#define DEBUG /* Driver for the Calypso integrated DSP */ /* (C) 2010 by Harald Welte * * All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * */ #include #include #include #include #include #include #include #include #include #include #include #define REG_API_CONTROL 0xfffe0000 #define APIC_R_SMODE_HOM (1 << 1) /* API is configured in HOM mode */ #define APIC_R_HINT (1 << 3) /* Host processor interrupt (DSP->MCU) */ #define APIC_W_DSPINT (1 << 2) /* ARM issues interrupt to DSP */ #define REG_API_WS 0xfffff902 /* Number of wait states for ARM access to API memory */ #define REG_ARM_RHEA_CTL 0xfffff904 /* Write buffer bypassing */ #define REG_EXT_RHEA_CTL 0xfffff906 /* Some timeout */ #define API_SIZE 0x2000U /* in words */ #define BASE_API_RAM 0xffd00000 /* Base address of API RAM from ARM point of view */ #define DSP_BASE_API 0x0800 /* Base address of API RAM for DSP */ #define DSP_BASE_API_MIRROR 0xe000 /* Base address of API RAM for DSP (API boot mirror) */ #define DSP_START 0x7000 /* DSP Start address */ /* Boot loader */ #define BL_CMD_STATUS (BASE_API_RAM + 0x0ffe) /* Status / Command var */ #define BL_ADDR_LO (BASE_API_RAM + 0x0ffc) /* Address (16 lsbs) */ #define BL_ADDR_HI (BASE_API_RAM + 0x0ff8) /* Address (ext page bits) */ #define BL_SIZE (BASE_API_RAM + 0x0ffa) /* Size */ #define BL_MAX_BLOCK_SIZE 0x7F0 /* Maximum size of copied block */ /* Possible values for the download status */ #define BL_STATUS_NA 0 #define BL_STATUS_IDLE 1 #define BL_CMD_COPY_BLOCK 2 #define BL_CMD_COPY_MODE 4 #define BL_MODE_PROG_WRITE 0 #define BL_MODE_DATA_WRITE 1 #define BL_MODE_PROG_READ 2 #define BL_MODE_DATA_READ 3 #define BL_MODE_PROM_READ 4 #define BL_MODE_DROM_READ 5 struct dsp_section { uint32_t addr; /* addr for DSP */ uint32_t size; /* size in words */ const uint16_t *data; }; #include "dsp_params.c" #include "dsp_bootcode.c" #include "dsp_dumpcode.c" struct dsp_api dsp_api = { .ndb = (T_NDB_MCU_DSP *) BASE_API_NDB, .db_r = (T_DB_DSP_TO_MCU *) BASE_API_R_PAGE_0, .db_w = (T_DB_MCU_TO_DSP *) BASE_API_W_PAGE_0, .param = (T_PARAM_MCU_DSP *) BASE_API_PARAM, .r_page = 0, .w_page = 0, }; void dsp_dump_version(void) { printf("DSP Download Status: 0x%04x\n", readw(BL_CMD_STATUS)); printf("DSP API Version: 0x%04x 0x%04x\n", dsp_api.ndb->d_version_number1, dsp_api.ndb->d_version_number2); } static void dsp_bl_wait_ready(void) { while (readw(BL_CMD_STATUS) != BL_STATUS_IDLE); } static void dsp_bl_start_at(uint16_t addr) { writew(0, BL_ADDR_HI); writew(addr, BL_ADDR_LO); writew(0, BL_SIZE); writew(BL_CMD_COPY_BLOCK, BL_CMD_STATUS); } static int dsp_bl_upload_sections(const struct dsp_section *sec) { /* Make sure the bootloader is ready */ dsp_bl_wait_ready(); /* Set mode */ writew(BL_MODE_DATA_WRITE, BASE_API_RAM); writew(BL_CMD_COPY_MODE, BL_CMD_STATUS); dsp_bl_wait_ready(); /* Scan