aboutsummaryrefslogtreecommitdiffstats
path: root/Transceiver52M/sigProcLib.cpp
blob: 1ea1c543e9d976404d052286aa86bec8134ffabe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
/*
* Copyright 2008, 2011 Free Software Foundation, Inc.
*
* This software is distributed under the terms of the GNU Affero Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.

	This program is free software: you can redistribute it and/or modify
	it under the terms of the GNU Affero General Public License as published by
	the Free Software Foundation, either version 3 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU Affero General Public License for more details.

	You should have received a copy of the GNU Affero General Public License
	along with this program.  If not, see <http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "sigProcLib.h"
#include "GSMCommon.h"
#include "Logger.h"
#include "Resampler.h"

extern "C" {
#include "convolve.h"
#include "scale.h"
#include "mult.h"
}

using namespace GSM;

#define TABLESIZE		1024
#define DELAYFILTS		64

/* Clipping detection threshold */
#define CLIP_THRESH		30000.0f

/** Lookup tables for trigonometric approximation */
static float sincTable[TABLESIZE+1]; // add 1 element for wrap around

/** Constants */
static const float M_PI_F = (float)M_PI;

/* Precomputed rotation vectors */
static signalVector *GMSKRotation4 = NULL;
static signalVector *GMSKReverseRotation4 = NULL;
static signalVector *GMSKRotation1 = NULL;
static signalVector *GMSKReverseRotation1 = NULL;

/* Precomputed fractional delay filters */
static signalVector *delayFilters[DELAYFILTS];

static const Complex<float> psk8_table[8] = {
   Complex<float>(-0.70710678,  0.70710678),
   Complex<float>( 0.0, -1.0),
   Complex<float>( 0.0,  1.0),
   Complex<float>( 0.70710678, -0.70710678),
   Complex<float>(-1.0,  0.0),
   Complex<float>(-0.70710678, -0.70710678),
   Complex<float>( 0.70710678,  0.70710678),
   Complex<float>( 1.0,  0.0),
};

/* Downsampling filterbank - 4 SPS to 1 SPS */
#define DOWNSAMPLE_IN_LEN	624
#define DOWNSAMPLE_OUT_LEN	156

static Resampler *dnsampler = NULL;

/*
 * RACH and midamble correlation waveforms. Store the buffer separately
 * because we need to allocate it explicitly outside of the signal vector
 * constructor. This is because C++ (prior to C++11) is unable to natively
 * perform 16-byte memory alignment required by many SSE instructions.
 */
struct CorrelationSequence {
  CorrelationSequence() : sequence(NULL)
  {
  }

  ~CorrelationSequence()
  {
    delete sequence;
  }

  signalVector *sequence;
  void         *buffer;
  float        toa;
  complex      gain;
};

/*
 * Gaussian and empty modulation pulses. Like the correlation sequences,
 * store the runtime (Gaussian) buffer separately because of needed alignment
 * for SSE instructions.
 */
struct PulseSequence {
  PulseSequence() : c0(NULL), c1(NULL), c0_inv(NULL), empty(NULL)
  {
  }

  ~PulseSequence()
  {
    delete c0;
    delete c1;
    delete c0_inv;
    delete empty;
  }

  signalVector *c0;
  signalVector *c1;
  signalVector *c0_inv;
  signalVector *empty;
};

static CorrelationSequence *gMidambles[] = {NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL};
static CorrelationSequence *gEdgeMidambles[] = {NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL};
static CorrelationSequence *gRACHSequences[] = {NULL,NULL,NULL};
static PulseSequence *GSMPulse1 = NULL;
static PulseSequence *GSMPulse4 = NULL;

void sigProcLibDestroy()
{
  for (int i = 0; i < 8; i++) {
    delete gMidambles[i];
    delete gEdgeMidambles[i];
    gMidambles[i] = NULL;
    gEdgeMidambles[i] = NULL;
  }

  for (int i = 0; i < DELAYFILTS; i++) {
    delete delayFilters[i];
    delayFilters[i] = NULL;
  }

  for (int i = 0; i < 3; i++) {
    delete gRACHSequences[i];
    gRACHSequences[i] = NULL;
  }

  delete GMSKRotation1;
  delete GMSKReverseRotation1;
  delete GMSKRotation4;
  delete GMSKReverseRotation4;
  delete GSMPulse1;
  delete GSMPulse4;
  delete dnsampler;

  GMSKRotation1 = NULL;
  GMSKRotation4 = NULL;
  GMSKReverseRotation4 = NULL;
  GMSKReverseRotation1 = NULL;
  GSMPulse1 = NULL;
  GSMPulse4 = NULL;
}

static float vectorNorm2(const signalVector &x)
{
  signalVector::const_iterator xPtr = x.begin();
  float Energy = 0.0;
  for (;xPtr != x.end();xPtr++) {
	Energy += xPtr->norm2();
  }
  return Energy;
}

/*
 * Initialize 4 sps and 1 sps rotation tables
 */
static void initGMSKRotationTables()
{
  size_t len1 = 157, len4 = 625;

  GMSKRotation4 = new signalVector(len4);
  GMSKReverseRotation4 = new signalVector(len4);
  signalVector::iterator rotPtr = GMSKRotation4->begin();
  signalVector::iterator revPtr = GMSKReverseRotation4->begin();
  auto phase = 0.0;
  while (rotPtr != GMSKRotation4->end()) {
    *rotPtr++ = complex(cos(phase), sin(phase));
    *revPtr++ = complex(cos(-phase), sin(-phase));
    phase += M_PI / 2.0 / 4.0;
  }

  GMSKRotation1 = new signalVector(len1);
  GMSKReverseRotation1 = new signalVector(len1);
  rotPtr = GMSKRotation1->begin();
  revPtr = GMSKReverseRotation1->begin();
  phase = 0.0;
  while (rotPtr != GMSKRotation1->end()) {
    *rotPtr++ = complex(cos(phase), sin(phase));
    *revPtr++ = complex(cos(-phase), sin(-phase));
    phase += M_PI / 2.0;
  }
}

static void GMSKRotate(signalVector &x, int sps)
{
#if HAVE_NEON
  size_t len;
  signalVector *a, *b, *out;

  a = &x;
  out = &x;
  len = out->size();

  if (len == 157)
    len--;

  if (sps == 1)
    b = GMSKRotation1;
  else
    b = GMSKRotation4;

  mul_complex((float *) out->begin(),
              (float *) a->begin(),
              (float *) b->begin(), len);
#else
  signalVector::iterator rotPtr, xPtr = x.begin();

  if (sps == 1)
    rotPtr = GMSKRotation1->begin();
  else
    rotPtr = GMSKRotation4->begin();

  if (x.isReal()) {
    while (xPtr < x.end()) {
      *xPtr = *rotPtr++ * (xPtr->real());
      xPtr++;
    }
  }
  else {
    while (xPtr < x.end()) {
      *xPtr = *rotPtr++ * (*xPtr);
      xPtr++;
    }
  }
#endif
}

