summaryrefslogtreecommitdiffstats
path: root/src/target/firmware/layer1/prim_fbsb.c
blob: dafd06f08b851fb1562f7c16e095e2da9afe2914 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
/* Layer 1 - FCCH and SCH burst handling */

/* (C) 2010 by Harald Welte <laforge@gnumonks.org>
 *
 * All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */

#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <inttypes.h>
#include <defines.h>
#include <debug.h>
#include <memory.h>
#include <byteorder.h>
#include <rffe.h>
#include <osmocom/gsm/gsm_utils.h>
#include <osmocom/core/msgb.h>
#include <calypso/dsp_api.h>
#include <calypso/irq.h>
#include <calypso/tpu.h>
#include <calypso/tsp.h>
#include <calypso/dsp.h>
#include <calypso/timer.h>
#include <comm/sercomm.h>

#include <layer1/sync.h>
#include <layer1/afc.h>
#include <layer1/toa.h>
#include <layer1/tdma_sched.h>
#include <layer1/mframe_sched.h>
#include <layer1/tpu_window.h>
#include <layer1/l23_api.h>
#include <layer1/agc.h>

#include <l1ctl_proto.h>

#define FB0_RETRY_COUNT		3
#define AFC_RETRY_COUNT		30

extern uint16_t rf_arfcn; // TODO

struct mon_state {
	uint32_t fnr_report;	/* frame number when DSP reported it */
	int attempt;		/* which attempt was this ? */

	int16_t toa;
	uint16_t pm;
	uint16_t angle;
	uint16_t snr;

	/* computed values */
	int16_t freq_diff;

	/* Sync Burst (SB) */
	uint8_t bsic;
	struct gsm_time time;
};

struct l1a_fb_state {
	struct mon_state mon;
	struct l1ctl_fbsb_req req;
	int16_t initial_freq_err;
	uint8_t fb_retries;
	uint8_t afc_retries;
};

static struct l1a_fb_state fbs;
static struct mon_state *last_fb = &fbs.mon;
static int sb_det = 0;  //MTZ - This was added
static int fb_det = 0;  //MTZ - This was added
uint32_t old_tpu_offset = 0;  //MTZ - This was added
int total_sb_det = 0;

int16_t nb_fb_toa = 0;  //MTZ - This was added
uint16_t nb_fb_pm = 0;  //MTZ - This was added
uint16_t nb_fb_angle0 = 0;  //MTZ - This was added
uint16_t nb_fb_angle1 = 0;  //MTZ - This was added
uint16_t nb_fb_snr = 0;  //MTZ - This was added

static void dump_mon_state(struct mon_state *fb)
{
#if 0
	printf("(%"PRIu32":%u): TOA=%5u, Power=%4ddBm, Angle=%5dHz, "
		"SNR=%04x(%d.%u) OFFSET=%u SYNCHRO=%u\n",
		fb->fnr_report, fb->attempt, fb->toa,
		agc_inp_dbm8_by_pm(fb->pm)/8, ANGLE_TO_FREQ(fb->angle),
		fb->snr, l1s_snr_int(fb->snr), l1s_snr_fract(fb->snr),
		tpu_get_offset(), tpu_get_synchro());
#else
	printf("(%"PRIu32":%u): TOA=%5u, Power=%4ddBm, Angle=%5dHz\n",
		fb->fnr_report, fb->attempt, fb->toa,
		agc_inp_dbm8_by_pm(fb->pm)/8, ANGLE_TO_FREQ(fb->angle));
#endif
}

static int l1ctl_fbsb_resp(uint8_t res)
{
	struct msgb *msg;
	struct l1ctl_fbsb_conf *resp;

	msg = l1_create_l2_msg(L1CTL_FBSB_CONF, fbs.mon.time.fn,
				l1s_snr_int(fbs.mon.snr),
				fbs.req.band_arfcn);
	if (!msg)
		return -ENOMEM;

	resp = (struct l1ctl_fbsb_conf *) msgb_put(msg, sizeof(*resp));
	resp->initial_freq_err = htons(fbs.initial_freq_err);
	resp->result = res;
	resp->bsic = fbs.mon.bsic;

	/* no need to set BSIC, as it is never used here */
	l1_queue_for_l2(msg);

	return 0;
}

/* SCH Burst Detection ********************************************************/

/* determine the GSM time and BSIC from a Sync Burst */
static uint8_t l1s_decode_sb(struct gsm_time *time, uint32_t sb)
{
	uint8_t bsic = (sb >> 2) & 0x3f;
	uint8_t t3p;

	memset(time, 0, sizeof(*time));

	/* TS 05.02 Chapter 3.3.2.2.1 SCH Frame Numbers */
	time->t1 = ((sb >> 23) & 1) | ((sb >> 7) & 0x1fe) | ((sb << 9) & 0x600);
	time->t2 = (sb >> 18) & 0x1f;
	t3p = ((sb >> 24) & 1) | ((sb >> 15) & 6);
	time->t3 = t3p*10 + 1;

	/* TS 05.02 Chapter 4.3.3 TDMA frame number */
	time->fn = gsm_gsmtime2fn(time);
	printf("\n\nMTZ: time->fn = %d\n\n", time->fn);

	time->tc = (time->fn / 51) % 8;

	return bsic;
}

static void read_sb_result(struct mon_state *st, int attempt)
{
	st->toa = dsp_api.db_r->a_serv_demod[D_TOA];
	st->pm = dsp_api.db_r->a_serv_demod[D_PM]>>3;
	st->angle = dsp_api.db_r->a_serv_demod[D_ANGLE];
	st->snr = dsp_api.db_r->a_serv_demod[D_SNR];

	st->freq_diff = ANGLE_TO_FREQ(st->angle);
	st->fnr_report = l1s.current_time.fn;
	st->attempt = attempt;

	dump_mon_state(st);

	if (st->snr > AFC_SNR_THRESHOLD)
		afc_input(st->freq_diff, rf_arfcn, 1);
	else
		afc_input(st->freq_diff, rf_arfcn, 0);

	dsp_api.r_page_used = 1;
}

static void read_sb_result2(struct mon_state *st, int attempt)
{
	st->toa = dsp_api.db_r->a_serv_demod[D_TOA];
	st->pm = dsp_api.db_r->a_serv_demod[D_PM]>>3;
	st->angle = dsp_api.db_r->a_serv_demod[D_ANGLE];
	st->snr = dsp_api.db_r->a_serv_demod[D_SNR];

	st->freq_diff = ANGLE_TO_FREQ(st->angle);
	st->fnr_report = l1s.current_time.fn;
	st->attempt = attempt;

	dump_mon_state(st);

	printf("\n\n\nMTZ: st->freq_diff = %d\n\n\n", st->freq_diff);

