ENC_NA); /* Round the attribute size up so the next attribute lines up on a 32-bit boundary */ if (attribute_size % 4 != 0) { attribute_size = attribute_size + (4 - (attribute_size % 4)); } } /* Move the local offset to the next attribute */ local_offset += (attribute_size + increment_size); } } /* * Function name: dissect_group_sync_response * * Purpose: Dissect the group sync service response * * Returns: None */ static void dissect_group_sync_response (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size _U_) { proto_tree_add_item(tree, hf_cip_group_sync, tvb, offset, 1, ENC_LITTLE_ENDIAN); } /* * Function name: dissect_devce_service * * Purpose: Dissect the service data block in a device to controller message * * Returns: The new offset into the message that follow on dissections should use * as their starting offset */ static guint32 dissect_devce_service(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size) { proto_tree *header_tree; /* Create the tree for the entire service data block */ header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_service, NULL, "Service Data Block"); /* Display the transaction id value */ proto_tree_add_item(header_tree, hf_cip_svc_transction, tvb, offset, 1, ENC_LITTLE_ENDIAN); /* Display the service code */ proto_tree_add_item(header_tree, hf_cip_svc_code, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN); /* Display the general status code */ proto_tree_add_item(header_tree, hf_cip_svc_sts, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN); /* Display the extended status code */ proto_tree_add_item(header_tree, hf_cip_svc_ext_status, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN); /* If the service is a set axis, get axis attribute response or group sync dissect it as well */ if (size > 4) { switch (tvb_get_guint8(tvb, offset + 1)) { case SC_GET_AXIS_ATTRIBUTE_LIST: dissect_get_axis_attr_list_response(tvb, header_tree, offset + 4, size - 4); break; case SC_SET_AXIS_ATTRIBUTE_LIST: dissect_set_axis_attr_list_response(tvb, header_tree, offset + 4, size - 4); break; case SC_GROUP_SYNC: dissect_group_sync_response(tvb, header_tree, offset + 4, size - 4); break; default: /* Display the remainder of the service channel data */ proto_tree_add_item(header_tree, hf_cip_svc_data, tvb, offset + 4, size - 4, ENC_NA); } } return offset + size; } /* * Function name: dissect_var_inst_header * * Purpose: Dissect the instance data header of a variable controller to device or * device to controller message * * Returns: void */ static void dissect_var_inst_header(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint8* inst_number, guint32* cyc_size, guint32* cyc_blk_size, guint32* evnt_size, guint32* servc_size) { proto_tree *header_tree; /* Create the tree for the entire instance data header */ *inst_number = tvb_get_guint8(tvb, offset); header_tree = proto_tree_add_subtree_format(tree, tvb, offset, 8, ett_inst_data_header, NULL, "Instance Data Header - Instance: %d", *inst_number); /* Read the instance number field from the instance data header */ proto_tree_add_item(header_tree, hf_var_devce_instance, tvb, offset, 1, ENC_LITTLE_ENDIAN); /* The "size" fields in the instance data block header are all stored as number of 32-bit words the * block uses since all blocks should pad up to 32-bits so to convert to bytes each is multiplied by 4 */ /* Read the instance block size field in bytes from the instance data header */ proto_tree_add_item(header_tree, hf_var_devce_instance_block_size, tvb, offset + 2, 1, ENC_NA); /* Read the cyclic block size field in bytes from the instance data header */ proto_tree_add_item(header_tree, hf_var_devce_cyclic_block_size, tvb, offset + 3, 1, ENC_NA); /* Read the cyclic command block size field in bytes from the instance data header */ *cyc_size = (tvb_get_guint8(tvb, offset + 4) * 4); proto_tree_add_item(header_tree, hf_var_devce_cyclic_data_block_size, tvb, offset + 4, 1, ENC_NA); /* Read the cyclic write block size field in bytes from the instance data header */ *cyc_blk_size = (tvb_get_guint8(tvb, offset + 5) * 4); proto_tree_add_item(header_tree, hf_var_devce_cyclic_rw_block_size, tvb, offset + 5, 1, ENC_NA); /* Read the event block size in bytes from the instance data header */ *evnt_size = (tvb_get_guint8(tvb, offset + 6) * 4); proto_tree_add_item(header_tree, hf_var_devce_event_block_size, tvb, offset + 6, 1, ENC_NA); /* Read the service block size in bytes from the instance data header */ *servc_size = (tvb_get_guint8(tvb, offset + 7) * 4); proto_tree_add_item(header_tree, hf_var_devce_service_block_size, tvb, offset + 7, 1, ENC_NA); } /* * Function name: dissect_var_cont_conn_header * * Purpose: Dissect the connection header of a variable controller to device message * * Returns: Offset to the start of the instance data block */ static guint32 dissect_var_cont_conn_header(tvbuff_t* tvb, proto_tree* tree, guint32* inst_count, guint32 offset) { guint32 header_size; guint32 temp_data; proto_item *temp_proto_item; proto_tree *header_tree, *temp_proto_tree; /* Calculate the header size, start with the basic header size */ header_size = 8; temp_data = tvb_get_guint8(tvb, offset + 7); /* Check the time data set field for enabled bits. If either update period or * update time stamp fields are set, bump the header size by the appropriate size */ if ( (temp_data & TIME_DATA_SET_TIME_STAMP) == TIME_DATA_SET_TIME_STAMP ) { header_size += 8; } if ( (temp_data & TIME_DATA_SET_TIME_OFFSET) == TIME_DATA_SET_TIME_OFFSET ) { header_size += 8; } /* Create the tree for the entire connection header */ header_tree = proto_tree_add_subtree(tree, tvb, offset, header_size, ett_cont_dev_header, NULL, "Connection Header"); /* Add the connection header fields that are common to all types of messages */ proto_tree_add_item(header_tree, hf_cip_format, tvb, offset, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(header_tree, hf_cip_revision, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(header_tree, hf_cip_updateid, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN); /* Create the tree for the node control header field */ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_node_control, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN); temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_node_control); /* Add the individual data elements to the node control tree */ proto_tree_add_item(temp_proto_tree, hf_cip_node_control_remote, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_node_control_sync, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_node_data_valid, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_node_fault_reset, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN); /* Read the instance count field from the packet into memory, this gets passed back out of the method */ *inst_count = tvb_get_guint8(tvb, offset + 4); /* Add the instance count and last update id to the connection header tree */ proto_tree_add_item(header_tree, hf_cip_instance_cnt, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(header_tree, hf_cip_last_update, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN); /* Read the time data set from the packet into memory */ temp_data = tvb_get_guint8(tvb, offset + 7); /* Create the tree for the time data set field */ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_time_data_set, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN); temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_time_data_set); /* Add the individual data elements to the time data set header field */ proto_tree_add_item(temp_proto_tree, hf_cip_time_data_stamp, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_time_data_offset, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_time_data_diag, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_time_data_time_diag, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN); /* Move the offset to the byte just beyond the time data set field */ offset = (offset + 7 + 1); /* Add the time values if they are present in the time data set header field */ if ( (temp_data & TIME_DATA_SET_TIME_STAMP) == TIME_DATA_SET_TIME_STAMP ) { proto_tree_add_item(header_tree, hf_cip_cont_time_stamp, tvb, offset, 8, ENC_LITTLE_ENDIAN); offset = (offset + 8); } if ( (temp_data & TIME_DATA_SET_TIME_OFFSET) == TIME_DATA_SET_TIME_OFFSET ) { proto_tree_add_item(header_tree, hf_cip_cont_time_offset, tvb, offset, 8, ENC_LITTLE_ENDIAN); offset = (offset + 8); } /* Return the number of bytes used so it can be used as an offset in the following dissections */ return offset; } /* * Function name: dissect_var_devce_conn_header * * Purpose: Dissect the connection header of a variable device to controller message * * Returns: Offset to the start of the instance data block */ static guint32 dissect_var_devce_conn_header(tvbuff_t* tvb, proto_tree* tree, guint32* inst_count, guint32 offset) { guint32 header_size; guint32 temp_data; proto_item *temp_proto_item; proto_tree *header_tree, *temp_proto_tree; /* Calculate the header size, start with the basic header size */ header_size = 8; temp_data = tvb_get_guint8(tvb, offset + 7); if ( (temp_data & TIME_DATA_SET_TIME_STAMP) == TIME_DATA_SET_TIME_STAMP ) { header_size += 8; } if ( (temp_data & TIME_DATA_SET_TIME_OFFSET) == TIME_DATA_SET_TIME_OFFSET ) { header_size += 8; } if ( (temp_data & TIME_DATA_SET_UPDATE_DIAGNOSTICS) == TIME_DATA_SET_UPDATE_DIAGNOSTICS ) { header_size += 4; } if ( (temp_data & TIME_DATA_SET_TIME_DIAGNOSTICS) == TIME_DATA_SET_TIME_DIAGNOSTICS ) { header_size += 16; } /* Create the tree for the entire connection header */ header_tree = proto_tree_add_subtree(tree, tvb, offset, header_size, ett_cont_dev_header, NULL, "Connection Header"); /* Add the connection header fields that are common to all types of messages */ proto_tree_add_item(header_tree, hf_cip_format, tvb, offset, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(header_tree, hf_cip_revision, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(header_tree, hf_cip_updateid, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN); /* Create the tree for the node status header field */ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_node_status, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN); temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_node_status); /* Add the individual data elements to the node control tree */ proto_tree_add_item(temp_proto_tree, hf_cip_node_control_remote, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_node_control_sync, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_node_data_valid, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_node_device_faulted, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN); /* Read the instance count field from the packet into memory, this gets passed back out of the method */ *inst_count = tvb_get_guint8(tvb, offset + 4); /* Add the instance count to the connection header tree */ proto_tree_add_item(header_tree, hf_cip_instance_cnt, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN); /* The device to controller header contains the node alarms and node faults fields as well. */ proto_tree_add_item(header_tree, hf_cip_node_fltalarms, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN); /* Add the last update id to the connection header tree */ proto_tree_add_item(header_tree, hf_cip_last_update, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN); /* Read the time data set from the packet into memory */ temp_data = tvb_get_guint8(tvb, offset + 7); /* Create the tree for the time data set field */ temp_proto_item = proto_tree_add_item(header_tree, hf_cip_time_data_set, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN); temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_time_data_set); /* Add the individual data elements to the time data set header field */ proto_tree_add_item(temp_proto_tree, hf_cip_time_data_stamp, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_time_data_offset, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_time_data_diag, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(temp_proto_tree, hf_cip_time_data_time_diag, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN); /* Move the offset to the byte just beyond the time data set field */ offset = (offset + 7 + 1); /* Add the time values if they are present in the time data set header field */ if ( (temp_data & TIME_DATA_SET_TIME_STAMP) == TIME_DATA_SET_TIME_STAMP ) { proto_tree_add_item(header_tree, hf_cip_devc_time_stamp, tvb, offset, 8, ENC_LITTLE_ENDIAN); offset = (offset + 8); } if ( (temp_data & TIME_DATA_SET_TIME_OFFSET) == TIME_DATA_SET_TIME_OFFSET ) { proto_tree_add_item(header_tree, hf_cip_devc_time_offset, tvb, offset, 8, ENC_LITTLE_ENDIAN); offset = (offset + 8); } if ( (temp_data & TIME_DATA_SET_UPDATE_DIAGNOSTICS) == TIME_DATA_SET_UPDATE_DIAGNOSTICS ) { /* If the time diagnostic bit is set then the header contains the count of lost updates, late updates, data * received