all sections */ for (; sec->data; sec++) { volatile uint16_t *api = (volatile uint16_t *)BASE_API_RAM; unsigned int i; if (sec->size > BL_MAX_BLOCK_SIZE) return -1; /* not supported for now */ /* Copy data to API */ for (i=0; isize; i++) api[i] = sec->data[i]; /* Issue DRAM write */ writew(sec->addr >> 16, BL_ADDR_HI); writew(sec->addr & 0xffff, BL_ADDR_LO); writew(sec->size, BL_SIZE); writew(BL_CMD_COPY_BLOCK, BL_CMD_STATUS); /* Wait for completion */ dsp_bl_wait_ready(); } return 0; } static int dsp_upload_sections_api(const struct dsp_section *sec, uint16_t dsp_base_api) { for (; sec->data; sec++) { unsigned int i; volatile uint16_t *dptr; if (sec->addr & ~((1<<16)-1)) /* 64k max addr */ return -1; if (sec->addr < dsp_base_api) return -1; if ((sec->addr + sec->size) > (dsp_base_api + API_SIZE)) return -1; dptr = (volatile uint16_t *)(BASE_API_RAM + ((sec->addr - dsp_base_api) * sizeof(uint16_t))); for (i=0; isize; i++) *dptr++ = sec->data[i]; } /* FIXME need eioio or wb ? */ return 0; } static void dsp_pre_boot(const struct dsp_section *bootcode) { dputs("Assert DSP into Reset\n"); calypso_reset_set(RESET_DSP, 1); if (bootcode) { dputs("Loading initial DSP bootcode (API boot mode)\n"); dsp_upload_sections_api(bootcode, DSP_BASE_API_MIRROR); writew(BL_STATUS_NA, BL_CMD_STATUS); } else delay_ms(10); dputs("Releasing DSP from Reset\n"); calypso_reset_set(RESET_DSP, 0); /* Wait 10 us */ delay_ms(100); dsp_bl_wait_ready(); } static void dsp_set_params(int16_t *param_tab, int param_size) { int i; int16_t *param_ptr = (int16_t *) BASE_API_PARAM; /* Start DSP up to bootloader */ dsp_pre_boot(dsp_bootcode); /* FIXME: Implement Patch download, if any */ dputs("Setting some dsp_api.ndb values\n"); dsp_api.ndb->d_background_enable = 0; dsp_api.ndb->d_background_abort = 0; dsp_api.ndb->d_background_state = 0; dsp_api.ndb->d_debug_ptr = 0x0074; dsp_api.ndb->d_debug_bk = 0x0001; dsp_api.ndb->d_pll_config = 0x154; //C_PLL_CONFIG; dsp_api.ndb->p_debug_buffer = 0x17ff; //C_DEBUG_BUFFER_ADD; dsp_api.ndb->d_debug_buffer_size = 7; //C_DEBUG_BUFFER_SIZE; dsp_api.ndb->d_debug_trace_type = 0; //C_DEBUG_TRACE_TYPE; dsp_api.ndb->d_dsp_state = 3; //C_DSP_IDLE3; dsp_api.ndb->d_audio_gain_ul = 0; dsp_api.ndb->d_audio_gain_dl = 0; dsp_api.ndb->d_es_level_api = 0x5213; dsp_api.ndb->d_mu_api = 0x5000; dputs("Setting API NDB parameters\n"); for (i = 0; i < param_size; i ++) *param_ptr++ = param_tab[i]; dsp_dump_version(); dputs("Finishing download phase\n"); dsp_bl_start_at(DSP_START); dsp_dump_version(); } void dsp_api_memset(uint16_t *ptr, int octets) { uint16_t i; for (i = 0; i < octets / sizeof(uint16_t); i++) *ptr++ = 0; } /* memcpy from RAM to DSP API, 16 bits by 16 bits. If odd byte count, last word will * be