static bool GMSKReverseRotate(signalVector &x, int sps)
{
  signalVector::iterator rotPtr, xPtr= x.begin();

  if (sps == 1)
    rotPtr = GMSKReverseRotation1->begin();
  else if (sps == 4)
    rotPtr = GMSKReverseRotation4->begin();
  else
    return false;

  if (x.isReal()) {
    while (xPtr < x.end()) {
      *xPtr = *rotPtr++ * (xPtr->real());
      xPtr++;
    }
  }
  else {
    while (xPtr < x.end()) {
      *xPtr = *rotPtr++ * (*xPtr);
      xPtr++;
    }
  }

  return true;
}

/** Convolution type indicator */
enum ConvType {
  START_ONLY,
  NO_DELAY,
  CUSTOM,
  UNDEFINED,
};

static signalVector *convolve(const signalVector *x, const signalVector *h,
                              signalVector *y, ConvType spanType,
                              size_t start = 0, size_t len = 0)
{
  int rc;
  size_t head = 0, tail = 0;
  bool alloc = false, append = false;
  const signalVector *_x = NULL;

  if (!x || !h)
    return NULL;

  switch (spanType) {
  case START_ONLY:
    start = 0;
    head = h->size() - 1;
    len = x->size();

    if (x->getStart() < head)
      append = true;
    break;
  case NO_DELAY:
    start = h->size() / 2;
    head = start;
    tail = start;
    len = x->size();
    append = true;
    break;
  case CUSTOM:
    if (start < h->size() - 1) {
      head = h->size() - start;
      append = true;
    }
    if (start + len > x->size()) {
      tail = start + len - x->size();
      append = true;
    }
    break;
  default:
    return NULL;
  }

  /*
   * Error if the output vector is too small. Create the output vector
   * if the pointer is NULL.
   */
  if (y && (len > y->size()))
    return NULL;
  if (!y) {
    y = new signalVector(len, convolve_h_alloc, free);
    alloc = true;
  }

  /* Prepend or post-pend the input vector if the parameters require it */
  if (append)
    _x = new signalVector(*x, head, tail);
  else
    _x = x;

  /*
   * Four convovle types:
   *   1. Complex-Real (aligned)
   *   2. Complex-Complex (aligned)
   *   3. Complex-Real (!aligned)
   *   4. Complex-Complex (!aligned)
   */
  if (h->isReal() && h->isAligned()) {
    rc = convolve_real((float *) _x->begin(), _x->size(),
                       (float *) h->begin(), h->size(),
                       (float *) y->begin(), y->size(),
                       start, len);
  } else if (!h->isReal() && h->isAligned()) {
    rc = convolve_complex((float *) _x->begin(), _x->size(),
                          (float *) h->begin(), h->size(),
                          (float *) y->begin(), y->size(),
                          start, len);
  } else if (h->isReal() && !h->isAligned()) {
    rc = base_convolve_real((float *) _x->begin(), _x->size(),
                            (float *) h->begin(), h->size(),
                            (float *) y->begin(), y->size(),
                            start, len);
  } else if (!h->isReal() && !h->isAligned()) {
    rc = base_convolve_complex((float *) _x->begin(), _x->size(),
                               (float *) h->begin(), h->size(),
                               (float *) y->begin(), y->size(),
                               start, len);
  } else {
    rc = -1;
  }

  if (append)
    delete _x;

  if (rc < 0) {
    if (alloc)
      delete y;
    return NULL;
  }

  return y;
}

/*
 * Generate static EDGE linear equalizer. This equalizer is not adaptive.
 * Filter taps are generated from the inverted 1 SPS impulse response of
 * the EDGE pulse shape captured after the downsampling filter.
 */
static bool generateInvertC0Pulse(PulseSequence *pulse)
{
  if (!pulse)
    return false;

  pulse->c0_inv = new signalVector((complex *) convolve_h_alloc(5), 0, 5, convolve_h_alloc, free);
  pulse->c0_inv->isReal(true);
  pulse->c0_inv->setAligned(false);

  signalVector::iterator xP = pulse->c0_inv->begin();
  *xP++ = 0.15884;
  *xP++ = -0.43176;
  *xP++ = 1.00000;
  *xP++ = -0.42608;
  *xP++ = 0.14882;

  return true;
}

static bool generateC1Pulse(int sps, PulseSequence *pulse)
{
  int len;

  if (!pulse)
    return false;

  switch (sps) {
  case 4:
    len = 8;
    break;
  default:
    return false;
  }

  pulse->c1 = new signalVector((complex *) convolve_h_alloc(len), 0, len, convolve_h_alloc, free);
  pulse->c1->isReal(true);

  /* Enable alignment for SSE usage */
  pulse->c1->setAligned(true);

  signalVector::iterator xP = pulse->c1->begin();

  switch (sps) {
  case 4:
    /* BT = 0.30 */
    *xP++ = 0.0;
    *xP++ = 8.16373112e-03;
    *xP++ = 2.84385729e-02;
    *xP++ = 5.64158904e-02;
    *xP++ = 7.05463553e-02;
    *xP++ = 5.64158904e-02;
    *xP++ = 2.84385729e-02;
    *xP++ = 8.16373112e-03;
  }

  return true;
}

static PulseSequence *generateGSMPulse(int sps)
{
  int len;
  float arg, avg, center;
  PulseSequence *pulse;

  if ((sps != 1) && (sps != 4))
    return NULL;

  /* Store a single tap filter used for correlation sequence generation */
  pulse = new PulseSequence();
  pulse->empty = new signalVector(1);
  pulse->empty->isReal(true);
  *(pulse->empty->begin()) = 1.0f;

  /*
   * For 4 samples-per-symbol use a precomputed single pulse Laurent
   * approximation. This should yields below 2 degrees of phase error at
   * the modulator output. Use the existing pulse approximation for all
   * other oversampling factors.
   */
  switch (sps) {
  case 4:
    len = 16;
    break;
  case 1:
  default:
    len = 4;
  }

  pulse->c0 = new signalVector((complex *) convolve_h_alloc(len), 0, len, convolve_h_alloc, free);
  pulse->c0->isReal(true);

  /* Enable alingnment for SSE usage */
  pulse->c0->setAligned(true);

  signalVector::iterator xP = pulse->c0->begin();

  if (sps == 4) {
    *xP++ = 0.0;
    *xP++ = 4.46348606e-03;
    *xP++ = 2.84385729e-02;
    *xP++ = 1.03184855e-01;
    *xP++ = 2.56065552e-01;
    *xP++ = 4.76375085e-01;
    *xP++ = 7.05961177e-01;
    *xP++ = 8.71291644e-01;
    *xP++ = 9.29453645e-01;
    *xP++ = 8.71291644e-01;
    *xP++ = 7.05961177e-01;
    *xP++ = 4.76375085e-01;
    *xP++ = 2.56065552e-01;
    *xP++ = 1.03184855e-01;
    *xP++ = 2.84385729e-02;
    *xP++ = 4.46348606e-03;
    generateC1Pulse(sps, pulse);
  } else {
    center = (float) (len - 1.0) / 2.0;