time stamp and data transmit time stamp */ proto_tree_add_item(header_tree, hf_cip_lost_update, tvb, offset, 1, ENC_LITTLE_ENDIAN); offset = (offset + 1); /* Add the reserved bytes to the offset after adding the late updates to the display */ proto_tree_add_item(header_tree, hf_cip_late_update, tvb, offset, 1, ENC_LITTLE_ENDIAN); offset = (offset + 3); } if ( (temp_data & TIME_DATA_SET_TIME_DIAGNOSTICS) == TIME_DATA_SET_TIME_DIAGNOSTICS ) { proto_tree_add_item(header_tree, hf_cip_data_rx_time_stamp, tvb, offset, 8, ENC_LITTLE_ENDIAN); offset += 8; proto_tree_add_item(header_tree, hf_cip_data_tx_time_stamp, tvb, offset, 8, ENC_LITTLE_ENDIAN); offset += 8; } /* Return the number of bytes used so it can be used as an offset in the following dissections */ return offset; } /* * Function name: dissect_cipmotion * * Purpose: Perform the top level dissection of the CIP Motion datagram, it is called by * Wireshark when the dissection rule registered in proto_reg_handoff_cipmotion is fired * * Returns: void */ static int dissect_cipmotion(tvbuff_t* tvb, packet_info* pinfo, proto_tree* tree, void* data _U_) { guint32 con_format; guint32 update_id; proto_item *proto_item_top; proto_tree *proto_tree_top; guint32 offset = 0; /* Create display subtree for the protocol by creating an item and then * creating a subtree from the item, the subtree must have been registered * in proto_register_cipmotion already */ proto_item_top = proto_tree_add_item(tree, proto_cipmotion, tvb, 0, -1, ENC_NA); proto_tree_top = proto_item_add_subtree(proto_item_top, ett_cipmotion); /* Add the CIP class 1 sequence number to the tree */ proto_tree_add_item(proto_tree_top, hf_cip_class1_seqnum, tvb, offset, 2, ENC_LITTLE_ENDIAN); offset = (offset + 2); /* Pull the actual values for the connection format and update id from the * incoming message to be used in the column info */ con_format = tvb_get_guint8(tvb, offset); update_id = tvb_get_guint8(tvb, offset + 2); /* Make entries in Protocol column and Info column on summary display */ col_set_str(pinfo->cinfo, COL_PROTOCOL, "CIP Motion"); /* Add connection format and update number to the info column */ col_add_fstr( pinfo->cinfo, COL_INFO, "%s, Update Id: %d", val_to_str(con_format, cip_con_format_vals, "Unknown connection format (%x)"), update_id ); /* Attempt to classify the incoming header */ if (( con_format == FORMAT_VAR_CONTROL_TO_DEVICE ) || ( con_format == FORMAT_VAR_DEVICE_TO_CONTROL )) { /* Sizes of the individual channels within the connection */ guint32 cyc_size, cyc_blk_size, evnt_size, servc_size; guint32 inst_count = 0, inst; /* Dissect the header fields */ switch(con_format) { case FORMAT_VAR_CONTROL_TO_DEVICE: offset = dissect_var_cont_conn_header(tvb, proto_tree_top, &inst_count, offset); break; case FORMAT_VAR_DEVICE_TO_CONTROL: offset = dissect_var_devce_conn_header(tvb, proto_tree_top, &inst_count, offset); break; } /* Repeat the following dissections for each instance within the payload */ for( inst = 0; inst < inst_count; inst++ ) { /* Actual instance number from header field */ guint8 instance; /* Dissect the instance data header */ dissect_var_inst_header( tvb, proto_tree_top, offset, &instance, &cyc_size, &cyc_blk_size, &evnt_size, &servc_size ); /* Increment the offset to just beyond the instance header */ offset += 8; /* Dissect the cyclic command (actual) data if any exists */ /* Dissect the cyclic write (read) data if any exists */ /* Dissect the event data block if there is any event data */ switch(con_format) { case FORMAT_VAR_CONTROL_TO_DEVICE: if ( cyc_size > 0 ) offset = dissect_cntr_cyclic( con_format, tvb, proto_tree_top, offset, cyc_size, instance ); if ( cyc_blk_size > 0 ) offset = dissect_cyclic_wt(tvb, proto_tree_top, offset, cyc_blk_size); if ( evnt_size > 0 ) offset = dissect_cntr_event(tvb, proto_tree_top, offset, evnt_size); if ( servc_size > 0 ) offset = dissect_cntr_service(tvb, proto_tree_top, offset, servc_size); break; case FORMAT_VAR_DEVICE_TO_CONTROL: if ( cyc_size > 0 ) offset = dissect_devce_cyclic( con_format, tvb, proto_tree_top, offset, cyc_size, instance ); if ( cyc_blk_size > 0 ) offset = dissect_cyclic_rd( tvb, proto_tree_top, offset, cyc_blk_size ); if ( evnt_size > 0 ) offset = dissect_devce_event(tvb, proto_tree_top, offset, evnt_size); if ( servc_size > 0 ) offset = dissect_devce_service(tvb, proto_tree_top, offset, servc_size); break; } } /* End of instance for( ) loop */ } // Display any remaining unparsed data. int remain_len = tvb_reported_length_remaining(tvb, offset); if (remain_len > 0) { proto_tree_add_item(proto_tree_top, hf_cip_data, tvb, offset, remain_len, ENC_NA); } return tvb_captured_length(tvb); } /* * Function name: proto_register_cipmotion * * Purpose: Register the protocol with Wireshark, a script will add this protocol * to the list of protocols during the build process. This function is where the * header fields and subtree identifiers are registered. * * Returns: void */ void proto_register_cipmotion(void) { /* This is a list of header fields that can be used in the dissection or * to use in a filter expression */ static hf_register_info hf[] = { /* Connection format header field, the first byte in the message which * determines if the message is fixed or variable, controller to device, * device to controller, etc. */ { &hf_cip_format, { "Connection Format", "cipm.format", FT_UINT8, BASE_DEC, VALS(cip_con_format_vals), 0, "Message connection format", HFILL } }, /* Connection format revision header field */ { &hf_cip_revision, { "Format Revision", "cipm.revision", FT_UINT8, BASE_DEC, NULL, 0, "Message format revision", HFILL } }, { &hf_cip_class1_seqnum, { "CIP Class 1 Sequence Count", "cipm.class1seqnum", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL } }, { &hf_cip_updateid, { "Update Id", "cipm.updateid", FT_UINT8, BASE_DEC, NULL, 0, "Cyclic Transaction Number", HFILL } }, { &hf_cip_instance_cnt, { "Instance Count", "cipm.instancecount", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } }, { &hf_cip_last_update, { "Last Update Id", "cipm.lastupdate", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } }, { &hf_cip_node_status, { "Node Status", "cipm.nodestatus", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL} }, { &hf_cip_node_control, { "Node Control", "cipm.nodecontrol", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL} }, { &hf_cip_node_control_remote, { "Remote Control", "cipm.remote", FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x01, "Node