/* addr_resolv.c * Routines for network object lookup * * $Id$ * * Laurent Deniel * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include #include #include /* * Win32 doesn't have SIGALRM (and it's the OS where name lookup calls * are most likely to take a long time, given the way address-to-name * lookups are done over NBNS). * * Mac OS X does have SIGALRM, but if you longjmp() out of a name resolution * call in a signal handler, you might crash, because the state of the * resolution code that sends messages to lookupd might be inconsistent * if you jump out of it in middle of a call. * * In at least some Linux distributions (e.g., RedHat Linux 9), if ADNS * is used, we appear to hang in host_name_lookup6() in a gethostbyaddr() * call (and possibly in other gethostbyaddr() calls), because there's * a mutex lock held in gethostbyaddr() and it doesn't get released * if we longjmp out of it. * * There's no guarantee that longjmp()ing out of name resolution calls * will work on *any* platform; OpenBSD got rid of the alarm/longjmp * code in tcpdump, to avoid those sorts of problems, and that was * picked up by tcpdump.org tcpdump. * * So, for now, we do not define AVOID_DNS_TIMEOUT. If we get a * significantly more complaints about lookups taking a long time, * we can reconsider that decision. (Note that tcpdump originally * added that for the benefit of systems using NIS to look up host * names; that might now be fixed in NIS implementations, for those * sites still using NIS rather than DNS for that....) */ #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_NETINET_IN_H # include #endif #ifdef HAVE_NETDB_H #include #endif #ifdef HAVE_ARPA_INET_H #include #endif #include #ifdef HAVE_SYS_SOCKET_H #include /* needed to define AF_ values on UNIX */ #endif #ifdef HAVE_WINSOCK2_H #include /* needed to define AF_ values on Windows */ #endif #ifdef NEED_INET_ATON_H # include "wsutil/inet_aton.h" #endif #ifdef NEED_INET_V6DEFS_H # include "wsutil/inet_v6defs.h" #endif #if defined(_WIN32) && defined(INET6) # include #endif #ifdef HAVE_C_ARES # if defined(_WIN32) && !defined(INET6) # define socklen_t unsigned int # endif # include # include #else # ifdef HAVE_GNU_ADNS # include # include # if defined(inet_aton) && defined(_WIN32) # undef inet_aton # endif # endif /* HAVE_GNU_ADNS */ #endif /* HAVE_C_ARES */ #include #include "report_err.h" #include "packet.h" #include "ipv6-utils.h" #include "addr_resolv.h" #include "filesystem.h" #include #include #include #include #define ENAME_HOSTS "hosts" #define ENAME_SUBNETS "subnets" #define ENAME_ETHERS "ethers" #define ENAME_IPXNETS "ipxnets" #define ENAME_MANUF "manuf" #define ENAME_SERVICES "services" #define HASHETHSIZE 2048 #define HASHHOSTSIZE 2048 #define HASHIPXNETSIZE 256 #define HASHMANUFSIZE 256 #define HASHPORTSIZE 256 #define SUBNETLENGTHSIZE 32 /*1-32 inc.*/ /* hash table used for IPv4 lookup */ #define HASH_IPV4_ADDRESS(addr) (g_htonl(addr) & (HASHHOSTSIZE - 1)) /* * XXX Some of this is duplicated in addrinfo_list. We may want to replace the * addr and name parts with a struct addrinfo or create our own addrinfo-like * struct that simply points to the data below. */ typedef struct hashipv4 { guint addr; gboolean is_dummy_entry; /* name is IPv4 address in dot format */ gboolean resolve; /* already tried to resolve it */ struct hashipv4 *next; gchar ip[16]; gchar name[MAXNAMELEN]; } hashipv4_t; /* hash table used for IPv6 lookup */ #define HASH_IPV6_ADDRESS(addr) \ ((((addr).bytes[14] << 8)|((addr).bytes[15])) & (HASHHOSTSIZE - 1)) typedef struct hashipv6 { struct e_in6_addr addr; gboolean is_dummy_entry; /* name is IPv6 address in colon format */ gboolean resolve; /* */ struct hashipv6 *next; gchar ip6[MAX_IP6_STR_LEN]; /* XX */ gchar name[MAXNAMELEN]; } hashipv6_t; /* Array of entries of subnets of different lengths */ typedef struct { gsize mask_length; /*1-32*/ guint32 mask; /* e.g. 255.255.255.*/ hashipv4_t** subnet_addresses; /* Hash table of subnet addresses */ } subnet_length_entry_t; /* hash table used for TCP/UDP/SCTP port lookup */ #define HASH_PORT(port) ((port) & (HASHPORTSIZE - 1)) typedef struct hashport { guint16 port; struct hashport *next; gchar name[MAXNAMELEN]; } hashport_t; /* hash table used for IPX network lookup */ /* XXX - check goodness of hash function */ #define HASH_IPX_NET(net) ((net) & (HASHIPXNETSIZE - 1)) typedef struct hashipxnet { guint addr; struct hashipxnet *next; gchar name[MAXNAMELEN]; } hashipxnet_t; /* hash tables used for ethernet and manufacturer lookup */ #define HASH_ETH_ADDRESS(addr) \ (((((addr)[2] << 8) | (addr)[3]) ^ (((addr)[4] << 8) | (addr)[5])) & \ (HASHETHSIZE - 1)) #define HASH_ETH_MANUF(addr) (((int)(addr)[2]) & (HASHMANUFSIZE - 1)) typedef struct hashmanuf { struct hashmanuf *next; guint8 addr[3]; char *name; } hashmanuf_t; #define HASHETHER_STATUS_UNRESOLVED 1 #define HASHETHER_STATUS_RESOLVED_DUMMY 2 #define HASHETHER_STATUS_RESOLVED_NAME 3 typedef struct hashether { struct hashether *next; guint status; /* (See above) */ guint8 addr[6]; char hexaddr[6*3]; char resolved_name[MAXNAMELEN]; } hashether_t; typedef struct hashwka { struct hashwka *next; guint8 addr[6]; char name[MAXNAMELEN]; } hashwka_t; /* internal ethernet type */ typedef struct _ether { guint8 addr[6]; char name[MAXNAMELEN]; } ether_t; /* internal ipxnet type */ typedef struct _ipxnet { guint addr; char name[MAXNAMELEN]; } ipxnet_t; static hashipv4_t *ipv4_table[HASHHOSTSIZE]; static hashipv6_t *ipv6_table[HASHHOSTSIZE]; static hashport_t **cb_port_table; static gchar *cb_service; static hashport_t *udp_port_table[HASHPORTSIZE]; static hashport_t *tcp_port_table[HASHPORTSIZE]; static hashport_t *sctp_port_table[HASHPORTSIZE]; static hashport_t *dccp_port_table[HASHPORTSIZE]; static hashether_t *eth_table[HASHETHSIZE]; static hashmanuf_t *manuf_table[HASHMANUFSIZE]; static hashwka_t *(*wka_table[48])[HASHETHSIZE]; static hashipxnet_t *ipxnet_table[HASHIPXNETSIZE]; static subnet_length_entry_t subnet_length_entries[SUBNETLENGTHSIZE]; /* Ordered array of entries */ static gboolean have_subnet_entry = FALSE; static gboolean eth_resolution_initialized = FALSE; static int ipxnet_resolution_initialized = 0; static int service_resolution_initialized = 0; static gboolean new_resolved_objects = FALSE; static struct addrinfo *addrinfo_list = NULL; /* IPv4 and IPv6 */ static struct addrinfo *addrinfo_list_last = NULL; static hashether_t *add_eth_name(const guint8 *addr, const gchar *name); static void add_serv_port_cb(const guint32 port); /* * Flag controlling what names to resolve. */ guint32 gbl_resolv_flags; /* * Global variables (can be changed in GUI sections) * XXX - they could be changed in GUI code, but there's currently no * GUI code to change them. */ gchar *g_ethers_path = NULL; /* global ethers file */ gchar *g_pethers_path = NULL; /* personal ethers file */ gchar *g_ipxnets_path = NULL; /* global ipxnets file */ gchar *g_pipxnets_path = NULL; /* personal ipxnets file */ gchar *g_services_path = NULL; /* global services file */ gchar *g_pservices_path = NULL; /* personal services file */ /* first resolving call */ /* c-ares */ #ifdef HAVE_C_ARES /* * Submitted queries trigger a callback (c_ares_ghba_cb()). * Queries are added to c_ares_queue_head. During processing, queries are * popped off the front of c_ares_queue_head and submitted using * ares_gethostbyaddr(). * The callback processes the response, then frees the request. */ #define ASYNC_DNS typedef struct _async_dns_queue_msg { union { guint32 ip4; struct e_in6_addr ip6; } addr; int family; } async_dns_queue_msg_t; typedef struct _async_hostent { int addr_size; int copied; void *addrp; } async_hostent_t; #if ( ( ARES_VERSION_MAJOR < 1 ) \ || ( 1 == ARES_VERSION_MAJOR && ARES_VERSION_MINOR < 5 ) ) static void c_ares_ghba_cb(void *arg, int status, struct hostent *hostent); #else static void c_ares_ghba_cb(void *arg, int status, int timeouts _U_, struct hostent *hostent); #endif ares_channel ghba_chan; /* ares_gethostbyaddr -- Usually non-interactive, no timeout */ ares_channel ghbn_chan; /* ares_gethostbyname -- Usually interactive, timeout */ #else /* GNU ADNS */ #ifdef HAVE_GNU_ADNS #define ASYNC_DNS /* * Submitted queries have to be checked individually using adns_check(). * Queries are added to adns_queue_head. During processing, the list is * iterated twice: once to request queries up to the concurrency limit, * and once to check the status of each query. */ adns_state ads; typedef struct _async_dns_queue_msg { gboolean submitted; guint32 ip4_addr; int type; adns_query query; } async_dns_queue_msg_t; #endif /* HAVE_GNU_ADNS */ #endif /* HAVE_C_ARES */ #ifdef ASYNC_DNS static gboolean async_dns_initialized = FALSE; static int async_dns_in_flight = 0; static GList *async_dns_queue_head = NULL; /* push a dns request */ static void add_async_dns_ipv4(int type, guint32 addr) { async_dns_queue_msg_t *msg; msg = g_malloc(sizeof(async_dns_queue_msg_t)); #ifdef HAVE_C_ARES msg->family = type; msg->addr.ip4 = addr; #else msg->type = type; msg->ip4_addr = addr; msg->submitted = FALSE; #endif async_dns_queue_head = g_list_append(async_dns_queue_head, (gpointer) msg); } #endif typedef struct { guint32 mask; gsize mask_length; const gchar* name; /* Shallow copy */ } subnet_entry_t; /* * Miscellaneous functions */ static int fgetline(char **buf, int *size, FILE *fp) { int len; int c; if (fp == NULL || buf == NULL) return -1; if (*buf == NULL) { if (*size == 0) *size = BUFSIZ; *buf = g_malloc(*size); } g_assert(*buf); g_assert(*size > 0); if (feof(fp)) return -1; len = 0; while ((c = getc(fp)) != EOF && c != '\r' && c != '\n') { if (len+1 >= *size) { *buf = g_realloc(*buf, *size += BUFSIZ); } (*buf)[len++] = c; } if (len == 0 && c == EOF) return -1; (*buf)[len] = '\0'; return len; } /* fgetline */ /* * Local function definitions */ static subnet_entry_t subnet_lookup(const guint32 addr); static void subnet_entry_set(guint32 subnet_addr, const guint32 mask_length, const gchar* name); static void add_service_name(hashport_t **proto_table, const guint port, const char *service_name) { int hash_idx; hashport_t *tp; hash_idx = HASH_PORT(port); tp = proto_table[hash_idx]; if( tp == NULL ) { tp = proto_table[hash_idx] = (hashport_t *)g_malloc(sizeof(hashport_t)); } else { while(1) { if( tp->port == port ) { return; } if (tp->next == NULL) { tp->next = (hashport_t *)g_malloc(sizeof(hashport_t)); tp = tp->next; break; } tp = tp->next; } } /* fill in a new entry */ tp->port = port; tp->next = NULL; g_strlcpy(tp->name, service_name, MAXNAMELEN); new_resolved_objects = TRUE; } static void parse_service_line (char *line) { /* * See the services(4) or services(5) man page for services file format * (not available on all systems). */ gchar *cp; gchar *service; gchar *port; range_t *port_rng = NULL; guint32 max_port = MAX_UDP_PORT; if ((cp = strchr(line, '#'))) *cp = '\0'; if ((cp = strtok(line, " \t")) == NULL) return; service = cp; if ((cp = strtok(NULL, " \t")) == NULL) return; port = cp; if (strtok(cp, "/") == NULL) return; if ((cp = strtok(NULL, "/")) == NULL) return; /* seems we got all interesting things from the file */ if(strcmp(cp, "tcp") == 0) { max_port = MAX_TCP_PORT; cb_port_table = tcp_port_table; } else if(strcmp(cp, "udp") == 0) { max_port = MAX_UDP_PORT; cb_port_table = udp_port_table; } else if(strcmp(cp, "sctp") == 0) { max_port = MAX_SCTP_PORT; cb_port_table = sctp_port_table; } else if(strcmp(cp, "dccp") == 0) { max_port = MAX_DCCP_PORT; cb_port_table = dccp_port_table; } else { return; } if(CVT_NO_ERROR != range_convert_str(&port_rng, port, max_port) ) { /* some assertion here? */ return; } cb_service = service; range_foreach(port_rng, add_serv_port_cb); g_free (port_rng); } /* parse_service_line */ static void add_serv_port_cb(const guint32 port) { if ( port ) { add_service_name(cb_port_table, port, cb_service); } } static void parse_services_file(const char * path) { FILE *serv_p; static int size = 0; static char *buf = NULL; /* services hash table initialization */ serv_p = ws_fopen(path, "r"); if (serv_p == NULL) return; while (fgetline(&buf, &size, serv_p) >= 0) { parse_service_line (buf); } fclose(serv_p); } static void initialize_services(void) { /* the hash table won't ignore duplicates, so use the personal path first */ /* set personal services path */ if (g_pservices_path == NULL) g_pservices_path = get_persconffile_path(ENAME_SERVICES, FALSE, FALSE); parse_services_file(g_pservices_path); /* Compute the pathname of the services file. */ if (g_services_path == NULL) { g_services_path = get_datafile_path(ENAME_SERVICES); } parse_services_file(g_services_path); } /* initialize_services */ static gchar *serv_name_lookup(const guint port, const port_type proto) { int hash_idx; hashport_t *tp; hashport_t **table; const char *serv_proto = NULL; struct servent *servp; if (!service_resolution_initialized) { initialize_services(); service_resolution_initialized = 1; } switch(proto) { case PT_UDP: table = udp_port_table; serv_proto = "udp"; break; case PT_TCP: table = tcp_port_table; serv_proto = "tcp"; break; case PT_SCTP: table = sctp_port_table; serv_proto = "sctp"; break; case PT_DCCP: table = dccp_port_table; serv_proto = "dcp"; break; default: /* not yet implemented */ return NULL; /*NOTREACHED*/ } /* proto */ hash_idx = HASH_PORT(port); tp = table[hash_idx]; if( tp == NULL ) { tp = table[hash_idx] = (hashport_t *)g_malloc(sizeof(hashport_t)); } else { while(1) { if( tp->port == port ) { return tp->name; } if (tp->next == NULL) { tp->next = (hashport_t *)g_malloc(sizeof(hashport_t)); tp = tp->next; break; } tp = tp->next; } } /* fill in a new entry */ tp->port = port; tp->next = NULL; if (!(gbl_resolv_flags & RESOLV_TRANSPORT) || (servp = getservbyport(g_htons(port), serv_proto)) == NULL) { /* unknown port */ guint32_to_str_buf(port, tp->name, MAXNAMELEN); } else { g_strlcpy(tp->name, servp->s_name, MAXNAMELEN); } return (tp->name); } /* serv_name_lookup */ /* Fill in an IP4 structure with info from subnets file or just with the * string form of the address. */ static void fill_dummy_ip4(const guint addr, hashipv4_t* volatile tp) { subnet_entry_t subnet_entry; if (tp->is_dummy_entry) return; /* already done */ tp->is_dummy_entry = TRUE; /* Overwrite if we get async DNS reply */ /* Do we have a subnet for this address? */ subnet_entry = subnet_lookup(addr); if(0 != subnet_entry.mask) { /* Print name, then '.' then IP address after subnet mask */ guint32 host_addr; gchar buffer[MAX_IP_STR_LEN]; gchar* paddr; gsize i; host_addr = addr & (~(guint32)subnet_entry.mask); ip_to_str_buf((guint8 *)&host_addr, buffer, MAX_IP_STR_LEN); paddr = buffer; /* Skip to first octet that is not totally masked * If length of mask is 32, we chomp the whole address. * If the address string starts '.' (should not happen?), * we skip that '.'. */ i = subnet_entry.mask_length / 8; while(*(paddr) != '\0' && i > 0) { if(*(++paddr) == '.') { --i; } } /* There are more efficient ways to do this, but this is safe if we * trust g_snprintf and MAXNAMELEN */ g_snprintf(tp->name, MAXNAMELEN, "%s%s", subnet_entry.name, paddr); } else { ip_to_str_buf((const guint8 *)&addr, tp->name, MAXNAMELEN); } } #ifdef HAVE_C_ARES static void #if ( ( ARES_VERSION_MAJOR < 1 ) \ || ( 1 == ARES_VERSION_MAJOR && ARES_VERSION_MINOR < 5 ) ) c_ares_ghba_cb(void *arg, int status, struct hostent *he) { #else c_ares_ghba_cb(void *arg, int status, int timeouts _U_, struct hostent *he) { #endif async_dns_queue_msg_t *caqm = arg; char **p; if (!caqm) return; async_dns_in_flight--; if (status == ARES_SUCCESS) { for (p = he->h_addr_list; *p != NULL; p++) { switch(caqm->family) { case AF_INET: add_ipv4_name(caqm->addr.ip4, he->h_name); break; case AF_INET6: add_ipv6_name(&caqm->addr.ip6, he->h_name); break; default: /* Throw an exception? */ break; } } } g_free(caqm); } #endif /* HAVE_C_ARES */ /* --------------- */ static hashipv4_t * new_ipv4(const guint addr) { hashipv4_t *tp = g_malloc(sizeof(hashipv4_t)); tp->addr = addr; tp->next = NULL; tp->resolve = FALSE; tp->is_dummy_entry = FALSE; ip_to_str_buf((const guint8 *)&addr, tp->ip, sizeof(tp->ip)); return tp; } static hashipv4_t * host_lookup(const guint addr, const gboolean resolve, gboolean *found) { int hash_idx; hashipv4_t * volatile tp; struct hostent *hostp; *found = TRUE; hash_idx = HASH_IPV4_ADDRESS(addr); tp = ipv4_table[hash_idx]; if( tp == NULL ) { tp = ipv4_table[hash_idx] = new_ipv4(addr); } else { while(1) { if( tp->addr == addr ) { if (tp->is_dummy_entry && !tp->resolve) break; if (tp->is_dummy_entry) *found = FALSE; return tp; } if (tp->next == NULL) { tp->next = new_ipv4(addr); tp = tp->next; break; } tp = tp->next; } } if (resolve) { tp->resolve = TRUE; #ifdef ASYNC_DNS if ((gbl_resolv_flags & RESOLV_CONCURRENT) && prefs.name_resolve_concurrency > 0 && async_dns_initialized) { add_async_dns_ipv4(AF_INET, addr); /* XXX found is set to TRUE, which seems a bit odd, but I'm not * going to risk changing the semantics. */ fill_dummy_ip4(addr, tp); return tp; } #endif /* ASYNC_DNS */ /* * The Windows "gethostbyaddr()" insists on translating 0.0.0.0 to * the name of the host on which it's running; to work around that * botch, we don't try to translate an all-zero IP address to a host * name. */ if (addr != 0 && (gbl_resolv_flags & RESOLV_NETWORK)) { /* Use async DNS if possible, else fall back to timeouts, * else call gethostbyaddr and hope for the best */ hostp = gethostbyaddr((char *)&addr, 4, AF_INET); if (hostp != NULL) { g_strlcpy(tp->name, hostp->h_name, MAXNAMELEN); tp->is_dummy_entry = FALSE; return tp; } } /* unknown host or DNS timeout */ } *found = FALSE; fill_dummy_ip4(addr, tp); return tp; } /* host_name_lookup */ static gchar * host_name_lookup(const guint addr, gboolean *found) { hashipv4_t *tp; tp = host_lookup(addr, TRUE, found); return tp->name; } /* --------------- */ static hashipv6_t * new_ipv6(const struct e_in6_addr *addr) { hashipv6_t *tp = g_malloc(sizeof(hashipv6_t)); tp->addr = *addr; tp->next = NULL; tp->resolve = FALSE; tp->is_dummy_entry = FALSE; ip6_to_str_buf(addr, tp->ip6); return tp; } /* ------------------------------------ */ static hashipv6_t * host_lookup6(const struct e_in6_addr *addr, const gboolean resolve, gboolean *found) { int hash_idx; hashipv6_t * volatile tp; #ifdef INET6 #ifdef HAVE_C_ARES async_dns_queue_msg_t *caqm; #endif /* HAVE_C_ARES */ struct hostent *hostp; #endif /* INET6 */ *found = TRUE; hash_idx = HASH_IPV6_ADDRESS(*addr); tp = ipv6_table[hash_idx]; if( tp == NULL ) { tp = ipv6_table[hash_idx] = new_ipv6(addr); } else { while(1) { if( memcmp(&tp->addr, addr, sizeof (struct e_in6_addr)) == 0 ) { if (tp->is_dummy_entry && !tp->resolve) break; if (tp->is_dummy_entry) *found = FALSE; return tp; } if (tp->next == NULL) { tp->next = new_ipv6(addr); tp = tp->next; break; } tp = tp->next; } } if (resolve) { tp->resolve = TRUE; #ifdef INET6 #ifdef HAVE_C_ARES if ((gbl_resolv_flags & RESOLV_CONCURRENT) && prefs.name_resolve_concurrency > 0 && async_dns_initialized) { caqm = g_malloc(sizeof(async_dns_queue_msg_t)); caqm->family = AF_INET6; memcpy(&caqm->addr.ip6, addr, sizeof(caqm->addr.ip6)); async_dns_queue_head = g_list_append(async_dns_queue_head, (gpointer) caqm); /* XXX found is set to TRUE, which seems a bit odd, but I'm not * going to risk changing the semantics. */ if (!tp->is_dummy_entry) { g_strlcpy(tp->name, tp->ip6, MAXNAMELEN); ip6_to_str_buf(addr, tp->name); tp->is_dummy_entry = TRUE; } return tp; } #endif /* HAVE_C_ARES */ /* Quick hack to avoid DNS/YP timeout */ hostp = gethostbyaddr((char *)addr, sizeof(*addr), AF_INET6); if (hostp != NULL) { g_strlcpy(tp->name, hostp->h_name, MAXNAMELEN); tp->is_dummy_entry = FALSE; return tp; } #endif /* INET6 */ } /* unknown host or DNS timeout */ if (!tp->is_dummy_entry) { tp->is_dummy_entry = TRUE; g_strlcpy(tp->name, tp->ip6, MAXNAMELEN); } *found = FALSE; return tp; } /* host_lookup6 */ #if 0 static gchar * host_name_lookup6(struct e_in6_addr *addr, gboolean *found) { hashipv6_t *tp; tp = host_lookup6(addr, TRUE, found); return tp->name; } #endif static const gchar * solve_address_to_name(const address *addr) { switch (addr->type) { case AT_ETHER: return get_ether_name(addr->data); case AT_IPv4: { guint32 ip4_addr; memcpy(&ip4_addr, addr->data, sizeof ip4_addr); return get_hostname(ip4_addr); } case AT_IPv6: { struct e_in6_addr ip6_addr; memcpy(&ip6_addr.bytes, addr->data, sizeof ip6_addr.bytes); return get_hostname6(&ip6_addr); } case AT_STRINGZ: return addr->data; default: return NULL; } } static const gchar * se_solve_address_to_name(const address *addr) { switch (addr->type) { case AT_ETHER: return get_ether_name(addr->data); case AT_IPv4: { guint32 ip4_addr; memcpy(&ip4_addr, addr->data, sizeof ip4_addr); return get_hostname(ip4_addr); } case AT_IPv6: { struct e_in6_addr ip6_addr; memcpy(&ip6_addr.bytes, addr->data, sizeof ip6_addr.bytes); return get_hostname6(&ip6_addr); } case AT_STRINGZ: return se_strdup(addr->data); default: return NULL; } } /* * Ethernet / manufacturer resolution * * The following functions implement ethernet address resolution and * ethers files parsing (see ethers(4)). * * The manuf file has the same format as ethers(4) except that names are * truncated to MAXMANUFLEN-1 (8) characters and that an address contains * only 3 bytes (instead of 6). * * Notes: * * I decide to not use the existing functions (see ethers(3) on some * operating systems) for the following reasons: * - performance gains (use of hash tables and some other enhancements), * - use of two ethers files (system-wide and per user), * - avoid the use of NIS maps, * - lack of these functions on some systems. * * So the following functions do _not_ behave as the standard ones. * * -- Laurent. */ /* * If "manuf_file" is FALSE, parse a 6-byte MAC address. * If "manuf_file" is TRUE, parse an up-to-6-byte sequence with an optional * mask. */ static gboolean parse_ether_address(const char *cp, ether_t *eth, unsigned int *mask, const gboolean manuf_file) { int i; unsigned long num; char *p; char sep = '\0'; for (i = 0; i < 6; i++) { /* Get a hex number, 1 or 2 digits, no sign characters allowed. */ if (!isxdigit((unsigned char)*cp)) return FALSE; num = strtoul(cp, &p, 16); if (p == cp) return FALSE; /* failed */ if (num > 0xFF) return FALSE; /* not a valid octet */ eth->addr[i] = (guint8) num; cp = p; /* skip past the number */ /* OK, what character terminated the octet? */ if (*cp == '/') { /* "/" - this has a mask. */ if (!manuf_file) { /* Entries with masks are allowed only in the "manuf" files. */ return FALSE; } cp++; /* skip past the '/' to get to the mask */ if (!isdigit((unsigned char)*cp)) return FALSE; /* no sign allowed */ num = strtoul(cp, &p, 10); if (p == cp) return FALSE; /* failed */ cp = p; /* skip past the number */ if (*cp != '\0' && !isspace((unsigned char)*cp)) return FALSE; /* bogus terminator */ if (num == 0 || num >= 48) return FALSE; /* bogus mask */ /* Mask out the bits not covered by the mask */ *mask = num; for (i = 0; num >= 8; i++, num -= 8) ; /* skip octets entirely covered by the mask */ /* Mask out the first masked octet */ eth->addr[i] &= (0xFF << (8 - num)); i++; /* Mask out completely-masked-out octets */ for (; i < 6; i++) eth->addr[i] = 0; return TRUE; } if (*cp == '\0') { /* We're at the end of the address, and there's no mask. */ if (i == 2) { /* We got 3 bytes, so this is a manufacturer ID. */ if (!manuf_file) { /* Manufacturer IDs are only allowed in the "manuf" files. */ return FALSE; } /* Indicate that this is a manufacturer ID (0 is not allowed as a mask). */ *mask = 0; return TRUE; } if (i == 5) { /* We got 6 bytes, so this is a MAC address. If we're reading one of the "manuf" files, indicate that this is a MAC address (48 is not allowed as a mask). */ if (manuf_file) *mask = 48; return TRUE; } /* We didn't get 3 or 6 bytes, and there's no mask; this is illegal. */ return FALSE; } else { if (sep == '\0') { /* We don't know the separator used in this number; it can either be ':', '-', or '.'. */ if (*cp != ':' && *cp != '-' && *cp != '.') return FALSE; sep = *cp; /* subsequent separators must be the same */ } else { /* It has to be the same as the first separator */ if (*cp != sep) return FALSE; } } cp++; } return TRUE; } static int parse_ether_line(char *line, ether_t *eth, unsigned int *mask, const gboolean manuf_file) { /* * See the ethers(4) or ethers(5) man page for ethers file format * (not available on all systems). * We allow both ethernet address separators (':' and '-'), * as well as Wireshark's '.' separator. */ gchar *cp; if ((cp = strchr(line, '#'))) *cp = '\0'; if ((cp = strtok(line, " \t")) == NULL) return -1; if (!parse_ether_address(cp, eth, mask, manuf_file)) return -1; if ((cp = strtok(NULL, " \t")) == NULL) return -1; g_strlcpy(eth->name, cp, MAXNAMELEN); return 0; } /* parse_ether_line */ static FILE *eth_p = NULL; static void set_ethent(char *path) { if (eth_p) rewind(eth_p); else eth_p = ws_fopen(path, "r"); } static void end_ethent(void) { if (eth_p) { fclose(eth_p); eth_p = NULL; } } static ether_t * get_ethent(unsigned int *mask, const gboolean manuf_file) { static ether_t eth; static int size = 0; static char *buf = NULL; if (eth_p == NULL) return NULL; while (fgetline(&buf, &size, eth_p) >= 0) { if (parse_ether_line(buf, ð, mask, manuf_file) == 0) { return ð } } return NULL; } /* get_ethent */ static ether_t * get_ethbyname(const gchar *name) { ether_t *eth; set_ethent(g_pethers_path); while (((eth = get_ethent(NULL, FALSE)) != NULL) && strncmp(name, eth->name, MAXNAMELEN) != 0) ; if (eth == NULL) { end_ethent(); set_ethent(g_ethers_path); while (((eth = get_ethent(NULL, FALSE)) != NULL) && strncmp(name, eth->name, MAXNAMELEN) != 0) ; end_ethent(); } return eth; } /* get_ethbyname */ static ether_t * get_ethbyaddr(const guint8 *addr) { ether_t *eth; set_ethent(g_pethers_path); while (((eth = get_ethent(NULL, FALSE)) != NULL) && memcmp(addr, eth->addr, 6) != 0) ; if (eth == NULL) { end_ethent(); set_ethent(g_ethers_path); while (((eth = get_ethent(NULL, FALSE)) != NULL) && memcmp(addr, eth->addr, 6) != 0) ; end_ethent(); } return eth; } /* get_ethbyaddr */ static int hash_eth_wka(const guint8 *addr, unsigned int mask) { if (mask <= 8) { /* All but the topmost byte is masked out */ return (addr[0] & (0xFF << (8 - mask))) & (HASHETHSIZE - 1); } mask -= 8; if (mask <= 8) { /* All but the topmost 2 bytes are masked out */ return ((addr[0] << 