	//MTZ - commenting out for now
	if (st->snr > AFC_SNR_THRESHOLD)
		afc_input(st->freq_diff, rf_arfcn, 1);
	else
		afc_input(st->freq_diff, rf_arfcn, 0);

	dsp_api.r_page_used = 1;
}

/* Note: When we get the SB response, it is 2 TDMA frames after the SB
 * actually happened, as it is a "C W W R" task */
#define SB2_LATENCY	2

static int l1s_sbdet_resp(__unused uint8_t p1, uint8_t attempt,
			  __unused uint16_t p3)
{
	uint32_t sb;
	int qbits, fn_offset;
	struct l1_cell_info *cinfo = &l1s.serving_cell;
	int fnr_delta, bits_delta;

	putchart('s');

	if (dsp_api.db_r->a_sch[0] & (1<<B_SCH_CRC)) {
		/* mark READ page as being used */
		dsp_api.r_page_used = 1;

		/* after 2nd attempt, we failed */
		if (attempt == 2) {
			last_fb->attempt = 13;
			l1s_compl_sched(L1_COMPL_FB);
		}

		/* after 1st attempt, we simply wait for 2nd */
		return 0;
	}

	printf("SB%d ", attempt);
	read_sb_result(last_fb, attempt);

	sb = dsp_api.db_r->a_sch[3] | dsp_api.db_r->a_sch[4] << 16;
	fbs.mon.bsic = l1s_decode_sb(&fbs.mon.time, sb);
	printf("=> SB 0x%08"PRIx32": BSIC=%u ", sb, fbs.mon.bsic);
	l1s_time_dump(&fbs.mon.time);

	l1s.serving_cell.bsic = fbs.mon.bsic;

	/* calculate synchronisation value (TODO: only complete for qbits) */
	last_fb->toa -= 23;
	qbits = last_fb->toa * 4;
	fn_offset = l1s.current_time.fn; // TODO

	if (qbits > QBITS_PER_TDMA) {
		qbits -= QBITS_PER_TDMA;
		fn_offset -= 1;
	} else if (qbits < 0)  {
		qbits += QBITS_PER_TDMA;
		fn_offset += 1;
	}

	fnr_delta = last_fb->fnr_report - attempt;
	bits_delta = fnr_delta * BITS_PER_TDMA;

	cinfo->fn_offset = fnr_delta;
	cinfo->time_alignment = qbits;
	cinfo->arfcn = rf_arfcn;

	if (last_fb->toa > bits_delta)
		printf("=> DSP reports SB in bit that is %d bits in the "
			"future?!?\n", last_fb->toa - bits_delta);
	else
		printf(" qbits=%u\n", qbits);

	synchronize_tdma(&l1s.serving_cell);

	/* if we have recived a SYNC burst, update our local GSM time */
	printf("\n\nMTZ: current_fn = %d, fn from SB = %d\n\n", gsm_gsmtime2fn(&l1s.current_time), fbs.mon.time.fn + SB2_LATENCY);
	gsm_fn2gsmtime(&l1s.current_time, fbs.mon.time.fn + SB2_LATENCY);
	/* compute next time from new current time */
	l1s.next_time = l1s.current_time;
	l1s_time_inc(&l1s.next_time, 1);

	/* If we call tdma_sched_reset(), which is only needed if there
	 * are further l1s_sbdet_resp() scheduled, we will bring
	 * dsp_api.db_r and dsp_api.db_w out of sync because we changed
	 * dsp_api.db_w for l1s_sbdet_cmd() and canceled
	 * l1s_sbdet_resp() which would change dsp_api.db_r. The DSP
	 * however expects dsp_api.db_w and dsp_api.db_r to be in sync
	 * (either "0 - 0" or "1 - 1"). So we have to bring dsp_api.db_w
	 * and dsp_api.db_r into sync again, otherwise NB reading will
	 * complain. We probably don't need the Abort command and could
	 * just bring dsp_api.db_w and dsp_api.db_r into sync.  */
	if (attempt != 2) {
		tdma_sched_reset();
		l1s_dsp_abort();
	}

	l1s_reset_hw();
	/* enable the MF Task for BCCH reading */
	mframe_enable(MF_TASK_BCCH_NORM);
	printf("\nMTZ: l1s.serving_cell.ccch_mode = %d\n", l1s.serving_cell.ccch_mode);
	if (l1s.serving_cell.ccch_mode == CCCH_MODE_COMBINED)
		mframe_enable(MF_TASK_CCCH_COMB);
	else if (l1s.serving_cell.ccch_mode == CCCH_MODE_NON_COMBINED)
		mframe_enable(MF_TASK_CCCH);
	else if (l1s.serving_cell.ccch_mode == CCCH_MODE_COMBINED_CBCH) {
		mframe_enable(MF_TASK_CCCH_COMB);
		mframe_enable(MF_TASK_SDCCH4_CBCH);
	}

	l1s_compl_sched(L1_COMPL_FB);

	//MTZ - delete this
	//mframe_enable(MF_TASK_TEST1);

	return 0;
}

static int l1s_sbdet_cmd(__unused uint8_t p1, __unused uint8_t p2,
			 __unused uint16_t p3)
{
	putchart('S');

	fbs.mon.bsic = 0;
	fbs.mon.time.fn = 0;

	dsp_api.db_w->d_task_md = SB_DSP_TASK;
	dsp_api.ndb->d_fb_mode = 0; /* wideband search */

	/* Program TPU */
	printf("\nMTZ: arfcn in l1s_sbdet_cmd = %d\n", rf_arfcn);
	l1s_rx_win_ctrl(rf_arfcn, L1_RXWIN_SB, 0);

	return 0;
}

static const struct tdma_sched_item sb_sched_set[];

/* This is how it is done by the TSM30 */
static const struct tdma_sched_item sb_sched_set[] = {
	SCHED_ITEM_DT(l1s_sbdet_cmd, 0, 0, 1),	SCHED_END_FRAME(),
	SCHED_ITEM_DT(l1s_sbdet_cmd, 0, 0, 2),	SCHED_END_FRAME(),
						SCHED_END_FRAME(),
	SCHED_ITEM(l1s_sbdet_resp, -4, 0, 1),	SCHED_END_FRAME(),
	SCHED_ITEM(l1s_sbdet_resp, -4, 0, 2),	SCHED_END_FRAME(),
	SCHED_END_SET()
};

void l1s_sb_test(uint8_t base_fn)
{
	tdma_schedule_set(base_fn, sb_sched_set, 0);
}
/* FCCH Burst *****************************************************************/

static int read_fb_result(struct mon_state *st, int attempt)
{
	st->toa = dsp_api.ndb->a_sync_demod[D_TOA];
	st->pm = dsp_api.ndb->a_sync_demod[D_PM]>>3;
	st->angle = dsp_api.ndb->a_sync_demod[D_ANGLE];
	st->snr = dsp_api.ndb->a_sync_demod[D_SNR];