    /* GSM pulse approximation */
    for (int i = 0; i < len; i++) {
      arg = ((float) i - center) / (float) sps;
      *xP++ = 0.96 * exp(-1.1380 * arg * arg -
			 0.527 * arg * arg * arg * arg);
    }

    avg = sqrtf(vectorNorm2(*pulse->c0) / sps);
    xP = pulse->c0->begin();
    for (int i = 0; i < len; i++)
      *xP++ /= avg;
  }

  /*
   * Current form of the EDGE equalization filter non-realizable at 4 SPS.
   * Load the onto both 1 SPS and 4 SPS objects for convenience. Note that
   * the EDGE demodulator downsamples to 1 SPS prior to equalization.
   */
  generateInvertC0Pulse(pulse);

  return pulse;
}

bool vectorSlicer(SoftVector *x)
{
  SoftVector::iterator xP = x->begin();
  SoftVector::iterator xPEnd = x->end();
  while (xP < xPEnd) {
    *xP = 0.5 * (*xP + 1.0f);
    if (*xP > 1.0)
      *xP = 1.0;
    if (*xP < 0.0)
      *xP = 0.0;
    xP++;
  }
  return true;
}

static signalVector *rotateBurst(const BitVector &wBurst,
                                 int guardPeriodLength, int sps)
{
  int burst_len;
  signalVector *pulse, rotated;
  signalVector::iterator itr;

  pulse = GSMPulse1->empty;
  burst_len = sps * (wBurst.size() + guardPeriodLength);
  rotated = signalVector(burst_len);
  itr = rotated.begin();

  for (unsigned i = 0; i < wBurst.size(); i++) {
    *itr = 2.0 * (wBurst[i] & 0x01) - 1.0;
    itr += sps;
  }

  GMSKRotate(rotated, sps);
  rotated.isReal(false);

  /* Dummy filter operation */
  return convolve(&rotated, pulse, NULL, START_ONLY);
}

static void rotateBurst2(signalVector &burst, double phase)
{
  Complex<float> rot = Complex<float>(cos(phase), sin(phase));

  for (size_t i = 0; i < burst.size(); i++)
    burst[i] = burst[i] * rot;
}

/*
 * Ignore the guard length argument in the GMSK modulator interface
 * because it results in 624/628 sized bursts instead of the preferred
 * burst length of 625. Only 4 SPS is supported.
 */
static signalVector *modulateBurstLaurent(const BitVector &bits)
{
  int burst_len, sps = 4;
  float phase;
  signalVector *c0_pulse, *c1_pulse, *c0_shaped, *c1_shaped;
  signalVector::iterator c0_itr, c1_itr;

  c0_pulse = GSMPulse4->c0;
  c1_pulse = GSMPulse4->c1;

  if (bits.size() > 156)
    return NULL;

  burst_len = 625;

  signalVector c0_burst(burst_len, c0_pulse->size());
  c0_burst.isReal(true);
  c0_itr = c0_burst.begin();

  signalVector c1_burst(burst_len, c1_pulse->size());
  c1_itr = c1_burst.begin();

  /* Padded differential tail bits */
  *c0_itr = 2.0 * (0x00 & 0x01) - 1.0;
  c0_itr += sps;

  /* Main burst bits */
  for (unsigned i = 0; i < bits.size(); i++) {
    *c0_itr = 2.0 * (bits[i] & 0x01) - 1.0;
    c0_itr += sps;
  }

  /* Padded differential tail bits */
  *c0_itr = 2.0 * (0x00 & 0x01) - 1.0;

  /* Generate C0 phase coefficients */
  GMSKRotate(c0_burst, sps);
  c0_burst.isReal(false);

  c0_itr = c0_burst.begin();
  c0_itr += sps * 2;
  c1_itr += sps * 2;

  /* Start magic */
  phase = 2.0 * ((0x01 & 0x01) ^ (0x01 & 0x01)) - 1.0;
  *c1_itr = *c0_itr * Complex<float>(0, phase);
  c0_itr += sps;
  c1_itr += sps;

  /* Generate C1 phase coefficients */
  for (unsigned i = 2; i < bits.size(); i++) {
    phase = 2.0 * ((bits[i - 1] & 0x01) ^ (bits[i - 2] & 0x01)) - 1.0;
    *c1_itr = *c0_itr * Complex<float>(0, phase);

    c0_itr += sps;
    c1_itr += sps;
  }

  /* End magic */
  int i = bits.size();
  phase = 2.0 * ((bits[i-1] & 0x01) ^ (bits[i-2] & 0x01)) - 1.0;
  *c1_itr = *c0_itr * Complex<float>(0, phase);

  /* Primary (C0) and secondary (C1) pulse shaping */
  c0_shaped = convolve(&c0_burst, c0_pulse, NULL, START_ONLY);
  c1_shaped = convolve(&c1_burst, c1_pulse, NULL, START_ONLY);

  /* Sum shaped outputs into C0 */
  c0_itr = c0_shaped->begin();
  c1_itr = c1_shaped->begin();
  for (unsigned i = 0; i < c0_shaped->size(); i++ )
    *c0_itr++ += *c1_itr++;

  delete c1_shaped;
  return c0_shaped;
}

static signalVector *rotateEdgeBurst(const signalVector &symbols, int sps)
{
  signalVector *burst;
  signalVector::iterator burst_itr;

  burst = new signalVector(symbols.size() * sps);
  burst_itr = burst->begin();

  for (size_t i = 0; i < symbols.size(); i++) {
    float phase = i * 3.0f * M_PI / 8.0f;
    Complex<float> rot = Complex<float>(cos(phase), sin(phase));

    *burst_itr = symbols[i] * rot;
    burst_itr += sps;
  }

  return burst;
}

static signalVector *derotateEdgeBurst(const signalVector &symbols, int sps)
{
  signalVector *burst;
  signalVector::iterator burst_itr;

  if (symbols.size() % sps)
    return NULL;

  burst = new signalVector(symbols.size() / sps);
  burst_itr = burst->begin();

  for (size_t i = 0; i < burst->size(); i++) {
    float phase = (float) (i % 16) * 3.0f * M_PI / 8.0f;
    Complex<float> rot = Complex<float>(cosf(phase), -sinf(phase));

    *burst_itr = symbols[sps * i] * rot;
    burst_itr++;
  }

  return burst;
}

static signalVector *mapEdgeSymbols(const BitVector &bits)
{
  if (bits.size() % 3)
    return NULL;

  signalVector *symbols = new signalVector(bits.size() / 3);

  for (size_t i = 0; i < symbols->size(); i++) {
    unsigned index = (((unsigned) bits[3 * i + 0] & 0x01) << 0) |
                     (((unsigned) bits[3 * i + 1] & 0x01) << 1) |
                     (((unsigned) bits[3 * i + 2] & 0x01) << 2);