zero filled */ void dsp_memcpy_to_api(volatile uint16_t *dsp_buf, const uint8_t *mcu_buf, int n, int be) { int odd, i; odd = n & 1; n >>= 1; if (be) { for (i=0; i>= 1; if (be) { for (i=0; i> 8; *(mcu_buf++) = w; } if (odd) *mcu_buf = *(dsp_buf++) >> 8; } else { for (i=0; i> 8; } if (odd) *mcu_buf = *(dsp_buf++); } } static void dsp_audio_init(void) { T_NDB_MCU_DSP *ndb = dsp_api.ndb; uint8_t i; ndb->d_vbctrl1 = ABB_VAL_T(VBCTRL1, 0x00B); /* VULSWITCH=0, VDLAUX=1, VDLEAR=1 */ ndb->d_vbctrl2 = ABB_VAL_T(VBCTRL2, 0x000); /* MICBIASEL=0, VDLHSO=0, MICAUX=0 */ /* * TODO: the following two settings are used to control * the volume and uplink/downlink/sidetone gain. Make them * adjustable by the user. */ ndb->d_vbuctrl = ABB_VAL_T(VBUCTRL, 0x009); /* Uplink gain amp 3dB, Sidetone gain -5dB */ ndb->d_vbdctrl = ABB_VAL_T(VBDCTRL, 0x066); /* Downlink gain amp 0dB, Volume control -6 dB */ ndb->d_toneskb_init = 0; /* MCU/DSP audio task com. register */ ndb->d_toneskb_status = 0; /* MCU/DSP audio task com. register */ ndb->d_shiftul = 0x100; ndb->d_shiftdl = 0x100; ndb->d_melo_osc_used = 0; ndb->d_melo_osc_active = 0; #define SC_END_OSCILLATOR_MASK 0xfffe ndb->a_melo_note0[0] = SC_END_OSCILLATOR_MASK; ndb->a_melo_note1[0] = SC_END_OSCILLATOR_MASK; ndb->a_melo_note2[0] = SC_END_OSCILLATOR_MASK; ndb->a_melo_note3[0] = SC_END_OSCILLATOR_MASK; ndb->a_melo_note4[0] = SC_END_OSCILLATOR_MASK; ndb->a_melo_note5[0] = SC_END_OSCILLATOR_MASK; ndb->a_melo_note6[0] = SC_END_OSCILLATOR_MASK; ndb->a_melo_note7[0] = SC_END_OSCILLATOR_MASK; #define MAX_FIR_COEF 31 /* Initialize the FIR as an all band pass */ dsp_api.param->a_fir31_downlink[0] = 0x4000; dsp_api.param->a_fir31_uplink[0] = 0x4000; for (i = 1; i < MAX_FIR_COEF; i++) { dsp_api.param->a_fir31_downlink[i] = 0; dsp_api.param->a_fir31_uplink[i] = 0; } #define B_GSM_ONLY ((1L << 13) | (1L << 11)) /* GSM normal mode */ #define B_BT_CORDLESS (1L << 12) /* Bluetooth cordless mode */ #define B_BT_HEADSET (1L << 14) /* Bluetooth headset mode */ /* Bit set by the MCU to close the loop between the audio UL and DL path. */ /* This features is used to find the FIR coefficient. */ #define B_FIR_LOOP (1L << 1) /* Reset the FIR loopback and the audio mode */ ndb->d_audio_init &= ~(B_FIR_LOOP | B_GSM_ONLY | B_BT_HEADSET | B_BT_CORDLESS); /* Set the GSM mode */ ndb->d_audio_init |= (B_GSM_ONLY); ndb->d_aec_ctrl = 0; /* DSP background task through pending task queue */ dsp_api.param->d_gsm_bgd_mgt = 0; ndb->d_audio_compressor_ctrl = 0x0401; #define NO_MELODY_SELECTED (0) ndb->d_melody_selection = NO_MELODY_SELECTED; } static void dsp_ndb_init(void) { T_NDB_MCU_DSP *ndb = dsp_api.ndb; uint8_t i; #define APCDEL_DOWN (2+0) // minimum value: 2 #define APCDEL_UP (6+3+1) // minimum value: 6 /* load APC ramp: set to "no ramp" so