	//last_fb->angle = clip_int16(last_fb->angle, AFC_MAX_ANGLE);
	st->freq_diff = ANGLE_TO_FREQ(last_fb->angle);
	st->fnr_report = l1s.current_time.fn;
	st->attempt = attempt;

	dump_mon_state(st);

	dsp_api.ndb->d_fb_det = 0;
	dsp_api.ndb->a_sync_demod[D_TOA] = 0; /* TSM30 does it (really needed ?) */

	/* Update AFC with current frequency offset */
	afc_correct(st->freq_diff, rf_arfcn);

	//tpu_dsp_frameirq_enable();
	return 1;
}

static void fbinfo2cellinfo(struct l1_cell_info *cinfo,
			    const struct mon_state *mon)
{
	int ntdma, qbits, fn_offset, fnr_delta, bits_delta;

	/* FIXME: where did this magic 23 come from? */
	last_fb->toa -= 23;

	if (last_fb->toa < 0) {
		qbits = (last_fb->toa + BITS_PER_TDMA) * 4;
		ntdma = -1;
	} else {
		ntdma = (last_fb->toa) / BITS_PER_TDMA;
		qbits = (last_fb->toa - ntdma * BITS_PER_TDMA) * 4;
	}

	fn_offset = l1s.current_time.fn - last_fb->attempt + ntdma;
	fnr_delta = last_fb->fnr_report - last_fb->attempt;
	bits_delta = fnr_delta * BITS_PER_TDMA;

	cinfo->fn_offset = fnr_delta;
	cinfo->time_alignment = qbits;
	cinfo->arfcn = rf_arfcn;

	if (last_fb->toa > bits_delta)
		printf("=> DSP reports FB in bit that is %d bits in "
			"the future?!?\n", last_fb->toa - bits_delta);
	else {
		int fb_fnr = (last_fb->fnr_report - last_fb->attempt)
				+ last_fb->toa/BITS_PER_TDMA;
		printf("=>FB @ FNR %u fn_offset=%d qbits=%u\n",
			fb_fnr, fn_offset, qbits);
	}
}

/* scheduler callback to issue a FB detection task to the DSP */
static int l1s_fbdet_cmd(__unused uint8_t p1, __unused uint8_t p2,
			 uint16_t fb_mode)
{
	if (fb_mode == 0) {
		putchart('F');
	} else {
		putchart('V');
	}

	l1s.fb.mode = fb_mode;

	/* Tell the RF frontend to set the gain appropriately */
	rffe_compute_gain(rxlev2dbm(fbs.req.rxlev_exp), CAL_DSP_TGT_BB_LVL);

	/* Program DSP */
	dsp_api.db_w->d_task_md = FB_DSP_TASK;	/* maybe with I/Q swap? */
	dsp_api.ndb->d_fb_mode = fb_mode;

	/* Program TPU */
	printf("\nMTZ: arfcn in l1s_fbdet_cmd = %d\n", fbs.req.band_arfcn);
	l1s_rx_win_ctrl(fbs.req.band_arfcn, L1_RXWIN_FB, 0);

	return 0;
}

#if 0
#define FB0_SNR_THRESH	2000
#define FB1_SNR_THRESH	3000
#else
#define FB0_SNR_THRESH	0
#define FB1_SNR_THRESH	0
#endif

static const struct tdma_sched_item fb_sched_set[];

/* scheduler callback to check for a FB detection response */
static int l1s_fbdet_resp(__unused uint8_t p1, uint8_t attempt,
			  uint16_t fb_mode)
{
	putchart('f');

	if (!dsp_api.ndb->d_fb_det) {
		/* we did not detect a FB */

		/* attempt < 12, do nothing */
		if (attempt < 12)
			return 0;

		/* attempt >= 12, we simply don't find one */

		/* If we don't reset here, we get DSP DMA errors */
		tdma_sched_reset();

		if (fbs.fb_retries < FB0_RETRY_COUNT) {
			/* retry once more */
			tdma_schedule_set(1, fb_sched_set, 0);
			fbs.fb_retries++;
		} else {
			last_fb->attempt = 13;
			l1s_compl_sched(L1_COMPL_FB);
		}

		return 0;
	}

	/* We found a frequency burst, reset everything */
	l1s_reset_hw();

	printf("FB%u ", dsp_api.ndb->d_fb_mode);
	read_fb_result(last_fb, attempt);

	/* if this is the first success, save freq err */
	if (!fbs.initial_freq_err)
		fbs.initial_freq_err = last_fb->freq_diff;

	/* If we don't reset here, we get DSP DMA errors */
	tdma_sched_reset();

	/* Immediately schedule further TDMA tasklets, if requested. Doing
	 * this directly from L1S means we can do this quickly without any
	 * additional delays */
	if (fb_mode == 0) {
		if (fbs.req.flags & L1CTL_FBSB_F_FB1) {
			/* If we don't reset here, we get DSP DMA errors */
			tdma_sched_reset();
			/* FIXME: don't only use the last but an average */
			if (abs(last_fb->freq_diff) < fbs.req.freq_err_thresh1 &&
			    last_fb->snr > FB0_SNR_THRESH) {
				/* continue with FB1 task in DSP */
				tdma_schedule_set(1, fb_sched_set, 1);
			} else {
				if (fbs.afc_retries < AFC_RETRY_COUNT) {
					tdma_schedule_set(1, fb_sched_set, 0);
					fbs.afc_retries++;
				} else {
					/* Abort */
					last_fb->attempt = 13;
					l1s_compl_sched(L1_COMPL_FB);
				}
			}
		} else
			l1s_compl_sched(L1_COMPL_FB);
	} else if (fb_mode == 1) {
		if (fbs.req.flags & L1CTL_FBSB_F_SB) {

	int ntdma, qbits;
	/* FIXME: where did this magic 23 come from? */
	last_fb->toa -= 23;

	if (last_fb->toa < 0) {
		qbits = (last_fb->toa + BITS_PER_TDMA) * 4;
		ntdma = -1;
	} else {
		ntdma = (last_fb->toa) / BITS_PER_TDMA;
		qbits = (last_fb->toa - ntdma * BITS_PER_TDMA) * 4;
	}


			int fn_offset = l1s.current_time.fn - last_fb->attempt + ntdma;
			int delay = fn_offset + 11 - l1s.current_time.fn - 1;
			printf("  fn_offset=%d (fn=%"PRIu32" + attempt=%u + ntdma = %d)\n",
				fn_offset, l1s.current_time.fn, last_fb->attempt, ntdma);
			printf("  delay=%d (fn_offset=%d + 11 - fn=%"PRIu32" - 1\n", delay,
				fn_offset, l1s.current_time.fn);
			printf("  scheduling next FB/SB detection task with delay %u\n", delay);
			if (abs(last_fb->freq_diff) < fbs.req.freq_err_thresh2 &&
			    last_fb->snr > FB1_SNR_THRESH) {
				/* synchronize before reading SB */
				fbinfo2cellinfo(&l1s.serving_cell, last_fb);
				synchronize_tdma(&l1s.serving_cell);
				tdma_schedule_set(delay, sb_sched_set, 0);
			} else
				tdma_schedule_set(delay, fb_sched_set, 1);
		} else
			l1s_compl_sched(L1_COMPL_FB);
	}