    (*symbols)[i] = psk8_table[index];
  }

  return symbols;
}

/*
 * EDGE 8-PSK rotate and pulse shape
 *
 * Delay the EDGE downlink bursts by one symbol in order to match GMSK pulse
 * shaping group delay. The difference in group delay arises from the dual
 * pulse filter combination of the GMSK Laurent represenation whereas 8-PSK
 * uses a single pulse linear filter.
 */
static signalVector *shapeEdgeBurst(const signalVector &symbols)
{
  size_t nsyms, nsamps = 625, sps = 4;
  signalVector::iterator burst_itr;

  nsyms = symbols.size();

  if (nsyms * sps > nsamps)
    nsyms = 156;

  signalVector burst(nsamps, GSMPulse4->c0->size());

  /* Delay burst by 1 symbol */
  burst_itr = burst.begin() + sps;
  for (size_t i = 0; i < nsyms; i++) {
    float phase = i * 3.0f * M_PI / 8.0f;
    Complex<float> rot = Complex<float>(cos(phase), sin(phase));

    *burst_itr = symbols[i] * rot;
    burst_itr += sps;
  }

  /* Single Gaussian pulse approximation shaping */
  return convolve(&burst, GSMPulse4->c0, NULL, START_ONLY);
}

/*
 * Generate a random GSM normal burst.
 */
signalVector *genRandNormalBurst(int tsc, int sps, int tn)
{
  if ((tsc < 0) || (tsc > 7) || (tn < 0) || (tn > 7))
    return NULL;
  if ((sps != 1) && (sps != 4))
    return NULL;

  int i = 0;
  BitVector bits(148);

  /* Tail bits */
  for (; i < 3; i++)
    bits[i] = 0;

  /* Random bits */
  for (; i < 60; i++)
    bits[i] = rand() % 2;

  /* Stealing bit */
  bits[i++] = 0;

  /* Training sequence */
  for (int n = 0; i < 87; i++, n++)
    bits[i] = gTrainingSequence[tsc][n];

  /* Stealing bit */
  bits[i++] = 0;

  /* Random bits */
  for (; i < 145; i++)
    bits[i] = rand() % 2;

  /* Tail bits */
  for (; i < 148; i++)
    bits[i] = 0;

  int guard = 8 + !(tn % 4);
  return modulateBurst(bits, guard, sps);
}

/*
 * Generate a random GSM access burst.
 */
signalVector *genRandAccessBurst(int delay, int sps, int tn)
{
  if ((tn < 0) || (tn > 7))
    return NULL;
  if ((sps != 1) && (sps != 4))
    return NULL;
  if (delay > 68)
    return NULL;

  int i = 0;
  BitVector bits(88 + delay);

  /* delay */
  for (; i < delay; i++)
    bits[i] = 0;

  /* head and synch bits */
  for (int n = 0; i < 49+delay; i++, n++)
    bits[i] = gRACHBurst[n];

  /* Random bits */
  for (; i < 85+delay; i++)
    bits[i] = rand() % 2;

  /* Tail bits */
  for (; i < 88+delay; i++)
    bits[i] = 0;

  int guard = 68-delay + !(tn % 4);
  return modulateBurst(bits, guard, sps);
}

signalVector *generateEmptyBurst(int sps, int tn)
{
	if ((tn < 0) || (tn > 7))
		return NULL;

	if (sps == 4)
		return new signalVector(625);
	else if (sps == 1)
		return new signalVector(148 + 8 + !(tn % 4));
	else
		return NULL;
}

signalVector *generateDummyBurst(int sps, int tn)
{
	if (((sps != 1) && (sps != 4)) || (tn < 0) || (tn > 7))
		return NULL;

	return modulateBurst(gDummyBurst, 8 + !(tn % 4), sps);
}

/*
 * Generate a random 8-PSK EDGE burst. Only 4 SPS is supported with
 * the returned burst being 625 samples in length.
 */
signalVector *generateEdgeBurst(int tsc)
{
  int tail = 9 / 3;
  int data = 174 / 3;
  int train = 78 / 3;

  if ((tsc < 0) || (tsc > 7))
    return NULL;

  signalVector burst(148);
  const BitVector *midamble = &gEdgeTrainingSequence[tsc];

  /* Tail */
  int n, i = 0;
  for (; i < tail; i++)
    burst[i] = psk8_table[7];

  /* Body */
  for (; i < tail + data; i++)
    burst[i] = psk8_table[rand() % 8];

  /* TSC */
  for (n = 0; i < tail + data + train; i++, n++) {
    unsigned index = (((unsigned) (*midamble)[3 * n + 0] & 0x01) << 0) |
                     (((unsigned) (*midamble)[3 * n + 1] & 0x01) << 1) |
                     (((unsigned) (*midamble)[3 * n + 2] & 0x01) << 2);

    burst[i] = psk8_table[index];
  }

  /* Body */
  for (; i < tail + data + train + data; i++)
    burst[i] = psk8_table[rand() % 8];

  /* Tail */
  for (; i < tail + data + train + data + tail; i++)
    burst[i] = psk8_table[7];

  return shapeEdgeBurst(burst);
}

/*
 * Modulate 8-PSK burst. When empty pulse shaping (rotation only)
 * is enabled, the output vector length will be bit sequence length
 * times the SPS value. When pulse shaping is enabled, the output
 * vector length is fixed at 625 samples (156.25 symbols at 4 SPS).
 * Pulse shaped bit sequences that go beyond one burst are truncated.
 * Pulse shaping at anything but 4 SPS is not supported.
 */
signalVector *modulateEdgeBurst(const BitVector &bits,
                                int sps, bool empty)
{
  signalVector *shape, *burst;

  if ((sps != 4) && !empty)
    return NULL;

  burst = mapEdgeSymbols(bits);
  if (!burst)
    return NULL;

  if (empty)
    shape = rotateEdgeBurst(*burst, sps);
  else
    shape = shapeEdgeBurst(*burst);

  delete burst;
  return shape;
}

static signalVector *modulateBurstBasic(const BitVector &bits,
					int guard_len, int sps)
{
  int burst_len;
  signalVector *pulse;
  signalVector::iterator burst_itr;

  if (sps == 1)
    pulse = GSMPulse1->c0;
  else
    pulse = GSMPulse4->c0;

  burst_len = sps * (bits.size() + guard_len);

  signalVector burst(burst_len, pulse->size());
  burst.isReal(true);
  burst_itr = burst.begin();

  /* Raw bits are not differentially encoded */
  for (unsigned i = 0; i < bits.size(); i++) {
    *burst_itr = 2.0 * (bits[i] & 0x01) - 1.0;
    burst_itr += sps;
  }

  GMSKRotate(burst, sps);
  burst.isReal(false);

  /* Single Gaussian pulse approximation shaping */
  return convolve(&burst, pulse, NULL, START_ONLY);
}