8) | (addr[1] & (0xFF << (8 - mask)))) & (HASHETHSIZE - 1); } mask -= 8; if (mask <= 8) { /* All but the topmost 3 bytes are masked out */ return ((addr[0] << 16) | (addr[1] << 8) | (addr[2] & (0xFF << (8 - mask)))) & (HASHETHSIZE - 1); } mask -= 8; if (mask <= 8) { /* All but the topmost 4 bytes are masked out */ return ((((addr[0] << 8) | addr[1]) ^ ((addr[2] << 8) | (addr[3] & (0xFF << (8 - mask)))))) & (HASHETHSIZE - 1); } mask -= 8; if (mask <= 8) { /* All but the topmost 5 bytes are masked out */ return ((((addr[1] << 8) | addr[2]) ^ ((addr[3] << 8) | (addr[4] & (0xFF << (8 - mask)))))) & (HASHETHSIZE - 1); } mask -= 8; /* No bytes are fully masked out */ return ((((addr[1] << 8) | addr[2]) ^ ((addr[3] << 8) | (addr[4] & (0xFF << (8 - mask)))))) & (HASHETHSIZE - 1); } static hashmanuf_t * manuf_hash_new_entry(const guint8 *addr, gchar *name) { hashmanuf_t *mtp; mtp = (hashmanuf_t *)g_malloc(sizeof(hashmanuf_t)); memcpy(mtp->addr, addr, sizeof(mtp->addr)); /* The length of this name is limited (in the number of UTF-8 characters, * not bytes) in make-manuf. That doesn't mean a user can't put a longer * name in their personal manuf file, though... */ mtp->name = g_strdup(name); mtp->next = NULL; return mtp; } /* manuf_hash_new_entry */ static hashwka_t * wka_hash_new_entry(const guint8 *addr, gchar *name) { hashwka_t *wtp; wtp = (hashwka_t *)g_malloc(sizeof(hashwka_t)); memcpy(wtp->addr, addr, sizeof(wtp->addr)); g_strlcpy(wtp->name, name, MAXNAMELEN); wtp->next = NULL; return wtp; } /* wka_hash_new_entry */ static void add_manuf_name(const guint8 *addr, unsigned int mask, gchar *name) { gint hash_idx; hashmanuf_t *mtp; hashwka_t *(*wka_tp)[HASHETHSIZE], *wtp; /* * XXX - can we use Standard Annotation Language annotations to * note that mask, as returned by parse_ether_address() (and thus * by the routines that call it, and thus passed to us) cannot be > 48, * or is SAL too weak to express that? */ if (mask >= 48) { /* This is a well-known MAC address; just add this to the Ethernet hash table */ add_eth_name(addr, name); return; } if (mask == 0) { /* This is a manufacturer ID; add it to the manufacturer ID hash table */ hash_idx = HASH_ETH_MANUF(addr); mtp = manuf_table[hash_idx]; if( mtp == NULL ) { manuf_table[hash_idx] = manuf_hash_new_entry(addr, name); return; } else { while(TRUE) { if (mtp->next == NULL) { mtp->next = manuf_hash_new_entry(addr, name); return; } mtp = mtp->next; } } } /* mask == 0 */ /* This is a range of well-known addresses; add it to the appropriate well-known-address table, creating that table if necessary. */ wka_tp = wka_table[mask]; if (wka_tp == NULL) wka_tp = wka_table[mask] = g_malloc0(sizeof *wka_table[mask]); hash_idx = hash_eth_wka(addr, mask); wtp = (*wka_tp)[hash_idx]; if( wtp == NULL ) { (*wka_tp)[hash_idx] = wka_hash_new_entry(addr, name); return; } else { while(TRUE) { if (memcmp(wtp->addr, addr, sizeof(wtp->addr)) == 0) { /* address already known */ return; } if (wtp->next == NULL) { wtp->next = wka_hash_new_entry(addr, name); return; } wtp = wtp->next; } } } /* add_manuf_name */ static hashmanuf_t * manuf_name_lookup(const guint8 *addr) { gint hash_idx; hashmanuf_t *mtp; guint8 stripped_addr[3]; hash_idx = HASH_ETH_MANUF(addr); /* first try to find a "perfect match" */ mtp = manuf_table[hash_idx]; while(mtp != NULL) { if (memcmp(mtp->addr, addr, sizeof(mtp->addr)) == 0) { return mtp; } mtp = mtp->next; } /* Mask out the broadcast/multicast flag but not the locally * administered flag as localy administered means: not assigend * by the IEEE but the local administrator instead. * 0x01 multicast / broadcast bit * 0x02 locally administered bit */ memcpy(stripped_addr, addr, 3); stripped_addr[0] &= 0xFE; mtp = manuf_table[hash_idx]; while(mtp != NULL) { if (memcmp(mtp->addr, stripped_addr, sizeof(mtp->addr)) == 0) { return mtp; } mtp = mtp->next; } return NULL; } /* manuf_name_lookup */ static hashwka_t * wka_name_lookup(const guint8 *addr, const unsigned int mask) { gint hash_idx; hashwka_t *(*wka_tp)[HASHETHSIZE]; hashwka_t *wtp; guint8 masked_addr[6]; guint num; gint i; wka_tp = wka_table[mask]; if (wka_tp == NULL) { /* There are no entries in the table for that mask value, as there is no table for that mask value. */ return NULL; } /* Get the part of the address covered by the mask. */ for (i = 0, num = mask; num >= 8; i++, num -= 8) masked_addr[i] = addr[i]; /* copy octets entirely covered by the mask */ /* Mask out the first masked octet */ masked_addr[i] = addr[i] & (0xFF << (8 - num)); i++; /* Zero out completely-masked-out octets */ for (; i < 6; i++) masked_addr[i] = 0; hash_idx = hash_eth_wka(masked_addr, mask); wtp = (*wka_tp)[hash_idx]; while(wtp != NULL) { if (memcmp(wtp->addr, masked_addr, sizeof(wtp->addr)) == 0) { return wtp; } wtp = wtp->next; } return NULL; } /* wka_name_lookup */ static void initialize_ethers(void) { ether_t *eth; char *manuf_path; guint mask; /* Compute the pathname of the ethers file. */ if (g_ethers_path == NULL) { g_ethers_path = g_strdup_printf("%s" G_DIR_SEPARATOR_S "%s", get_systemfile_dir(), ENAME_ETHERS); } /* Set g_pethers_path here, but don't actually do anything * with it. It's used in get_ethbyname() and get_ethbyaddr() */ if (g_pethers_path == NULL) g_pethers_path = get_persconffile_path(ENAME_ETHERS, FALSE, FALSE); /* manuf hash table initialization */ /* Compute the pathname of the manuf file */ manuf_path = get_datafile_path(ENAME_MANUF); /* Read it and initialize the hash table */ set_ethent(manuf_path); while ((eth = get_ethent(&mask, TRUE))) { add_manuf_name(eth->addr, mask, eth->name); } end_ethent(); g_free(manuf_path); } /* initialize_ethers */ /* Resolve ethernet address */ static hashether_t * eth_addr_resolve(hashether_t *tp) { ether_t *eth; const guint8 *addr = tp->addr; if ( (eth = get_ethbyaddr(addr)) != NULL) { g_strlcpy(tp->resolved_name, eth->name, MAXNAMELEN); tp->status = HASHETHER_STATUS_RESOLVED_NAME; return tp; } else { hashwka_t *wtp; hashmanuf_t *mtp; guint mask; /* Unknown name. Try looking for it in the well-known-address tables for well-known address ranges smaller than 2^24. */ mask = 7; for (;;) { /* Only the topmost 5 bytes participate fully */ if ((wtp = wka_name_lookup(addr, mask+40)) != NULL) { g_snprintf(tp->resolved_name, MAXNAMELEN, "%s_%02x", wtp->name, addr[5] & (0xFF >> mask)); tp->status = HASHETHER_STATUS_RESOLVED_DUMMY; return tp; } if (mask == 0) break; mask--; } mask = 7; for (;;) { /* Only the topmost 4 bytes participate fully */ if ((wtp = wka_name_lookup(addr, mask+32)) != NULL) { g_snprintf(tp->resolved_name, MAXNAMELEN, "%s_%02x:%02x", wtp->name, addr[4] & (0xFF >> mask), addr[5]); tp->status = HASHETHER_STATUS_RESOLVED_DUMMY; return tp; } if (mask == 0) break; mask--; } mask = 7; for (;;) { /* Only the topmost 3 bytes participate fully */ if ((wtp = wka_name_lookup(addr, mask+24)) != NULL) { g_snprintf(tp->resolved_name, MAXNAMELEN, "%s_%02x:%02x:%02x", wtp->name, addr[3] & (0xFF >> mask), addr[4], addr[5]); tp->status = HASHETHER_STATUS_RESOLVED_DUMMY; return tp; } if (mask == 0) break; mask--; } /* Now try looking in the manufacturer table. */ if ((mtp = manuf_name_lookup(addr)) != NULL) { g_snprintf(tp->resolved_name, MAXNAMELEN, "%s_%02x:%02x:%02x", mtp->name, addr[3], addr[4], addr[5]); tp->status = HASHETHER_STATUS_RESOLVED_DUMMY; return tp; } /* Now try looking for it in the well-known-address tables for well-known address ranges larger than 2^24. */ mask = 7; for (;;) { /* Only the topmost 2 bytes participate fully */ if ((wtp = wka_name_lookup(addr, mask+16)) != NULL) { g_snprintf(tp->resolved_name, MAXNAMELEN, "%s_%02x:%02x:%02x:%02x", wtp->name, addr[2] & (0xFF >> mask), addr[3], addr[4], addr[5]); tp->status = HASHETHER_STATUS_RESOLVED_DUMMY; return tp; } if (mask == 0) break; mask--; } mask = 7; for (;;) { /* Only the topmost byte participates fully */ if ((wtp = wka_name_lookup(addr, mask+8)) != NULL) { g_snprintf(tp->resolved_name, MAXNAMELEN, "%s_%02x:%02x:%02x:%02x:%02x", wtp->name, addr[1] & (0xFF >> mask), addr[2], addr[3], addr[4], addr[5]); tp->status = HASHETHER_STATUS_RESOLVED_DUMMY; return tp; } if (mask == 0) break; mask--; } for (mask = 7; mask > 0; mask--) { /* Not even the topmost byte participates fully */ if ((wtp = wka_name_lookup(addr, mask)) != NULL) { g_snprintf(tp->resolved_name, MAXNAMELEN, "%s_%02x:%02x:%02x:%02x:%02x:%02x", wtp->name, addr[0] & (0xFF >> mask), addr[1], addr[2], addr[3], addr[4], addr[5]); tp->status = HASHETHER_STATUS_RESOLVED_DUMMY; return tp; } } /* No match whatsoever. */ g_snprintf(tp->resolved_name, MAXNAMELEN, "%s", ether_to_str(addr)); tp->status = HASHETHER_STATUS_RESOLVED_DUMMY; return tp; } g_assert_not_reached(); } /* eth_addr_resolve */ static hashether_t * eth_hash_new_entry(const guint8 *addr, const gboolean resolve) { hashether_t *tp; tp = (hashether_t *)g_malloc(sizeof(hashether_t)); memcpy(tp->addr, addr, sizeof(tp->addr)); tp->status = HASHETHER_STATUS_UNRESOLVED; g_strlcpy(tp->hexaddr, bytestring_to_str(addr, sizeof(tp->addr), ':'), sizeof(tp->hexaddr)); tp->resolved_name[0] = '\0'; tp->next = NULL; if (resolve) eth_addr_resolve(tp); return tp; } /* eth_hash_new_entry */ static hashether_t * add_eth_name(const guint8 *addr, const gchar *name) { gint hash_idx; hashether_t *tp; hash_idx = HASH_ETH_ADDRESS(addr); tp = eth_table[hash_idx]; if( tp == NULL ) { tp = eth_table[hash_idx] = eth_hash_new_entry(addr, FALSE); } else { while(TRUE) { if (memcmp(tp->addr, addr, sizeof(tp->addr)) == 0) { /* address already known */ if (tp->status == HASHETHER_STATUS_RESOLVED_NAME) return tp; /* Entry with a name already in table; ignore attempted replacement */ break; /* Update name of existing entry */ } if (tp->next == NULL) { tp = tp->next = eth_hash_new_entry(addr, FALSE); break; } tp = tp->next; } } g_strlcpy(tp->resolved_name, name, MAXNAMELEN); tp->status = HASHETHER_STATUS_RESOLVED_NAME; new_resolved_objects = TRUE; return tp; } /* add_eth_name */ static hashether_t * eth_name_lookup(const guint8 *addr, const gboolean resolve) { gint hash_idx; hashether_t *tp; hash_idx = HASH_ETH_ADDRESS(addr); tp = eth_table[hash_idx]; if( tp == NULL ) { tp = eth_table[hash_idx] = eth_hash_new_entry(addr, resolve); return tp; } else { while(TRUE) { if (memcmp(tp->addr, addr, sizeof(tp->addr)) == 0) { if (resolve && (tp->status == HASHETHER_STATUS_UNRESOLVED)) eth_addr_resolve(tp); /* Found but needs to be resolved */ return tp; } if (tp->next == NULL) { tp->next = eth_hash_new_entry(addr, resolve); return tp->next; } tp = tp->next; } } } /* eth_name_lookup */ static guint8 * eth_addr_lookup(const gchar *name) { ether_t *eth; hashether_t *tp; hashether_t **table = eth_table; gint i; /* to be optimized (hash table from name to addr) */ for (i = 0; i < HASHETHSIZE; i++) { tp = table[i]; while (tp) { if (strcmp(tp->resolved_name, name) == 0) return tp->addr; tp = tp->next; } } /* not in hash table : performs a file lookup */ if ((eth = get_ethbyname(name)) == NULL) return NULL; /* add new entry in hash table */ tp = add_eth_name(eth->addr, name); return tp->addr; } /* eth_addr_lookup */ /* IPXNETS */ static int parse_ipxnets_line(char *line, ipxnet_t *ipxnet) { /* * We allow three address separators (':', '-', and '.'), * as well as no separators */ gchar *cp; guint32 a, a0, a1, a2, a3; gboolean found_single_number = FALSE; if ((cp = strchr(line, '#'))) *cp = '\0'; if ((cp = strtok(line, " \t\n")) == NULL) return -1; /* Either fill a0,a1,a2,a3 and found_single_number is FALSE, * fill a and found_single_number is TRUE, * or return -1 */ if (sscanf(cp, "%x:%x:%x:%x", &a0, &a1, &a2, &a3) != 4) { if (sscanf(cp, "%x-%x-%x-%x", &a0, &a1, &a2, &a3) != 4) { if (sscanf(cp, "%x.%x.%x.%x", &a0, &a1, &a2, &a3) != 4) { if (sscanf(cp, "%x", &a) == 1) { found_single_number = TRUE; } else { return -1; } } } } if ((cp = strtok(NULL, " \t\n")) == NULL) return -1; if (found_single_number) { ipxnet->addr = a; } else { ipxnet->addr = (a0 << 24) | (a1 << 16) | (a2 << 8) | a3; } g_strlcpy(ipxnet->name, cp, MAXNAMELEN); return 0; } /* parse_ipxnets_line */ static FILE *ipxnet_p = NULL; static void set_ipxnetent(char *path) { if (ipxnet_p) rewind(ipxnet_p); else ipxnet_p = ws_fopen(path, "r"); } static void end_ipxnetent(void) { if (ipxnet_p) { fclose(ipxnet_p); ipxnet_p = NULL; } } static ipxnet_t * get_ipxnetent(void) { static ipxnet_t ipxnet; static int size = 0; static char *buf = NULL; if (ipxnet_p == NULL) return NULL; while (fgetline(&buf, &size, ipxnet_p) >= 0) { if (parse_ipxnets_line(buf, &ipxnet) == 0) { return &ipxnet; } } return NULL; } /* get_ipxnetent */ static ipxnet_t * get_ipxnetbyname(const gchar *name) { ipxnet_t *ipxnet; set_ipxnetent(g_ipxnets_path); while (((ipxnet = get_ipxnetent()) != NULL) && strncmp(name, ipxnet->name, MAXNAMELEN) != 0) ; if (ipxnet == NULL) { end_ipxnetent(); set_ipxnetent(g_pipxnets_path); while (((ipxnet = get_ipxnetent()) != NULL) && strncmp(name, ipxnet->name, MAXNAMELEN) != 0) ; end_ipxnetent(); } return ipxnet; } /* get_ipxnetbyname */ static ipxnet_t * get_ipxnetbyaddr(guint32 addr) { ipxnet_t *ipxnet; set_ipxnetent(g_ipxnets_path); while (((ipxnet = get_ipxnetent()) != NULL) && (addr != ipxnet->addr) ) ; if (ipxnet == NULL) { end_ipxnetent(); set_ipxnetent(g_pipxnets_path); while (((ipxnet = get_ipxnetent()) != NULL) && (addr != ipxnet->addr) ) ; end_ipxnetent(); } return ipxnet; } /* get_ipxnetbyaddr */ static void initialize_ipxnets(void) { /* Compute the pathname of the ipxnets file. * * XXX - is there a notion of an "ipxnets file" in any flavor of * UNIX, or with any add-on Netware package for UNIX? If not, * should the UNIX version of the ipxnets file be in the datafile * directory as well? */ if (g_ipxnets_path == NULL) { g_ipxnets_path = g_strdup_printf("%s" G_DIR_SEPARATOR_S "%s", get_systemfile_dir(), ENAME_IPXNETS); } /* Set g_pipxnets_path here, but don't actually do anything * with it. It's used in get_ipxnetbyname() and get_ipxnetbyaddr() */ if (g_pipxnets_path == NULL) g_pipxnets_path = get_persconffile_path(ENAME_IPXNETS, FALSE, FALSE); } /* initialize_ipxnets */ static hashipxnet_t * add_ipxnet_name(guint addr, const gchar *name) { int hash_idx; hashipxnet_t *tp; hash_idx = HASH_IPX_NET(addr); tp = ipxnet_table[hash_idx]; if( tp == NULL ) { tp = ipxnet_table[hash_idx] = (hashipxnet_t *)g_malloc(sizeof(hashipxnet_t)); } else { while(1) { if (tp->next == NULL) { tp->next = (hashipxnet_t *)g_malloc(sizeof(hashipxnet_t)); tp = tp->next; break; } tp = tp->next; } } tp->addr = addr; g_strlcpy(tp->name, name, MAXNAMELEN); tp->next = NULL; new_resolved_objects = TRUE; return tp; } /* add_ipxnet_name */ static gchar * ipxnet_name_lookup(const guint addr) { int hash_idx; hashipxnet_t *tp; ipxnet_t *ipxnet; hash_idx = HASH_IPX_NET(addr); tp = ipxnet_table[hash_idx]; if( tp == NULL ) { tp = ipxnet_table[hash_idx] = (hashipxnet_t *)g_malloc(sizeof(hashipxnet_t)); } else { while(1) { if (tp->addr == addr) { return tp->name; } if (tp->next == NULL) { tp->next = (hashipxnet_t *)g_malloc(sizeof(hashipxnet_t)); tp = tp->next; break; } tp = tp->next; } } /* fill in a new entry */ tp->addr = addr; tp->next = NULL; if ( (ipxnet = get_ipxnetbyaddr(addr)) == NULL) { /* unknown name */ g_snprintf(tp->name, MAXNAMELEN, "%X", addr); } else { g_strlcpy(tp->name, ipxnet->name, MAXNAMELEN); } return (tp->name); } /* ipxnet_name_lookup */ static guint ipxnet_addr_lookup(const gchar *name, gboolean *success) { ipxnet_t *ipxnet; hashipxnet_t *tp; hashipxnet_t **table = ipxnet_table; int i; /* to be optimized (hash table from name to addr) */ for (i = 0; i < HASHIPXNETSIZE; i++) { tp = table[i]; while (tp) { if (strcmp(tp->name, name) == 0) { *success = TRUE; return tp->addr; } tp = tp->next; } } /* not in hash table : performs a file lookup */ if ((ipxnet = get_ipxnetbyname(name)) == NULL) { *success = FALSE; return 0; } /* add new entry in hash table */ tp = add_ipxnet_name(ipxnet->addr, name); *success = TRUE; return tp->addr; } /* ipxnet_addr_lookup */ gboolean read_hosts_file (const char *hostspath) { FILE *hf; char *line = NULL; int size = 0; gchar *cp; guint32 host_addr[4]; /* IPv4 or IPv6 */ struct e_in6_addr ip6_addr; gboolean is_ipv6; int ret; /* * See the hosts(4) or hosts(5) man page for hosts file format * (not available on all systems). */ if ((hf = ws_fopen(hostspath, "r")) == NULL) return FALSE; while (fgetline(&line, &size, hf) >= 0) { if ((cp = strchr(line, '#'))) *cp = '\0'; if ((cp = strtok(line, " \t")) == NULL) continue; /* no tokens in the line */ ret = inet_pton(AF_INET6, cp, &host_addr); if (ret == -1) continue; /* error parsing */ if (ret == 1) { /* Valid IPv6 */ is_ipv6 = TRUE; } else { /* Not valid IPv6 - valid IPv4? */ if (inet_pton(AF_INET, cp, &host_addr) != 1) continue; /* no */ is_ipv6 = FALSE; } if ((cp = strtok(NULL, " \t")) == NULL) continue; /* no host name */ if (is_ipv6) { memcpy(&ip6_addr, host_addr, sizeof ip6_addr); add_ipv6_name(&ip6_addr, cp); } else add_ipv4_name(host_addr[0], cp); /* * Add the aliases, too, if there are any. * XXX - host_lookup() only returns the first entry. */ while ((cp = strtok(NULL, " \t")) != NULL) { if (is_ipv6) { memcpy(&ip6_addr, host_addr, sizeof ip6_addr); add_ipv6_name(&ip6_addr, cp); } else add_ipv4_name(host_addr[0], cp); } } g_free(line); fclose(hf); return TRUE; } /* read_hosts_file */ gboolean add_ip_name_from_string (const char *addr, const char *name) { guint32 host_addr[4]; /* IPv4 */ struct e_in6_addr ip6_addr; /* IPv6 */ gboolean is_ipv6; int ret; ret = inet_pton(AF_INET6, addr, &ip6_addr); if (ret == -1) /* Error parsing address */ return FALSE; if (ret == 1) { /* Valid IPv6 */ is_ipv6 = TRUE; } else { /* Not valid IPv6 - valid IPv4? */ if (inet_pton(AF_INET, addr, &host_addr) != 1) return FALSE; /* no */ is_ipv6 = FALSE; } if (is_ipv6) { add_ipv6_name(&ip6_addr, name); } else { add_ipv4_name(host_addr[0], name); } return TRUE; } /* add_ip_name_from_string */ struct addrinfo * get_addrinfo_list(void) { return addrinfo_list; } /* Read in a list of subnet definition - name pairs. * = | | * = # * = [|] * = / * is a full address; it will be masked to get the subnet-ID. * is a decimal 1-31 * is a string containing no whitespace. * = (space | tab)+ * Any malformed entries are ignored. * Any trailing data after the subnet_name is ignored. * * XXX Support IPv6 */ static gboolean read_subnets_file (const char *subnetspath) { FILE *hf; char *line = NULL; int size = 0; gchar *cp, *cp2; guint32 host_addr; /* IPv4 ONLY */ int mask_length; if ((hf = ws_fopen(subnetspath, "r")) == NULL) return FALSE; while (fgetline(&line, &size, hf) >= 0) { if ((cp = strchr(line, '#'))) *cp = '\0'; if ((cp = strtok(line, " \t")) == NULL) continue; /* no tokens in the line */ /* Expected format is / */ cp2 = strchr(cp, '/'); if(NULL == cp2) { /* No length */ continue; } *cp2 = '\0'; /* Cut token */ ++cp2 ; /* Check if this is a valid IPv4 address */ if (inet_pton(AF_INET, cp, &host_addr) != 1) { continue; /* no */ } mask_length = atoi(cp2); if(0 >= mask_length || mask_length > 31) { continue; /* invalid mask length */ } if ((cp = strtok(NULL, " \t")) == NULL) continue; /* no subnet name */ subnet_entry_set(host_addr, (guint32)mask_length, cp); } g_free(line); fclose(hf); return TRUE; } /* read_subnets_file */ static subnet_entry_t subnet_lookup(const guint32 addr) { subnet_entry_t subnet_entry; guint32 i; /* Search mask lengths linearly, longest first */ i = SUBNETLENGTHSIZE; while(have_subnet_entry && i > 0) { guint32 masked_addr; subnet_length_entry_t* length_entry; /* Note that we run from 31 (length 32) to 0 (length 1) */ --i; g_assert(i < SUBNETLENGTHSIZE); length_entry = &subnet_length_entries[i]; if(NULL != length_entry->subnet_addresses) { hashipv4_t * tp; guint32 hash_idx; masked_addr = addr & length_entry->mask; hash_idx = HASH_IPV4_ADDRESS(masked_addr); tp = length_entry->subnet_addresses[hash_idx]; while(tp != NULL && tp->addr != masked_addr) { tp = tp->next; } if(NULL != tp) { subnet_entry.mask = length_entry->mask; subnet_entry.mask_length = i + 1; /* Length is offset + 1 */ subnet_entry.name = tp->name; return subnet_entry; } } } subnet_entry.mask = 0; subnet_entry.mask_length = 0; subnet_entry.name = NULL; return subnet_entry; } /* Add a subnet-definition - name pair to the set. * The definition is taken by masking the address passed in with the mask of the * given length. */ static void subnet_entry_set(guint32 subnet_addr, const guint32 mask_length, const gchar* name) { subnet_length_entry_t* entry; hashipv4_t * tp; gsize hash_idx; g_assert(mask_length > 0 && mask_length <= 32); entry = &subnet_length_entries[mask_length - 1]; subnet_addr &= entry->mask; hash_idx = HASH_IPV4_ADDRESS(subnet_addr); if(NULL == entry->subnet_addresses) { entry->subnet_addresses = g_new0(hashipv4_t*,HASHHOSTSIZE); } if(NULL != (tp = entry->subnet_addresses[hash_idx])) { if(tp->addr == subnet_addr) { return; /* XXX provide warning that an address was repeated? */ } else { hashipv4_t * new_tp = g_new(hashipv4_t,1); tp->next = new_tp; tp = new_tp; } } else { tp = entry->subnet_addresses[hash_idx] = g_new(hashipv4_t,1); } tp->next = NULL; tp->addr = subnet_addr; tp->is_dummy_entry = FALSE; /*Never used again...*/ g_strlcpy(tp->name, name, MAXNAMELEN); /* This is longer than subnet names can actually be */ have_subnet_entry = TRUE; } static guint32 get_subnet_mask(const guint32 mask_length) { static guint32 masks[SUBNETLENGTHSIZE]; static gboolean initialised = FALSE; if(!initialised) { memset(masks, 0, sizeof(masks)); initialised = TRUE; /* XXX There must be a better way to do this than * hand-coding the values, but I can't seem to * come up with one! */ inet_pton(AF_INET, "128.0.0.0", &masks[0]); inet_pton(AF_INET, "192.0.0.0", &masks[1]); inet_pton(AF_INET, "224.0.0.0", &masks[2]); inet_pton(AF_INET, "240.0.0.0", &masks[3]); inet_pton(AF_INET, "248.0.0.0", &masks[4]); inet_pton(AF_INET, "252.0.0.0", &masks[5]); inet_pton(AF_INET, "254.0.0.0", &masks[6]); inet_pton(AF_INET, "255.0.0.0", &masks[7]); inet_pton(AF_INET, "255.128.0.0", &masks[8]); inet_pton(AF_INET, "255.192.0.0", &masks[9]); inet_pton(AF_INET, "255.224.0.0", &masks[10]); inet_pton(AF_INET, "255.240.0.0", &masks[11]); inet_pton(AF_INET, "255.248.0.0", &masks[12]); inet_pton(AF_INET, "255.252.0.0", &masks[13]); inet_pton(AF_INET, "255.254.0.0", &masks[14]); inet_pton(AF_INET, "255.255.0.0", &masks[15]); inet_pton(AF_INET, "255.255.128.0", &masks[16]); inet_pton(AF_INET, "255.255.192.0", &masks[17]); inet_pton(AF_INET, "255.255.224.0", &masks[18]); inet_pton(AF_INET, "255.255.240.0", &masks[19]); inet_pton(AF_INET, "255.255.248.0", &masks[20]); inet_pton(AF_INET, "255.255.252.0", &masks[21]); inet_pton(AF_INET, "255.255.254.0", &masks[22]); inet_pton(AF_INET, "255.255.255.0", &masks[23]); inet_pton(AF_INET, "255.255.255.128", &masks[24]); inet_pton(AF_INET, "255.255.255.192", &masks[25]); inet_pton(AF_INET, "255.255.255.224", &masks[26]); inet_pton(AF_INET, "255.255.255.240", &masks[27]); inet_pton(AF_INET, "255.255.255.248", &masks[28]); inet_pton(AF_INET, "255.255.255.252", &masks[29]); inet_pton(AF_INET, "255.255.255.254", &masks[30]); inet_pton(AF_INET, "255.255.255.255", &masks[31]); } if(mask_length == 0 || mask_length > SUBNETLENGTHSIZE) { g_assert_not_reached(); return 0; } else { return masks[mask_length - 1]; } } static void subnet_name_lookup_init(void) { gchar* subnetspath; guint32 i; for(i = 0; i < SUBNETLENGTHSIZE; ++i) { guint32 length = i + 1; subnet_length_entries[i].subnet_addresses = NULL; subnet_length_entries[i].mask_length = length; subnet_length_entries[i].mask = get_subnet_mask(length); } subnetspath = get_persconffile_path(ENAME_SUBNETS, FALSE, FALSE); if (!read_subnets_file(subnetspath) && errno != ENOENT) { report_open_failure(subnetspath, errno, FALSE); } g_free(subnetspath); /* * Load the global subnets file, if we have one. */ subnetspath = get_datafile_path(ENAME_SUBNETS); if (!read_subnets_file(subnetspath) && errno != ENOENT) { report_open_failure(subnetspath, errno, FALSE); } g_free(subnetspath); } /* * External Functions */ void host_name_lookup_init(void) { char *hostspath; struct addrinfo *ai; #ifdef HAVE_GNU_ADNS #ifdef _WIN32 char *sysroot; static char rootpath_nt[] = "\\system32\\drivers\\etc\\hosts"; static char rootpath_ot[] = "\\hosts"; #endif /* _WIN32 */ #endif /*GNU_ADNS */ if (!addrinfo_list) { ai = g_malloc0(sizeof(struct addrinfo)); addrinfo_list = addrinfo_list_last = ai; } /* * Load the user's hosts file, if they have one. */ hostspath = get_persconffile_path(ENAME_HOSTS, FALSE, FALSE); if (!read_hosts_file(hostspath) && errno != ENOENT) { report_open_failure(hostspath, errno, FALSE); } g_free(hostspath); /* * Load the global hosts file, if we have one. */ hostspath = get_datafile_path(ENAME_HOSTS); if (!read_hosts_file(hostspath) && errno != ENOENT) { report_open_failure(hostspath, errno, FALSE); } g_free(hostspath); #ifdef HAVE_C_ARES #ifdef CARES_HAVE_ARES_LIBRARY_INIT if (ares_library_init(ARES_LIB_INIT_ALL) == ARES_SUCCESS) { #endif if (ares_init(&ghba_chan) == ARES_SUCCESS && ares_init(&ghbn_chan) == ARES_SUCCESS) { async_dns_initialized = TRUE; } #ifdef CARES_HAVE_ARES_LIBRARY_INIT } #endif #else #ifdef HAVE_GNU_ADNS /* * We're using GNU ADNS, which doesn't check the system hosts file; * we load that file ourselves. */ #ifdef _WIN32 sysroot = getenv_utf8("WINDIR"); if (sysroot != NULL) { /* * The file should be under WINDIR. * If this is Windows NT (NT 4.0,2K,XP,Server2K3), it's in * %WINDIR%\system32\drivers\etc\hosts. * If this is Windows OT (95,98,Me), it's in %WINDIR%\hosts. * Try both. * XXX - should we base it on the dwPlatformId value from * GetVersionEx()? */ hostspath = g_strconcat(sysroot, rootpath_nt, NULL); if (!read_hosts_file(hostspath)) { g_free(hostspath); hostspath = g_strconcat(sysroot, rootpath_ot, NULL); read_hosts_file(hostspath); } g_free(hostspath); } #else /* _WIN32 */ read_hosts_file("/etc/hosts"); #endif /* _WIN32 */ /* XXX - Any flags we should be using? */ /* XXX - We could provide config settings for DNS servers, and pass them to ADNS with adns_init_strcfg */ if (adns_init(&ads, 0, 0 /*0=>stderr*/) != 0) { /* * XXX - should we report the error? I'm assuming that some crashes * reported on a Windows machine with TCP/IP not configured are due * to "adns_init()" failing (due to the lack of TCP/IP) and leaving * ADNS in a state where it crashes due to that. We'll still try * doing name resolution anyway. */ return; } async_dns_initialized = TRUE; async_dns_in_flight = 0; #endif /* HAVE_GNU_ADNS */ #endif /* HAVE_C_ARES */ subnet_name_lookup_init(); } #ifdef HAVE_C_ARES gboolean host_name_lookup_process(gpointer data _U_) { async_dns_queue_msg_t *caqm; struct timeval tv = { 0, 0 }; int nfds; fd_set rfds, wfds; gboolean nro = new_resolved_objects; new_resolved_objects = FALSE; if (!async_dns_initialized) /* c-ares not initialized. Bail out and cancel timers. */ return nro; async_dns_queue_head = g_list_first(async_dns_queue_head); while (async_dns_queue_head != NULL && async_dns_in_flight <= prefs.name_resolve_concurrency) { caqm = (async_dns_queue_msg_t *) async_dns_queue_head->data; async_dns_queue_head = g_list_remove(async_dns_queue_head, (void *) caqm); if (caqm->family == AF_INET) { ares_gethostbyaddr(ghba_chan, &caqm->addr.ip4, sizeof(guint32), AF_INET, c_ares_ghba_cb, caqm); async_dns_in_flight++; } else if (caqm->family == AF_INET6) { ares_gethostbyaddr(ghba_chan, &caqm->addr.ip6, sizeof(struct e_in6_addr), AF_INET6, c_ares_ghba_cb, caqm); async_dns_in_flight++; } } FD_ZERO(&rfds); FD_ZERO(&wfds); nfds = ares_fds(ghba_chan, &rfds, &wfds); if (nfds > 0) { select(nfds, &rfds, &wfds, NULL, &tv); ares_process(ghba_chan, &rfds, &wfds); } /* Any new entries? */ return nro; } void host_name_lookup_cleanup(void) { GList *cur; cur = g_list_first(async_dns_queue_head); while (cur) { g_free(cur->data); cur = g_list_next (cur); } g_list_free(async_dns_queue_head); if (async_dns_initialized) { ares_destroy(ghba_chan); ares_destroy(ghbn_chan); } #ifdef CARES_HAVE_ARES_LIBRARY_INIT ares_library_cleanup(); #endif async_dns_initialized = FALSE; } #elif defined(HAVE_GNU_ADNS) /* XXX - The ADNS "documentation" isn't very clear: * - Do we need to keep our query structures around? */ gboolean host_name_lookup_process(gpointer data _U_) { async_dns_queue_msg_t *almsg; GList *cur; char addr_str[] = "111.222.333.444.in-addr.arpa."; guint8 *addr_bytes; adns_answer *ans; int ret; gboolean dequeue; gboolean nro = new_resolved_objects; new_resolved_objects = FALSE; async_dns_queue_head = g_list_first(async_dns_queue_head); cur = async_dns_queue_head; while (cur && async_dns_in_flight <= prefs.name_resolve_concurrency) { almsg = (async_dns_queue_msg_t *) cur->data; if (! almsg->submitted && almsg->type == AF_INET) { addr_bytes = (guint8 *) &almsg->ip4_addr; g_snprintf(addr_str, sizeof addr_str, "%u.%u.%u.%u.in-addr.arpa.", addr_bytes[3], addr_bytes[2], addr_bytes[1], addr_bytes[0]); /* XXX - what if it fails? */ adns_submit (ads, addr_str, adns_r_ptr, 0, NULL, &almsg->query); almsg->submitted = TRUE; async_dns_in_flight++; } cur = cur->next; } cur = async_dns_queue_head; while (cur) { dequeue = FALSE; almsg = (async_dns_queue_msg_t *) cur->data; if (almsg->submitted) { ret = adns_check(ads, &almsg->query, &ans, NULL); if (ret == 0) { if (ans->status == adns_s_ok) { add_ipv4_name(almsg->ip4_addr, *ans->rrs.str); } dequeue = TRUE; } } cur = cur->next; if (dequeue) { async_dns_queue_head = g_list_remove(async_dns_queue_head, (void *) almsg); g_free(almsg); async_dns_in_flight--; } } /* Keep the timeout in place */ return nro; } void host_name_lookup_cleanup(void) { void *qdata; async_dns_queue_head = g_list_first(async_dns_queue_head); while (async_dns_queue_head) { qdata = async_dns_queue_head->data; async_dns_queue_head = g_list_remove(async_dns_queue_head, qdata); g_free(qdata); } if (async_dns_initialized) adns_finish(ads); async_dns_initialized = FALSE; } #else /* HAVE_GNU_ADNS */ gboolean host_name_lookup_process(gpointer data _U_) { gboolean nro = new_resolved_objects; new_resolved_objects = FALSE; return nro; } void host_name_lookup_cleanup(void) { } #endif /* HAVE_C_ARES */ extern const gchar * get_hostname(const guint addr) { gboolean found; gboolean resolve = gbl_resolv_flags & RESOLV_NETWORK; hashipv4_t *tp = host_lookup(addr, resolve, &found); if (!resolve) return tp->ip; return tp->name; } /* -------------------------- */ extern const gchar * get_hostname6(const struct e_in6_addr *addr) { gboolean found; gboolean resolve = gbl_resolv_flags & RESOLV_NETWORK; hashipv6_t *tp = host_lookup6(addr, resolve, &found); if (!resolve) return tp->ip6; return tp->name; } /* -------------------------- */ extern void add_ipv4_name(const guint addr, const gchar *name) { int hash_idx; hashipv4_t *tp; struct addrinfo *ai; struct sockaddr_in *sa4; hash_idx = HASH_IPV4_ADDRESS(addr); tp = ipv4_table[hash_idx]; if( tp == NULL ) { tp = ipv4_table[hash_idx] = new_ipv4(addr); } else { while(1) { if (tp->addr == addr) { /* address already known */ if (!tp->is_dummy_entry) { return; } else { /* replace this dummy entry with the new one */ break; } } if (tp->next == NULL) { tp->next = new_ipv4(addr); tp = tp->next; break; } tp = tp->next; } } g_strlcpy(tp->name, name, MAXNAMELEN); tp->resolve = TRUE; new_resolved_objects = TRUE; if (!addrinfo_list) { ai = g_malloc0(sizeof(struct addrinfo)); addrinfo_list = addrinfo_list_last = ai; } sa4 = g_malloc0(sizeof(struct sockaddr_in)); sa4->sin_family = AF_INET; sa4->sin_addr.s_addr = addr; ai = g_malloc0(sizeof(struct addrinfo)); ai->ai_family = AF_INET; ai->ai_addrlen = sizeof(struct sockaddr_in); ai->ai_canonname = (char *) tp->name; ai->ai_addr = (struct sockaddr*) sa4; addrinfo_list_last->ai_next = ai; addrinfo_list_last = ai; } /* add_ipv4_name */ /* -------------------------- */ extern void add_ipv6_name(const struct e_in6_addr *addrp, const gchar *name) { int hash_idx; hashipv6_t *tp; struct addrinfo *ai; struct sockaddr_in6 *sa6; hash_idx = HASH_IPV6_ADDRESS(*addrp); tp = ipv6_table[hash_idx]; if( tp == NULL ) { tp = ipv6_table[hash_idx] = new_ipv6(addrp); } else { while(1) { if (memcmp(&tp->addr, addrp, sizeof (struct e_in6_addr)) == 0) { /* address already known */ if (!tp->is_dummy_entry) { return; } else { /* replace this dummy entry with the new one */ break; } } if (tp->next == NULL) { tp->next = new_ipv6(addrp); tp = tp->next; break; } tp = tp->next; } } g_strlcpy(tp->name, name, MAXNAMELEN); tp->resolve = TRUE; new_resolved_objects = TRUE; if (!addrinfo_list) { ai = g_malloc0(sizeof(struct addrinfo)); addrinfo_list = addrinfo_list_last = ai; } sa6 = g_malloc0(sizeof(struct sockaddr_in6)); sa6->sin6_family = AF_INET; memcpy(sa6->sin6_addr.s6_addr, addrp, 16); ai = g_malloc0(sizeof(struct addrinfo)); ai->ai_family = AF_INET6; ai->ai_addrlen = sizeof(struct sockaddr_in); ai->ai_canonname = (char *) tp->name; ai->ai_addr = (struct sockaddr *) sa6; addrinfo_list_last->ai_next = ai; addrinfo_list_last = ai; } /* add_ipv6_name */ /* ----------------- * unsigned integer to ascii */ static gchar * ep_utoa(guint port) { gchar *bp = ep_alloc(MAXNAMELEN); /* XXX, guint32_to_str() ? */ guint32_to_str_buf(port, bp, MAXNAMELEN); return bp; } extern gchar * get_udp_port(guint port) { if (!(gbl_resolv_flags & RESOLV_TRANSPORT)) { return ep_utoa(port); } return serv_name_lookup(port, PT_UDP); } /* get_udp_port */ extern gchar * get_dccp_port(guint port) { if (!(gbl_resolv_flags & RESOLV_TRANSPORT)) { return ep_utoa(port); } return serv_name_lookup(port, PT_DCCP); } /* get_dccp_port */ extern gchar * get_tcp_port(guint port) { if (!(gbl_resolv_flags & RESOLV_TRANSPORT)) { return ep_utoa(port); } return serv_name_lookup(port, PT_TCP); } /* get_tcp_port */ extern gchar * get_sctp_port(guint port) { if (!(gbl_resolv_flags & RESOLV_TRANSPORT)) { return ep_utoa(port); } return serv_name_lookup(port, PT_SCTP); } /* get_sctp_port */ const gchar * get_addr_name(const address *addr) { const gchar *result; result = solve_address_to_name(addr); if (result != NULL) return result; /* if it gets here, either it is of type AT_NONE, */ /* or it should be solvable in address_to_str -unless addr->type is wrongly defined */ if (addr->type == AT_NONE){ return "NONE"; } /* We need an ephemeral allocated string */ return ep_address_to_str(addr); } const gchar * se_get_addr_name(const address *addr) { const gchar *result; result = se_solve_address_to_name(addr); if (result != NULL) return result; /* if it gets here, either it is of type AT_NONE, */ /* or it should be solvable in se_address_to_str -unless addr->type is wrongly defined */ if (addr->type == AT_NONE){ return "NONE"; } /* We need a "permanently" allocated string */ return se_address_to_str(addr); } void get_addr_name_buf(const address *addr, gchar *buf, gsize size) { const gchar *result = get_addr_name(addr); g_strlcpy(buf, result, size); } /* get_addr_name_buf */ gchar * get_ether_name(const guint8 *addr) { hashether_t *tp; gboolean resolve = (gbl_resolv_flags & RESOLV_MAC) != 0; if (resolve && !eth_resolution_initialized) { initialize_ethers(); eth_resolution_initialized = TRUE; } tp = eth_name_lookup(addr, resolve); return resolve ? tp->resolved_name : tp->hexaddr; } /* get_ether_name */ /* Look for a (non-dummy) ether name in the hash, and return it if found. * If it's not found, simply return NULL. */ gchar * get_ether_name_if_known(const guint8 *addr) { hashether_t *tp; /* Initialize ether structs if we're the first * ether-related function called */ if (!