	return 0;
}

/* FB detection */
static const struct tdma_sched_item fb_sched_set[] = {
	SCHED_ITEM_DT(l1s_fbdet_cmd, 0, 0, 0),	SCHED_END_FRAME(),
						SCHED_END_FRAME(),
	SCHED_ITEM(l1s_fbdet_resp, -4, 0, 1),	SCHED_END_FRAME(),
	SCHED_ITEM(l1s_fbdet_resp, -4, 0, 2),	SCHED_END_FRAME(),
	SCHED_ITEM(l1s_fbdet_resp, -4, 0, 3),	SCHED_END_FRAME(),
	SCHED_ITEM(l1s_fbdet_resp, -4, 0, 4),	SCHED_END_FRAME(),
	SCHED_ITEM(l1s_fbdet_resp, -4, 0, 5),	SCHED_END_FRAME(),
	SCHED_ITEM(l1s_fbdet_resp, -4, 0, 6),	SCHED_END_FRAME(),
	SCHED_ITEM(l1s_fbdet_resp, -4, 0, 7),	SCHED_END_FRAME(),
	SCHED_ITEM(l1s_fbdet_resp, -4, 0, 8),	SCHED_END_FRAME(),
	SCHED_ITEM(l1s_fbdet_resp, -4, 0, 9),	SCHED_END_FRAME(),
	SCHED_ITEM(l1s_fbdet_resp, -4, 0, 10),	SCHED_END_FRAME(),
	SCHED_ITEM(l1s_fbdet_resp, -4, 0, 11),	SCHED_END_FRAME(),
	SCHED_ITEM(l1s_fbdet_resp, -4, 0, 12),	SCHED_END_FRAME(),
	SCHED_END_SET()
};

/* Asynchronous completion handler for FB detection */
static void l1a_fb_compl(__unused enum l1_compl c)
{
	if (last_fb->attempt >= 13) {
		/* FB detection failed, signal this via L1CTL */
		l1ctl_fbsb_resp(255);
		return;
	}

	/* FIME: use l1s.neigh_cell[fbs.cinfo_idx] */
	fbinfo2cellinfo(&l1s.serving_cell, last_fb);

	/* send FBSB_CONF success message via L1CTL */
	l1ctl_fbsb_resp(0);
}

void l1s_fbsb_req(uint8_t base_fn, struct l1ctl_fbsb_req *req)
{
	/* copy + endian convert request data */
	fbs.req.band_arfcn = ntohs(req->band_arfcn);
	fbs.req.timeout = ntohs(req->timeout);
	fbs.req.freq_err_thresh1 = ntohs(req->freq_err_thresh1);
	fbs.req.freq_err_thresh2 = ntohs(req->freq_err_thresh2);
	fbs.req.num_freqerr_avg = req->num_freqerr_avg;
	fbs.req.flags = req->flags;
	fbs.req.sync_info_idx = req->sync_info_idx;
	fbs.req.rxlev_exp = req->rxlev_exp;

	/* clear initial frequency error */
	fbs.initial_freq_err = 0;
	fbs.fb_retries = 0;
	fbs.afc_retries = 0;

	/* Make sure we start at a 'center' AFCDAC output value */
	afc_reset();

	/* Reset the TOA loop counters */
	toa_reset();

	tdma_schedule_set(0, fb_sched_set, 0);	

	//MTZ - Changed
	//if (fbs.req.flags & L1CTL_FBSB_F_FB0)
	//	tdma_schedule_set(base_fn, fb_sched_set, 0);
	//else if (fbs.req.flags & L1CTL_FBSB_F_FB1)
	//	tdma_schedule_set(base_fn, fb_sched_set, 0);
	//else if (fbs.req.flags & L1CTL_FBSB_F_SB)
	//	tdma_schedule_set(base_fn, sb_sched_set, 0);

	//MTZ
	//l1ctl_test();
	//struct msgb *msg1 = l1ctl_msgb_alloc(L1CTL_TEST);

	//l1_queue_for_l2(msg1);

}

/* SB for Neighbours in dedicated mode
 *
 * Only when number of neighbor cells is > 0, perform synchronization.
 *
 * For each synchronization, l1s.neigh_pm.running is set. In case of an update
 * of neighbor cell list, this state is cleared, so a pending sync result would
 * be ignored.
 *
 * After a (new) list of neighbor cells are received, the measurements are not
 * yet valid. A valid state flag is used to indicate valid measurements. Until
 * there are no valid measurements, the synchronization is not performed.
 *
 * The task is to scan the 6 strongest neighbor cells by trying to synchronize
 * to it. This is done by selecting the strongest unscanned neighbor cell.
 * If 6 cells have been scanned or all cells (if less than 6) have been
 * scanned, the process clears all 'scanned' flags and starts over with the
 * strongest (now the strongest unscanned) cell.
 *
 * Each synchronization attempt is performed during the "search frame" (IDLE
 * frame). The process attempts to sync 11 times to ensure that it hits the
 * SCH of the neighbor's BCCH. (The alignment of BCCH shifts after every two
 * 26-multiframe in a way that the "search frame" is aligned with the SCH, at
 * least once for 11 successive "search frames".)
 *
 * If the synchronization attempt is successful, the BSIC and neighbor cell
 * offset is stored. These are indicated to layer23 with the measurement
 * results.
 *
 * When performing handover to a neighbor cell, the stored offset is used to
 * calculate new GSM time and tpu_offset.
 */

static void select_neigh_cell(void)
{
	uint8_t strongest = 0, strongest_unscanned = 0;
	int strongest_i = 0, strongest_unscanned_i = -1;
	int num_scanned = 0;
	int i;

	/* find strongest cell and strongest unscanned cell and count */
	for (i = 0; i < l1s.neigh_pm.n; i++) {
		if (l1s.neigh_pm.level[i] > strongest) {
			strongest = l1s.neigh_pm.level[i];
			strongest_i = i;
		}
		if (!(l1s.neigh_sb.flags_bsic[i] & NEIGH_PM_FLAG_SCANNED)) {
			if (l1s.neigh_pm.level[i] > strongest_unscanned) {
				strongest_unscanned = l1s.neigh_pm.level[i];
				strongest_unscanned_i = i;
			}
		} else
			num_scanned++;
	}

	/* no unscanned cell or we have scanned enough */
	if (strongest_unscanned_i < 0 || num_scanned >= 6) {
		/* flag all cells unscanned */
		for (i = 0; i < l1s.neigh_pm.n; i++)
			l1s.neigh_sb.flags_bsic[i] &= ~NEIGH_PM_FLAG_SCANNED;
		/* use strongest cell to begin scanning with */
		l1s.neigh_sb.index = strongest_i;
	} else {
		/* use strongest unscanned cell to begin scanning with */
		l1s.neigh_sb.index = strongest_unscanned_i;
	}
}