/* Assume input bits are not differentially encoded */
signalVector *modulateBurst(const BitVector &wBurst, int guardPeriodLength,
			    int sps, bool emptyPulse)
{
  if (emptyPulse)
    return rotateBurst(wBurst, guardPeriodLength, sps);
  else if (sps == 4)
    return modulateBurstLaurent(wBurst);
  else
    return modulateBurstBasic(wBurst, guardPeriodLength, sps);
}

static void generateSincTable()
{
  for (int i = 0; i < TABLESIZE; i++) {
    auto x = (double) i / TABLESIZE * 8 * M_PI;
    auto y = sin(x) / x;
    sincTable[i] = std::isnan(y) ? 1.0 : y;
  }
}

static float sinc(float x)
{
  if (fabs(x) >= 8 * M_PI)
    return 0.0;

  int index = (int) floorf(fabs(x) / (8 * M_PI) * TABLESIZE);

  return sincTable[index];
}

/*
 * Create fractional delay filterbank with Blackman-harris windowed
 * sinc function generator. The number of filters generated is specified
 * by the DELAYFILTS value.
 */
static void generateDelayFilters()
{
  int h_len = 20;
  complex *data;
  signalVector *h;
  signalVector::iterator itr;

  float k, sum;
  float a0 = 0.35875;
  float a1 = 0.48829;
  float a2 = 0.14128;
  float a3 = 0.01168;

  for (int i = 0; i < DELAYFILTS; i++) {
    data = (complex *) convolve_h_alloc(h_len);
    h = new signalVector(data, 0, h_len, convolve_h_alloc, free);
    h->setAligned(true);
    h->isReal(true);

    sum = 0.0;
    itr = h->end();
    for (int n = 0; n < h_len; n++) {
      k = (float) n;
      *--itr = (complex) sinc(M_PI_F *
                         (k - (float) h_len / 2.0 - (float) i / DELAYFILTS));
      *itr *= a0 -
        a1 * cos(2 * M_PI * n / (h_len - 1)) +
        a2 * cos(4 * M_PI * n / (h_len - 1)) -
        a3 * cos(6 * M_PI * n / (h_len - 1));

      sum += itr->real();
    }

    itr = h->begin();
    for (int n = 0; n < h_len; n++)
      *itr++ /= sum;

    delayFilters[i] = h;
  }
}

signalVector *delayVector(const signalVector *in, signalVector *out, float delay)
{
  int whole, index;
  float frac;
  signalVector *h, *shift, *fshift = NULL;

  whole = floor(delay);
  frac = delay - whole;

  /* Sinc interpolated fractional shift (if allowable) */
  if (fabs(frac) > 1e-2) {
    index = floorf(frac * (float) DELAYFILTS);
    h = delayFilters[index];

    fshift = convolve(in, h, NULL, NO_DELAY);
    if (!fshift)
      return NULL;
  }

  if (!fshift)
    shift = new signalVector(*in);
  else
    shift = fshift;

  /* Integer sample shift */
  if (whole < 0) {
    whole = -whole;
    signalVector::iterator wBurstItr = shift->begin();
    signalVector::iterator shiftedItr = shift->begin() + whole;

    while (shiftedItr < shift->end())
      *wBurstItr++ = *shiftedItr++;

    while (wBurstItr < shift->end())
      *wBurstItr++ = 0.0;
  } else if (whole >= 0) {
    signalVector::iterator wBurstItr = shift->end() - 1;
    signalVector::iterator shiftedItr = shift->end() - 1 - whole;

    while (shiftedItr >= shift->begin())
      *wBurstItr-- = *shiftedItr--;

    while (wBurstItr >= shift->begin())
      *wBurstItr-- = 0.0;
  }

  if (!out)
    return shift;

  out->clone(*shift);
  delete shift;
  return out;
}

static complex interpolatePoint(const signalVector &inSig, float ix)
{
  int start = (int) (floor(ix) - 10);
  if (start < 0) start = 0;
  int end = (int) (floor(ix) + 11);
  if ((unsigned) end > inSig.size()-1) end = inSig.size()-1;

  complex pVal = 0.0;
  if (!inSig.isReal()) {
    for (int i = start; i < end; i++)
      pVal += inSig[i] * sinc(M_PI_F*(i-ix));
  }
  else {
    for (int i = start; i < end; i++)
      pVal += inSig[i].real() * sinc(M_PI_F*(i-ix));
  }

  return pVal;
}

static complex fastPeakDetect(const signalVector &rxBurst, float *index)
{
  float val, max = 0.0f;
  complex amp;
  int _index = -1;

  for (size_t i = 0; i < rxBurst.size(); i++) {
    val = rxBurst[i].norm2();
    if (val > max) {
      max = val;
      _index = i;
      amp = rxBurst[i];
    }
  }

  if (index)
    *index = (float) _index;

  return amp;
}

static complex peakDetect(const signalVector &rxBurst,
                          float *peakIndex, float *avgPwr)
{
  complex maxVal = 0.0;
  float maxIndex = -1;
  float sumPower = 0.0;

  for (unsigned int i = 0; i < rxBurst.size(); i++) {
    float samplePower = rxBurst[i].norm2();
    if (samplePower > maxVal.real()) {
      maxVal = samplePower;
      maxIndex = i;
    }
    sumPower += samplePower;
  }

  // interpolate around the peak
  // to save computation, we'll use early-late balancing
  float earlyIndex = maxIndex-1;
  float lateIndex = maxIndex+1;

  float incr = 0.5;
  while (incr > 1.0/1024.0) {
    complex earlyP = interpolatePoint(rxBurst,earlyIndex);
    complex lateP =  interpolatePoint(rxBurst,lateIndex);
    if (earlyP < lateP)
      earlyIndex += incr;
    else if (earlyP > lateP)
      earlyIndex -= incr;
    else break;
    incr /= 2.0;
    lateIndex = earlyIndex + 2.0;
  }

  maxIndex = earlyIndex + 1.0;
  maxVal = interpolatePoint(rxBurst,maxIndex);

  if (peakIndex!=NULL)
    *peakIndex = maxIndex;

  if (avgPwr!=NULL)
    *avgPwr = (sumPower-maxVal.norm2()) / (rxBurst.size()-1);

  return maxVal;

}

void scaleVector(signalVector &x,
		 complex scale)
{
#ifdef HAVE_NEON
  int len = x.size();

  scale_complex((float *) x.begin(),
                (float *) x.begin(),
                (float *) &scale, len);
#else
  signalVector::iterator xP = x.begin();
  signalVector::iterator xPEnd = x.end();
  if (!x.isReal()) {
    while (xP < xPEnd) {
      *xP = *xP * scale;
      xP++;
    }
  }
  else {
    while (xP < xPEnd) {
      *xP = xP->real() * scale;
      xP++;
    }
  }
#endif
}