that there will be no output if * not properly initialised at some other place. */ for (i = 0; i < 16; i++) dsp_api.ndb->a_ramp[i] = ABB_VAL(APCRAM, ABB_RAMP_VAL(0, 0)); /* Iota registers values will be programmed at 1st DSP communication interrupt */ /* Enable f_tx delay of 400000 cyc DEBUG */ ndb->d_debug1 = ABB_VAL_T(0, 0x000); ndb->d_afcctladd= ABB_VAL_T(AFCCTLADD, 0x000); // Value at reset ndb->d_vbuctrl = ABB_VAL_T(VBUCTRL, 0x0C9); // Uplink gain amp 0dB, Sidetone gain to mute ndb->d_vbdctrl = ABB_VAL_T(VBDCTRL, 0x006); // Downlink gain amp 0dB, Volume control 0 dB ndb->d_bbctrl = ABB_VAL_T(BBCTRL, 0x2C1); // value at reset ndb->d_bulgcal = ABB_VAL_T(BULGCAL, 0x000); // value at reset ndb->d_apcoff = ABB_VAL_T(APCOFF, 0x040); // value at reset ndb->d_bulioff = ABB_VAL_T(BULIOFF, 0x0FF); // value at reset ndb->d_bulqoff = ABB_VAL_T(BULQOFF, 0x0FF); // value at reset ndb->d_dai_onoff= ABB_VAL_T(APCOFF, 0x000); // value at reset ndb->d_auxdac = ABB_VAL_T(AUXDAC, 0x000); // value at reset ndb->d_vbctrl1 = ABB_VAL_T(VBCTRL1, 0x00B); // VULSWITCH=0, VDLAUX=1, VDLEAR=1. ndb->d_vbctrl2 = ABB_VAL_T(VBCTRL2, 0x000); // MICBIASEL=0, VDLHSO=0, MICAUX=0 /* APCDEL will be initialized on rach only */ ndb->d_apcdel1 = ABB_VAL_T(APCDEL1, ((APCDEL_DOWN-2) << 5) | (APCDEL_UP-6)); ndb->d_apcdel2 = ABB_VAL_T(APCDEL2, 0x000); ndb->d_fb_mode = 1; /* mode 1 FCCH burst detection */ ndb->d_fb_det = 0; /* we have not yet detected a FB */ ndb->a_cd[0] = (1<a_dd_0[0] = 0; ndb->a_dd_0[2] = 0xffff; ndb->a_dd_1[0] = 0; ndb->a_dd_1[2] = 0xffff; ndb->a_du_0[0] = 0; ndb->a_du_0[2] = 0xffff; ndb->a_du_1[0] = 0; ndb->a_du_1[2] = 0xffff; ndb->a_fd[0] = (1<a_fd[2] = 0xffff; ndb->d_a5mode = 0; ndb->d_tch_mode = 0x0800; /* Set ABB model to Iota */ #define GUARD_BITS 8 // 11 or 9 for TSM30, 7 for Freerunner ndb->d_tch_mode |= (((GUARD_BITS - 4) & 0x000F) << 7); //Bit 7..10: guard bits ndb->a_sch26[0] = (1<d_spcx_rif = 0x179; /* Init audio related parameters */ dsp_audio_init(); } static void dsp_db_init(void) { dsp_api_memset((uint16_t *)BASE_API_W_PAGE_0, sizeof(T_DB_MCU_TO_DSP)); dsp_api_memset((uint16_t *)BASE_API_W_PAGE_1, sizeof(T_DB_MCU_TO_DSP)); dsp_api_memset((uint16_t *)BASE_API_R_PAGE_0, sizeof(T_DB_DSP_TO_MCU)); dsp_api_memset((uint16_t *)BASE_API_R_PAGE_1, sizeof(T_DB_DSP_TO_MCU)); } void dsp_power_on(void) { /* probably a good idea to initialize the whole API area to a known value */ dsp_api_memset((uint16_t *)BASE_API_RAM, API_SIZE * 2); // size is in words dsp_set_params((int16_t *)&dsp_params, sizeof(dsp_params)/2); dsp_ndb_init(); dsp_db_init(); dsp_api.frame_ctr = 0; dsp_api.r_page = dsp_api.w_page = dsp_api.r_page_used = 0; } /* test for frequency burst detection */ #define REG_INT_STAT 0xffff1004 static void wait_for_frame_irq(void) { //puts("Waiting for Frame Interrupt"); //while (readb(REG_INT_STAT) & 1) while (readb((void *)0xffff1000) & (1<<4)) ;// putchar('.'); //puts("Done!