//MTZ - The function below has been taken from synchronize_tdma in sync.c and modified for whatever seemed necessary
void synchronize_tdma2()
{

	uint32_t tpu_shift;
	int ntdma, qbits;

	/* FIXME: where did this magic 23 come from? */
	nb_fb_toa -= 23;

	if (nb_fb_toa < 0) {
		qbits = (nb_fb_toa + BITS_PER_TDMA) * 4;
		ntdma = -1;
	} else {
		ntdma = (nb_fb_toa) / BITS_PER_TDMA;
		qbits = (nb_fb_toa - ntdma * BITS_PER_TDMA) * 4;
	}

	tpu_shift = qbits;

	old_tpu_offset = l1s.tpu_offset;

	/* NB detection only works if the TOA of the SB
	 * is within 0...8. We have to add 75 to get an SB TOA of 4. */
	tpu_shift += 75;

	tpu_shift = (l1s.tpu_offset + tpu_shift) % QBITS_PER_TDMA;

	//fn_offset = cinfo->fn_offset - 1;

	/* if we're already very close to the end of the TPU frame, the
	 * next interrupt will basically occur now and we need to
	 * compensate */
	//if (tpu_shift < SWITCH_TIME)
	//	fn_offset++;


	l1s.tpu_offset = tpu_shift;
	//puts("Synchronize_TDMA\n");
	/* request the TPU to adjust the SYNCHRO and OFFSET registers */
	tpu_enq_at(SWITCH_TIME);
	tpu_enq_sync(l1s.tpu_offset);
}

/*//////////////////////////////////////////////////////////////////////////////////////////////////////

FB/SB detection in dedicated mode

- First of all it must be noted that 3 additional frames have been added to the original idle frame 25 or 12 depending upon the half rate type. This gives us additional time to do any required time and frequency synchronization before detecting the synchronization burst of the neighbour as well as returning to the current settings before the TCH frame that follows. This can be seen in the file firmware/layer1/mframe_sched.c.

- The approach to detect FB and SB in dedicated mode must be kept in mind. In dedicated mode the traffic multiframe is running on the MS that consists of 26 frames with frame 25 as idle frame (in even mode). In order to read FB of neighbour we need to read its control channel that consists of 51 frames. As the control MF size is not a multiple of traffic MF size each time the traffic idle frame appears we are at a different frame number in the control MF of the neighbour. Hence the traffic idle frame coincides with a different control channel each time and actually traverses through it. By looking at the channel assignment accross the control MF it can be seen that we will coincide with a frequency burst on the control channel when we have an idle traffic frame every 10 or 11 idle frames. If we repeatedly search for FB on traffic idle frames we should be able to detect it every 10 or 11 idle frames. The SB would appear the second idle frame following the idle frame on which FB is detected not the next (this can be verified by hand). This is the approach we use.

- It was seen in idle mode FB/SB detection that FB is detected twice, first using FB mode 0 then using FB mode 1 which seem to provide different precision on frequency correction. After each FB detection frequency correction is performed in idle mode using afc_correct. Following FB mode 1 FB detection the quarter-bit synchronization is also performed using TOA (time of arrival of frequency burst) to synch the start of frame with the internal counters by modifying l1s.tpu_offset from what I could find. It is only after these two kinds of synchronizations/corrections that we can read the bursts on the channel properly. Synchronization burst is then read which is used to get the BSIC of the BTS and the absolute frame number it is on to update our internal variables/registers with it. Additionally further frequency correction is performed.

- The same steps need to be performed as above but this time in steps as we can only do this whenever the idle frame appears otherwise we would be in traffic mode and wouldn't have time to perform this. At each step values for frequency compensation/time correction are stored to be used in the next step. At the beginning of every idle frame set (as we have added three more idle frames) the required synchronization/correction is performed and at the end of it it is reversed to return to original settings. l1s_neigh_fbsb_sync is used to perform any synching/correction at the start of the idle frame set.

- fb_det and sb_det are used as control variables to guide through the synchronization process as follows:

	fb_det		sb_det		task

	0		0		FB detection mode 0
	1		0		FB detection mode 1
	0		1		Do nothing - this is the idle frame following FB detection
	0		2		SB detection
	0		3		Do nothing
	0		4		SB detection again

fb_det goes from 0 to 1 upon FB detection in FB mode 0. Then when FB is detected in FB mode 1 sb_det becomes 1 and fb_det goes to 0. Thereafter sb_det increments upon every idle frame. This is important to keep in mind.

* SB detection is done second time to make sure the SB isn't missed as I thought it might be in the middle of the frames. Just a cautious check.

- Whenever FB and/or SB are detected the results are stored in the following variables to be used in case of handover


	l1s.tpu_offsets_arfcn[ii] - The corresponding arfcn for the indices
	l1s.tpu_offsets[ii] - The quarter-bit offset required for start of frame
	l1s.nb_freq_diff[ii] - Frequency correction required from FB mode 0 + 1
	l1s.nb_sb_freq_diff[ii] - Additional freq correction from SB detection
	l1s.nb_frame_diff[ii] - The difference in frame of serving cell and the neighbour
	l1s.nb_sb_snr[ii] - The snr received (might not really be needed)

I know I could have used the l1s.neigh_sb struct but for now that's the way it is. This is so also because the stored number of neighbour gets reset whenever we enter a new dedicated mode but that can be worked around.

- The TOA obtained from FB detection gives the number of GSM bits from the start of the command to detect FB till the actual detection. As it can span more than 1 frame especially in idle mode it is broken down to ntdma and qbits. ntdma denotes the complete frames and qbits the number of quarter-bits following an integer number of frames (the remainder bits x 4). This is the actual difference from the frame start of the serving cell to the frame start of the neighbour cell.

- This schedule is activated using the multiframe scheduler whenever the idle frame comes in dedicated mode. select_neigh_cell() is used to select the next neighbour once SB of one neighbour is obtained or 15 tries to detect FB have failed (or SB is not detected following FB detection).

- l1s.neigh_sb is the struct used to keep track of neigbour bsic/power measurements etc. This can be enhanced to store the values menioned above as well.

- l1s.tpu_offset is the variable storing the quarter-bit offset to the start of frame for the cell to be read/transmitted to. afc_correct(...) is used to do frequency compensation.

- Things could have been coded in a better way but that's the way it is for now. Perhaps someone else can restructure the whole thing and come up with a better approach.