/** in-place conjugation */
static void conjugateVector(signalVector &x)
{
  if (x.isReal()) return;
  signalVector::iterator xP = x.begin();
  signalVector::iterator xPEnd = x.end();
  while (xP < xPEnd) {
    *xP = xP->conj();
    xP++;
  }
}

static bool generateMidamble(int sps, int tsc)
{
  bool status = true;
  float toa;
  complex *data = NULL;
  signalVector *autocorr = NULL, *midamble = NULL;
  signalVector *midMidamble = NULL, *_midMidamble = NULL;

  if ((tsc < 0) || (tsc > 7))
    return false;

  delete gMidambles[tsc];

  /* Use middle 16 bits of each TSC. Correlation sequence is not pulse shaped */
  midMidamble = modulateBurst(gTrainingSequence[tsc].segment(5,16), 0, sps, true);
  if (!midMidamble)
    return false;

  /* Simulated receive sequence is pulse shaped */
  midamble = modulateBurst(gTrainingSequence[tsc], 0, sps, false);
  if (!midamble) {
    status = false;
    goto release;
  }

  // NOTE: Because ideal TSC 16-bit midamble is 66 symbols into burst,
  //       the ideal TSC has an + 180 degree phase shift,
  //       due to the pi/2 frequency shift, that
  //       needs to be accounted for.
  //       26-midamble is 61 symbols into burst, has +90 degree phase shift.
  scaleVector(*midMidamble, complex(-1.0, 0.0));
  scaleVector(*midamble, complex(0.0, 1.0));

  conjugateVector(*midMidamble);

  /* For SSE alignment, reallocate the midamble sequence on 16-byte boundary */
  data = (complex *) convolve_h_alloc(midMidamble->size());
  _midMidamble = new signalVector(data, 0, midMidamble->size(), convolve_h_alloc, free);
  _midMidamble->setAligned(true);
  midMidamble->copyTo(*_midMidamble);

  autocorr = convolve(midamble, _midMidamble, NULL, NO_DELAY);
  if (!autocorr) {
    status = false;
    goto release;
  }

  gMidambles[tsc] = new CorrelationSequence;
  gMidambles[tsc]->sequence = _midMidamble;
  gMidambles[tsc]->gain = peakDetect(*autocorr, &toa, NULL);

  /* For 1 sps only
   *     (Half of correlation length - 1) + midpoint of pulse shape + remainder
   *     13.5 = (16 / 2 - 1) + 1.5 + (26 - 10) / 2
   */
  if (sps == 1)
    gMidambles[tsc]->toa = toa - 13.5;
  else
    gMidambles[tsc]->toa = 0;

release:
  delete autocorr;
  delete midamble;
  delete midMidamble;

  if (!status) {
    delete _midMidamble;
    free(data);
    gMidambles[tsc] = NULL;
  }

  return status;
}

static CorrelationSequence *generateEdgeMidamble(int tsc)
{
  complex *data = NULL;
  signalVector *midamble = NULL, *_midamble = NULL;
  CorrelationSequence *seq;

  if ((tsc < 0) || (tsc > 7))
    return NULL;

  /* Use middle 48 bits of each TSC. Correlation sequence is not pulse shaped */
  const BitVector *bits = &gEdgeTrainingSequence[tsc];
  midamble = modulateEdgeBurst(bits->segment(15, 48), 1, true);
  if (!midamble)
    return NULL;

  conjugateVector(*midamble);

  data = (complex *) convolve_h_alloc(midamble->size());
  _midamble = new signalVector(data, 0, midamble->size(), convolve_h_alloc, free);
  _midamble->setAligned(true);
  midamble->copyTo(*_midamble);

  /* Channel gain is an empirically measured value */
  seq = new CorrelationSequence;
  seq->sequence = _midamble;
  seq->gain = Complex<float>(-19.6432, 19.5006) / 1.18;
  seq->toa = 0;

  delete midamble;

  return seq;
}

static bool generateRACHSequence(CorrelationSequence **seq, const BitVector &bv, int sps)
{
  bool status = true;
  float toa;
  complex *data = NULL;
  signalVector *autocorr = NULL;
  signalVector *seq0 = NULL, *seq1 = NULL, *_seq1 = NULL;

  if (*seq != NULL)
    delete *seq;

  seq0 = modulateBurst(bv, 0, sps, false);
  if (!seq0)
    return false;

  seq1 = modulateBurst(bv.segment(0, 40), 0, sps, true);
  if (!seq1) {
    status = false;
    goto release;
  }

  conjugateVector(*seq1);

  /* For SSE alignment, reallocate the midamble sequence on 16-byte boundary */
  data = (complex *) convolve_h_alloc(seq1->size());
  _seq1 = new signalVector(data, 0, seq1->size(), convolve_h_alloc, free);
  _seq1->setAligned(true);
  seq1->copyTo(*_seq1);

  autocorr = convolve(seq0, _seq1, autocorr, NO_DELAY);
  if (!autocorr) {
    status = false;
    goto release;
  }

  *seq = new CorrelationSequence;
  (*seq)->sequence = _seq1;
  (*seq)->gain = peakDetect(*autocorr, &toa, NULL);

  /* For 1 sps only
   *     (Half of correlation length - 1) + midpoint of pulse shaping filer
   *     20.5 = (40 / 2 - 1) + 1.5
   */
  if (sps == 1)
    (*seq)->toa = toa - 20.5;
  else
    (*seq)->toa = 0.0;

release:
  delete autocorr;
  delete seq0;
  delete seq1;

  if (!status) {
    delete _seq1;
    free(data);
    *seq = NULL;
  }

  return status;
}

/*
 * Peak-to-average computation +/- range from peak in symbols
 */
#define COMPUTE_PEAK_MIN     2
#define COMPUTE_PEAK_MAX     5

/*
 * Minimum number of values needed to compute peak-to-average
 */
#define COMPUTE_PEAK_CNT     5

static float computePeakRatio(signalVector *corr,
                              int sps, float toa, complex amp)
{
  int num = 0;
  complex *peak;
  float rms, avg = 0.0;

  /* Check for bogus results */
  if ((toa < 0.0) || (toa > corr->size()))
    return 0.0;

  peak = corr->begin() + (int) rint(toa);

  for (int i = COMPUTE_PEAK_MIN * sps; i <= COMPUTE_PEAK_MAX * sps; i++) {
    if (peak - i >= corr->begin()) {
      avg += (peak - i)->norm2();
      num++;
    }
    if (peak + i < corr->end()) {
      avg += (peak + i)->norm2();
      num++;
    }
  }

  if (num < COMPUTE_PEAK_CNT)
    return 0.0;

  rms = sqrtf(avg / (float) num) + 0.00001;

  return (amp.abs()) / rms;
}

float energyDetect(const signalVector &rxBurst, unsigned windowLength)
{

  signalVector::const_iterator windowItr = rxBurst.begin(); //+rxBurst.size()/2 - 5*windowLength/2;
  float energy = 0.0;
  if (windowLength == 0) return 0.0;
  if (windowLength > rxBurst.size()) windowLength = rxBurst.size();
  for (unsigned i = 0; i < windowLength; i++) {
    energy += windowItr->norm2();
    windowItr+=4;
  }
  return energy/windowLength;
}

static signalVector *downsampleBurst(const signalVector &burst)
{
  signalVector in(DOWNSAMPLE_IN_LEN, dnsampler->len());
  signalVector *out = new signalVector(DOWNSAMPLE_OUT_LEN);
  burst.copyToSegment(in, 0, DOWNSAMPLE_IN_LEN);

  if (dnsampler->rotate((float *) in.begin(), DOWNSAMPLE_IN_LEN,
                        (float *) out->begin(), DOWNSAMPLE_OUT_LEN) < 0) {
    delete out;
    out = NULL;
  }

  return out;
};

static float computeCI(const signalVector *burst, CorrelationSequence *sync,
                       float toa, int start, complex xcorr)
{
  float S, C;
  int ps;