\n"); } void dsp_end_scenario(void) { /* FIXME: we don't yet deal with the MISC_TASK */ /* End the DSP Scenario */ dsp_api.ndb->d_dsp_page = B_GSM_TASK | dsp_api.w_page; dsp_api.w_page ^= 1; /* Tell TPU to generate a FRAME interrupt to the DSP */ tpu_dsp_frameirq_enable(); tpu_frame_irq_en(1, 1); } void dsp_load_rx_task(uint16_t task, uint8_t burst_id, uint8_t tsc) { dsp_api.db_w->d_task_d = task; dsp_api.db_w->d_burst_d = burst_id; dsp_api.db_w->d_ctrl_system |= tsc & 0x7; } void dsp_load_tx_task(uint16_t task, uint8_t burst_id, uint8_t tsc) { dsp_api.db_w->d_task_u = task; dsp_api.db_w->d_burst_u = burst_id; dsp_api.db_w->d_ctrl_system |= tsc & 0x7; } /* no AMR yet */ void dsp_load_tch_param(struct gsm_time *next_time, uint8_t chan_mode, uint8_t chan_type, uint8_t chan_sub, uint8_t tch_loop, uint8_t sync_tch, uint8_t tn) { uint16_t d_ctrl_tch; uint16_t fn, a5fn0, a5fn1; /* d_ctrl_tch ---------- bit [0..3] -> b_chan_mode bit [4..7] -> b_chan_type bit [8] -> b_sync_tch_ul bit [9] -> b_sync_tch_dl bit [10] -> b_stop_tch_ul bit [11] -> b_stop_tch_dl bit [12..14] -> b_tch_loop bit [15] -> b_subchannel */ d_ctrl_tch = (chan_mode << B_CHAN_MODE) | (chan_type << B_CHAN_TYPE) | (chan_sub << B_SUBCHANNEL) | (sync_tch << B_SYNC_TCH_UL) | (sync_tch << B_SYNC_TCH_DL) | (tch_loop << B_TCH_LOOP); /* used for ciphering and TCH traffic */ /* d_fn ---- for TCH_F: bit [0..7] -> b_fn_report = (fn - (tn * 13) + 104) % 104) bit [8..15] -> b_fn_sid = (fn % 104) for TCH_H: tn_report = (tn & ~1) | subchannel bit [0..7] -> b_fn_report = (fn - tn_report * 13) + 104) % 104) bit [8..15] -> b_fn_sid = (fn % 104) for other: irrelevant */ if (chan_type == TCH_F) { fn = ((next_time->fn - (tn * 13) + 104) % 104) | ((next_time->fn % 104) << 8); } else if (chan_type == TCH_H) { uint8_t tn_report = (tn & ~1) | chan_sub; fn = ((next_time->fn - (tn_report * 13) + 104) % 104) | ((next_time->fn % 104) << 8); } else { /* irrelevant */ fn = 0; } /* a_a5fn ------ byte[0] bit [0..4] -> T2 byte[0] bit [5..10] -> T3 byte[1] bit [0..10] -> T1 */ a5fn0 = ((uint16_t)next_time->t3 << 5) | (uint16_t)next_time->t2; a5fn1 = (uint16_t)next_time->t1; dsp_api.db_w->d_fn = fn; /* Fn_sid & Fn_report */ dsp_api.db_w->a_a5fn[0] = a5fn0; /* ciphering FN part 1 */ dsp_api.db_w->a_a5fn[1] = a5fn1; /* ciphering FN part 2 */ dsp_api.db_w->d_ctrl_tch = d_ctrl_tch; /* Channel config. */ } void dsp_load_ciph_param(int mode, uint8_t *key) { dsp_api.ndb->d_a5mode = mode; if (!mode || !key) return; /* key is expected in the same format as in RSL * Encryption information IE. So we need to load the * bytes backward in A5 unit */ dsp_api.ndb->a_kc[0] = (uint16_t)key[7] | ((uint16_t)key[6] << 