///////////////////////////////////////////////////////////////////////////////////////////////////// */

/* scheduler callback to issue a FB detection task to the DSP */
static int l1s_neigh_fbsb_sync(__unused uint8_t p1, __unused uint8_t p2,
			 uint16_t fb_mode)
{

	uint32_t tpu_shift;
	int ntdma, qbits;

	if (fb_det == 1) {
		//printf("afc_correct in l1s_neigh_fbsb_sync for FB1 - nb_fb_angle0\n\n");
		afc_correct(ANGLE_TO_FREQ(nb_fb_angle0), l1s.neigh_pm.band_arfcn[l1s.neigh_sb.index]);
	}

	if ((sb_det == 2)||(sb_det == 4)) {
		//printf("\nMTZ - in l1s_neigh_fbsb_sync, old_tpu_offset = %d\n", l1s.tpu_offset);

		/* FIXME: where did this magic 23 come from? */
		nb_fb_toa -= 23; //MTZ - uncomment

		if (nb_fb_toa < 0) {
			qbits = (nb_fb_toa + BITS_PER_TDMA) * 4;
			ntdma = -1;
		} else {
			ntdma = (nb_fb_toa) / BITS_PER_TDMA;
			qbits = (nb_fb_toa - ntdma * BITS_PER_TDMA) * 4;
		}

		tpu_shift = qbits;

		old_tpu_offset = l1s.tpu_offset;

		/* NB detection only works if the TOA of the SB
		 * is within 0...8. We have to add 75 to get an SB TOA of 4. */
		tpu_shift += 75; //MTZ - uncomment

		tpu_shift = (l1s.tpu_offset + tpu_shift) % QBITS_PER_TDMA;

		//fn_offset = cinfo->fn_offset - 1;

		/* if we're already very close to the end of the TPU frame, the
		 * next interrupt will basically occur now and we need to
		 * compensate */
		//if (tpu_shift < SWITCH_TIME)
		//	fn_offset++;

		//printf("MTZ - old_tpu_offset = %d, tpu_shift = %d, qbits = %d\n", old_tpu_offset, tpu_shift, qbits);

		l1s.neigh_pm.tpu_offset[l1s.neigh_sb.index] = tpu_shift;

		int ii =0;
		for (ii=0; ii<64; ii++) {
			if (l1s.tpu_offsets_arfcn[ii] == l1s.neigh_pm.band_arfcn[l1s.neigh_sb.index]) {
				l1s.tpu_offsets[ii] = tpu_shift;
				l1s.nb_freq_diff[ii] = ANGLE_TO_FREQ(nb_fb_angle0)+ANGLE_TO_FREQ(nb_fb_angle1);
				break;
			}
			if (l1s.tpu_offsets_arfcn[ii] == 0) {
				l1s.tpu_offsets_arfcn[ii] = l1s.neigh_pm.band_arfcn[l1s.neigh_sb.index];
				l1s.tpu_offsets[ii] = tpu_shift;
				l1s.nb_freq_diff[ii] = ANGLE_TO_FREQ(nb_fb_angle0)+ANGLE_TO_FREQ(nb_fb_angle1);
				break;
			}
		}

		//printf("\n\nMTZ: Stored TPU Offsets, Angles:");
		//for (ii=0; ii<64; ii++) {
		//	if (l1s.tpu_offsets_arfcn[ii] == 0)
		//		break;
		//	printf("  %d,%d(%d)", l1s.tpu_offsets[ii], l1s.nb_freq_diff[ii], l1s.tpu_offsets_arfcn[ii]);
		//}
		//printf("\n\n");

		//MTZ - possibly remove the >=50 if statement
		if (nb_fb_toa >= 50) {
			l1s.tpu_offset = tpu_shift;
			//tpu_enq_at(SWITCH_TIME);
			//tpu_enq_sync(tpu_shift);
		}
		//printf("afc_correct in l1s_neigh_fbsb_sync for SB - nb_fb_angle0+nb_fb_angle1\n\n");
		afc_correct(ANGLE_TO_FREQ(nb_fb_angle0)+ANGLE_TO_FREQ(nb_fb_angle1), l1s.neigh_pm.band_arfcn[l1s.neigh_sb.index]);
	}

}
/* scheduler callback to issue a FB and SB detection task to the DSP in dedicated mode */
// READ COMMENTS ABOVE l1s_neigh_fbsb_sync
static int l1s_neigh_fbsb_cmd(__unused uint8_t p1, __unused uint8_t p2,
			 uint16_t fb_mode)
{

	int index = l1s.neigh_sb.index;
	uint8_t last_gain;

	if (l1s.neigh_pm.n == 0)
		return 0;

	/* if measurements are not yet valid, wait */
	if (!l1s.neigh_pm.valid)
		return 0;

	/* check for cell to sync to */
	if (l1s.neigh_sb.count == 0) {
		/* there is no cell selected, search for cell */
		select_neigh_cell();
		index = l1s.neigh_sb.index;
	}

//	//MTZ - putting this for now as we wanted to repeatedly detect the remaining ones - remove
//	while (!((l1s.neigh_sb.flags_bsic[index] & NEIGH_PM_FLAG_BSIC) == 0)) {
////		printf("\nMTZ: BSIC has been decoded for ARFCN %d (flags_bsic[%d] = %d)\n\n", l1s.neigh_pm.band_arfcn[index], index, l1s.neigh_sb.flags_bsic[index]);
//		l1s.neigh_sb.count = 0;
//		l1s.neigh_sb.flags_bsic[index] |= NEIGH_PM_FLAG_SCANNED;
//		select_neigh_cell();
//		index = l1s.neigh_sb.index;
//	}

	if (sb_det == 0) {

		//l1s.fb.mode = fb_mode;

		//printf(" - detect FB arfcn %d (#%d) %d dbm\n", l1s.neigh_pm.band_arfcn[index], l1s.neigh_sb.count, rxlev2dbm(l1s.neigh_pm.level[index]));

		last_gain = rffe_get_gain();

		/* Tell the RF frontend to set the gain appropriately */
		rffe_compute_gain(rxlev2dbm(l1s.neigh_pm.level[index]), CAL_DSP_TGT_BB_LVL);

		/* Program DSP */
		dsp_api.db_w->d_task_md = TCH_FB_DSP_TASK;  /* maybe with I/Q swap? */
//		dsp_api.db_w->d_task_md = dsp_task_iq_swap(TCH_SB_DSP_TASK, l1s.neigh_pm.band_arfcn[index], 0); //MTZ - Commented originally
		if (fb_det == 1) {
			dsp_api.ndb->d_fb_mode = 1;
		} else {
			dsp_api.ndb->d_fb_mode = 0;
		}

		/* Program TPU */
		//l1s_rx_win_ctrl(l1s.neigh_pm.band_arfcn[index], L1_RXWIN_FB26, 5); //MTZ - Original - don't think works - as we have multiple idle frames now we can use TS 0
		l1s_rx_win_ctrl(l1s.neigh_pm.band_arfcn[index], L1_RXWIN_FB26, 0);

		/* restore last gain */
		rffe_set_gain(last_gain);

	} else if ((sb_det == 2)||(sb_det == 4)) {

//		printf(" - detect SB arfcn %d (#%d) %d dbm\n", l1s.neigh_pm.band_arfcn[index], l1s.neigh_sb.count, rxlev2dbm(l1s.neigh_pm.level[index]));

		last_gain = rffe_get_gain();