Control: Remote Control", HFILL} }, { &hf_cip_node_control_sync, { "Sync Control", "cipm.sync", FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x02, "Node Control: Synchronous Operation", HFILL} }, { &hf_cip_node_data_valid, { "Data Valid", "cipm.valid", FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x04, "Node Control: Data Valid", HFILL} }, { &hf_cip_node_fault_reset, { "Fault Reset", "cipm.fltrst", FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x08, "Node Control: Device Fault Reset", HFILL} }, { &hf_cip_node_device_faulted, { "Faulted", "cipm.flt", FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x08, "Node Control: Device Faulted", HFILL} }, { &hf_cip_node_fltalarms, { "Node Faults and Alarms", "cipm.fltalarms", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } }, { &hf_cip_time_data_set, { "Time Data Set", "cipm.timedataset", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL} }, { &hf_cip_time_data_stamp, { "Time Stamp", "cipm.time.stamp", FT_BOOLEAN, 8, TFS(&tfs_true_false), TIME_DATA_SET_TIME_STAMP, "Time Data Set: Time Stamp", HFILL} }, { &hf_cip_time_data_offset, { "Time Offset", "cipm.time.offset", FT_BOOLEAN, 8, TFS(&tfs_true_false), TIME_DATA_SET_TIME_OFFSET, "Time Data Set: Time Offset", HFILL} }, { &hf_cip_time_data_diag, { "Time Update Diagnostics", "cipm.time.update", FT_BOOLEAN, 8, TFS(&tfs_true_false), TIME_DATA_SET_UPDATE_DIAGNOSTICS, "Time Data Set: Time Update Diagnostics", HFILL} }, { &hf_cip_time_data_time_diag, { "Time Diagnostics", "cipm.time.diag", FT_BOOLEAN, 8, TFS(&tfs_true_false), TIME_DATA_SET_TIME_DIAGNOSTICS, "Time Data Set: Time Diagnostics", HFILL} }, { &hf_cip_cont_time_stamp, { "Controller Time Stamp", "cipm.ctrltimestamp", FT_UINT64, BASE_DEC, NULL, 0, "Time Data Set: Controller Time Stamp", HFILL} }, { &hf_cip_cont_time_offset, { "Controller Time Offset", "cipm.ctrltimeoffser", FT_UINT64, BASE_DEC, NULL, 0, "Time Data Set: Controller Time Offset", HFILL} }, { &hf_cip_data_rx_time_stamp, { "Data Received Time Stamp", "cipm.rxtimestamp", FT_UINT64, BASE_DEC, NULL, 0, "Time Data Set: Data Received Time Stamp", HFILL} }, { &hf_cip_data_tx_time_stamp, { "Data Transmit Time Stamp", "cipm.txtimestamp", FT_UINT64, BASE_DEC, NULL, 0, "Time Data Set: Data Transmit Time Offset", HFILL} }, { &hf_cip_devc_time_stamp, { "Device Time Stamp", "cipm.devctimestamp", FT_UINT64, BASE_DEC, NULL, 0, "Time Data Set: Device Time Stamp", HFILL} }, { &hf_cip_devc_time_offset, { "Device Time Offset", "cipm.devctimeoffser", FT_UINT64, BASE_DEC, NULL, 0, "Time Data Set: Device Time Offset", HFILL} }, { &hf_cip_lost_update, { "Lost Updates", "cipm.lostupdates", FT_UINT8, BASE_DEC, NULL, 0, "Time Data Set: Lost Updates", HFILL} }, { &hf_cip_late_update, { "Lost Updates", "cipm.lateupdates", FT_UINT8, BASE_DEC, NULL, 0, "Time Data Set: Late Updates", HFILL} }, { &hf_cip_motor_cntrl, { "Control Mode", "cipm.ctrlmode", FT_UINT8, BASE_DEC, VALS(cip_motor_control_vals), 0, "Cyclic Data Block: Motor Control Mode", HFILL } }, { &hf_cip_fdbk_config, { "Feedback Config", "cipm.fdbkcfg", FT_UINT8, BASE_DEC, VALS(cip_fdbk_config_vals), 0, "Cyclic Data Block: Feedback Configuration", HFILL } }, { &hf_cip_axis_control, { "Axis Control", "cipm.axisctrl", FT_UINT8, BASE_DEC, VALS(cip_axis_control_vals), 0, "Cyclic Data Block: Axis Control", HFILL } }, { &hf_cip_control_status, { "Control Status", "cipm.csts", FT_UINT8, BASE_DEC, VALS(cip_control_status_vals), 0, "Cyclic Data Block: Axis Control Status", HFILL } }, { &hf_cip_axis_response, { "Axis Response", "cipm.axisresp", FT_UINT8, BASE_DEC, VALS(cip_axis_response_vals), 0, "Cyclic Data Block: Axis Response", HFILL } }, { &hf_cip_axis_resp_stat, { "Response Status", "cipm.respstat", FT_UINT8, BASE_DEC|BASE_EXT_STRING, &cip_gs_vals_ext, 0, "Cyclic Data Block: Axis Response Status", HFILL } }, { &hf_cip_group_sync, { "Group Sync Status", "cipm.syncstatus", FT_UINT8, BASE_HEX, VALS(cip_sync_status_vals), 0, NULL, HFILL } }, { &hf_cip_cmd_data_set, { "Command Data Set", "cipm.cmdset", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL} }, { &hf_cip_act_data_set, { "Actual Data Set", "cipm.actset", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL} }, { &hf_cip_sts_data_set, { "Status Data Set", "cipm.stsset", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL} }, { &hf_cip_cmd_data_pos_cmd, { "Command Position", "cipm.cmd.pos", FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_POSITION, "Command Data Set: Command Position", HFILL} }, { &hf_cip_cmd_data_vel_cmd, { "Command Velocity", "cipm.cmd.vel", FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_VELOCITY, "Command Data Set: Command Velocity", HFILL} }, { &hf_cip_cmd_data_acc_cmd, { "Command Acceleration", "cipm.cmd.acc", FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_ACCELERATION, "Command Data Set: Command Acceleration", HFILL} }, { &hf_cip_cmd_data_trq_cmd, { "Command Torque", "cipm.cmd.trq", FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_TORQUE, "Command Data Set: Command Torque", HFILL} }, { &hf_cip_cmd_data_pos_trim_cmd, { "Position Trim", "cipm.cmd.postrm", FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_POSITION_TRIM, "Command Data Set: Position Trim", HFILL} }, { &hf_cip_cmd_data_vel_trim_cmd, { "Velocity Trim", "cipm.cmd.veltrm", FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_VELOCITY_TRIM, "Command Data Set: Velocity Trim", HFILL} }, { &hf_cip_cmd_data_acc_trim_cmd, { "Acceleration Trim", "cipm.cmd.acctrm", FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_ACCELERATION_TRIM, "Command Data Set: Acceleration Trim", HFILL} }, { &hf_cip_cmd_data_trq_trim_cmd, { "Torque Trim", "cipm.cmd.trqtrm", FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_TORQUE_TRIM, "Command Data Set: Torque Trim", HFILL} }, { &hf_cip_act_data_pos, { "Actual Position", "cipm.act.pos", FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_POSITION, "Actual Data Set: Actual Position", HFILL} }, { &hf_cip_act_data_vel, { "Actual Velocity", "cipm.act.vel", FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_VELOCITY, "Actual Data Set: Actual Velocity", HFILL} }, { &hf_cip_act_data_acc, { "Actual Acceleration", "cipm.act.acc", FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_ACCELERATION, "Actual Data Set: Actual Acceleration", HFILL} }, { &hf_cip_act_data_trq, { "Actual Torque", "cipm.act.trq", FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_TORQUE, "Actual Data Set: Actual