(gbl_resolv_flags & RESOLV_MAC)) return NULL; if (!eth_resolution_initialized) { initialize_ethers(); eth_resolution_initialized = TRUE; } /* eth_name_lookup will create a (resolved) hash entry if it doesn't exist */ tp = eth_name_lookup(addr, TRUE); g_assert(tp != NULL); if (tp->status == HASHETHER_STATUS_RESOLVED_NAME) { /* Name is from an ethers file (or is a "well-known" MAC address name from the manuf file) */ return tp->resolved_name; } else { /* Name was created */ return NULL; } } extern guint8 * get_ether_addr(const gchar *name) { /* force resolution (do not check gbl_resolv_flags) */ if (!eth_resolution_initialized) { initialize_ethers(); eth_resolution_initialized = TRUE; } return eth_addr_lookup(name); } /* get_ether_addr */ extern void add_ether_byip(const guint ip, const guint8 *eth) { gchar *host; gboolean found; /* first check that IP address can be resolved */ if (!(gbl_resolv_flags & RESOLV_NETWORK)) return; if ((host = host_name_lookup(ip, &found)) == NULL) return; /* ok, we can add this entry in the ethers hashtable */ if (found) add_eth_name(eth, host); } /* add_ether_byip */ extern const gchar * get_ipxnet_name(const guint32 addr) { if (!(gbl_resolv_flags & RESOLV_NETWORK)) { return ipxnet_to_str_punct(addr, '\0'); } if (!ipxnet_resolution_initialized) { initialize_ipxnets(); ipxnet_resolution_initialized = 1; } return ipxnet_name_lookup(addr); } /* get_ipxnet_name */ extern guint32 get_ipxnet_addr(const gchar *name, gboolean *known) { guint32 addr; gboolean success; /* force resolution (do not check gbl_resolv_flags) */ if (!ipxnet_resolution_initialized) { initialize_ipxnets(); ipxnet_resolution_initialized = 1; } addr = ipxnet_addr_lookup(name, &success); *known = success; return addr; } /* get_ipxnet_addr */ extern const gchar * get_manuf_name(const guint8 *addr) { gchar *cur; hashmanuf_t *mtp; if ((gbl_resolv_flags & RESOLV_MAC) && !eth_resolution_initialized) { initialize_ethers(); eth_resolution_initialized = TRUE; } if (!(gbl_resolv_flags & RESOLV_MAC) || ((mtp = manuf_name_lookup(addr)) == NULL)) { cur=ep_strdup_printf("%02x:%02x:%02x", addr[0], addr[1], addr[2]); return cur; } return mtp->name; } /* get_manuf_name */ extern const gchar * tvb_get_manuf_name(tvbuff_t *tvb, gint offset) { return get_manuf_name(tvb_get_ptr(tvb, offset, 3)); } const gchar * get_manuf_name_if_known(const guint8 *addr) { hashmanuf_t *mtp; if (!eth_resolution_initialized) { initialize_ethers(); eth_resolution_initialized = TRUE; } if ((mtp = manuf_name_lookup(addr)) == NULL) { return NULL; } return mtp->name; } /* get_manuf_name_if_known */ extern const gchar * tvb_get_manuf_name_if_known(tvbuff_t *tvb, gint offset) { return get_manuf_name_if_known(tvb_get_ptr(tvb, offset, 3)); } extern const gchar * get_eui64_name(const guint64 addr_eui64) { gchar *cur; hashmanuf_t *mtp; guint8 *addr = ep_alloc(8); /* Copy and convert the address to network byte order. */ *(guint64 *)(void *)(addr) = pntoh64(&(addr_eui64)); if ((gbl_resolv_flags & RESOLV_MAC) && !eth_resolution_initialized) { initialize_ethers(); eth_resolution_initialized = TRUE; } if (!(gbl_resolv_flags & RESOLV_MAC) || ((mtp = manuf_name_lookup(addr)) == NULL)) { cur=ep_strdup_printf("%02x:%02x:%02x%02x:%02x:%02x%02x:%02x", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], addr[6], addr[7]); return cur; } cur=ep_strdup_printf("%s_%02x:%02x:%02x:%02x:%02x", mtp->name, addr[3], addr[4], addr[5], addr[6], addr[7]); return cur; } /* get_eui64_name */ const gchar * get_eui64_name_if_known(const guint64 addr_eui64) { gchar *cur; hashmanuf_t *mtp; guint8 *addr = ep_alloc(8); /* Copy and convert the address to network byte order. */ *(guint64 *)(void *)(addr) = pntoh64(&(addr_eui64)); if (!eth_resolution_initialized) { initialize_ethers(); eth_resolution_initialized = TRUE; } if ((mtp = manuf_name_lookup(addr)) == NULL) { return NULL; } cur=ep_strdup_printf("%s_%02x:%02x:%02x:%02x:%02x", mtp->name, addr[3], addr[4], addr[5], addr[6], addr[7]); return cur; } /* get_eui64_name_if_known */ #ifdef HAVE_C_ARES #define GHI_TIMEOUT (250 * 1000) static void #if ( ( ARES_VERSION_MAJOR < 1 ) \ || ( 1 == ARES_VERSION_MAJOR && ARES_VERSION_MINOR < 5 ) ) c_ares_ghi_cb(void *arg, int status, struct hostent *hp) { #else c_ares_ghi_cb(void *arg, int status, int timeouts _U_, struct hostent *hp) { #endif /* * XXX - If we wanted to be really fancy we could cache results here and * look them up in get_host_ipaddr* below. */ async_hostent_t *ahp = arg; if (status == ARES_SUCCESS && hp && ahp && hp->h_length == ahp->addr_size) { memcpy(ahp->addrp, hp->h_addr, hp->h_length); ahp->copied = hp->h_length; } } #endif /* HAVE_C_ARES */ /* Translate a string, assumed either to be a dotted-quad IP address or * a host name, to a numeric IP address. Return TRUE if we succeed and * set "*addrp" to that numeric IP address; return FALSE if we fail. * Used more in the dfilter parser rather than in packet dissectors */ gboolean get_host_ipaddr(const char *host, guint32 *addrp) { struct in_addr ipaddr; #ifdef HAVE_C_ARES struct timeval tv = { 0, GHI_TIMEOUT }, *tvp; int nfds; fd_set rfds, wfds; async_hostent_t ahe; #else /* HAVE_C_ARES */ struct hostent *hp; #endif /* HAVE_C_ARES */ /* * don't change it to inet_pton(AF_INET), they are not 100% compatible. * inet_pton(AF_INET) does not support hexadecimal notation nor * less-than-4 octet notation. */ if (!inet_aton(host, &ipaddr)) { if (! (gbl_resolv_flags & RESOLV_NETWORK)) { return FALSE; } /* It's not a valid dotted-quad IP address; is it a valid * host name? */ #ifdef HAVE_C_ARES if (! (gbl_resolv_flags & RESOLV_CONCURRENT) || prefs.name_resolve_concurrency < 1 || ! async_dns_initialized) { return FALSE; } ahe.addr_size = (int) sizeof (struct in_addr); ahe.copied = 0; ahe.addrp = addrp; ares_gethostbyname(ghbn_chan, host, AF_INET, c_ares_ghi_cb, &ahe); FD_ZERO(&rfds); FD_ZERO(&wfds); nfds = ares_fds(ghbn_chan, &rfds, &wfds); if (nfds > 0) { tvp = ares_timeout(ghbn_chan, &tv, &tv); select(nfds, &rfds, &wfds, NULL, tvp); ares_process(ghbn_chan, &rfds, &wfds); } ares_cancel(ghbn_chan); if (ahe.addr_size == ahe.copied) { return TRUE; } return FALSE; #else /* ! HAVE_C_ARES */ hp = gethostbyname(host); if (hp == NULL) { /* No. */ return FALSE; /* Apparently, some versions of gethostbyaddr can * return IPv6 addresses. */ } else if (hp->h_length <= (int) sizeof (struct in_addr)) { memcpy(&ipaddr, hp->h_addr, hp->h_length); } else { return FALSE; } #endif /* HAVE_C_ARES */ } else { /* Does the string really contain dotted-quad IP? * Check against inet_atons that accept strings such as * "130.230" as valid addresses and try to convert them * to some form of a classful (host.net) notation. */ unsigned int a0, a1, a2, a3; if (sscanf(host, "%u.%u.%u.%u", &a0, &a1, &a2, &a3) != 4) return FALSE; } *addrp = ipaddr.s_addr; return TRUE; } /* * Translate IPv6 numeric address or FQDN hostname, into binary IPv6 address. * Return TRUE if we succeed and set "*addrp" to that numeric IP address; * return FALSE if we fail. */ gboolean get_host_ipaddr6(const char *host, struct e_in6_addr *addrp) { #ifdef HAVE_C_ARES struct timeval tv = { 0, GHI_TIMEOUT }, *tvp; int nfds; fd_set rfds, wfds; async_hostent_t ahe; #elif defined(HAVE_GETHOSTBYNAME2) struct hostent *hp; #endif /* HAVE_C_ARES */ if (inet_pton(AF_INET6, host, addrp) == 1) return TRUE; if (! (gbl_resolv_flags & RESOLV_NETWORK)) { return FALSE; } /* try FQDN */ #ifdef HAVE_C_ARES if (! (gbl_resolv_flags & RESOLV_CONCURRENT) || prefs.name_resolve_concurrency < 1 || ! async_dns_initialized) { return FALSE; } ahe.addr_size = (int) sizeof (struct e_in6_addr); ahe.copied = 0; ahe.addrp = addrp; ares_gethostbyname(ghbn_chan, host, AF_INET6, c_ares_ghi_cb, &ahe); FD_ZERO(&rfds); FD_ZERO(&wfds); nfds = ares_fds(ghbn_chan, &rfds, &wfds); if (nfds > 0) { tvp = ares_timeout(ghbn_chan, &tv, &tv); select(nfds, &rfds, &wfds, NULL, tvp); ares_process(ghbn_chan, &rfds, &wfds); } ares_cancel(ghbn_chan); if (ahe.addr_size == ahe.copied) { return TRUE; } #elif defined(HAVE_GETHOSTBYNAME2) hp = gethostbyname2(host, AF_INET6); if (hp != NULL && hp->h_length == sizeof(struct e_in6_addr)) { memcpy(addrp, hp->h_addr, hp->h_length); return TRUE; } #endif return FALSE; } /* * Find out whether a hostname resolves to an ip or ipv6 address * Return "ip6" if it is IPv6, "ip" otherwise (including the case * that we don't know) */ const char* host_ip_af(const char *host #ifndef HAVE_GETHOSTBYNAME2 _U_ #endif ) { #ifdef HAVE_GETHOSTBYNAME2 struct hostent *h; return (h = gethostbyname2(host, AF_INET6)) && h->h_addrtype == AF_INET6 ? "ip6" : "ip"; #else return "ip"; #endif }