		/* Tell the RF frontend to set the gain appropriately */
		rffe_compute_gain(rxlev2dbm(l1s.neigh_pm.level[index]), CAL_DSP_TGT_BB_LVL);

		/* Program DSP */
		//MTZ Changed
		//dsp_api.db_w->d_task_md = TCH_SB_DSP_TASK;  /* maybe with I/Q swap? */
		dsp_api.db_w->d_task_md = SB_DSP_TASK;  /* maybe with I/Q swap? */
//		dsp_api.db_w->d_task_md = dsp_task_iq_swap(TCH_SB_DSP_TASK, l1s.neigh_pm.band_arfcn[index], 0); //MTZ - Commented originally
		dsp_api.ndb->d_fb_mode = 0;

//		//MTZ - Experimenting
//		dsp_api.ndb->a_sync_demod[D_TOA] = nb_fb_toa;
//		dsp_api.ndb->a_sync_demod[D_PM] = nb_fb_pm;
//		dsp_api.ndb->a_sync_demod[D_ANGLE] = nb_fb_angle;
//		dsp_api.ndb->a_sync_demod[D_SNR] = nb_fb_snr;


		/* Program TPU */
		//l1s_rx_win_ctrl(l1s.neigh_pm.band_arfcn[index], L1_RXWIN_SB26, 5); //MTZ - Original - don't think works - as we have multiple idle frames now we can use TS 0
		l1s_rx_win_ctrl(l1s.neigh_pm.band_arfcn[index], L1_RXWIN_SB, 0);

		/* restore last gain */
		rffe_set_gain(last_gain);

		l1s.neigh_sb.running = 1;

	}
	return 0;
}

/* scheduler callback to issue a FB and SB detection task to the DSP in dedicate mode */
// READ COMMENTS ABOVE l1s_neigh_fbsb_sync
static int l1s_neigh_fbsb_resp(__unused uint8_t p1, uint8_t attempt,
			  uint16_t fb_mode)
{
	int index = l1s.neigh_sb.index;
	uint32_t sb;
	uint8_t bsic;
	int sb_found = 0;

	if (sb_det == 0) {
		if (fb_det == 1) {
			//printf("afc_correct (-ve) in l1s_neigh_fbsb_resp for FB1 - nb_fb_angle0\n\n");
			afc_correct(-1*ANGLE_TO_FREQ(nb_fb_angle0), l1s.neigh_pm.band_arfcn[l1s.neigh_sb.index]);
		}
		if (!dsp_api.ndb->d_fb_det) {
			printf("MTZ: ARFCN %d (index %d, power %d dbm, try #%d) FB%d found = 0\n", l1s.neigh_pm.band_arfcn[index], index, rxlev2dbm(l1s.neigh_pm.level[index]), l1s.neigh_sb.count, fb_det);

			/* next sync */
			if (++l1s.neigh_sb.count == 15) {
				//MTZ - a count of 0 will result in select_neigh_cell() being called and next cell being selected
				l1s.neigh_sb.count = 0;
				l1s.neigh_sb.flags_bsic[index] |= NEIGH_PM_FLAG_SCANNED;
				//MTZ - If 15 tries in FB mode 1 then set fb_det to 0
				if (fb_det == 1){
					fb_det = 0;
				}
			}

		} else {
			//MTZ - Capturing the readings from FB detection - these are stored in arrays upon SB detection for use in case handover is required
			nb_fb_toa = dsp_api.ndb->a_sync_demod[D_TOA];
			nb_fb_pm = dsp_api.ndb->a_sync_demod[D_PM];
			if (fb_det == 1)
				nb_fb_angle1 = dsp_api.ndb->a_sync_demod[D_ANGLE];
			else
				nb_fb_angle0 = dsp_api.ndb->a_sync_demod[D_ANGLE];
			nb_fb_snr = dsp_api.ndb->a_sync_demod[D_SNR];
			printf("\n\nMTZ: ARFCN %d (index %d, power %d dbm, try #%d) FB%d found = 1 >>> nb_fb_toa = %d, angle = %d\n\n", l1s.neigh_pm.band_arfcn[index], index, rxlev2dbm(l1s.neigh_pm.level[index]), l1s.neigh_sb.count, fb_det, nb_fb_toa, dsp_api.ndb->a_sync_demod[D_ANGLE]);
			//MTZ - If FB mode was 0 make it 1, it FB mode was one set sb_det to 1 to indicate SB detection step
			if (fb_det == 0) {
				fb_det = 1;
				l1s.neigh_sb.count = 1;
			} else {
				sb_det = 1;
				fb_det = 0;
			}
		}

		//l1s_reset_hw();
		tdma_sched_reset();
	} else {
		if ((sb_det == 2)||(sb_det == 4)) {
			/* check if sync was successful */

			//MTZ - This was the main change below - we need to read a_sch26 as opposed to a_sch
			//if (dsp_api.db_r->a_sch[0] & (1<<B_SCH_CRC)) {
			if (dsp_api.ndb->a_sch26[0] & (1<<B_SCH_CRC)) {
//				printf("\nSB found = 0 (ARFCN %d, power %d dbm)\n\n", l1s.neigh_pm.band_arfcn[index], rxlev2dbm(l1s.neigh_pm.level[index]));
			} else {

				uint32_t	fn;	/* FN count */
				uint16_t	t1;	/* FN div (26*51) */
				uint8_t		t2;	/* FN modulo 26 */
				uint8_t		t3;	/* FN modulo 51 */
				uint8_t		tc;
				uint8_t t3p;				

				sb_found = 1;
				sb = dsp_api.ndb->a_sch26[3] | dsp_api.ndb->a_sch26[4] << 16;
				bsic = (sb >> 2) & 0x3f;

				t1 = ((sb >> 23) & 1) | ((sb >> 7) & 0x1fe) | ((sb << 9) & 0x600);
				t2 = (sb >> 18) & 0x1f;
				t3p = ((sb >> 24) & 1) | ((sb >> 15) & 6);
				t3 = t3p*10 + 1;