Torque", HFILL} }, { &hf_cip_act_data_crnt, { "Actual Current", "cipm.act.crnt", FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_CURRENT, "Actual Data Set: Actual Current", HFILL} }, { &hf_cip_act_data_vltg, { "Actual Voltage", "cipm.act.vltg", FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_VOLTAGE, "Actual Data Set: Actual Voltage", HFILL} }, { &hf_cip_act_data_fqcy, { "Actual Frequency", "cipm.act.fqcy", FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_FREQUENCY, "Actual Data Set: Actual Frequency", HFILL} }, { &hf_cip_axis_fault, { "Axis Fault Code", "cipm.fault.code", FT_UINT8, BASE_DEC, NULL, 0, "Status Data Set: Fault Code", HFILL } }, { &hf_cip_fault_type, { "Axis Fault Type", "cipm.flttype", FT_UINT8, BASE_DEC, NULL, 0, "Axis Status: Axis Fault Type", HFILL} }, { &hf_cip_fault_sub_code, { "Axis Fault Sub Code", "cipm.fltsubcode", FT_UINT8, BASE_DEC, NULL, 0, "Axis Status: Axis Fault Sub Code", HFILL} }, { &hf_cip_fault_action, { "Axis Fault Action", "cipm.fltaction", FT_UINT8, BASE_DEC, NULL, 0, "Axis Status: Axis Fault Action", HFILL} }, { &hf_cip_fault_time_stamp, { "Axis Fault Time Stamp", "cipm.flttimestamp", FT_UINT64, BASE_DEC, NULL, 0, "Axis Status: Axis Fault Time Stamp", HFILL} }, { &hf_cip_alarm_type, { "Axis Fault Type", "cipm.alarmtype", FT_UINT8, BASE_DEC, NULL, 0, "Axis Status: Axis Alarm Type", HFILL} }, { &hf_cip_alarm_sub_code, { "Axis Alarm Sub Code", "cipm.alarmsubcode", FT_UINT8, BASE_DEC, NULL, 0, "Axis Status: Axis Alarm Sub Code", HFILL} }, { &hf_cip_alarm_state, { "Axis Alarm State", "cipm.alarmstate", FT_UINT8, BASE_DEC, NULL, 0, "Axis Status: Axis Alarm State", HFILL } }, { &hf_cip_alarm_time_stamp, { "Axis Fault Time Stamp", "cipm.alarmtimestamp", FT_UINT64, BASE_DEC, NULL, 0, "Axis Status: Axis Alarm Time Stamp", HFILL} }, { &hf_cip_axis_status, { "Axis Status", "cipm.axisstatus", FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL} }, { &hf_cip_axis_status_mfg, { "Axis Status Mfg", "cipm.axisstatusmfg", FT_UINT32, BASE_HEX, NULL, 0, "Axis Status, Manufacturer Specific", HFILL} }, { &hf_cip_axis_io_status, { "Axis I/O Status", "cipm.axisiostatus", FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL} }, { &hf_cip_axis_io_status_mfg, { "Axis I/O Status Mfg", "cipm.axisiostatusmfg", FT_UINT32, BASE_HEX, NULL, 0, "Axis I/O Status, Manufacturer Specific", HFILL} }, { &hf_cip_axis_safety_status, { "Axis Safety Status", "cipm.safetystatus", FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL} }, { &hf_cip_axis_safety_status_mfg, { "Axis Safety Status Mfg", "cipm.safetystatusmfg", FT_UINT32, BASE_HEX, NULL, 0, "Axis Safety Status, Manufacturer Specific", HFILL} }, { &hf_cip_axis_safety_state, { "Axis Safety State", "cipm.safetystate", FT_UINT8, BASE_HEX, NULL, 0, "Axis Safety Sate", HFILL} }, { &hf_cip_drive_safety_status, { "Drive Safety Status", "cipm.drivesafetystatus", FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL} }, { &hf_cip_sts_flt, { "Axis Fault Codes", "cipm.sts.flt", FT_BOOLEAN, 8, TFS(&tfs_true_false), STATUS_DATA_SET_AXIS_FAULT, "Status Data Set: Axis Fault Codes", HFILL} }, { &hf_cip_sts_alrm, { "Axis Alarm Codes", "cipm.sts.alarm", FT_BOOLEAN, 8, TFS(&tfs_true_false), STATUS_DATA_SET_AXIS_ALARM, "Status Data Set: Axis Alarm Codes", HFILL} }, { &hf_cip_sts_sts, { "Axis Status", "cipm.sts.sts", FT_BOOLEAN, 8, TFS(&tfs_true_false), STATUS_DATA_SET_AXIS_STATUS, "Status Data Set: Axis Status", HFILL} }, { &hf_cip_sts_iosts, { "Axis I/O Status", "cipm.sts.iosts", FT_BOOLEAN, 8, TFS(&tfs_true_false), STATUS_DATA_SET_AXIS_IO_STATUS, "Status Data Set: Axis I/O Status", HFILL} }, { &hf_cip_sts_axis_safety, { "Axis Safety Status", "cipm.sts.safety", FT_BOOLEAN, 8, TFS(&tfs_true_false), STATUS_DATA_SET_AXIS_SAFETY, "Status Data Set: Axis Safety Status", HFILL} }, { &hf_cip_sts_drive_safety, { "Drive Safety Status", "cipm.sts.safety", FT_BOOLEAN, 8, TFS(&tfs_true_false), STATUS_DATA_SET_DRIVE_SAFETY, "Status Data Set: Drive Safety Status", HFILL} }, { &hf_cip_intrp, { "Interpolation Control", "cipm.intrp", FT_UINT8, BASE_DEC, VALS(cip_interpolation_vals), COMMAND_CONTROL_TARGET_UPDATE, "Cyclic Data Block: Interpolation Control", HFILL} }, { &hf_cip_position_data_type, { "Position Data Type", "cipm.posdatatype", FT_UINT8, BASE_DEC, VALS(cip_pos_data_type_vals), COMMAND_CONTROL_POSITION_DATA_TYPE, "Cyclic Data Block: Position Data Type", HFILL } }, { &hf_cip_axis_state, { "Axis State", "cipm.axste", FT_UINT8, BASE_DEC, VALS(cip_axis_state_vals), 0, "Cyclic Data Block: Axis State", HFILL} }, { &hf_cip_command_control, { "Command Control", "cipm.cmdcontrol", FT_UINT8, BASE_DEC, NULL, 0, "Cyclic Data Block: Command Control", HFILL } }, { &hf_cip_cyclic_wrt_data, { "Write Data", "cipm.writedata", FT_BYTES, BASE_NONE, NULL, 0, "Cyclic Write: Data", HFILL } }, { &hf_cip_cyclic_rd_data, { "Read Data", "cipm.readdata", FT_BYTES, BASE_NONE, NULL, 0, "Cyclic Read: Data", HFILL } }, { &hf_cip_cyclic_write_blk, { "Write Block", "cipm.writeblk", FT_UINT8, BASE_DEC, NULL, 0, "Cyclic Data Block: Write Block Id", HFILL } }, { &hf_cip_cyclic_read_blk, { "Read Block", "cipm.readblk", FT_UINT8, BASE_DEC, NULL, 0, "Cyclic Data Block: Read Block Id", HFILL} }, { &hf_cip_cyclic_write_sts, { "Write Status", "cipm.writests", FT_UINT8, BASE_DEC, NULL, 0, "Cyclic Data Block: Write Status", HFILL } }, { &hf_cip_cyclic_read_sts, { "Read Status", "cipm.readsts", FT_UINT8, BASE_DEC, NULL, 0, "Cyclic Data Block: Read Status", HFILL } }, { &hf_cip_event_checking, { "Event Control", "cipm.evntchkcontrol", FT_UINT32, BASE_HEX, NULL, 0, "Event Channel: Event Checking Control", HFILL} }, { &hf_cip_event_ack, { "Event Acknowledgement", "cipm.evntack", FT_UINT8, BASE_DEC, NULL, 0, "Event Channel: Event Acknowledgement", HFILL} }, { &hf_cip_event_status, { "Event Status", "cipm.evntchkstatus", FT_UINT32, BASE_HEX, NULL, 0, "Event Channel: Event Checking Status", HFILL} }, { &hf_cip_event_id, { "Event Id", "cipm.evntack", FT_UINT8, BASE_DEC, NULL, 0, "Event Channel: Event Id", HFILL } }, { &hf_cip_event_pos, { "Event Position", "cipm.evntpos", FT_INT32, BASE_DEC, NULL, 0, "Event Channel: Event Position", HFILL} }, { &hf_cip_event_ts, { "Event Time Stamp", "cipm.evntimestamp", FT_UINT64, BASE_DEC, NULL, 0, "Event Channel: Time Stamp", HFILL} }, { &hf_cip_evnt_ctrl_reg1_pos, { "Reg 1 Pos Edge", "cipm.evnt.ctrl.reg1posedge", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000001, "Event Checking Control: Reg 1 Pos Edge", HFILL} }, { &hf_cip_evnt_ctrl_reg1_neg, { "Reg 