  /* Integer position where the sequence starts */
  ps = start + 1 - sync->sequence->size() + (int)roundf(toa);

  /* Estimate Signal power */
  S = 0.0f;
  for (int i=0, j=ps; i<(int)sync->sequence->size(); i++,j++)
    S += (*burst)[j].norm2();
  S /= sync->sequence->size();

  /* Esimate Carrier power */
  C = xcorr.norm2() / ((sync->sequence->size() - 1) * sync->gain.abs());

  /* Interference = Signal - Carrier, so C/I = C / (S - C) */
  return 3.0103f * log2f(C / (S - C));
}

/*
 * Detect a burst based on correlation and peak-to-average ratio
 *
 * For one sampler-per-symbol, perform fast peak detection (no interpolation)
 * for initial gating. We do this because energy detection should be disabled.
 * For higher oversampling values, we assume the energy detector is in place
 * and we run full interpolating peak detection.
 */
static int detectBurst(const signalVector &burst,
                       signalVector &corr, CorrelationSequence *sync,
                       float thresh, int sps, complex *amp, float *toa,
                       int start, int len)
{
  const signalVector *corr_in;
  signalVector *dec = NULL;
  complex xcorr;

  if (sps == 4) {
    dec = downsampleBurst(burst);
    corr_in = dec;
    sps = 1;
  } else {
    corr_in = &burst;
  }

  /* Correlate */
  if (!convolve(corr_in, sync->sequence, &corr,
                CUSTOM, start, len)) {
    delete dec;
    return -1;
  }

  delete dec;

  /* Running at the downsampled rate at this point */
  sps = 1;

  /* Peak detection - place restrictions at correlation edges */
  *amp = fastPeakDetect(corr, toa);

  if ((*toa < 3 * sps) || (*toa > len - 3 * sps))
    return 0;

  /* Peak-to-average ratio */
  if (computePeakRatio(&corr, sps, *toa, *amp) < thresh)
    return 0;

  /* Refine TOA and correlation value */
  xcorr = peakDetect(corr, toa, NULL);

  /* Compute C/I */
  float CI = computeCI(corr_in, sync, *toa, start, xcorr);

  /* Normalize our channel gain */
  *amp = xcorr / sync->gain;

  /* Compensate for residuate time lag */
  *toa = *toa - sync->toa;

  return 1;
}

static float maxAmplitude(const signalVector &burst)
{
    float max = 0.0;
    for (size_t i = 0; i < burst.size(); i++) {
        if (fabs(burst[i].real()) > max)
            max = fabs(burst[i].real());
        if (fabs(burst[i].imag()) > max)
            max = fabs(burst[i].imag());
    }

    return max;
}

/*
 * RACH/Normal burst detection with clipping detection
 *
 * Correlation window parameters:
 *   target: Tail bits + burst length
 *   head: Search symbols before target
 *   tail: Search symbols after target
 */
static int detectGeneralBurst(const signalVector &rxBurst,
                              float thresh,
                              int sps,
                              complex &amp,
                              float &toa,
                              int target, int head, int tail,
                              CorrelationSequence *sync)
{
  int rc, start, len;
  bool clipping = false;

  if ((sps != 1) && (sps != 4))
    return -SIGERR_UNSUPPORTED;

  // Detect potential clipping
  // We still may be able to demod the burst, so we'll give it a try
  // and only report clipping if we can't demod.
  float maxAmpl = maxAmplitude(rxBurst);
  if (maxAmpl > CLIP_THRESH) {
    LOG(DEBUG) << "max burst amplitude: " << maxAmpl << " is above the clipping threshold: " << CLIP_THRESH << std::endl;
    clipping = true;
  }

  start = target - head - 1;
  len = head + tail;
  signalVector corr(len);

  rc = detectBurst(rxBurst, corr, sync,
                   thresh, sps, &amp, &toa, start, len);
  if (rc < 0) {
    return -SIGERR_INTERNAL;
  } else if (!rc) {
    amp = 0.0f;
    toa = 0.0f;
    return clipping?-SIGERR_CLIP:SIGERR_NONE;
  }

  /* Subtract forward search bits from delay */
  toa -= head;

  return 1;
}


/*
 * RACH burst detection
 *
 * Correlation window parameters:
 *   target: Tail bits + RACH length (reduced from 41 to a multiple of 4)
 *   head: Search 8 symbols before target
 *   tail: Search 8 symbols + maximum expected delay
 */
static int detectRACHBurst(const signalVector &burst, float threshold, int sps,
                           complex &amplitude, float &toa, unsigned max_toa, bool ext)
{
  int rc, target, head, tail;
  int i, num_seq;

  target = 8 + 40;
  head = 8;
  tail = 8 + max_toa;
  num_seq = ext ? 3 : 1;

  for (i = 0; i < num_seq; i++) {
    rc = detectGeneralBurst(burst, threshold, sps, amplitude, toa,
                            target, head, tail, gRACHSequences[i]);
    if (rc > 0)
      break;
  }

  return rc;
}

/*
 * Normal burst detection
 *
 * Correlation window parameters:
 *   target: Tail + data + mid-midamble + 1/2 remaining midamblebits
 *   head: Search 6 symbols before target
 *   tail: Search 6 symbols + maximum expected delay
 */
static int analyzeTrafficBurst(const signalVector &burst, unsigned tsc, float threshold,
                               int sps, complex &amplitude, float &toa, unsigned max_toa)
{
  int rc, target, head, tail;
  CorrelationSequence *sync;

  if (tsc > 7)
    return -SIGERR_UNSUPPORTED;

  target = 3 + 58 + 16 + 5;
  head = 6;
  tail = 6 + max_toa;
  sync = gMidambles[tsc];

  rc = detectGeneralBurst(burst, threshold, sps, amplitude, toa,
                          target, head, tail, sync);
  return rc;
}

static int detectEdgeBurst(const signalVector &burst, unsigned tsc, float threshold,
                           int sps, complex &amplitude, float &toa, unsigned max_toa)
{
  int rc, target, head, tail;
  CorrelationSequence *sync;