				/* TS 05.02 Chapter 4.3.3 TDMA frame number */
				fn = (51 * ((t3 - t2 + 26) % 26) + t3 + (26 * 51 * t1)) + SB2_LATENCY;

				int ii =0;
				for (ii=0; ii<64; ii++) {
					if (l1s.tpu_offsets_arfcn[ii] == l1s.neigh_pm.band_arfcn[l1s.neigh_sb.index]) {
						l1s.nb_frame_diff[ii] = fn - l1s.current_time.fn;
						l1s.nb_sb_freq_diff[ii] = ANGLE_TO_FREQ(dsp_api.db_r->a_serv_demod[D_ANGLE]);
						l1s.nb_sb_snr[ii] = dsp_api.db_r->a_serv_demod[D_SNR];
						break;
					}
				}


				total_sb_det++;
				//printf("=> SB 0x%08"PRIx32": BSIC=%u \n\n", sb, bsic);
				printf("\n----------------------------------------------------------------------------\nSB found = 1 (ARFCN %d, power %d dbm) => SB 0x%08"PRIx32": BSIC=%u, TOA=%d, Angle=%d (Total=%d)\n----------------------------------------------------------------------------\n\n", l1s.neigh_pm.band_arfcn[index], rxlev2dbm(l1s.neigh_pm.level[index]), sb, bsic, dsp_api.db_r->a_serv_demod[D_TOA], dsp_api.db_r->a_serv_demod[D_ANGLE], total_sb_det);
				l1s.neigh_sb.flags_bsic[index] = bsic | NEIGH_PM_FLAG_BSIC | NEIGH_PM_FLAG_SCANNED;
			}
		
			if ((sb_det == 2)||(sb_det == 4)) {

				//MTZ - testing this - possibly remove
				if (nb_fb_toa >= 50);
					l1s.tpu_offset = old_tpu_offset;
				//printf("afc_correct (-ve) in l1s_neigh_fbsb_resp for SB - nb_fb_angle0+nb_fb_angle1\n\n");
				afc_correct(-1*(ANGLE_TO_FREQ(nb_fb_angle0) + ANGLE_TO_FREQ(nb_fb_angle1)), l1s.neigh_pm.band_arfcn[l1s.neigh_sb.index]);

			}
	
			if ((sb_det == 4)||(sb_found == 1)) {
				l1s.neigh_sb.count = 0;
				//MTZ - need to change this statement based on detection
				l1s.neigh_sb.flags_bsic[index] |= NEIGH_PM_FLAG_SCANNED;

				l1s.neigh_sb.running = 0;

				//dsp_api.r_page_used = 1;

				if (sb_found == 0)
					printf("\n\n");
			}

		}

		if ((sb_det == 4)||(sb_found == 1))
			sb_det = 0;
		else
			sb_det++;
	}

	return 0;
}

//MTZ - THIS FUNCTION BELOW IS NOT USED!!!!!
static int l1s_neigh_sb_cmd(__unused uint8_t p1, __unused uint8_t p2,
                            __unused uint16_t p3)
{
	int index = l1s.neigh_sb.index;
	uint8_t last_gain;

	printf("\n\n\nMTZ: In neigh_sb_cmd, l1s.neigh_pm.n = %d\n\n\n", l1s.neigh_pm.n);

	if (l1s.neigh_pm.n == 0)
		return 0;

	/* if measurements are not yet valid, wait */
	if (!l1s.neigh_pm.valid)
		return 0;

	/* check for cell to sync to */
	if (l1s.neigh_sb.count == 0) {
		/* there is no cell selected, search for cell */
		select_neigh_cell();
	}

	printf("detect SB arfcn %d (#%d) %d dbm\n", l1s.neigh_pm.band_arfcn[index], l1s.neigh_sb.count, rxlev2dbm(l1s.neigh_pm.level[index]));

	last_gain = rffe_get_gain();

	/* Tell the RF frontend to set the gain appropriately */
	rffe_compute_gain(rxlev2dbm(l1s.neigh_pm.level[index]), CAL_DSP_TGT_BB_LVL);

	/* Program DSP */
	dsp_api.db_w->d_task_md = TCH_SB_DSP_TASK;  /* maybe with I/Q swap? */
//	dsp_api.db_w->d_task_md = dsp_task_iq_swap(TCH_SB_DSP_TASK, l1s.neigh_pm.band_arfcn[index], 0);
	dsp_api.ndb->d_fb_mode = 0;

	/* Program TPU */
	l1s_rx_win_ctrl(l1s.neigh_pm.band_arfcn[index], L1_RXWIN_SB26, 5);

	/* restore last gain */
	rffe_set_gain(last_gain);

	l1s.neigh_sb.running = 1;

	return 0;
}

//MTZ - THIS FUNCTION BELOW IS NOT USED!!!!!
static int l1s_neigh_sb_resp(__unused uint8_t p1, __unused uint8_t p2,
                             __unused uint16_t p3)
{
	int index = l1s.neigh_sb.index;
	uint32_t sb;

	if (l1s.neigh_pm.n == 0 || !l1s.neigh_sb.running)
		goto out;

	/* check if sync was successful */
	if (dsp_api.db_r->a_sch[0] & (1<<B_SCH_CRC)) {
		printf("SB error arfcn %d\n", l1s.neigh_pm.band_arfcn[index]);

		/* next sync */
		if (++l1s.neigh_sb.count == 11) {
			l1s.neigh_sb.count = 0;
			l1s.neigh_sb.flags_bsic[index] |= NEIGH_PM_FLAG_SCANNED;
		}
	} else {
		l1s.neigh_sb.count = 0;

		read_sb_result(last_fb, 1);
		sb = dsp_api.db_r->a_sch[3] | dsp_api.db_r->a_sch[4] << 16;
		l1s.neigh_sb.flags_bsic[index] =
			l1s_decode_sb(&fbs.mon.time, sb)
				| NEIGH_PM_FLAG_BSIC | NEIGH_PM_FLAG_SCANNED;
		printf("SB OK!!!!!! arfcn %d\n", l1s.neigh_pm.band_arfcn[index]);

		/* store time offset */
	}

out:
	l1s.neigh_sb.running = 0;

	dsp_api.r_page_used = 1;
	
	printf("\nMTZ: In l1s_neigh_sb_resp, l1s.serving_cell.arfcn = %d\n", l1s.serving_cell.arfcn);

	return 0;

}

///* NOTE: Prio 1 is below TCH's RX+TX prio 0 */
//const struct tdma_sched_item neigh_sync_sched_set[] = {
//	SCHED_ITEM_DT(l1s_neigh_sb_cmd, 1, 0, 1),	SCHED_END_FRAME(),
//							SCHED_END_FRAME(),
//	SCHED_ITEM(l1s_neigh_sb_resp, -4, 0, 1),	SCHED_END_FRAME(),
//	SCHED_END_SET()
//};

/* NOTE: Prio 1 is below TCH's RX+TX prio 0 */
const struct tdma_sched_item neigh_sync_sched_set[] = {
	SCHED_ITEM_DT(l1s_neigh_fbsb_sync, 1, 0, 1),	SCHED_END_FRAME(),
	SCHED_ITEM_DT(l1s_neigh_fbsb_cmd, 1, 0, 1),	SCHED_END_FRAME(),
							SCHED_END_FRAME(),
							SCHED_END_FRAME(),
	SCHED_ITEM(l1s_neigh_fbsb_resp, -4, 0, 1),	SCHED_END_FRAME(),
	SCHED_END_SET()
};

static __attribute__ ((constructor)) void l1s_prim_fbsb_init(void)
{
	l1s.completion[L1_COMPL_FB] = &l1a_fb_compl;
}