1 Neg Edge", "cipm.evnt.ctrl.reg1negedge", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000002, "Event Checking Control: Reg 1 Neg Edge", HFILL} }, { &hf_cip_evnt_ctrl_reg2_pos, { "Reg 2 Pos Edge", "cipm.evnt.ctrl.reg2posedge", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000004, "Event Checking Control: Reg 2 Pos Edge", HFILL} }, { &hf_cip_evnt_ctrl_reg2_neg, { "Reg 2 Neg Edge", "cipm.evnt.ctrl.reg2negedge", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000008, "Event Checking Control: Reg 2 Neg Edge", HFILL} }, { &hf_cip_evnt_ctrl_reg1_posrearm, { "Reg 1 Pos Rearm", "cipm.evnt.ctrl.reg1posrearm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000100, "Event Checking Control: Reg 1 Pos Rearm", HFILL} }, { &hf_cip_evnt_ctrl_reg1_negrearm, { "Reg 1 Neg Rearm", "cipm.evnt.ctrl.reg1negrearm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000200, "Event Checking Control: Reg 1 Neg Rearm", HFILL} }, { &hf_cip_evnt_ctrl_reg2_posrearm, { "Reg 2 Pos Rearm", "cipm.evnt.ctrl.reg2posrearm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000400, "Event Checking Control: Reg 2 Pos Rearm", HFILL} }, { &hf_cip_evnt_ctrl_reg2_negrearm, { "Reg 2 Neg Rearm", "cipm.evnt.ctrl.reg2negrearm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000800, "Event Checking Control: Reg 2 Neg Rearm", HFILL} }, { &hf_cip_evnt_ctrl_marker_pos, { "Marker Pos Edge", "cipm.evnt.ctrl.mrkrpos", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00010000, "Event Checking Control: Marker Pos Edge", HFILL} }, { &hf_cip_evnt_ctrl_marker_neg, { "Marker Neg Edge", "cipm.evnt.ctrl.mrkrneg", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00020000, "Event Checking Control: Marker Neg Edge", HFILL} }, { &hf_cip_evnt_ctrl_home_pos, { "Home Pos Edge", "cipm.evnt.ctrl.homepos", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00040000, "Event Checking Control: Home Pos Edge", HFILL} }, { &hf_cip_evnt_ctrl_home_neg, { "Home Neg Edge", "cipm.evnt.ctrl.homeneg", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00080000, "Event Checking Control: Home Neg Edge", HFILL} }, { &hf_cip_evnt_ctrl_home_pp, { "Home-Switch-Marker Plus Plus", "cipm.evnt.ctrl.homepp", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00100000, "Event Checking Control: Home-Switch-Marker Plus Plus", HFILL} }, { &hf_cip_evnt_ctrl_home_pm, { "Home-Switch-Marker Plus Minus", "cipm.evnt.ctrl.homepm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00200000, "Event Checking Control: Home-Switch-Marker Plus Minus", HFILL} }, { &hf_cip_evnt_ctrl_home_mp, { "Home-Switch-Marker Minus Plus", "cipm.evnt.ctrl.homemp", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00400000, "Event Checking Control: Home-Switch-Marker Minus Plus", HFILL} }, { &hf_cip_evnt_ctrl_home_mm, { "Home-Switch-Marker Minus Minus", "cipm.evnt.ctrl.homemm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00800000, "Event Checking Control: Home-Switch-Marker Minus Minus", HFILL} }, { &hf_cip_evnt_ctrl_acks, { "Event Acknowledge Blocks", "cipm.evnt.ctrl.acks", FT_UINT32, BASE_DEC, NULL, 0x70000000, "Event Checking Control: Event Acknowledge Blocks", HFILL} }, { &hf_cip_evnt_extend_format, { "Extended Event Format", "cipm.evnt.extend", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x80000000, "Event Checking Control: Extended Event Format", HFILL} }, { &hf_cip_evnt_sts_reg1_pos, { "Reg 1 Pos Edge", "cipm.evnt.sts.reg1posedge", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000001, "Event Checking Status: Reg 1 Pos Edge", HFILL} }, { &hf_cip_evnt_sts_reg1_neg, { "Reg 1 Neg Edge", "cipm.evnt.sts.reg1negedge", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000002, "Event Checking Status: Reg 1 Neg Edge", HFILL } }, { &hf_cip_evnt_sts_reg2_pos, { "Reg 2 Pos Edge", "cipm.evnt.sts.reg2posedge", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000004, "Event Checking Status: Reg 2 Pos Edge", HFILL} }, { &hf_cip_evnt_sts_reg2_neg, { "Reg 2 Neg Edge", "cipm.evnt.sts.reg2negedge", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000008, "Event Checking Status: Reg 2 Neg Edge", HFILL} }, { &hf_cip_evnt_sts_reg1_posrearm, { "Reg 1 Pos Rearm", "cipm.evnt.sts.reg1posrearm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000100, "Event Checking Status: Reg 1 Pos Rearm", HFILL} }, { &hf_cip_evnt_sts_reg1_negrearm, { "Reg 1 Neg Rearm", "cipm.evnt.sts.reg1negrearm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000200, "Event Checking Status: Reg 1 Neg Rearm", HFILL} }, { &hf_cip_evnt_sts_reg2_posrearm, { "Reg 2 Pos Rearm", "cipm.evnt.sts.reg2posrearm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000400, "Event Checking Status: Reg 2 Pos Rearm", HFILL} }, { &hf_cip_evnt_sts_reg2_negrearm, { "Reg 2 Neg Rearm", "cipm.evnt.sts.reg2negrearm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000800, "Event Checking Status: Reg 2 Neg Rearm", HFILL} }, { &hf_cip_evnt_sts_marker_pos, { "Marker Pos Edge", "cipm.evnt.sts.mrkrpos", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00010000, "Event Checking Status: Marker Pos Edge", HFILL} }, { &hf_cip_evnt_sts_marker_neg, { "Marker Neg Edge", "cipm.evnt.sts.mrkrneg", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00020000, "Event Checking Status: Marker Neg Edge", HFILL } }, { &hf_cip_evnt_sts_home_pos, { "Home Pos Edge", "cipm.evnt.sts.homepos", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00040000, "Event Checking Status: Home Pos Edge", HFILL} }, { &hf_cip_evnt_sts_home_neg, { "Home Neg Edge", "cipm.evnt.sts.homeneg", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00080000, "Event Checking Status: Home Neg Edge", HFILL } }, { &hf_cip_evnt_sts_home_pp, { "Home-Switch-Marker Plus Plus", "cipm.evnt.sts.homepp", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00100000, "Event Checking Status: Home-Switch-Marker Plus Plus", HFILL} }, { &hf_cip_evnt_sts_home_pm, { "Home-Switch-Marker Plus Minus", "cipm.evnt.sts.homepm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00200000, "Event Checking Status: Home-Switch-Marker Plus Minus", HFILL} }, { &hf_cip_evnt_sts_home_mp, { "Home-Switch-Marker Minus Plus", "cipm.evnt.sts.homemp", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00400000, "Event Checking Status: Home-Switch-Marker Minus Plus", HFILL} }, { &hf_cip_evnt_sts_home_mm, { "Home-Switch-Marker Minus Minus", "cipm.evnt.sts.homemm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00800000, "Event Checking Status: Home-Switch-Marker Minus