  if (tsc > 7)
    return -SIGERR_UNSUPPORTED;

  target = 3 + 58 + 16 + 5;
  head = 6;
  tail = 6 + max_toa;
  sync = gEdgeMidambles[tsc];

  rc = detectGeneralBurst(burst, threshold, sps, amplitude, toa,
                          target, head, tail, sync);
  return rc;
}

int detectAnyBurst(const signalVector &burst, unsigned tsc, float threshold,
                   int sps, CorrType type, complex &amp, float &toa,
                   unsigned max_toa)
{
  int rc = 0;

  switch (type) {
  case EDGE:
    rc = detectEdgeBurst(burst, tsc, threshold, sps,
                         amp, toa, max_toa);
    if (rc > 0)
      break;
    else
      type = TSC;
  case TSC:
    rc = analyzeTrafficBurst(burst, tsc, threshold, sps,
                             amp, toa, max_toa);
    break;
  case EXT_RACH:
  case RACH:
    rc = detectRACHBurst(burst, threshold, sps, amp, toa,
                         max_toa, type == EXT_RACH);
    break;
  default:
    LOG(ERR) << "Invalid correlation type";
  }

  if (rc > 0)
    return type;

  return rc;
}

/*
 * Soft 8-PSK decoding using Manhattan distance metric
 */
static SoftVector *softSliceEdgeBurst(signalVector &burst)
{
  size_t nsyms = 148;

  if (burst.size() < nsyms)
    return NULL;

  signalVector::iterator itr;
  SoftVector *bits = new SoftVector(nsyms * 3);

  /*
   * Bits 0 and 1 - First and second bits of the symbol respectively
   */
  rotateBurst2(burst, -M_PI / 8.0);
  itr = burst.begin();
  for (size_t i = 0; i < nsyms; i++) {
    (*bits)[3 * i + 0] = -itr->imag();
    (*bits)[3 * i + 1] = itr->real();
    itr++;
  }

  /*
   * Bit 2 - Collapse symbols into quadrant 0 (positive X and Y).
   * Decision area is then simplified to X=Y axis. Rotate again to
   * place decision boundary on X-axis.
   */
  itr = burst.begin();
  for (size_t i = 0; i < burst.size(); i++) {
    burst[i] = Complex<float>(fabs(itr->real()), fabs(itr->imag()));
    itr++;
  }

  rotateBurst2(burst, -M_PI / 4.0);
  itr = burst.begin();
  for (size_t i = 0; i < nsyms; i++) {
    (*bits)[3 * i + 2] = -itr->imag();
    itr++;
  }

  signalVector soft(bits->size());
  for (size_t i = 0; i < bits->size(); i++)
    soft[i] = (*bits)[i];

  return bits;
}

/*
 * Convert signalVector to SoftVector by taking real part of the signal.
 */
static SoftVector *signalToSoftVector(signalVector *dec)
{
  SoftVector *bits = new SoftVector(dec->size());

  SoftVector::iterator bit_itr = bits->begin();
  signalVector::iterator burst_itr = dec->begin();

  for (; burst_itr < dec->end(); burst_itr++)
    *bit_itr++ = burst_itr->real();

  return bits;
}

/*
 * Shared portion of GMSK and EDGE demodulators consisting of timing
 * recovery and single tap channel correction. For 4 SPS (if activated),
 * the output is downsampled prior to the 1 SPS modulation specific
 * stages.
 */
static signalVector *demodCommon(const signalVector &burst, int sps,
                                 complex chan, float toa)
{
  signalVector *delay, *dec;

  if ((sps != 1) && (sps != 4))
    return NULL;

  delay = delayVector(&burst, NULL, -toa * (float) sps);
  scaleVector(*delay, (complex) 1.0 / chan);

  if (sps == 1)
    return delay;

  dec = downsampleBurst(*delay);

  delete delay;
  return dec;
}

/*
 * Demodulate GSMK burst. Prior to symbol rotation, operate at
 * 4 SPS (if activated) to minimize distortion through the fractional
 * delay filters. Symbol rotation and after always operates at 1 SPS.
 */
static SoftVector *demodGmskBurst(const signalVector &rxBurst,
                                  int sps, complex channel, float TOA)
{
  SoftVector *bits;
  signalVector *dec;

  dec = demodCommon(rxBurst, sps, channel, TOA);
  if (!dec)
    return NULL;

  /* Shift up by a quarter of a frequency */
  GMSKReverseRotate(*dec, 1);
  /* Take real part of the signal */
  bits = signalToSoftVector(dec);
  delete dec;

  return bits;
}

/*
 * Demodulate an 8-PSK burst. Prior to symbol rotation, operate at
 * 4 SPS (if activated) to minimize distortion through the fractional
 * delay filters. Symbol rotation and after always operates at 1 SPS.
 *
 * Allow 1 SPS demodulation here, but note that other parts of the
 * transceiver restrict EDGE operatoin to 4 SPS - 8-PSK distortion
 * through the fractional delay filters at 1 SPS renders signal
 * nearly unrecoverable.
 */
static SoftVector *demodEdgeBurst(const signalVector &burst,
                                  int sps, complex chan, float toa)
{
  SoftVector *bits;
  signalVector *dec, *rot, *eq;

  dec = demodCommon(burst, sps, chan, toa);
  if (!dec)
    return NULL;

  /* Equalize and derotate */
  eq = convolve(dec, GSMPulse4->c0_inv, NULL, NO_DELAY);
  rot = derotateEdgeBurst(*eq, 1);

  /* Soft slice and normalize */
  bits = softSliceEdgeBurst(*rot);

  delete dec;
  delete eq;
  delete rot;

  return bits;
}

SoftVector *demodAnyBurst(const signalVector &burst, int sps, complex amp,
                          float toa, CorrType type)
{
  if (type == EDGE)
    return demodEdgeBurst(burst, sps, amp, toa);
  else
    return demodGmskBurst(burst, sps, amp, toa);
}

bool sigProcLibSetup()
{
  generateSincTable();
  initGMSKRotationTables();

  GSMPulse1 = generateGSMPulse(1);
  GSMPulse4 = generateGSMPulse(4);

  generateRACHSequence(&gRACHSequences[0], gRACHSynchSequenceTS0, 1);
  generateRACHSequence(&gRACHSequences[1], gRACHSynchSequenceTS1, 1);
  generateRACHSequence(&gRACHSequences[2], gRACHSynchSequenceTS2, 1);

  for (int tsc = 0; tsc < 8; tsc++) {
    generateMidamble(1, tsc);
    gEdgeMidambles[tsc] = generateEdgeMidamble(tsc);
  }

  generateDelayFilters();

  dnsampler = new Resampler(1, 4);
  if (!dnsampler->init()) {
    LOG(ALERT) << "Rx resampler failed to initialize";
    goto fail;
  }

  return true;

fail:
  sigProcLibDestroy();
  return false;
}