8); dsp_api.ndb->a_kc[1] = (uint16_t)key[5] | ((uint16_t)key[4] << 8); dsp_api.ndb->a_kc[2] = (uint16_t)key[3] | ((uint16_t)key[2] << 8); dsp_api.ndb->a_kc[3] = (uint16_t)key[1] | ((uint16_t)key[0] << 8); } #define SC_CHKSUM_VER (BASE_API_W_PAGE_0 + (2 * (0x08DB - 0x800))) static void dsp_dump_csum(void) { printf("dsp page : %u\n", dsp_api.ndb->d_dsp_page); printf("dsp code version : 0x%04x\n", dsp_api.db_r->a_pm[0]); printf("dsp checksum : 0x%04x\n", dsp_api.db_r->a_pm[1]); printf("dsp patch version : 0x%04x\n", readw(SC_CHKSUM_VER)); } void dsp_checksum_task(void) { dsp_dump_csum(); dsp_api.db_w->d_task_md = CHECKSUM_DSP_TASK; dsp_api.ndb->d_fb_mode = 1; dsp_end_scenario(); wait_for_frame_irq(); dsp_dump_csum(); } #define L1D_AUXAPC 0x0012 #define L1D_APCRAM 0x0014 void dsp_load_apc_dac(uint16_t apc) { dsp_api.db_w->d_power_ctl = (apc << 6) | L1D_AUXAPC; } static void _dsp_dump_range(uint32_t addr, uint32_t size, int mode) { uint32_t bs; /* Mode selection */ writew(mode, BASE_API_RAM); writew(BL_CMD_COPY_MODE, BL_CMD_STATUS); dsp_bl_wait_ready(); /* Block by block dump */ while (size) { volatile uint16_t *api = (volatile uint16_t *)BASE_API_RAM; bs = (size > BL_MAX_BLOCK_SIZE) ? BL_MAX_BLOCK_SIZE : size; size -= bs; writew(addr >> 16, BL_ADDR_HI); writew(addr & 0xffff, BL_ADDR_LO); writew(bs, BL_SIZE); writew(BL_CMD_COPY_BLOCK, BL_CMD_STATUS); dsp_bl_wait_ready(); while (bs--) { /* FIXME workaround: small delay to prevent overflowing * the sercomm buffer */ delay_ms(2); if ((addr&15)==0) printf("%05x : ", addr); printf("%04hx%c", *api++, ((addr&15)==15)?'\n':' '); addr++; } }; puts("\n"); } void dsp_dump(void) { static const struct { const char *name; uint32_t addr; uint32_t size; int mode; } dr[] = { { "Registers", 0x00000, 0x0060, BL_MODE_DATA_READ }, { "DROM", 0x09000, 0x5000, BL_MODE_DROM_READ }, { "PDROM", 0x0e000, 0x2000, BL_MODE_DROM_READ }, { "PROM0", 0x07000, 0x7000, BL_MODE_PROM_READ }, { "PROM1", 0x18000, 0x8000, BL_MODE_PROM_READ }, { "PROM2", 0x28000, 0x8000, BL_MODE_PROM_READ }, { "PROM3", 0x38000, 0x2000, BL_MODE_PROM_READ }, { NULL, 0, 0, -1 } }; int i; /* Start DSP up to bootloader */ dsp_pre_boot(dsp_bootcode); /* Load and execute our dump code in the DSP */ dsp_upload_sections_api(dsp_dumpcode, DSP_BASE_API); dsp_bl_start_at(DSP_DUMPCODE_START); /* our dump code actually simulates the boot loader * but with added read commands */ dsp_bl_wait_ready(); /* Test the 'version' command */ writew(0xffff, BL_CMD_STATUS); dsp_bl_wait_ready(); printf("DSP bootloader version 0x%04x\n", readw(BASE_API_RAM)); /* Dump each range */ for (i=0; dr[i].name; i++) { printf("DSP dump: %s [%05x-%05x]\n", dr[i].name, dr[i].addr, dr[i].addr+dr[i].size-1); _dsp_dump_range(dr[i].addr, dr[i].size, dr[i].mode); } }