Minus", HFILL} }, { &hf_cip_evnt_sts_nfs, { "Event Notification Blocks", "cipm.evnt.sts.nfs", FT_UINT32, BASE_DEC, NULL, 0x70000000, "Event Checking Status: Event Notification Blocks", HFILL} }, { &hf_cip_evnt_sts_stat, { "Event Status", "cipm.evnt.stat", FT_UINT8, BASE_DEC|BASE_EXT_STRING, &cip_gs_vals_ext, 0, "Event Data Block: Event Status", HFILL } }, { &hf_cip_evnt_type, { "Event Type", "cipm.evnt.type", FT_UINT8, BASE_DEC, VALS(cip_event_type_vals), 0, "Event Data Block: Event Type", HFILL} }, { &hf_cip_svc_code, { "Service Code", "cipm.svc.code", FT_UINT8, BASE_HEX, VALS(cip_sc_vals), 0, "Service Data Block: Service Code", HFILL} }, { &hf_cip_svc_sts, { "General Status", "cipm.svc.sts", FT_UINT8, BASE_DEC|BASE_EXT_STRING, &cip_gs_vals_ext, 0, "Service Data Block: General Status", HFILL } }, { &hf_cip_svc_transction, { "Transaction Id", "cipm.svc.tranid", FT_UINT8, BASE_DEC, NULL, 0, "Service Data Block: Transaction Id", HFILL } }, { &hf_cip_svc_ext_status, { "Extended Status", "cipm.svc.extstatus", FT_UINT8, BASE_DEC, NULL, 0, "Service Data Block: Extended Status", HFILL } }, { &hf_cip_svc_data, { "Service Data", "cipm.svc.data", FT_BYTES, BASE_NONE, NULL, 0, "Service Data Block: Data", HFILL } }, { &hf_cip_attribute_data, { "Attribute Data", "cipm.attrdata", FT_BYTES, BASE_NONE, NULL, 0, "Attribute Service: Data", HFILL } }, { &hf_cip_ptp_grandmaster, { "Grandmaster", "cipm.grandmaster", FT_UINT64, BASE_HEX, NULL, 0, "Group Sync: Grandmaster Id", HFILL} }, { &hf_cip_svc_get_axis_attr_sts, { "Attribute Status", "cipm.getaxisattr.sts", FT_UINT8, BASE_DEC|BASE_EXT_STRING, &cip_gs_vals_ext, 0, "Service Channel: Get Axis Attribute List Response Status", HFILL } }, { &hf_get_axis_attr_list_attribute_cnt, { "Number of attributes", "cipm.getaxisattr.cnt", FT_UINT16, BASE_DEC, NULL, 0, "Service Channel: Get Axis Attribute List Attribute Count", HFILL} }, { &hf_get_axis_attr_list_attribute_id, { "Attribute ID", "cipm.getaxisattr.id", FT_UINT16, BASE_DEC, NULL, 0, "Service Channel: Get Axis Attribute List Attribute ID", HFILL} }, { &hf_get_axis_attr_list_dimension, { "Dimension", "cipm.getaxisattr.dimension", FT_UINT8, BASE_DEC, NULL, 0, "Service Channel: Get Axis Attribute List Dimension", HFILL} }, { &hf_get_axis_attr_list_element_size, { "Element size", "cipm.getaxisattr.element_size", FT_UINT8, BASE_DEC, NULL, 0, "Service Channel: Get Axis Attribute List Element Size", HFILL} }, { &hf_get_axis_attr_list_start_index, { "Start index", "cipm.getaxisattr.start_index", FT_UINT16, BASE_DEC, NULL, 0, "Service Channel: Get Axis Attribute List Start index", HFILL} }, { &hf_get_axis_attr_list_data_elements, { "Data elements", "cipm.getaxisattr.data_elements", FT_UINT16, BASE_DEC, NULL, 0, "Service Channel: Get Axis Attribute List Data elements", HFILL} }, { &hf_cip_svc_set_axis_attr_sts, { "Attribute Status", "cipm.setaxisattr.sts", FT_UINT8, BASE_DEC|BASE_EXT_STRING, &cip_gs_vals_ext, 0, "Service Channel: Set Axis Attribute List Response Status", HFILL } }, { &hf_set_axis_attr_list_attribute_cnt, { "Number of attributes", "cipm.setaxisattr.cnt", FT_UINT16, BASE_DEC, NULL, 0, "Service Channel: Set Axis Attribute List Attribute Count", HFILL} }, { &hf_set_axis_attr_list_attribute_id, { "Attribute ID", "cipm.setaxisattr.id", FT_UINT16, BASE_DEC, NULL, 0, "Service Channel: Set Axis Attribute List Attribute ID", HFILL} }, { &hf_set_axis_attr_list_dimension, { "Dimension", "cipm.setaxisattr.dimension", FT_UINT8, BASE_DEC, NULL, 0, "Service Channel: Set Axis Attribute List Dimension", HFILL} }, { &hf_set_axis_attr_list_element_size, { "Element size", "cipm.setaxisattr.element_size", FT_UINT8, BASE_DEC, NULL, 0, "Service Channel: Set Axis Attribute List Element Size", HFILL} }, { &hf_set_axis_attr_list_start_index, { "Start index", "cipm.setaxisattr.start_index", FT_UINT16, BASE_DEC, NULL, 0, "Service Channel: Set Axis Attribute List Start index", HFILL} }, { &hf_set_axis_attr_list_data_elements, { "Data elements", "cipm.setaxisattr.data_elements", FT_UINT16, BASE_DEC, NULL, 0, "Service Channel: Set Axis Attribute List Data elements", HFILL} }, { &hf_var_devce_instance, { "Instance Number", "cipm.var_devce.header.instance", FT_UINT8, BASE_DEC, NULL, 0, "Variable Device Header: Instance Number", HFILL} }, { &hf_var_devce_instance_block_size, { "Instance Block Size", "cipm.var_devce.header.instance_block_size", FT_UINT8, BASE_DEC|BASE_UNIT_STRING, &units_word_words, 0, "Variable Device Header: Instance Block Size", HFILL} }, { &hf_var_devce_cyclic_block_size, { "Cyclic Block Size", "cipm.var_devce.header.cyclic_block_size", FT_UINT8, BASE_DEC|BASE_UNIT_STRING, &units_word_words, 0, "Variable Device Header: Cyclic Block Size", HFILL} }, { &hf_var_devce_cyclic_data_block_size, { "Cyclic Data Block Size", "cipm.var_devce.header.cyclic_data_block_size", FT_UINT8, BASE_DEC|BASE_UNIT_STRING, &units_word_words, 0, "Variable Device Header: Cyclic Data Block Size", HFILL} }, { &hf_var_devce_cyclic_rw_block_size, { "Cyclic Read/Write Block Size", "cipm.var_devce.header.cyclic_rw_block_size", FT_UINT8, BASE_DEC|BASE_UNIT_STRING, &units_word_words, 0, "Variable Device Header: Cyclic Read/Write Block Size", HFILL} }, { &hf_var_devce_event_block_size, { "Event Block Size", "cipm.var_devce.header.event_block_size", FT_UINT8, BASE_DEC|BASE_UNIT_STRING, &units_word_words, 0, "Variable Device Header: Event Block Size", HFILL} }, { &hf_var_devce_service_block_size, { "Service Block Size", "cipm.var_devce.header.service_block_size", FT_UINT8, BASE_DEC|BASE_UNIT_STRING, &units_word_words, 0, "Variable Device Header: Service Block Size", HFILL} }, { &hf_cip_axis_alarm, { "Axis Alarm Code", "cipm.alarm.code", FT_UINT8, BASE_DEC, NULL, 0, "Status Data Set: Alarm Code", HFILL } }, { &hf_cip_axis_sts_local_ctrl, { "Local Control", "cipm.axis.local", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000001, "Axis Status Data Set: Local Control", HFILL } }, { &hf_cip_axis_sts_alarm, { "Alarm", "cipm.axis.alarm", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000002, "Axis Status Data Set: Alarm", HFILL } }, { &hf_cip_axis_sts_dc_bus, { "DC Bus", "cipm.axis.bus", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000004, "Axis Status Data Set: DC Bus", HFILL } }, { &hf_cip_axis_sts_pwr_struct, { "Power Struct", "cipm.axis.pwr", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000008, "Axis Status Data Set: Power Struct", HFILL } }, { &hf_cip_axis_sts_tracking, { "Tracking", "cipm.axis.track", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000020, "Axis Status Data Set: Tracking", HFILL } }, { &hf_cip_axis_sts_pos_lock, { "Pos Lock", "cipm.axis.poslock", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000040, "Axis Status Data Set: Pos Lock", HFILL } }, { &hf_cip_axis_sts_vel_lock, { "Vel Lock", "cipm.axis.vellock", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000080, "Axis Status Data Set: Vel Lock", HFILL } }, { &hf_cip_axis_sts_vel_standstill, { "Standstill", "cipm.axis.nomo", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000100, "Axis Status Data Set: Standstill", HFILL } }, { &hf_cip_axis_sts_vel_threshold, { "Vel Threshold", "cipm.axis.vthresh", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000200, "Axis Status Data Set: Vel Threshold", HFILL } }, { &hf_cip_axis_sts_vel_limit, { "Vel Limit", "cipm.axis.vlim", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000400, "Axis Status Data Set: Vel Limit", HFILL } }, { &hf_cip_axis_sts_acc_limit, { "Acc Limit", "cipm.axis.alim", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000800, "Axis Status Data Set: Acc Limit", HFILL } }, { &hf_cip_axis_sts_dec_limit, { "Dec Limit", "cipm.axis.dlim", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00001000, "Axis Status Data Set: Dec Limit", HFILL } }, { &hf_cip_axis_sts_torque_threshold, { "Torque Threshold", "cipm.axis.tthresh", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00002000, "Axis Status Data Set: Torque Threshold", HFILL } }, { &hf_cip_axis_sts_torque_limit, { "Torque Limit", "cipm.axis.tlim", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00004000, "Axis Status Data Set: Torque Limit", HFILL } }, { &hf_cip_axis_sts_cur_limit, { "Current Limit", "cipm.axis.ilim", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00008000, "Axis Status Data Set: Current Limit", HFILL } }, { &hf_cip_axis_sts_therm_limit, { "Thermal Limit", "cipm.axis.hot", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00010000, "Axis Status Data Set: Thermal Limit", HFILL } }, { &hf_cip_axis_sts_feedback_integ, { "Feedback Integrity", "cipm.axis.fgood", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00020000, "Axis Status Data Set: Feedback Integrity", HFILL } }, { &hf_cip_axis_sts_shutdown, { "Shutdown", "cipm.axis.sdwn", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00040000, "Axis Status Data Set: Shutdown", HFILL } }, { &hf_cip_axis_sts_in_process, { "In Process", "cipm.axis.inp", FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00080000, "Axis Status Data Set: In Process", HFILL } }, { &hf_cip_act_pos, { "Actual Position", "cipm.actpos", FT_INT32, BASE_DEC, NULL, 0, "Cyclic Data Set: Actual Position", HFILL } }, { &hf_cip_act_vel, { "Actual Velocity", "cipm.actvel", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Actual Velocity", HFILL } }, { &hf_cip_act_accel, { "Actual Acceleration", "cipm.actaccel", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Actual Acceleration", HFILL } }, { &hf_cip_act_trq, { "Actual Torque", "cipm.acttrq", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Actual Torque", HFILL } }, { &hf_cip_act_crnt, { "Actual Current", "cipm.actcrnt", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Actual Current", HFILL } }, { &hf_cip_act_volts, { "Actual Volts", "cipm.actvolts", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Actual Volts", HFILL } }, { &hf_cip_act_freq, { "Actual Frequency", "cipm.actfreq", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Actual Frequency", HFILL } }, { &hf_cip_pos_cmd, { "Position Command", "cipm.posfcmd", FT_DOUBLE, BASE_NONE, NULL, 0, "Cyclic Data Set: Position Command (LREAL)", HFILL } }, { &hf_cip_pos_cmd_int, { "Position Command", "cipm.posicmd", FT_INT32, BASE_DEC, NULL, 0, "Cyclic Data Set: Position Command (DINT)", HFILL } }, { &hf_cip_vel_cmd, { "Velocity Command", "cipm.velcmd", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Velocity Command", HFILL } }, { &hf_cip_accel_cmd, { "Acceleration Command", "cipm.accelcmd", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Acceleration Command", HFILL } }, { &hf_cip_trq_cmd, { "Torque Command", "cipm.torquecmd", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Torque Command", HFILL } }, { &hf_cip_pos_trim, { "Position Trim", "cipm.postrim", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Position Trim", HFILL } }, { &hf_cip_vel_trim, { "Velocity Trim", "cipm.veltrim", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Velocity Trim", HFILL } }, { &hf_cip_accel_trim, { "Acceleration Trim", "cipm.acceltrim", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Acceleration Trim", HFILL } }, { &hf_cip_trq_trim, { "Torque Trim", "cipm.trqtrim", FT_FLOAT, BASE_NONE, NULL, 0, "Cyclic Data Set: Torque Trim", HFILL } }, { &hf_cip_data, { "Data", "cipm.data", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL } } }; /* Setup protocol subtree array, these will help Wireshark remember * if the subtree should be expanded as the user moves through packets */ static gint *cip_subtree[] = { &ett_cipmotion, &ett_cont_dev_header, &ett_node_control, &ett_node_status, &ett_time_data_set, &ett_inst_data_header, &ett_cyclic_data_block, &ett_control_mode, &ett_feedback_config, &ett_command_data_set, &ett_actual_data_set, &ett_status_data_set, &ett_interp_control, &ett_cyclic_rd_wt, &ett_event, &ett_event_check_ctrl, &ett_event_check_sts, &ett_service, &ett_get_axis_attribute, &ett_set_axis_attribute, &ett_get_axis_attr_list, &ett_set_axis_attr_list, &ett_group_sync, &ett_axis_status_set, &ett_command_control }; /* Create a CIP Motion protocol handle */ proto_cipmotion = proto_register_protocol( "Common Industrial Protocol, Motion", /* Full name of protocol */ "CIP Motion", /* Short name of protocol */ "cipm"); /* Abbreviated name of protocol */ ; /* Register the header fields with the protocol */ proto_register_field_array(proto_cipmotion, hf, array_length(hf)); /* Register the subtrees for the protocol dissection */ proto_register_subtree_array(cip_subtree, array_length(cip_subtree)); cipmotion_handle = register_dissector("cipmotion", dissect_cipmotion, proto_cipmotion); } void proto_reg_handoff_cipmotion(void) { dissector_add_for_decode_as("enip.io", cipmotion_handle); } /* * Editor modelines - http://www.wireshark.org/tools/modelines.html * * Local variables: * c-basic-offset: 3 * tab-width: 8 * indent-tabs-mode: nil * End: * * ex: set shiftwidth=3 tabstop=8 expandtab: * :indentSize=3:tabSize=8:noTabs=true: */